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POINT NORMS IN THE CONSTRUCTION
OF HARMONIC FORMS

MiITSURU NAKAI AND LEO SARIO

Let V be an arbitrary Riemannian n-space, and V; a regular
neighl_;orhood of its ideal boundary. Given a harmonic field
¢ in Vi, necessary and sufficient conditions are known for the
existence in V of a harmonic field o which imitates the behavior
of ¢ in V, in the sense S (p— o)A *(p— 0) < . In the pre-

V1
sent paper we give the solution of the corresponding pro-
blem for harmonic forms in locally flat spaces.

One aspect of our treatment which may have possibilities for
generalization is the use of the point norm defined by |p [ = @, ... @™ 2.
Another approach to generalizations is discussed in [3]. '

1. Throughout our presentation the symbol V shall stand for a
locally flat Riemannian space. Since the curvature tensor vanishes
in V, there exists a covering {U,|ac V} of V such that U, is the
carrier of local coordinates x, = (!, ---, 2" with x,(a) = 0 and

|z, | =V [, F+ - + |2 =7, (0 <7, < o)
in U, with the following property:
(1) 9:(®,) = 055 (x, e U,).

We moreover require that V is parallel in the sense that the above
{U,} can be chosed so as to satisfy

(2) x = ai + ¢, G=1--,m)

in U, N U, with constants ¢i,. We call (U,|aec V} a parallel coor-
dinate covering and each U, a distinguished coordinate neighborhood.

2. The space of harmonic p-forms @, defined by dip + ddp = 0,
will be denoted by H,. For a set Ec V, the notation ¢ € H,(E) shall
mean that @ is a harmonic p-form in an open set containing E.

Let V, be the complement in V of a regular subregion [4] of V.
Suppose o € H,(V,) is given. The problem is to construct a correspond-
ing pe H(V), to be called the principal form, characterized by the
existence of a constant M such that

(3) lo—0| <M< oo
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on V.
The space V is called hyperbolic or parabolic according as it does
or does not possess Green’s functions [4].

THEOREM 1. If V is hyperbolic, then the principal form o always
exists.

THEOREM 2. If V s parabolic, then a mnecessary and sufficient
condition for the existence of a principal form p is that

(4) §p*d<o,c>:0

for every constant form c. The principal form is umique up to an
additive constant form.

Here <@, ¥> = @;,...;,¥;*"‘r, and B stands for the ideal boundary
of V. For constant forms see No. 4 below.

The above theorems will be consequences of the main existence
theorem for harmonic forms (No. 7), which we shall first establish.

Theorem 1 is known to be valid without the assumption that V is
parallel ([3]).

3. Take a p-form @ on V:
P = o Pipeni, GEL N -o e N daip .
In U,Nn U,, dx: = dxi and therefore
“g)ii"‘ip = 2Pigeeniy o
For this reason there exists a global function @i, 0V such that
¢i1"‘ip = “q)ii"'ip
in U,. Conversely, given functions Pi...i,, there exists a p-form
P = oPipi, AT A oo A daier with @, = ,p;..;, in each U,.
4. We call ¢ a constant p-form if
(5) dp =0,
(6) || = const.,

and we denote by K?” the class of constant p-forms, It is easy to see
that,

dp =0,0p =0
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for p € K?,i.e., constant forms are harmonic fields. If e H, (V) and
|p| is constant in some open set D V, than ¢ e K?(V). In fact, let

P = @i, AN e A datr

Then 4p = (4p;,...; Yda'r A -+ A da'» = 0, and we see that each Piyni,
is harmonic. Consequently (g;,...; ) is subharmonie, and so is

pl= S (i)
Q1< <ip
Since | @ |* = ¢ (const.) in D, we have
¢ — (i)’ = %(%vw)z

in D. The left-hand member is subharmonic and superharmonic and
the same is true of (.., ). But A@pi,....,)’ = |grad @, [, and for
this reason Piy.i, MUSE be constant.

Clearly K” is an <Z) -dimensional vector space.

5. Let L? be the operator in the space of p-forms on &, = 0V, into
the space of continuous p-forms in V,, harmonic in V,, such that L*¢p|a, = ¢
and

(7) LP(K¢1+M¢2):7\'LPCP1+ #qu’zy
(8) |LPp| < sup|o],

o
(9) S*d<L”g>,c>:O for every ccK?.

We call L* a normal operator.
A normal operator L for 0-forms induces one for p-forms:
Lo = (LgDil...ip)dxil A o A dxiv .
More interesting is the following. Let iy.i,» be normal operators for
0-forms, with 7, < --- < 7,. We define one for p-forms by setting

L? = Ldxit A\ <+« A datz

il"'ip
that is
Lrp = (jiyLpi.s AT N\ oo A dais
In particular, if iyiyl = Ly or L, for all 7, < ..+ < 4,, we denote
the corresponding L* by LZ or L2,

6. Given a compact set £ in V let F%c H? be the class of
harmonic p-forms ¢ in V such that {g, ¢> is not of constant sign in
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E except for being identically zero for every ¢ e K». Observe that F'% is
closed with respect to uniform convergence in terms of |- | on compact
sets. In fact,

[{Puy € = Py | = [P — Py | = €| | Pw — P | .

We shall need the following generalization of the g¢-lemma for
0-forms [4]:

LEMMA. There exists a constant q, (0 < q; < 1) such that

max; |p| < gz supy ||

for all pe F'%.

We only have to consider forms ¢ with sup, |@| = 1. Suppose
there existed a sequence with max, | ¢, | 1. Then since {¢ | sup, | ¢ |=1}
is a normal family, we would have ¢ = limp, with max; || = 1.
By the subharmonicity of [@|?, @ would be a constant form ¢ on V.
The contradiction {@, ¢) = {p, > = 1 completes the proof.

7. With the scene so set for p = 0, we can state the following
generalization to p-forms of the main existence theorem known thus

far for 0-forms only [4]:

THEOREM 3. The principal form pec H, (V) characterized by
(10) Lp—0)=p—o0

extists if and only if
(11) L* da,c> =0

for all ce K*. The principal form is unique up to an additive
constant form.,

The proof is analogous to that for 0-forms [4] and we can restrict
ourselves to a brief outline.

Let V,cV be a regular region with aV,c V, and 0V,C V,.
Denote by L' the Dirichlet operator for V,. We only have to establish
the convergence of ¢ = >\ (LL")"0,, where 0, = 0 — Lo and L = L~,

Observe that condition (11) means that S xd{a,cy> =0 for every
a homologous to a;, since {o, ¢)> is a harmonic function. We conclude
that

S (L(LL)Y6,, ¢>xdh = 0,
o,
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where % is the harmonic measure of dV, in V,N V,. For this reason
L'(LL)'o,¢€ F,(V,), the lemma applies in V,, and we have the con-
vergence.

Theorem 2 is a consequence of Theorem 3.

8. To prove Theorem 1 suppose V 1is hyperbolic. The form
o€ H?(V,) may or may not satisfy (11). We set

2 =Z[<~— SaV1* dai""“’)/qavl* dw)]a)docil A oo A daire

where o = oil...ipdxil A «-+ A da'r is the global expression in V, and
® is the harmonic measure of the ideal boundary S of V with respect

to V.. Clearly |+ | is bounded in V.. Consequently, & = ¢ +
satisfies (11) and the solution p satisfies

p—0=LNo—3) +v
on V,. We infer that |p — o | is bounded in V..
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