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Point interactions: boundary conditions or
potentials with the Dirac delta function

Salvatore De Vincenzo and Carlet Sánchez

Abstract: We study the problem of a nonrelativistic quantum particle moving on a real line with an idealized and local-
ized singular interaction with zero range at x = 0 (i.e., a point interaction there). This kind of system can be described in
two ways: (i) by considering an alternative free system (i.e., without the singular potential) but excluding the point x = 0
(In this case, the point interaction is exclusively encoded in the boundary conditions.) and (ii) by explicitly considering the
singular interaction by means of a local singular potential. In this paper we relate, compare, and discuss, in a simple and
pedagogical way these two equivalent approaches. Our main goal in this paper is to introduce the essential ideas about
point interactions in a very accesible form to advanced undergraduates.

PACS Nos: 03.65.–w, 03.65.Db, 03.65.Ge

Résumé : Nous étudions le problème d’une particule quantique non relativiste sur la ligne réelle avec une interaction de
portée nulle singulière, idéalisée et localisée à x = 0 (c.-à-d., une interaction ponctuelle en ce point). On peut décrire ce
type de système de deux façons. (i) On peut étudier le système alternatif libre en excluant le point x = 0 (sans le potentiel
singulier), auquel cas, le point d’interaction est exclusivement encodé dans la condition limite. (ii) On peut considérer
l’interaction singulière comme étant un potentiel local singulier. Nous analysons, relions et comparons ici ces deux appro-
ches équivalentes de façon pédagogique simple. Notre objectif est de présenter de façon accessible les points essentiels de
ce problèmes aux étudiants en fin de premier cycle.

[Traduit par la Rédaction]

1. Introduction
Many aspects of point interactions (sharply localized sin-

gular perturbations or simply called contact interactions)
such as the common Dirac delta function (or rather distribu-
tion), are fascinating, such as their own derivatives, the
boundary conditions arising from these potentials, and their
bound states (which are few or non-existent). By a point in-
teraction we mean an idealized localized singular interaction
with zero range occurring at one point on the line R. How-
ever, this kind of interaction can also be described by a free
system on the line without the singular point, i.e., in the re-
gion R n f0g, in which case the interaction is encoded in
boundary conditions rather than in a formal Hamiltonian op-
erator. For a nonrelativistic free particle (i.e., under a con-
stant or zero potential) moving on a line (R) with origin (x
= 0) excluded (a hole or a single defect), the Hamiltonian
operator is (by setting V(x) = 0),

bh ¼ � Z2

2m

d2

dx2
ð1Þ

where x 2 U ¼ R� f0gð¼ R n f0gÞ. This real and self-

adjoint operator (the kinetic energy) is defined on a dense
proper subset (its domain DðbhÞ) in the Hilbert space H for
functions u(x) such that ||u|| < ? in U (hence
ðbhf ; gÞ ¼ ðf ;bhgÞ, where f ; g 2 DðbhÞ, and the scalar product
of the two functions is ðf ; gÞ �

R
U

dx �f g, where the bar
means complex conjugation, with the usual definition of the
norm k f k�

ffiffiffiffiffiffiffiffiffiffi
ðf ; f Þ

p
). Specifically, the domain of bh is all

the functions belonging to H satisfying k bhu k<1 (In addi-
tion, u(x) and du=dx � u0ðxÞ are absolutely continuous func-
tions). Furthermore, u(x) must satisfy some of the following
(general) boundary conditions (see, for example, [1, 2]):

uð0þÞ � ilu0ð0þÞ
uð0�Þ þ ilu0ð0�Þ

 !
¼ U

uð0þÞ þ ilu0ð0þÞ
uð0�Þ � ilu0ð0�Þ

 !
ð2Þ

The parameter l is inserted for dimensional reasons and the
matrix U belongs to U(2). We use the notation
uð0�Þ ¼ lim 3!0 uð�3Þ, and similarly for the derivative u’.
The boundary conditions in (2) represent the whole family
of nonrelativistic point interactions in one-dimensional
quantum mechanics. The unitary matrix U in (2) can be
written, for instance, as
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U ¼ expðifÞ
m0 � im3 �m2 � im1

m2 � im1 m0 þ im3

 !
ð3Þ

where f 2 ½0;p�, and quantities mm 2 R (m = 0, 1, 2, 3) sa-
tisfy

ðm0Þ2 þ ðm1Þ2 þ ðm2Þ2 þ ðm3Þ2 ¼ 1

The matrix U is independent of the choice of function
u 2 DðbhÞ in the sense that U is universal for DðbhÞ [3], i.e.,
the boundary conditions (2) (also arising from Von Neu-
mann’s theory of self-adjoint extensions) is for all u 2 DðbhÞ
[1, 3]. On the other hand, the same boundary conditions may
be obtained using different parameters mm. However, there is
a one-to-one correspondence between a physically distinct
point interaction and a self-adjoint Hamiltonian whose do-
main (in general) depends on four (real) parameters [4, 5].

It can be shown that for every function u 2 DðbhÞ, the
probability current density jðxÞ ¼ ðZ=mÞ � Imð�uðxÞu0ðxÞÞ sat-
isfies j(0–) = j(0+), where the bar denotes complex conjuga-
tion. This condition is equivalent to the self-adjointness of
the Hamiltonian (1). In fact, for each f 2 DðbhÞ, on integrat-
ing by parts we obtain

0 ¼ ðbhf ; f Þ � ðf ;bhf Þ ¼ const� ðjð0þÞ � jð0�ÞÞ

Some of the boundary conditions verify j(0–) = j(0+) = 0,
which is the impenetrability condition at x = 0, i.e., we
have a (physically) real impenetrable barrier there. In rela-
tion to this important point, we can find an expression for
the probability current density at x = 0,

jð0�Þ ¼ jð0þÞ ¼ � Z

m

1

l

1

m0 þ cosðfÞ

� �
� Re½ðm2 þ im1Þuð0�Þ�uð0þÞ� ð4Þ

To obtain this result, one first writes
jð0�Þ ¼ ðZ=mÞ � Imð�uð0�Þu0ð0�ÞÞ, and then by using (8)
one can write u’(0–) in terms of u(0+) and u(0–). By substi-
tuting this last result in j(0–) and by using the fact that the
coefficients of the matrix M, M11 and M12, verify
ðM11=M12Þ 2 R (plus the basic formula Im(iz) = Re(z)), the
result (4) is obtained. Notice that by making m1 = m2 = 0,
we obtain j(0–) = j(0+) = 0. The respective subfamily of
boundary conditions could be written (from (2) and (3)) as

1 cot
f� q

2

� �
0 0

0B@
1CA uð0þÞ

lu0ð0þÞ

 !
¼

0 0

1 �cot
fþ q

2

� �0B@
1CA uð0�Þ

lu0ð0�Þ

 !
ð5Þ

where q = arctan(m3/m0) but (m0)2 + (m3)2 = 1. This subfam-
ily of boundary conditions is similar to that studied and
called ‘‘separated’’ by Kurasov and Albeverio et al. [6–8].
Note that (from (4)), if the functions u are real with m2 = 0
and m1 = 0, then we also have j(0–) = j(0+) = 0. In fact, if
the Hamiltonian operator (1) is invariant under time-rever-
sal, then ðbTuÞðxÞ � ð�uÞðxÞ 2 DðbhÞ. Thus, the matrix U must
satisfy Uy ¼ �U, which implies m2 = 0, and the eigenfunc-

tions, or stationary states, for these bT-invariant Hamiltonians
can be real functions. Note that all of the boundary condi-
tions included in (5) are bT-invariant (in [9] we have a com-
plete discussion of this theme for the apparently similar
problem of a free particle in a box).

We mention here two boundary conditions imposed to
both sides of the point x = 0 that are included in (5) (and
the two half-spaces x > 0 and x < 0 are separated physi-
cally):

(a) The Dirichlet boundary condition

uð0þÞ ¼ uð0�Þ ¼ 0 ð6Þ

which is obtained by setting (for example) m0 = +1, m3 = 0
() q ¼ 0), and f = p (which implies cot((f – q)/2) = 0 and
cot((f + q)/2) = 0).

(b) The Neumann boundary condition

u0ð0þÞ ¼ u0ð0�Þ ¼ 0 ð7Þ

which is obtained by setting (for example) m0 = +1, m3 = 0
() q ¼ 0) and f = 0 (which implies cot((f – q)/2) = ? and
cot((f + q)/2) = ?).

When the probability current density is not null at x = 0,
we may say that (physically) the wall at the singular point is
transparent to the current. Therefore, we can write a second
family of boundary conditions; this family may be called
‘‘nonseparated’’ because the two half-spaces cannot be sepa-
rated (Note that the probability current is different than zero
only if the respective functions, e.g., scattering functions,
are complex functions, because real functions, e.g., bound
states, lead to zero probability current at x = 0). Finally,
this non-disjoint family together with the family (5) (as well
as the general boundary condition (2)) represents the whole
family of boundary conditions for the self-adjoint Hamilto-
nian for a particle on the real line with a point interaction
at x = 0:

uð0þÞ
lu0ð0þÞ

 !
¼M

uð0�Þ
lu0ð0�Þ

 !
ð8Þ

where the matrix M is

M ¼ i

�m2 þ im1

m3 þ sinðfÞ �m0 � cosðfÞ
�m0 þ cosðfÞ �m3 þ sinðfÞ

 !
ð9Þ

To see this, note first that (2) can be written as

ðUþ 1Þ
�ilu0ð0þÞ
þilu0ð0�Þ

 !
¼ ðU� 1Þ

uð0þÞ
uð0�Þ

 !
where 1 is the 2 � 2 unit matrix. Then from this pair of lin-
ear relations (u’(0+) and also u’(0–) in terms of u(0+) and
u(0–)), one easily deduces the result (8). The matrix M can
also be written as,

M ¼
exp i tan�1 m1

m2

� �
þ p

2

h in o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1Þ2 þ ðm2Þ2

p
�

m3 þ sinðfÞ �m0 � cosðfÞ
�m0 þ cosðfÞ �m3 þ sinðfÞ

 !
ð10Þ
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which confirms, due to the relation

ðm0Þ2 þ ðm1Þ2 þ ðm2Þ2 þ ðm3Þ2 ¼ 1

that M does belong to the group Uð1Þ � SLð2;RÞ. Moreover,
the elements in the matrix M should take only finite values,
i.e., m1 = 0 and m2 = 0. In fact, the subfamily of boundary
conditions (8) is similar to what is called ‘‘connected’’ by
Kurasov and Albeverio et al. [6–8]. Note that the matrix M
is real for bT-invariant boundary conditions (because m2 = 0).
This result was noted in [10]. As examples of boundary con-
ditions that are included in (8) we have:

(c) The Dirac delta interaction

uð0þÞ
lu0ð0þÞ

 !
¼

1 0

�2
m0

m1

1

0@ 1A uð0�Þ
lu0ð0�Þ

 !
ð11Þ

which is obtained by setting m0 = –cos(f), m1 = sin(f), and
m2 = m3 = 0.

(d) The first derivative of the Dirac delta interaction

uð0þÞ
lu0ð0þÞ

 !
¼

1þ m3

m1

0

0
1� m3

m1

0BBB@
1CCCA uð0�Þ

lu0ð0�Þ

 !
ð12Þ

which is obtained by setting
m0 ¼ m2 ¼ 0) ½ð1� m3Þ=m1� ¼ m1=ð1þ m3Þ, cos(f) = 0,
and sinðfÞ ¼ 1) f ¼ p=2.

(e) The quasi-periodic interaction

uð0þÞ
lu0ð0þÞ

 !
¼

m1 � im2 0

0 m1 � im2

 !
uð0�Þ
lu0ð0�Þ

 !
ð13Þ

which is obtained by setting
m0 ¼ m3 ¼ 0) ðm1Þ2 þ ðm2Þ2 ¼ 1, cos(f) = 0, and
sinðfÞ ¼ 1) f ¼ p=2. Note that (if m2 = 0) this boundary
condition is not bT-invariant and therefore it is complex.

(f) The delta-prime interaction

uð0þÞ
lu0ð0þÞ

 !
¼

1 �2
m0

m1

0 1

0@ 1A uð0�Þ
lu0ð0�Þ

 !
ð14Þ

which is obtained by setting m0 = cos(f), m1 = sin(f), and
m2 = m3 = 0.

It is worth noting that if we (conveniently) impose
m1 = m2 = 0 on the ‘‘nonseparated’’ family of boundary con-
ditions (8) (or (10)), then we could obtain the boundary con-
ditions included in the ‘‘separated’’ family in (5). For
example, the Dirichlet boundary condition is obtained from
boundary condition (11) (the latter is included in (8)) by no-
ticing that –2m0/m1 = +2 cot(f) = –? (because f = p), thus,
u(0+) = u(0–) and

u0ð0þÞ ¼ �1� uð0�Þ þ u0ð0�Þ ) uð0�Þ ¼ 0

therefore u(0+) = u(0–) = 0. Likewise, the Neumann bound-
ary condition is obtained from boundary condition (14) (the
latter is also included in (8)) by noticing that –2m0/m1 = –
2 cot(f) = –? (because f = 0), so u’(0+) = u’(0–) and

uð0þÞ ¼ uð0�Þ �1� u0ð0�Þ ) u0ð0�Þ ¼ 0

therefore u’(0+) = u’(0–) = 0.
Another particular family of boundary conditions can

easily be obtained from (8),

lu0ð0þÞ � lu0ð0�Þ
uð0þÞ � uð0�Þ

 !
¼ S

uð0þÞ þ uð0�Þ
lu0ð0þÞ þ lu0ð0�Þ

 !
ð15Þ

where the matrix S can be written in terms of M as follows:

S ¼ sxðM� 1ÞðMþ 1Þ�1 ð16Þ

where sx is one of the Pauli matrices. Notice that by using
(8), the relation (15) can be written as,

sxðM� 1Þ
uð0�Þ
lu0ð0�Þ

 !
¼ SðMþ 1Þ

uð0�Þ
lu0ð0�Þ

 !
and thus we obtain (16). Explicitly, the matrix S is

S ¼ 1

m1 þ sinðfÞ
�m0 þ cosðfÞ �m3 � im2

m3 � im2 �m0 � cosðfÞ

 !
ð17Þ

where the coefficients {Spq} (obviously) verify S11, S22 2 R,
S21 ¼ ��S12, and det(S) = (–m1 + sin(f))/(m1 + sin(f))).
Likewise, (m0)2 + (m1)2 + (m2)2 (m3)2 = 1. Moreover, if the
matrix S takes only finite values, we have m1 = –sin(f).
Within the subfamily (15), we have the boundary conditions
(c), (d), (e), and (f). This family of boundary conditions was
mentioned and related to other families in [11]. Because
(15) was obtained from (8), it appears that we do not have
within (15) all of the boundary conditions included in DðbhÞ.
In fact, we do not have the cases where m1 + sin(f) = 0 in
(15); nevertheless, if we have a boundary condition where
m1 = –sin(f), the singularity in (17) could be (conveniently)
avoided, and the respective boundary condition could thus
emerge from (15). For example, the boundary conditions (a)
and (b) emerge in this way (First, the term m1 + sin(f) in
(17) must be placed on the left-hand side in (15), then the
rest of the parameters on the right-hand side in (15) must
be evaluated and simplified where possible. Finally, f and
m1 can be evaluated).

In this introduction, we have presented the most important
results for the Hamiltonian for a nonrelativistic free particle
moving on the real line with a hole at the origin. With this
Hamiltonian (without any singular potential), whose domain
depends on four (real) parameters, the point interactions are
modeled exclusively through boundary conditions. In con-
clusion, every (physically) possible boundary condition enc-
odes a different kind of wall at x = 0.

The rest of the paper is organized as follows. In Sect. 2,
we present a Hamiltonian with a singular potential in terms
of the Dirac delta and (conveniently positioned) derivatives
d/dx, which depends on four (real) parameters to describe a
nonrelativistic particle moving on the real line with a point
interaction at x = 0. This local singular potential can be writ-
ten in various ways, particularly as a sum of four (specific)
singular potentials that are certainly four representative point
interactions. Here, for example, we encounter the Dirac
delta interaction and the so-called delta-prime interaction.
In this section, we also discuss and relate the different ex-
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pressions that could be written for a local general singular
potential (here, and in the following section, we make full
use of various properties related to the Dirac delta and its
derivative). In Sect. 3, we integrate (in two different ways)
the eigenvalue equation for the Hamiltonian with the general
singular potential, and as a result we obtain a four-parameter
family of boundary conditions. This result allows us to con-
nect any boundary condition for the free Hamiltonian on the
real line with the origin excluded, with a specific Hamilto-
nian with a singular potential at x = 0. To conclude, a sum-
mary is given in the last section.

2. Singular potentials at x = 0
As we commented earlier, a point interaction is a singular

interaction (with zero range) at one point, say x = 0, on the
real line. Therefore, a nonrelativistic particle moving on a
line ðRÞ with a point interaction at x = 0 may also be de-
scribed by a general (formally) self-adjoint Hamiltonian op-
erator of the type,

bH ¼ � Z2

2m

d2

dx2
þ bVðxÞ ð18Þ

where x 2 R (then, one consistently has ðbHf ; gÞ ¼ ðf ; bHgÞ,
where f and g belong to the respective domains for bH). In
the literature [6–8, 12–14], different expressions for the
(most general) local singular potential bVðxÞ have been given.
In this section, we want to relate, compare, and explain, in a
simple and accessible way, the results obtained by all these
authors.

In fact, a plausible (formal) expression for the operatorbVðxÞ in terms of the Dirac delta and derivatives d/dx could
be [13] (in our paper, the derivatives of the Dirac delta will
always be written as d’(x) : dd/dx and d’’(x) : d2d/dx2, that
is, with the prime or primes on the delta),

bVðxÞ ¼ g1dðxÞ � ðg2 � ig3ÞdðxÞ
d

dx
þ ðg2 þ ig3Þ

d

dx
dðxÞ

� g4

d

dx
dðxÞ d

dx

� �
ð19Þ

where gk 2 R; ðk ¼ 1; 2; 3; 4Þ. There are many things to ex-
plain about this ‘‘momentum-dependent’’ expression (re-
member that bp ¼ �iZd=dx [13, 15]). First, the operator bVðxÞ
is (formally) self-adjoint, i.e., bVðxÞ ¼ bVyðxÞ. Although we
will only check that the Hamiltonian (18) with the singular
potential bVðxÞ in (19) is formally self-adjoint, it has been
shown that this formal differential operator has a corre-
sponding self-adjoint operator (see the discussion that fol-
lows (35)). In fact, this extension for bH (in a generalized
sense) was determined by resorting to a theory of distribu-
tions where the test functions u(x) and u’(x) are discontinu-
ous at the origin, but they also must have equal weights on
the left and the right side at x = 0, i.e.,
(d, u) = u(0) : (u(0+) + u(0–))/2 and similarly for the func-
tion u’(x), as well as (d’, u) = –u’(0) : –(u’(0+) + u’(0–))/2
[6–8]. Finally, it was also proved that every formal self-ad-
joint operator with the singular potential (19) coincides with
a certain self-adjoint extension of the second derivative op-
erator given in (1) [6–8]. In other words, any point interac-
tion at the origin, for instance, those belonging to the family

of separated boundary conditions in (5) or those belonging
to the nonseparated boundary conditions in (8), can be de-
scribed by an operator with a singular interaction. This re-
sult is clearly illustrated in Sect. 3.

To demonstrate the important property bVðxÞ ¼ bVyðxÞ from
(19), we first write another convenient expression for bVðxÞ,
bVðxÞ ¼ g1dðxÞ � g2

d

dx
dðxÞ þ g2d

0ðxÞ þ ig3

d

dx
dðxÞ

� ig3d
0ðxÞ þ g2

d

dx
dðxÞ þ ig3

d

dx
dðxÞ � g4

d

dx
dðxÞ d

dx

� �
where we have used the (elementary) relation

dðxÞ d

dx
¼ d

dx
dðxÞ � d0ðxÞ ð20Þ

As usual, this expression, as well as all those used here, is
understood in a distributional sense. We can write immedi-
ately (after a trivial simplification) the operator potentialbVðxÞ in a suitable form,

bVðxÞ ¼ g1dðxÞ þ g2d
0ðxÞ þ ig3 2

d

dx
dðxÞ � d0ðxÞ

� �
� g4

d

dx
dðxÞ d

dx

� �
ð21Þ

and we can now introduce four local potentials, each with its
proper particularity. Note that bVðxÞ is precisely the sum of
these four potentials, and each one of these potentials will
lead to the boundary conditions (c), (d), (e), and (f), which
were introduced in the introduction.

(c) The usual (and well-known) Dirac delta potential:bVdðxÞ ¼ g1dðxÞ ð22Þ

It is evidently (formally) self-adjoint because g1 is real (and
obviously the even-parity function d(x) is real as well).

(d) The pure derivative of the Dirac delta potential:bVd0 ðxÞ ¼ g2d
0ðxÞ ð23Þ

It is also (formally) self-adjoint because the strength g2 and
the odd-parity function d’(x) are real.

(e) We may call this (not so familiar) operator a quasi-
free potential:

bV0ðxÞ ¼ ig3 2
d

dx
dðxÞ � d0ðxÞ

� �
ð24Þ

This operator is (formally) self-adjoint; in fact�bV0ðxÞ
�y
¼ ig32

d

dx
dðxÞ

� �y
þ ig3d

0ðxÞ

¼ �ig32dðxÞ � d

dx

� �
þ ig3d

0ðxÞ

¼ ig32dðxÞ d

dx
þ ig3d

0ðxÞ

¼ ig32
d

dx
dðxÞ � ig32d0ðxÞ þ ig3d

0ðxÞ

¼ ig3 2
d

dx
dðxÞ � d0ðxÞ

� �
¼ bV0ðxÞ
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where we have used the relation (20), the adjoint property
ðbfbgÞy ¼ bgybf y, and also ðd=dxÞy ¼ �d=dx. The Schrödinger
operator with this uncommon potential has been studied in
the literature [6–8, 16]. The authors of these papers claim
that bH0 � �d2=dx2 þ bV0ðxÞ (with Z2 ¼ 2m ¼ 1) is equiva-
lent to a Schrödinger operator with a singular gauge field at
x = 0. Certainly, we obtain the following result:

bH0 ¼ �
d2

dx2
þ ig3 2

d

dx
dðxÞ � d0ðxÞ

� �
¼ �i d

dx
� g3dðxÞ

� �2

� g2
3

�
dðxÞ

�2

ð25Þ

because the right-hand side of this expression can be written
as

�i d

dx
� g3dðxÞ

� �
�i d

dx
� g3dðxÞ

� �
� g2

3

�
dðxÞ

�2

¼

� d2

dx2
þ ig3

d

dx
dðxÞ þ ig3dðxÞ

d

dx
þ g2

3

�
dðxÞ

�2

� g2
3

�
dðxÞ

�2

Finally, by using the relation (20), the result (25) is easily
obtained.

(f) We may call this operator a delta-prime interaction po-
tential:

bV ~d0 ðxÞ ¼ �g4

d

dx
dðxÞ d

dx

� �
ð26Þ

This operator is also (formally) self-adjoint,�bV ~d0 ðxÞ
�y
¼ �g4d

0ðxÞ d

dx
� g4dðxÞ

d2

dx2

� �y
¼

� g4 �
d

dx

� �
d0ðxÞ � g4

d2

dx2

� �
dðxÞ

where we have used the trivial property about the adjoint of
a product of operators, and also ðd=dxÞy ¼ �d=dx and
ðd2=dx2Þy ¼ d2=dx2. Finally, if we substitute the following
two (elementary) relations into the preceding expression,

d2

dx2
dðxÞ ¼ d00ðxÞ þ 2d0ðxÞ d

dx
þ dðxÞ d2

dx2
ð27Þ

d

dx
d0ðxÞ ¼ d00ðxÞ þ d0ðxÞ d

dx
ð28Þ

we can prove the (formal) self-adjointness of the bV ~d0 ðxÞ:�bV ~d0 ðxÞ
�y
¼ g4

d

dx
d0ðxÞ � g4

d2

dx2
dðxÞ

¼ g4 d00ðxÞ þ d0ðxÞ d

dx

� �
� g4 d00ðxÞ þ 2d0ðxÞ d

dx
þ dðxÞ d2

dx2

� �
¼ �g4d

0ðxÞ d

dx
� g4dðxÞ

d2

dx2
¼ bV ~d0 ðxÞ

It is now clear that the first plausible expression for the op-
erator bVðxÞ given by (19) (and specifically introduced in that
way in [13]) or the equivalent expression for bVðxÞ in (21)

(which was essentially introduced in [6–8]), is formally
self-adjoint and depends on four real parameters. Our para-
meters gk (k = 1, 2, 3, 4) are the four parameters xk used in
[6–8]. Likewise, our parameters are related to those used in
[13] (c, g, h, and ~l) by means of the relations (h= 2m = 1):
g1 = c, g2 = 2g, g3 = 2h, and g4 ¼ �4~l. Note that we write
here ~l instead of l because we already used l as a para-
meter in (2).

Let us consider again the expression (19) for the operatorbVðxÞ. The action of this operator on a function u(x) (with
x 2 R) has the form,bVðxÞuðxÞ ¼ g1uðxÞdðxÞ � ðg2 � ig3Þu0ðxÞdðxÞ

þ ðg2 þ ig3Þ
d

dx
½uðxÞdðxÞ� � g4

d

dx
½u0ðxÞdðxÞ� ð29Þ

Now, we need to use the (symbolic) sifting property for the
Dirac delta,

uðxÞdðxÞ ¼ uð0ÞdðxÞ ð30Þ

)
Zþ1
�1

dx uðxÞdðxÞ � ðd; uÞ

¼ uð0Þ
Zþ1
�1

dx dðxÞ¼ uð0Þ � 1

2
½uð0þÞ þ uð0�Þ�

(where the common delta function property
Rþ1
�1 dx dðxÞ ¼ 1

was also used above). Because the function u(x) (and its de-
rivative) is not generally continuous at x = 0 (i.e., u(x) and
(or) u’(x) have a possible discontinuity at the origin), u(0) is
written as the average at the discontinuity (clearly this is a
plausible choice for discontinuous test functions). Thus, we
can also write,

u0ðxÞdðxÞ ¼ u0ð0ÞdðxÞ ð31Þ

where u’(0) : (u’(0+) + u’(0–))/2. By using the relations
(30) and (31), the term bVðxÞuðxÞ in (29) takes the form,bVðxÞuðxÞ ¼ g1uð0ÞdðxÞ � ðg2 � ig3Þu0ð0ÞdðxÞ

þ ðg2 þ ig3Þuð0Þd0ðxÞ � g4u
0ð0Þd0ðxÞ ð32Þ

This last expression could be still written in a different
and interesting way. For this, we use the preceding formula,
(i) u(0) = (d, u) (but not its ‘‘partner’’ (ii) u’(0) = (d, u’)).
Likewise, by considering the following important property
(which is obtained by applying to a function u(x) the rela-
tion (20) and using (30) and (31)),

uðxÞd0ðxÞ ¼ uð0Þd0ðxÞ � u0ð0ÞdðxÞ ð33Þ

)
Zþ1
�1

dx uðxÞd0ðxÞ � ðd0; uÞ

¼ uð0Þ
Zþ1
�1

dx d0ðxÞ � u0ð0Þ
Zþ1
�1

dx dðxÞ

¼ �u0ð0Þ � � 1

2
½u0ð0þÞ þ u0ð0�Þ�
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(where the delta function properties
Rþ1
�1 dx dðxÞ ¼ 1 andRþ1

�1 dx d0ðxÞ ¼ 0 were also used above). In this way, we also
use: (iii) u’(0) = –(d’, u). Thus, expression (32) (in fact, by
using only (i) and (iii)) can be ‘‘symmetrically’’ written as,bVðxÞuðxÞ ¼ g1ðd; uÞdðxÞ þ ðg2 � ig3Þðd0; uÞdðxÞ

þ ðg2 þ ig3Þðd; uÞd0ðxÞ þ g4ðd0; uÞd0ðxÞ ð34Þ
That is, the local potential bVðxÞ can have the following ap-
pearance (compare with similar expressions given, for exam-
ple, in [7, 14]),bVðxÞ ¼ g1ðd; �ÞdðxÞ þ ðg2 � ig3Þðd0; �ÞdðxÞ

þ ðg2 þ ig3Þðd; �Þd0ðxÞ þ g4ðd0; �Þd0ðxÞ ð35Þ

Note that if one defines the quantities
t00 : g1, t01 : g2 – ig3, t10 : g2 + ig3, and t11 : g4, then
these coefficients {tpq} define a 2 � 2 Hermitian matrix
(i.e., t00, t11 2 R, and t10 ¼ �t01). More precisely, the formal
Hamiltonian (18) with bVðxÞ given by expresion (35) is self-
adjoint on the domain

DðbHÞ ¼ fuðxÞ : uðxÞ 2 W2
2 ðR n f0gÞ; ðbHuÞðxÞ 2 L2ðRÞg

where W2
2 ðR n f0gÞ is the Sobolev space of continuous func-

tions with continuous bounded first derivative, except for a
finite jump at x = 0. This result has been sufficiently dis-
cussed previously [7, 12]. In summary, if one writes the
general expression,bVðxÞ ¼ aðd; �ÞdðxÞ þ bðd0; �ÞdðxÞ þ cðd; �Þd0ðxÞ

þ dðd0; �Þd0ðxÞ ð36Þ
where a, b, c, d are complex numbers, the condition on the
singular potential bVðxÞ ¼ ðbVðxÞÞy implies that its parameters
satisfy the conditions a, d 2 R, and c ¼ �b (clearly the poten-
tial (35) satisfies these conditions). If the potential is not (for-
mally) self-adjoint but satisfies the condition of bP-symmetry,

ðbPbVyÞðxÞ ¼ ðbVbPÞðxÞ, where bP is the space parity operator

ðbPf ÞðxÞ ¼ f ð�xÞ, and bVy is defined by the usual relation

ðbVf ; gÞ ¼ ðf ; bVygÞ, then one obtains the following restrictions
on the parameters of bVðxÞ: a, d 2 R, but c ¼ ��b [14].

3. Boundary conditions for a general singular
potential at x = 0

The eigenvalue equation for the Hamiltonian (18) with the
general singular potential bVðxÞ is

bHuðxÞ ¼ �a�1 d2

dx2
uðxÞ þ bVðxÞuðxÞ ¼ EuðxÞ ð37Þ

where bVðxÞuðxÞ is given in (32) and a : 2m/h2. Because of
the delta function and its first derivative in (32), (37) can
provide boundary conditions. We follow a routine introduced
by Griffiths for the nth derivative of a delta function poten-
tial [17]. In fact, integrating it from –3 to +3 and taking the
limit 3 ? 0 yields the following first boundary condition:

lu0ð0þÞ � lu0ð0�Þ ¼ lag1

1

2

�
uð0þÞ þ uð0�Þ

�
� aðg2 � ig3Þ

1

2

�
lu0ð0þÞ þ lu0ð0�Þ

�
ð38Þ

Likewise, integrating (37) first from x = –L (with L > 0) to
x, then once more from –3 to +3 and taking the limit 3 ? 0
again, we obtain a second boundary condition,

uð0þÞ � uð0�Þ ¼ aðg2 þ ig3Þ
1

2

�
uð0þÞ þ uð0�Þ

�
� ag4

l

1

2

�
lu0ð0þÞ þ lu0ð0�Þ

�
ð39Þ

where the relations
R x
�L dy dðyÞ ¼ QðxÞ (where Q(x) is the

Heaviside function: Q(x < 0) = 0 and Q(x > 0) = 1) andR x
�L dyd0ðyÞ ¼ dðxÞ were used. Note that expressions (38)

and (39) precisely constitute the family of boundary condi-
tions (15), where in this case, the matrix S is

S ¼ a

2

lg1 �ðg2 � ig3Þ

ðg2 þ ig3Þ � g4

l

0@ 1A ð40Þ

Our parameters gk (k = 1, 2, 3, 4) are really related to those
used in [13] by the relations g1 = c/a, g2 = 2g/a, g3 = 2h/a,
and g4 ¼ �4~l=a.

Now, the following remark is in order. Although the defi-
nitions (d, u) = u(0) : (u(0+) + u(0–))/2 and (d’, u) = –
u’(0) : –(u’(0+) + u’(0–))/2 (used to obtain (38) and (39))
look inoffensive, there are certain situations in which they
do not hold. For example, if u(x) is defined by a differential
equation in which d(x) is involved, the relation
(d, u) = u(0+) + u(0–))/2 does not hold [18, 19]. For a com-
plete discussion about this subject, we recommend reference
[19].

By comparing the matrix S in (17) with the matrix S in
(40), we can immediately establish the four real parameters
gk (k = 1, 2, 3, 4), included in the general operator potentialbVðxÞ in (19) or (21), as a function of the five real parame-
ters, f and mm (m = 0, 1, 2, 3), included in the general boun-
dary condition (15). We must not forget the ‘‘constraint’’
(m0)2 + (m1)2 + (m2)2 + (m3)2 = 1. The following are pre-
cisely these relations:

a

2
lg1 ¼

�m0 þ cosðfÞ
m1 þ sinðfÞ ð41Þ

a

2
g2 ¼

m3

m1 þ sinðfÞ ð42Þ

a

2
g3 ¼

�m2

m1 þ sinðfÞ ð43Þ

a

2

g4

l
¼ m0 þ cosðfÞ
m1 þ sinðfÞ ð44Þ

It is worth noting that it is not only the boundary condi-
tions included in (15) with the condition m1 = –sin(f) that
may be associated with a local potential dependent of the
Dirac delta and the derivative operator d/dx; in fact, as ex-
plained after (17), we can extract boundary conditions from
the family (15) for which m1 = –sin(f). Thus, if we use the
relations (41)–(44), we can also find their respective local
potentials. For example, for the Dirichlet boundary condi-
tion, we impose on the relations (41)–(44): m0 = 1,
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m2 = m3 = 0, and f = p, thus, g1 = –4/alm1 and
g2 = g3 = g4 = 0. Moreover, because m1 = 0, then g1 = –?,
and (from (21)) the associated local potential is therefore:

(a) The Dirichlet potential,bVDðxÞ ¼ lim
g1!�1

g1dðxÞ ð45Þ

This potential is the Dirac delta potential bVdðxÞ with infinite
strength.

Likewise, for the Neumann boundary condition we im-
pose on the relations (41)–(44): m0 = 1, m2 = m3 = 0, and
f = p; thus, g1 = g2 = g3 = 0 and g4 = 4l/am1. Moreover,
because m1 = 0, then g4 = ? and therefore, the associated
local potential is:

(b) The Neumann potential,

bVNðxÞ ¼ lim
g4!1

�g4

d

dx
dðxÞ d

dx

� �
ð46Þ

This potential is the delta-prime interaction potential bV ~d0 ðxÞ
with infinite strength.

Clearly, the relations (41)–(44) illustrate the fact that any
point interaction at x = 0, characterized by a boundary con-
dition, can also be characterized by an operator with a sin-
gular interaction at x = 0.

4. Discussion
To summarize, we have discussed how point interactions

can be modeled through boundary conditions only; in this
case the Hamiltonian does not have a singular potential, but
its domain depends on four (real) parameters [1–5]. On the
other hand, point interactions can also be modeled with a
Hamiltonian that has a singular potential (written in terms
of the Dirac delta function and its derivatives d/dx posi-
tioned properly) dependent on four (real) parameters [6–8,
12–15]. We have also shown that these two sets of parame-
ters can be related, and a Hamiltonian with a singular poten-
tial at x = 0 thus corresponds (formally) to any boundary
condition for the free Hamiltonian on the real line with the
origin excluded. To obtain this result, we made extensive
use of various properties principally related to the Dirac
delta and its derivatives in a very accessible form to ad-
vanced undergraduates (this is a pedagogical aspect that de-
serves to be highlighted). We sincerely hope that our article
can serve as a stimulating introduction to the subject of
point interactions.
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