POINT-LIKE 0-DIMENSIONAL DECOMPOSITIONS OF S³

H. W. LAMBERT AND R. B. SHER

This paper is concerned with upper semicontinuous decompositions of the 3-sphere which have the property that the closure of the sum of the nondegenerate elements projects onto a set which is 0-dimensional in the decomposition space. It is shown that such a decomposition is definable by cubes with handles if it is point-like. This fact is then used to obtain some properties of point-like decompositions of the 3sphere which imply that the decomposition space is a topological 3-sphere. It is also shown that decompositions of the 3-sphere which are definable by cubes with one hole must be pointlike if the decomposition space is a 3-sphere.

In this paper we consider upper semicontinuous decompositions of S^3 , the Euclidean 3-sphere. In particular, we shall restrict ourselves to those decompositions G of S^3 which have the property that the union of the nondegenerate elements of G projects onto a set whose closure is 0-dimensional in the decomposition space of G. We shall refer to such decompositions as 0-dimensional decompositions of S^3 . Numerous examples of such decompositions appear in the literature. (One should note that some of the examples and results to which we refer are in E^3 , Euclidean 3-space, but the corresponding examples and results for S^3 will be obvious in each case.)

In § 3, a technique of McMillan [10] is used to show that pointlike 0-dimensional decompositions of S^3 are definable by cubes with handles. Armentrout [2] has shown this in the case where the decomposition space is homeomorphic with S^3 . The proof of this theorem shows that compact proper subsets of S^3 with point-like components are definable by cubes with handles.

In §4 we give some properties of point-like 0-dimensional decompositions of S^3 which imply that the decomposition space is homeomorphic with S^3 . These properties were suggested by Bing in §7 of [6].

It is not known whether monotone 0-dimensional decompositions of S^3 which yield S^3 must have point-like elements. Partial results in this direction have been obtained by Armentrout [2], Bean [5], and Martin [9]. Bing, in §4 of [6], has presented an example of a decomposition of S^3 which yields S^3 even though it is not a point-like decomposition, but this example is not 0-dimensional. In §5 we show that a 0-dimensional decomposition of S^3 that yields S^3 must have point-like elements if it is definable by cubes with one hole. 2. Definitions and notation. Let G be an upper semicontinuous decomposition of S^3 , the 3-sphere. We denote the decomposition space of G by S^3/G , the union of the nondegenerate elements of G by H_G , and the projection map from S^3 onto S^3/G by P.

The decomposition G is said to be monotone if each element of G is a continuum. If cl $P(H_G)$ is 0-dimensional in S^3/G , then G is a 0-dimensional decomposition of S^3 . If each element of G has a complement in S^3 which is homeomorphic with E^3 , Euclidean 3-space, then G is a point-like decomposition of S^3 .

The sequence M_1, M_2, M_3, \cdots is a defining sequence for G if and only if M_1, M_2, M_3, \cdots is a sequence of compact 3-manifolds with boundary in S^3 such that (1) for each positive integer $i, M_{i+1} \subset$ Int M_i , and (2) g is a nondegenerate element of G if and only if g is a nondegenerate component of $\bigcap_{i=1}^{\infty} M_i$. Here, as in the remainder of the paper, subsets of S^3 which are manifolds will be assumed to be polyhedral subsets of S^3 . It is well known that if G is a 0-dimensional decomposition of S^3 , a defining sequence exists for G. If a defining sequence M_1, M_2, M_3, \cdots exists for G such that for each positive integer *i*, each component of M_i is a cube with handles, G is said to be definable by cubes with handles. If a defining sequence M_1, M_2, M_3, \cdots exists for G such that for each positive integer *i*, each component of M_i is a cube with one hole, G is said to be definable by cubes with one hole.

3. Some consequences of a result of McMillan. The following lemma is a special case of Lemma 1 of [11]. Its proof follows from the very useful technique used by McMillan to prove Theorem 1 of [10].

LEMMA 1. (McMillan). In S³, let M' be a compact polyhedral 3-manifold with boundary such that BdM' is connected, and let M be a compact polyhedral 3-manifold with boundary such that $M \subset Int M'$, and each loop in M can be shrunk to a point in Int M'. Then there is a cube with handles C such that $M \subset IntC \subset C \subset Int M'$.

LEMMA 2. If G is a point-like 0-dimensional decomposition of S^{s} , then there is a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ for G such that for each positive integer i, each component of M_{i} has a connected boundary.

Proof. Let M'_1, M'_2, M'_3, \cdots be a defining sequence for G, let n be a positive integer, and let K be a component of M'_n . Let g be a component of $\bigcap_{i=1}^{\infty} M'_i$ which lies in K and let U be an open subset of K containing g such that cl $U \cap BdK = \emptyset$. Since g is point-like, there is a 3-cell C such that $g \subset \operatorname{Int} C \subset C \subset U$. There is an integer j such that L, the component of M'_j containing g, lies in $\operatorname{Int} C$. Since

C separates no points of BdK in K, L separates no points of BdK in K.

Using compactness of $\bigcap_{i=1}^{\infty} M'_i$, one obtains a finite collection L_1, \dots, L_k of mutually exclusive defining elements whose interiors cover $(\bigcap_{i=1}^{\infty} M'_i) \cap K$ and so that no L_i separates points of BdK in K. It follows easily that $\bigcup_{i=1}^{k} L_i$ separates no points of BdK in K. By suitable relabeling, we suppose then, that if i is a positive integer and K is a component of $M'_i, K \cap M'_{i+1}$ does not separate points of BdK in K. We construct disjoint arcs in K- M'_{i+1} connecting the boundary components of K and "drill-out" these arcs to replace K by a compact 3-manifold with connected boundary. Doing this for each component of each M'_i , we obtain a defining sequence M_1, M_2, M_3, \cdots as required by the conclusion of the lemma.

THEOREM 1. If G is a point-like 0-dimensional decomposition of S^3 , then G is definable by cubes with handles.

Proof. Using Lemma 2, there is a defining sequence M'_1, M'_2, M'_3, \cdots for G such that each component of each M'_i has a connected boundary. Let n be a positive integer and N a component of M'_n . Since G is point-like, there is no loss of generality in supposing that each loop in $M'_{n+1} \cap N$ can be shrunk to a point in Int N. From Lemma 1, there is a cube with handles, C, such that $(M'_{n+1} \cap N) \subset \operatorname{Int} C \subset C \subset$ Int N. Hence, there is a sequence M_1, M_2, M_3, \cdots of compact 3manifolds with boundary such that (1) for each positive integer i, $M'_{i+1} \subset \operatorname{Int} M_i \subset M_i \subset \operatorname{Int} M'_i$, and (2) each component of M_i is a cube with handles. The sequence M_1, M_2, M_3, \cdots is a defining sequence for G and so G is definable by cubes with handles.

The proof of the next theorem follows from the proof of Theorem 1.

THEOREM 2. If M is a closed subset of S^3 such that each component of M is point-like, then there exists a sequence M_1, M_2, M_3, \cdots of compact 3-manifolds with boundary such that (1) for each positive integer i, $M_{i+1} \subset \operatorname{Int} M_i$, (2) each component of M_i is a cube with handles, and (3) $M = \bigcap_{i=1}^{\infty} M_i$.

The concept of equivalent decompositions of S^3 was introduced in [4] and the following theorem follows immediately from Theorem 1 of this paper and Theorem 8 of [4].

THEOREM 3. If G is a point-like 0-dimensional decomposition of S^3 , then G is equivalent to a point-like 0-dimensional decomposition of S^3 each of whose nondegenerate elements is a 1-dimensional continuum.

In the remaining two sections, we shall utilize some of the above results to investigate certain properties of 0-dimensional decompositions of S^3 .

4. Properties of point-like 0-dimensional decompositions of S^3 . In this section we give two properties, each of which is both necessary and sufficient to imply S^3/G is homeomorphic to S^3 .

A space X will be said to have the Dehn's Lemma property if and only if the following condition holds: If D is a disk and f is a mapping of D into X such that on some neighborhood of f(BdD), f^{-1} is a function, and U is neighborhood of the set of singular points of f(D), then there is a disk D' in $f(D) \cup U$ such that BdD' = f(BdD).

A space X will be said to have the map separation property if and only if the following condition holds: If D is a disk and f_1, \dots, f_n are maps of D into X such that (1) for each i, on some neighborhood of $f_i(BdD), f_i^{-1}$ is a function, (2) if $i \neq j$, $f_i(BdD) \cap f_j(D) = \emptyset$, and (3) U is a neighborhood of $f_1(D) \cup \dots \cup f_n(D)$, then there exist maps f'_1, \dots, f'_n of D into X such that (1) for each $i, f'_i | BdD = f_i | BdD$, (2) $f'_1(D) \cup \dots \cup f'_n(D) \subset U$, and (3) if $i \neq j, f'_i(D) \cap f'_j(D) = \emptyset$.

It is a well known (and useful) fact that S^3 has the Dehn's Lemma property and the map separation property.

THEOREM 4. If G is a point-like 0-dimensional decomposition of S^3 , then S^3/G is homeomorphic with S^3 if and only if S^3/G has the Dehn's Lemma property.

Proof. The "if" portion of the theorem is the only part that requires proof. Let U be an open set containing $\operatorname{cl} H_G$ and $\varepsilon > 0$. We shall construct a homeomorphism $h_{\varepsilon}: S^3 \to S^3$ such that if $x \in S^3 - U$, $h_{\varepsilon}(x) = x$ and if $g \in G$, diam $h_{\varepsilon}(g) < \varepsilon$. It will follow from Theorem 3 of [2] that S^3/G is homeomorphic with S^3 .

By Theorem 1, G is definable by cubes with handles. Hence, there exist disjoint cubes with handles C_1, \dots, C_n such that cl $H_G \subset \bigcup_{i=1}^n \operatorname{Int} C_i \subset \bigcup_{i=1}^n C_i \subset U$. Let W_1, \dots, W_n be pairwise disjoint neighborhoods of C_1, \dots, C_n respectively such that $\bigcup_{i=1}^n W_i \subset U$. Since C_1 is a cube with (possibly 0) handles, there is a homeomorphism h_0 of S^3 onto S^3 such that $h_0(x) = x$ for $x \in S^3 - W_1$ and $h_0(C_1)$ can be written as the union of a finite number of cubes such that (1) each cube has diameter less than $\varepsilon/2$, (2) no three cubes have a point in common, and (3) the intersection of any two cubes is empty or a disk on the boundary of each. The homeomorphism h_0 can be thought of as pulling C_1 towards a 1-dimensional spine of C_1 . Let D_1, D_2, \dots, D_k be the inverse images under h_0 of the disks obtained by intersecting the various cubes making up $h_0(C_1)$. We note that if a continuum in

 C_1 intersects at most one D_i , then its image under h_0 has diameter less than ε . For each $i = 1, \dots, k$, let D'_i be a subdisk of D_i such that $D'_i \subset \operatorname{Int} D_i$ and $D_i \cap \operatorname{cl} H_g = \operatorname{Int} D'_i \cap \operatorname{cl} H_g$. Let D be a disk in S^{3} such that $\operatorname{Bd} D \cap (\bigcup_{i=1}^{n} C_{i}) = \emptyset$ and $\bigcup_{i=1}^{k} D_{i} = D \cap (\bigcup_{i=1}^{n} C_{i}) = D \cap C_{1}$. Denote the punctured disk cl $(D - \bigcup_{i=1}^{k} D'_{i})$ by D'. Now $P_{1} = P \mid D$ is a map of D into S^{3}/G and P_{1}^{-1} is a homeomorphism on a neighborhood of $P_1(\operatorname{Bd} D)$. The singular set of $P_1(D)$ is contained in $P_1(\bigcup_{i=1}^k P_i)$ Int D'_i . Let V be an open set in $S^{\mathfrak{s}}/G$ containing the singular set of $P_1(D)$ and such that $P^{-1}(V) \subset (\operatorname{Int} C_1) - D'$. By hypothesis there exists a disk E in $P_1(D) \cup V$ bounded by $P_1(Bd D)$. Let E_1, \dots, E_k be the subdisks of E bounded by $P_1(\operatorname{Bd} D'_1), \dots, P_1(\operatorname{Bd} D'_k)$ respectively, and let U_1, \dots, U_k be open sets whose closures lie in $P(\text{Int } C_1)$ such that for each $i = 1, \dots, k, E_i \subset U_i$, and if $i \neq j$, cl $U_i \cap$ cl $U_j = \emptyset$. By the proof of Theorem 2.1 of [12], each $\operatorname{Bd} D'_i$ can be shrunk to a point in $P^{-1}(U_i)$. Each map can be "glued" to the annulus cl $(D_i - D'_i)$ to obtain a map from D_i into $D_i \cup P^{-1}(U_i)$ with no singularities on $D_i - P^{-1}(\operatorname{cl} U_i)$. We now apply Dehn's Lemma in S³ to these maps to obtain disjoint disks F_1, \dots, F_k such that (1) for each i, Bd $D_i =$ Bd F_i , (2) Int $F_i \subset$ Int C_1 , and (3) if $g \in G$, g intersects no more than one of the disks F_1, \dots, F_k . Let h'_1 be a homeomorphism of S^3 onto itself fixed on S³-Int C_1 such that for each i, $h'_1(F_i) = D_i$. Let $h_1 = h_0 h'_1$. Note that if $g \in G$ and $g \subset C_1$, diam $h_1(g) < \varepsilon$. Let h_2, \dots, h_n be homeomorphisms such as h_1 for the sets C_2, \dots, C_n . We define h_{ε} : $S^{3} \rightarrow S^{3}$ by $h_{\varepsilon}(x) = h_{1}h_{2} \cdots h_{n}(x)$.

REMARK. If G is the upper semicontinuous decomposition of S^3 whose only nondegenerate element is a polyhedral 2-sphere, then S^3/G has the Dehn's Lemma property but S^3/G is not homeomorphic with S^3 .

The essential ideas of the proof of the following theorem are so like those of the proof of Theorem 4 that we shall not include the proof here.

THEOREM 5. If G is a point-like 0-dimensional decomposition of S^3 , then S^3/G is homeomorphic with S^3 if and only if S^3/G has the map separation property.

5. Decompositions of S^3 which yield S^3 . Let S, T be polyhedral solid tori such that $S \subset \text{Int } T$ and let J be a polygonal center curve of S. Following a definition of Schubert [13] which was used in [7], we let N(S, T) be the $\min_{D} \{N(J \cap D): \text{ where } D \text{ is a polyhedral meridional disk of } T \text{ and } N(J \cap D) \text{ is the number of points in } J \cap D \}$.

THEOREM 6. If G is definable by cubes with one hole and S^3/G

is homeomorphic to S^3 , then G is point-like.

Proof. Let M_1, M_2, \dots , be the defining sequence for G and let T_0 be a component of some M_n . By hypothesis, T_0 is a cube with one hole. Let g be a component of $\bigcap_{i=1}^{\infty} M_i$ contained in T_0 . We first show that there is a defining stage M_{n+m} such that each loop in the component of M_{n+m} containing g can be shrunk to a point in T_0 .

For $i = 1, 2, 3, \cdots$, let T_i be the component of M_{n+i} that contains g. Then each T_i is a cube with one hole, $T_{i+1} \subset \operatorname{Int} T_i$, and $\bigcap_{i=1}^{\infty} T_i = g$. Suppose that there is a positive integer s such that each $T_j, j \geq s$, is a solid torus. If the center curve of each T_{j+1} cannot be shrunk to a point in T_j , then g has nontrivial Cech cohomology, and it follows from Corollary 2 of [8] that S^3/G is not homeomorphic to S^3 , contradicting our hypothesis. Hence there is an m such that the center curve of T_m can be shrunk to a point in T_0 and hence each loop in T_m can be shrunk to a point in T_0 .

Suppose then that infinitely many of the T_i are not solid tori. We may suppose for convenience that each T_i is not a solid torus. By [1], each $T'_i = S^3 - \operatorname{Int} T_i$ is a solid torus. We now have three cases.

Case I. Suppose there is an m such that $N(T'_{m-1}, T'_m) = 0$. This implies that there is a meridional disk D of T'_m such that $D \cap T'_{m-1} = \emptyset$. Then there is a cube K in T'_m such that $T'_{m-1} \subset \text{Int } K$. It then follows that each loop in $T_m(=S^3 - \text{Int } T'_m)$ can be shrunk to a point in T_0 .

We now show that the remaining two cases cannot occur.

Case II. Suppose that there is a positive integer s such that $N(T'_j, T'_{j+1}) = 1$ for $j \ge s$. Since $P(\bigcap_{i=1}^{\infty} M_i)$ is 0-dimensional there is a positive integer t and a cube K such that $P(T_{s+t}) \subset \operatorname{Int} K \subset K \subset P$ (Int T_s). Let D'_{s+t} be a meridional disk of T'_{s+t} . Using Dehn's Lemma we may adjust $P(D'_{s+t})$ in $P(\operatorname{Int} T'_{s+t})$ so that it is polyhedral, and it follows that $P(T'_{s+t})$ is a solid torus with the adjusted $P(D'_{s+t})$ as a meridional disk. Let J be a longitudinal simple closed curve of T'_{s+t} such that $J \subset \operatorname{Bd} T'_{s+t}$ and J intersects $\operatorname{Bd} D'_{s+t}$ at just one point. Let A be an annulus with boundary components A_1 and A_2 . By [13], $N(T'_s, T'_{s+t}) = 1$. Hence there is a mapping f of A into T'_{s+t} such that $f \mid A_1$ is a homeomorphism, $f(A_1) = J$, and $f(A_2) \subset T'_s$. Now $P(f(A_2))$ can be shrunk to a point in $P(T'_{s+t})$. But this implies that the longitudinal simple closed curve P(J) of $P(T'_{s+t})$ can be shrunk to a point in $P(T'_{s+t})$.

Case III. Now assume there is a positive integer s such that $N(T'_j, T'_{j+1}) > 1$ for $j \ge s$. Since each T'_j is knotted in S^s , we may use an argument similar to that used in [7] to conclude that Case III cannot occur.

These three cases now imply that there is a defining stage M_{n+m} such that each loop in the component of M_{n+m} containing g can be shrunk to a point in T_0 . Since $T_0 \cap (\bigcap_{i=1}^{\infty} M_i)$ is compact, there is a defining stage $M_p(p \ge n+m)$ such that each loop in $T_0 \cap M_p$ can be shrunk to a point in T_0 . By Lemma 1 there is a cube with handles C such that $T_0 \cap M_p \subset \operatorname{Int} C \subset C \subset \operatorname{Int} T_0$. It then follows that G is definable by cubes with handles. By Bean's result [5], G is a pointlike decomposition, and the proof of Theorem 6 is complete.

COROLLARY. Let f be a mapping of S^3 onto S^3 and let H = cl($\{x : x \in S^3 \text{ and } f^{-1}(x) \text{ is nondegenerate}\}$). If H is a 0-dimensional set which is definable by cubes with one hole, then for each $x \in S^3$, $S^3 - f^{-1}(x)$ is homeomorphic to E^3 .

Proof. Let $G = \{f^{-1}(x) : x \in S^3\}$. It is not hard to show that G is an upper semicontinuous decomposition of S^3 and that S^3/G is homeomorphic to S^3 . Since H is definable by cubes with one hole, it follows that G is definable by cubes with one hole. By Theorem 6, G is a point-like decomposition of S^3 ; hence if $x \in S^3$, then $S^3 - f^{-1}(x)$ is homeomorphic to E^3 .

References

1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.

2. S. Armentrout, Decompositions of E^3 with a compact 0-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. **123** (1966), 165-177.

3. _____, "Monotone decompositions of E^3 ," Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.

4. S. Armentrout, L. L. Lininger and D. V. Meyer, "Equivalent decompositions of $E^{3"}$, Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.

5. R. J. Bean, Decompositions of E° which yield E° , Pacific J. Math. 20 (1967), 411-413.

6. R. H. Bing, "Decompositions of E^3 ," Topology of 3-manifolds and related topics, Prentice-Hall, 1962.

7. J. M. Kister and D.R. McMillan, Jr., Locally Euclidean factors of E^4 which cannot be imbedded in E^3 , Ann. of Math. **76** (1962), 541-546.

8. K. W. Kwun and F. Raymond, Almost acyclic maps of manifolds, Amer. J. Math. **86** (1964), 638-650.

9. J. Martin, "Sewings of crumpled cubes which do not yield S³," Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.

10. D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510-514.

11. ____, A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.

12. T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of E^n yield E^n , Trans. Amer. Math. Soc. **122** (1966), 427-435.

13. H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286.

Received July 25, 1966.

THE UNIVERSITY OF IOWA THE UNIVERSITY OF GEORGIA