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Abstract: In this work, we proposed a new approach called integer sub-decomposition (ISD) based on the GLV idea to compute any
multiplekPof a pointP of ordern lying on an elliptic curveE. This approach uses two fast endomorphismsψ1 andψ2 of E over prime
field Fp to calculatekP. The basic idea of ISD method is to sub-decompose the returned valuesk1 andk2 lying outside the range

√
n

from the GLV decomposition of a multiplierk into integersk11,k12,k21 andk22 with −√n < k11,k12,k21,k22 <
√

n. These integers
are computed by solving a closest vector problem in lattice. The new proposed algorithms and implementation results are shown and
discussed in this study.
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1 Introduction

In 1985, Miller [1] and Koblitz [2] introduced the elliptic
curve cryptosystem. Since then, the elliptic curve
cryptosystem has been invested in the field of public key
cryptography because of its low bandwidth and small
space storage requirements [3]-[6]. In the main operation
of public key schemes, scalar multiplication can be
accomplished using elliptic curves [7]. The latter can be
dealt with by successively doubling and adding the
points. Inversions and multiplications over the underlying
finite field are required. Despite the small size of the key,
the required complexity may still be relatively heavy.
Accordingly, many studies have been conducted and
several other approaches have been proposed to improve
the computational efficiency of the elliptic curve
cryptography [8]-[13]. For instance, an approach was set
to analyze the algebraic structure of elliptic curves. This
approach was further used to classify a class of special
curves with better efficiency in the scalar multiplication.
The use of Koblitz curves can increase efficiency. In
Koblitz curves, scalar multiplication requires no point to
be doubled by exploiting a feature of the Frobenious
endomorphism [14]. The Frobenious endomorphism can
be efficiently computed when the underlying finite field is
of characteristic 2 because the squaring operation is much
faster than the multiplication. The same idea can be

invested to elliptic curves having arbitrary characteristics;
however, any improvement in the efficiency is not
guaranteed . Recently, a scalar multiplicationkP has been
suggested by Gallant et al. (2001) in [15] using an
efficiently computable endomorphism of an elliptic curve
E over a prime fieldFp for a pointP∈ E of prime ordern.
They introduced an idea using the decomposition of
k = k1+ k2λ (mod n), whereλ is an integer that satisfies
ψ(P) = λP andψ is an endomorphism onE. They stated
that if endomorphism is efficiently computable and if
each component ofk1, k2 in the decomposition is short
enough, then their method can improve the computational
efficiency up to 50%. The following equation is the
decomposition process:

k= k1+k2λ (mod n) (1)

with −√n< k1,k2 <
√

n.
Gallant et al. introduced a method in which they used two
linearly independent short vectorsv1 andv2 in the kernel
of the homomorphism

T : Z×Z→ Z/n, (2)

defined by
T(i, j) = i + jλ (mod n). (3)

To make the notation simple, a set of such vectors
denoted asv1 andv2 which are called a GLV (R. Gallant,
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R. Lambert and S. Vanstone) generator, will be defined
later. The original GLV was not perfect because of its
certain gaps that were left unproven. Hence, the GLV
method offered in another model that assists in finding a
GLV generator. The existence of a GLV generator and the
success of finding this generator cannot be guaranteed.
Therefore, Kim and Lim (2003) in [17] proposed a
necessary condition for the existence of the GLV
generator and a method of finding it when such generator
exists.
The GLV method and subsequent improvements on it rely
on the decomposition values ofk1 andk2 for values that
fall within the range−√n < k1,k2 <

√
n. For k1 andk2

values not within this range, the GLV method will not
work. A new generator should be obtained to generate the
next values ofk1 andk2 that fall within the given range. In
this paper, we propose a new method called integer
sub-decomposition (ISD) to overcome this problem. This
method allows us to work withk1 andk2 values that fall
outside the given range. ISD method has improved the
computational efficiency compared with the general
method of computing scalar multiplication in elliptic
curves over the prime field. In the present paper, we
introduce a sub-decomposition process and present three
main problems that are aimed to be investigated in
ordinary elliptic curvesE that are defined overFp.

Problem 1: Let E be ordinary elliptic curve overFp,
P ∈ E(Fp) has a large prime ordern, and
λ1,λ2 ∈ [1,n− 1], where λ1 6= ±λ2. Construct the
linearly independent integer vectorsv1,v2,v3 and v4
which are lattice integer points computed by solving
the closest vector problem in lattice.

Problem 2: Let E be ordinary elliptic curve overFp,
P ∈ E(Fp) has a large prime ordern, and
λ1,λ2 ∈ [1,n− 1], whereλ1 6= ±λ2 and the linearly
independent integer vectorsv1,v2,v3 and v4 are
originated. Find two ISD generators{v1,v2} and
{v3,v4} that satisfy the necessary condition that
includes the relation between components for any
vectorvi , for i = 1,2,3,4 is relatively prime.

Problem 3: Let E be ordinary elliptic curve overFp such
that #E(Fp) = p+ 1− t, P is a point lying onE has
a large prime ordern, andk ∈ [1,n−1]. Assume that
{v1,v2} and{v3,v4} are ISD generators. Compute the
point multiplication elliptic curvekP when the values
k1 andk2 are not bounded by±√n in the ISD method.

This paper is organized as follows. Section 2 presents a
synopsis of the mathematical background to explain
elliptic curve E over prime finite field and its
endomorphism ψ . Section 3 briefly reviews the
mechanisms of the scalar multiplication using a GLV
generator proposed in [15],[17]. Section 4 presents the
extension of the necessary condition for the existence of
two ISD generators. In addition, we demonstrate a new
algorithm that helps find ISD generators. Section 5

displays a new method for computing scalar
multiplication depending on the sub-decomposition ofk1
andk2 when both or one of them is not bounded by±√n.
Section 6 shows the implementation results. Finally,
Section 7 is the concluding remarks.

2 Preliminaries

Most applications of elliptic curves theory in
cryptography deal with elliptic curves defined over a
finite field, Fp, wherep is a prime number. This curve is
called prime curve.

2.1 Elliptic Curve over Fp

Definition 1. [19] Let p 6= 2,3. An elliptic curve E(Fp)
over Fp, be defined by an equation of the form:

E : Y2 = X3+AX+B (mod n), (4)

where A,B∈ Fp. The curve E is non-singular if it has no
double zeroes, that means the discriminant
DE = 4A3+27B2 6= 0 (mod n).

Definition 2. [19],[ 20] Let E(Fp) be an elliptic curve
defined in equation (4) over the field Fp, P= (xP,yP) and
Q = (xQ,yQ) two points on E such that P,Q 6= ∞. We
define P+Q= R= (xR,yR) as follows:

µ ≡
(

yQ−yP

xQ−xP

)

(mod p) i f P 6= Q (5)

or

µ ≡
(

3x2
P+A
2yp

)

(mod p) i f P = Q (6)

xR≡ λ 2−xP−xQ (mod p)

yR≡ λ (xP−xR)−yP (mod p).

A special case when P=−Q then P+Q= ∞.

2.2 Endomorphismsψ of Elliptic curve E over
Fp

Assume thatE is an elliptic curve defined over the finite
field Fp. The point at infinity is denoted asOE. The set of
Fp−rational points onE forms the groupE(Fp). A
rational mapψ : E→ E satisfiesψ(OE) = OE dubbed an
endomorphism ofE. The endomorphismψ will be
defined overFq where q = pn if the rational map is
defined overFq. Therefore clearly, for anyn≥ 1, ψ is a
group homomorphism ofE(Fp) andE(Fq) [11],[20].
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Definition 3. The endomorphism of elliptic curve E
defined over Fq is the m− multiplication map[m] : E→ E
defined by

P→mP (7)

for each m∈ Z. The negation map[−1] : E→ E defined
by P→−P is a special case from m−multiplication map
[11].

3 GLV generator

Definition 4. [17] A GLV generator is a set{v1,v2} of
two linearly independent vectors v1 and v2 in the kernel of
the homomorphism T in an equation (2) defined in the
equation (3). It is called so if each component of v1 and
v2 is bounded by

√
n.

Lemma 1. [17] Let n be prime andλ ∈ [1,n− 1]. In
addition, assumes that v1 = (r, t), v2 = (u,v) ∈ kerT and
−√n < r, t,u,v <

√
n. If v1 and v2 are linearly

independent, then r is relatively prime to t and u is
relatively prime to v.

Lemma 2. [17] Let n be prime andλ ∈ [1,n−1]. If there
is a vector v= (r, t) in the kernel of T such as gcd(r, t) 6= 1
and−√n< r, t <

√
n, then there will be no GLV generator.

4 Original 2-GLV Method by Gallant et al.

4.1 Domain Parameters of The Original 2-GLV
Method

A set of parameters should be followed in the original
method [15]-[18]. These involve the following:

(i) Fp is a finite field ofp elements,p is the prime number;
(ii) E is an elliptic curve defined overFp with the point at

infinity OE;
(iii) P∈ E(Fp) is a rational point of a large prime ordern.

That is, the cofactorh= #E(Fp)/n is small, andh≤ 4;
(iv) An endomorphism ψ of E is a rational map

ψ : E → E with ψ(OE) = OE, is an efficiently
computable endomorphism ofE over Fp, and it acts
on the subgroup〈P〉 as a multiplication byλ such that

ψ(P) = [λ ]P. (8)

(v) λ is a root of the characteristic polynomial

Charpoly(X) = X2+ rX +s, (9)

of ψ, wherer,s represent small fixed integers inFp and
λ ∈ [1,n−1];

(vi) k is an integer that is selected uniformly at random
from the interval[1,n−1];

(vii) The group homomorphism (the GLV reduction map)
T : Z×Z→ Z/n is defined in equation (3).

4.2 How to use a GLV generator to calculate kP

The following section illustrates how Gallant et al. used a
GLV generator to accelerate the computation ofkP.
Suppose that{v1,v2} is a GLV generator. In view of the
fact thatv1 and v2 are linearly independent overQ×Q,
the latter will spanQ×Q. Consequently, one will have

(k,0) = β1v1+β2v2, (10)

for someβ1,β2 ∈ Q. Let b1,b2 be the nearest integers to
β1,β2 respectively. Finally, set

x= (k1,k2) = (k,0)− (b1v1,b2v2)

= (k,0)− (β1v1+β2v2)+(β1v1+β2v2)− (b1v1,b2v2)

= (β1−b1)v1+(β2−b2)v2).

Then, T(x) = k can be obtained from equation (2) and
‖x‖ ≤ 1

2(‖ v1 ‖+ ‖ v2 ‖) can be obtained from lemma 2 in
[15], where ‖ · ‖ is an Euclidean norm. Since{v1,v2}
represents a GLV generator, each component ofv1 andv2
is bounded by

√
n and the result will be

−
√

n< k1,k2 <
√

n. (11)

Thus, equation (1) can always be decompose with the
condition in equation (11) from any GLV generator
{v1,v2}. Hence,kPcan be calculated by

kP= k1P+E k2ψ(P) (12)

using the window simultaneous multiple point
multiplication method forP and ψ(P). In addition, the
efficiency improvement should roughly be 50% over the
general scalar multiplication method for the currently
recommended key sizes.

Remark.In decomposing the integerk into k1 andk2, we
can sometimes get to one of the values ofk1 or k2 equal to
zero. This case is not admissible in decomposition because
it cannot satisfy the equation (1).

5 Elliptic Scalar Multiplication using Integer
Sub-Decomposition (ISD) Method

5.1 A condition for the new ISD generators

In this study, we state and prove a necessary condition for
the existence of ISD generators based on the idea of
necessary condition of GLV generator [17].

Assume thatv1 = (a,b), v2 = (c,d), v3 = (g, j) and
v4 = (e, f ) are linearly independent integer vectors in the
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kernel of T such that−√n < a,b,c,d,g, j,e, f <
√

n.
Then we have











a+bλ1 = sn,
c+dλ1 = wn,
g+ jλ2 = un,
e+ f λ2 = vn,

(13)

for somes,w,u,v ∈ Z. By multiplying the first and the
second equations in (13) by c and a, respectively, we
obtain

(bc−ad)λ1 = (sc−aw)n, (14)

By multiplying the third and the fourth equations in (13)
by eandg, respectively, we obtain

( je−g f)λ2 = (ue−gv)n. (15)

Similarly, we have

(bc−ad) = (sd−bw)n, (16)

and
(g f− je) = (u f− jv)n. (17)

Note that|bc−ad|< 2n and| je−g f |< 2n. If bc−ad= 0
then(a,b) and(c,d) are linearly dependent. And, ifje−
g f = 0 then(g, j) and(e, f ) are linearly dependent.Thus
bc−ad=−n,n and je−g f =−n,n becausen divides
bc− ad and je− g f . From equations (16) and (17), we
have

{

sd−bw=−1,1
u f− jv =−1,1 (18)

Therefore, we conclude thatb,d, j, and f are relatively
prime tos,w,u, v, relatively. We shall state and prove the
following Lemmas.

Lemma 3. Let n be prime,λ1 and λ2 ∈ [1,n− 1], where
λ1 6= ±λ2. Assume that v1 = (a,b), v2 = (c,d),v3 = (g, j)
and v4 = (e, f ) ∈ kerT such that
−√n < a,b,c,d,g, j,e, f <

√
n. If v1,v2,v3 and v4 are

linearly independent, then a,c,g, and e are relatively
prime to b,d, j, and f , respectively.

Proof. Sincev1,v2,v3 andv4 ∈ kerT, we haves,w,u,v ∈
Z which satisfy equation (13). Assume that the greatest
common divisor ofa andb is α > 1. Thenα becomes a
common divisor ofs andb from equation (13) sincen is
prime and this contradicts to (18) �.

Remark.Lemma (3) shows a necessary condition for the
existence of ISD generators{v1,v2} and {v3,v4}. If
v1 = (a,b) ∈ kerT, gcd(a,b) 6= 1 and|a| <√n, |b| <√n,
then the second vectorv2 = (c,d), |c| < √n, |d| < √n
never existed. The same thing will happen withv3 andv4.
In fact, Lemma (3) itself shows that ifgcd(a,b) 6= 1 and
gcd(g, j) 6= 1, there are no ISD generators that contain the
vectors(a,b) and(g, j), respectively.

Lemma 4. Let n be prime,λ1 and λ2 ∈ [1,n− 1], where
λ1 6= ±λ2. If there are vectors v= (a,b) and u= (g, j) in
the kernel of T such that gcd(a,b) 6= 1, gcd(g, j) 6= 1 and
−√n< a,b,g, j <

√
n, then there exist no ISD generators.

Proof. Suppose that{v1,v2} and {v3,v4} are ISD
generators. Thus, either{v,v1} or {v,v2} is an ISD
generator containingv, also{u,v3} or {u,v4} is an ISD
generator containingu. Thus, contradicts Lemma (3).
Therefore, there exist no ISD generators from Lemma (3)
�.

5.2 The proposed algorithm to find ISD
generators

5.2.1 Findingv2 andv4

Using the method proposed by Gallant et al. described in
section 4, one can always get the vectorsv1 andv3, where
each component ofv1 andv3 is bounded by

√
n. Now we

present an algorithm to find the second and the fourth
short vectorsv2 andv4 after obtaining the vectorsv1 and
v3. Suppose we have the vectorsv1 = (am+1,−bm+1) and
v3 = (gm+1,− jm+1) in the kernel ofT as in Gallant et
al.’s algorithm. We know that|am+1|, |bm+1|, |gm+1| and
| jm+1| are already less than

√
n. Let v2 = (c,d) and

v4 = (e, f ) be the vectors so that{v1,v2} and{v3,v4} are
ISD generators. Suppose v1 = (a,b),
v2 = (c,d),v3 = (g, j), andv4 = (e, f ) satisfy the equation
(13) for somes,w,u and v ∈ Z. From the equation (18),
we know thats andu are relatively prime to−b and− j,
respectively. We apply the extended Euclidean algorithm
to find the greatest common divisor ofs and−b, and also
to find the greatest common divisor ofu and− j. Then the
algorithm returnsd′,w′,u′ andv′ which satisfy

{

sd′−bw′ = 1
u f ′− jv′ = 1

(19)

In general, every integer vector(d,w) and ( f ,v) which
satisfysd− bw= 1 andu f − jv = 1 can be represented
by (d′ + α1b,w′ + α1s), ( f ′ + α2 j,v′ + α2u) where
α1,α2 ∈ Z. Our purpose is to find a suitableα1 and α2.
Set d = d′ + α1b,w = w′ + α1s and f = f ′ + α2 j,
v = v′ + α2u. Since |d| < √n, b = −bm+1 6= 0 and
| f |<√n, j =− jm+1 6= 0, we have

−d′

b
−
√

n
b

< α1 <−
d′

b
+

√
n

b
(20)

and

− f ′

j
−
√

n
j

< α2 <−
f ′

j
+

√
n
j
, (21)

whereb, j > 0.

Also,

−d′

b
+

√
n

b
< α1 <−

d′

b
−
√

n
b

(22)

and

− f ′

j
+

√
n
j

< α2 <−
f ′

j
−
√

n
j
, (23)
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whereb, j < 0.

Note thatc= wn−dλ1 anda= am+1 > 0, then we have

d′λ1−w′n
a

−
√

n
a

< α1 <
d′λ1−w′n

a
+

√
n

a
, (24)

also,e= vn− f λ2 andg= gm+1 > 0, then we have

f ′λ2−v′n
g

−
√

n
g

< α2 <
f ′λ2−v′n

g
+

√
n

g
. (25)

Hence, α1 has to be an integer in the intersection of
equations (20), (22) and (24). Also, α2 has to be an
integer in the intersection of equations (21), (23) and (25).
From Lemma (4), in order to seekα1 and α2 for the
second and fourth vectorsv2 andv4 of ISD generators, it
is sufficient to test only eight integers at most since one of
|a|, |b| and |g|, | j| is greater than1

2

√
n. Now, we present

our algorithm to find the second and the fourth vectorv2
andv4 respectively.

Algorithm 1: Find ISD generators v1 = (a,b),
v2 = (c,d), v3 = (g, j) and v4 = (e, f ) for given n and
λ1,λ2 ∈ Z, whereλ1 6=±λ2.

Input: Integersn,λ1,λ2.

Output: The vectorsv1,v2,v3 andv4.

Step 1. Compute v1 = (am+1,−bm+1) and
v3 = (gm+1,− jm+1) such thatsm+1n+ bm+1λ1 = am+1
andum+1n+ jm+1λ1 = gm+1 where|am+1|, |bm+1|, |gm+1|
and | jm+1| <

√
n by using the extended Euclidean

algorithm to find firstly the greatest common divisor ofn
and λ1 and secondly of the samen and λ2. (This is the
extension of Gallant et al.’s algorithm for two vectorsv1
andv3).

Step 2.Check if each components of either(am,−bm) or
(am+2,−bm+2) and (gm,− jm) or (gm+2,− jm+2) is
bounded by

√
n, stop and set the shorter of(am,−bm) and

(am+2,−bm+2) as the second vectorv2, also set the
shorter of (gm,− jm) and (gm+2,− jm+2) as the fourth
vectorv4. Otherwise, go to step 3.

Step 3. Find any d′,w′, f ′ and v′ such that
sm+1d′−bm+1w′ = 1 andum+1 f ′− jm+1v′ = 1.

For example,d′ and w′ are obtained from the extended
Euclidean algorithm sincesm+1 is relatively prime to
−bm+1, and the same thing withf ′ and v′ are obtained
from the extended Euclidean algorithm sinceum+1 is
relatively prime to− jm+1.

Step 4.Compute

I11 =−
d′

b
−
√

n
b

, I12 =−
d′

b
+

√
n

b

and

I ′11 =−
f ′

j
−
√

n
j
, I ′12 =−

f ′

j
+

√
n
j
.

Step 5.Let

I1 = [I11, I12], I ′1 = [I ′11, I
′
12], i f b > 0,

and
I1 = [I12, I11], I ′1 = [I ′12, I

′
11], i f b < 0.

Step 6.Compute

I21 =−
d′λ1−w′n

a
−
√

n
a

, I22 =−
d′λ1−w′n

a
+

√
n

a
.

Also,

I ′21 =−
f ′λ2−v′n

g
−
√

n
g

, I ′22 =−
f ′λ2−v′n

g
+

√
n

g
.

Step 7.Let I2 = [I21, I22] andI ′2 = [I ′21, I
′
22].

Step 8.Find all integers in the intersection ofI1 and I2
and define them byα1, also all integers in the intersection
of I ′1 andI ′2 and define them byα2. Note that the numbers
of α ′1s andα ′2s are at most 4. If there is not any of such
integers exist, stop.

Step 9.Setv2 = (c,d) andv4 = (e, f ), where

c= w′n−d′λ1+α1a, d = d′+α1b

and
e= v′n− f ′λ2+α2g, f = f ′+α2 j.

The vectorsv2 = (c,d) andv4 = (e, f ) are easily verify
to be in thekerT, and|c|, |d|, |e| and| f | <√n; therefore,
{v1,v2} and{v3,v4} are ISD generators.

5.3 The proposed integer sub-decomposition
method (ISDM) to Compute kP

The proposed method modified the Gallant, Lambert,
Vanstone GLV method (Gallant et al., 2001) to have faster
point multiplication on an elliptic curveE over a prime
finite field Fp. This modification embeds that the second
decomposition of the valuesk1 andk2 when one or both
values is not bounded by±√n. The sub-decomposition
from k= k1+k2λ2 (mod n) is explained in the following:

k1 = k11+E k12λ1 (mod n) (26)

and
k2 = k21+E k22λ2 (mod n). (27)

One has to find ISD generators{v1,v2} and{v3,v4} based
on the algorithm (1) that depends on the same way
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followed by a GLV generator algorithm [17], so that each
component of v1,v2,v3 and v4 is bounded by

√
n.

Accordingly, the result will be integersk11,k12,k21 and
k22 are computed by solving the closest vector problem in
lattice which is embodied in using an extended Euclidean
algorithm. That is, one can decomposek through applying
the balanced length-two representation of a
sub-decomposition multiplier algorithm (2) as follows:

k= k11+k12λ1+k21+k22λ2 (mod n) (28)

with −√n < k11,k12,k21,k22 <
√

n from any ISD
generators{v1,v2} and {v3,v4}. The Fig (1) shows that
clearly.

Fig. 1 Shows the Subdecomposition of the integerk

Algorithm 2: Balanced length-two representation of a
sub-decomposition multiplier algorithm

Input: Integersn,λ1,λ2 ∈ [1,n−1], whereλ1 6=±λ2 and
k1,k2 ∈ [1,n−1].

Output: Integers k11,k12,k21 and k22 such that
k = k11 + k12λ1 + k21 + k22λ2 (mod n) and
|k11|, |k12|, |k21|, |k22|<

√
n.

Step 1: Run ISD generators algorithm (1) with inputs
n,λ1 andλ2. The algorithm produces the ISD generators
{v3,v4} and{v5,v6}.

Step 2: Set v3 = (r̄m+1,−t̄m+1) = (r̄,−t̄) and
v5 = (r̂m+1,−t̂m+1) = (r̂,−t̂).

Step 3:If (r̄2
m+ t̄2

m)≤ (r̄2
m+2+ t̄2

m+2) then set

v4 = (ū, v̄)← (r̄m,−t̄m) and v6 = (û, v̂)← (r̂m,−t̂m).

Else

v4 = (ū, v̄)← (r̄m+2,−t̄m+2) and v6 = (û, v̂)← (r̂m+2,−t̂m+2).

Step 4: Compute c3 = ⌊v̄k1/n⌉, c4 = ⌊−t̄k1/n⌉ and
c5 = ⌊v̂k2/n⌉, c6 = ⌊−t̂k2/n⌉.

Step 5:Computek11 = k1− c3r̄ − c4ū, k12 = −c3t̄− c4v̄
andk21 = k2−c5r̂−c6û, k22 =−c5t̂−c6v̂.

Step 6:Returnk11,k12,k21 andk22.

Hence, kP can be calculated by using the following
formula:

kP= k11P+k12[λ1]P+k21P+k[λ2]P
= k11P+k12ψ1(P)+k21P+k22ψ2(P). (29)

The computation in equation (29) can be achieved using
the window simultaneous multiple point multiplication
method which has been computed in an algorithm (3) for
P, ψ1(P) andψ2(P).One can see that in the Fig (2).

Fig. 2 Shows the Subdecomposition of the elliptic curve point
multiplicationkP

Algorithm 3: Modification of point multiplication with
two efficiently computable endomorphisms algorithm.

Input: Integern, k1,k2 ∈ [1,n− 1], P ∈ E(Fp), window
widthsw1,w2,w3 andw4, λ1,λ2 ∈ Z, whereλ1 6=±λ2.

Output: kP.

Step 1: Use balanced length-two representation a
sub-decomposing of a multiplier algorithm to find
k11,k12,k21 andk22 such that

k= k11+k12λ1+k21+k22λ2 (mod n).
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Step 2:CalculateP2 = ψ1(P), P3 = ψ2(P) and letP1 = P.

Step 3: Use computing width-w NAF of positive integer

algorithm to computeNAFw j (|kz, j |) = Σ l j−1
i=1 kz, j,i2i for

j = 1,2 andz= 1,2.

Step 4:Let lz = max{lz,1, lz,2}, z= 1,2.

Step 5: If kz, j < 0, then set Gz, j,i ← −Gz, j,i for
i = 0 : lz, j = 1,2 andz= 1,2.

Step 6: ComputeiPj and iPs for i ∈ {1,3, ...,2w j−1− 1}
andi ∈ {1,3, ...,2ws−1−1}, where j = 1,2 ands= 1,3.

Step 7:Q← ∞.

Step 8:For i = lz−1 : 0 do

8.1.Q← 2Q.
8.2.For j = 1,2, z= 1 do

If Gz, j,i 6= 0 then
If Gz, j,i > 0 thenQ←Q+kz, j,iPj ;
ElseQ←Q−|kz, j,i |Pj .

Step 9:For j = 1,2, z= 2 do

If Gz, j,i 6= 0 ands= 1,3 then
If Gz, j,i > 0 thenQ←Q+kz, j,iPs;
ElseQ←Q−|kz, j,i |Ps.

Step 10:ReturnQ.

To summarize, the ISD method involves applying the
same method as in the original GLV for finding the GLV
generator{v1,v2} for the givenn andλ by using the GLV
generator algorithm in [17]. Accordingly, the result will
decomposek into k1 and k2 for n,λ and k ∈ [1,n− 1].
This step can be done using the balanced length-two
representation of a multiplier algorithm in [11].
Depending on the algorithm (1), find ISD generators
{v3,v4} and {v5,v6} such that each component of
v3,v4,v5 and v6 is bounded by

√
n. The result will

sub-decomposek1 andk2 into the integersk11,k12,k21 and
k22 which are computed by solving the closest vector
problem in lattice that is embodied in using an extended
Euclidean algorithm.k is sub-decomposed by applying
the algorithm (2) to find the equation (28) with
−√n < k11,k12,k21,k22 <

√
n from any ISD generators

{v3,v4} and{v5,v6}. Eventually,kP can be calculated by
using the formula in the equation (29), See algorithm (4).

Algorithm 4: ISD Method to Compute Point
Multiplication Elliptic Curve kP

This algorithm consists of the following steps:

Step 1: Apply GLV generator algorithm in [17] to find
the generator{v1, v2} for the givenn and λ such that

v1← (r, t) andv2← (u,v).

Step 2: Use balanced length-two representation of a
multiplier algorithm in [11] to decomposek to find k1 and
k2 for a givenn, λ andk∈ [1,n−1].

As for the proposed steps set for modification, they
include the following:

Step 3:Use algorithm (2) to find

3.1.For n andλ1, generate the ISD generator
{v3,v4} such thatv3← (r̄, t̄) andv4← (ū, v̄).

3.2.For n andλ2, generate the ISD generator
{v5,v6} such thatv5← (r̂, t̂) andv6← (û, v̂).

Step 4: Use algorithm (3) to decomposek1 andk2 such
that k1 = k11 + k12λ1 (mod n) and
k2 = k21 + k22λ2 (mod n). That is, one can get
k= k11+k12λ1+k21+k22λ2 (mod n).

Step 5:Use algorithm (4) to computekPdefined as

kP= k11P+k12[λ1]P+k21P+k22[λ2]P

= k11P+k12ψ1(P)+k21P+k22ψ2(P).

such thatψ1(P) ← [λ1]P and ψ2(P) ← [λ2]P, where
λ1,λ2 ∈ Z andλ1 6=±λ2.

6 Results

The sub-decomposition method proposed in this paper,
known as the ISD method, is a modification of the GLV
method introduced by Gallant et al. to compute scalar
multiplication kP. In the original GLV method, the
decomposition of the integerk into k1 and k2 assumes
only values lying in the range−√n < k1,k2 <

√
n. For

those values fall outside the range, that is, the values ofk1
andk2 which lie outside the range

√
n, the GLV method

will not work. This has resulted in a low percentage of
successful computation of the multiplication operation of
kP; hence GLV method is limited by the value ofk for kP
computation. To solve this problem, we have proposed
new algorithms to anticipate those values ofk1 andk2 that
lie outside the range. In the ISD method, we have
sub-decomposed the values ofk1 andk2 into k11,k12,k21
andk22 which lie within the range of

√
n. The proposed

ISD method aimed to increase the percentage of
successful computation ofkP.

The experimental results of the proposed method is
indicated in Table 1. In our experiment, we have
implemented the ISD method on four sets of sample data.
We considered three parameters in the experiment: the
parametern, the parameterλ , and the primep with
100-bit length. The results indicate clearly that the ISD
method significantly increases the percentage of
successfully computedkP. The ISD method has helped
increase the successful computation ofkP by 50%
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comparison with the original GLV method, resulting in a
more reliable method for kP computation. This
improvement has a direct impact on the scalar
multiplication techniques in elliptic curve cryptography,
and will promote the application of the elliptic curve
cryptosystem in the today’s modern world. Below are the
experimental results on the percentage of successful
computation of kP for both the GLV and the ISD
methods.

Table 1 Percentage of successful computation ofkP for both the
original GLV and the proposed ISD method

%o f GLV Method %o f proposed ISD Method
0.0455 0.3939
0.0269 0.4462
0.0116 0.4701
0.0065 0.4879

7 Conclusion

The present paper was concerned with presenting new
algorithms to facilitate the use of Gallant et al.’s idea for
speeding up the scalar multiplication of elliptic curves
over a prime field in a more concrete way when the two
values or one of the decomposing integers is not bounded
by
√

n. This new method, namely, the integer
sub-decomposition method, ISD will help increase the
success rate ofkP computation by 50% compared with
the GLV method.
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