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Abstract

Background: The integration of 3D printing technology in hospitals is evolving toward production models such as

point-of-care manufacturing. This study aims to present the results of the integration of 3D printing technology in a

manufacturing university hospital.

Methods: Observational, descriptive, retrospective, and monocentric study of 907 instances of 3D printing from

November 2015 to March 2020. Variables such as product type, utility, time, or manufacturing materials were analyzed.

Results: Orthopedic Surgery and Traumatology, Oral and Maxillofacial Surgery, and Gynecology and Obstetrics are the

medical specialties that have manufactured the largest number of processes. Working and printing time, as well as the

amount of printing material, is different for different types of products and input data. The most common printing

material was polylactic acid, although biocompatible resin was introduced to produce surgical guides. In addition, the

hospital has worked on the co-design of custom-made implants with manufacturing companies and has also

participated in tissue bio-printing projects.

Conclusions: The integration of 3D printing in a university hospital allows identifying the conceptual evolution to

“point-of-care manufacturing.”

Keywords: 3D printing, Manufacturing university hospital, POC manufacturing, Preoperative planning, Biomodel,

Surgical guides, Custom implants

Background

3D printing is a disruptive technology and represents a

paradigm shift in healthcare delivery [1]. The term “3D

Printing” refers to the transformation of a digital model

into a tangible three-dimensional object, with examples

including anatomical models (biomodels) [2, 3], medical

devices [4], surgical instruments [5, 6], custom-made im-

plants [7–10], drugs [11–13], or even organs and tissues

[14–16]. 3D printing enables patient-specific precision

medicine with improved medical communication, and

reports in the literature present shorter medical proce-

dures, personalized medical devices, or simulation for

medical training [17, 18].

Greater accessibility to 3D printing software and hard-

ware technologies has enabled hospital-based 3D print-

ing, showing how lead times and costs can be reduced
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[19]. Hospital 3D printing labs generate value in person-

alized medicine by assembling a professional team and

the necessary resources [20–22]. With the proper quality

and safety infrastructure, hospital-based 3D printed

products can be affordable and incorporate a hub-and-

spoke model, where more complex manufacturing uni-

versity hospitals are identified as “hubs,” and smaller,

less diverse labs serve as the “spokes.” This approach en-

ables each institution to adjust resources accordingly,

objectively identifying each partners’ strengths and limi-

tations. The result is the creation of strong 3D printing

alliances [20, 23].

3D printing within a hospital is a paradigm shift, mov-

ing away from traditional industry-based manufacturing

limitations to propose custom implants [24–27] or bio-

printing [28–30]. These hospital-based labs have been

referred to as point-of-care (POC) manufacturing and

require pecuniary responsibility, technical competence,

updated physical resources, and engaged human re-

sources [20].

Hospital General Universitario Gregorio Marañón has

been developing the POC 3D-printing model since 2015.

This study aims to present the experience from this inte-

gration of 3D printing technology in our hospital. Our

results show how POC manufacturing workflow is a

paradigm of personalized medicine in all steps, from

clinical indication and surgical planning to the design

and manufacturing of patient-specific solutions.

Methods

We present an observational, descriptive, retrospective, and

monocentric study of 3D printing experience in the Ad-

vanced Planning and Manufacturing 3D Unit (UPAM3D) at

Hospital General Universitario Gregorio Marañón (Madrid,

Spain). We include all production recorded from the first

3D-printed case in November 2015 to March 2020, when

the activity at UPAM3D was temporarily interrupted due to

the COVID-19 pandemic.

3D printing transforms a digital model into a real and

tangible three-dimensional product. Digital 3D models

can be obtained from different sources: digital radio-

logical studies, three-dimensional scanning, computa-

tional design (CAD), or reverse engineering. The

products are built layer by layer from the digital model

using different technologies and materials depending on

the final application [31, 32].

In this study, we have defined the following variables

to analyze the 3D printing activity at UPAM3D:

– Required product: Describes the type of product

that is requested by the original user. It can be an

anatomical model, a surgical guide/instrument for

an interventional procedure, or a surgical navigation

tool.

– Product utility: It defines the primary function of the

product. Although these products have great value

as a communication tool in most cases, it has been

described as such only when communication was

the essential value of the product. Other alternatives

are teaching, instrumental, research, preoperative

planning, intraoperative utility, and others.

– Input data: Describes the original data provided by

the requesting user. Possible values are DICOM files

[DICOM], 3D digital model design [3D model], or

other materials. This last case could be a drawing or

an existing tool with design improvement

suggestions, which would be reverse-engineered to

obtain a 3D model.

– Work time: Time allocated by the medical and

technical team in all steps required to complete the

project and obtain a final delivery product. This

included 3D model design, 3D printing preparation

(slicing), and post-processing of the 3D-printed re-

sult after manufacturing.

– 3D printing time: Time required by the 3D printer

to manufacture the product.

– Quantity of 3D printing material: Weight of the

material (in grams) used by the printer for each

product.

– Type of 3D printing material: Type of material used

to manufacture the product that depends on the 3D

printing technology. Two types of technology were

available during this study: fused deposition

modeling (FDM), which prints fusing different

compositions of plastic materials, and vat

photopolymerization (SLA technology), a process in

which a liquid photopolymer (resin) is converted

into solid material when illuminated by a laser.

Quantitative variables are described as mean and me-

dian values, while qualitative variables are presented as

numbers and percentages.

Results

Figure 1 summarizes the activity of the different depart-

ments for a total of 907 models 3D printed during the

study. The detailed data is shown in Table 2. Most of

them were clinical departments, being the most active

Orthopedic Surgery and Traumatology, Maxillofacial

Surgery, and Gynecology and Obstetrics with 52.81%,

6.93%, and 5.06% of the processes, respectively. Apart

from the clinical activity, the Hospital Research Institute,

and UPAM3D demanded several research products.

The products requested were anatomical models in

87.02% of cases and surgical guides in 11.66%. The

remaining cases (1.32%) were patient-specific instru-

ments for surgical procedures in which 3D printing was

integrated with navigation or augmented reality,
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providing added value, as in the example displayed in

Fig. 2 [33, 34].

The utility has been different depending on the type of

product manufactured. Anatomical models were primar-

ily manufactured for preoperative planning (38.61%),

communication (9.35%), or research (18.26%). On the

other side, surgical guides or instruments have mainly

been used intraoperatively (Table 1).

When we analyze the type of products requested by

each department (Table 2), we can observe that anatom-

ical models are the most common. However, the profile

for some surgical departments is different. For instance,

Pediatric Surgery requested positioning guides in 70% of

the cases.

Table 2 details the distribution of input data provided

to perform the 3D printing process, with DICOM im-

ages, 3D models, and other materials in 47.74%, 43.67%,

and 8.58% of the cases. Figure 3 shows an example of a

3D-printed camera attachment for a surgical lamp be-

longing to this last category. When analyzing each de-

partment’s input data, we can observe that the

Neurosurgery provided DICOM images in all their re-

quests. At the same time, other departments were able

to prepare a 3D model for their products. Orthopedic

Surgery and Traumatology is a good example: their in-

put data was a 3D model in 31% and 67.16% of their

anatomical models and surgical guides, respectively.

Table 3 shows the technical details of the 3D printing

projects during the study period. The total working

hours were 8896, with an average of 9.79 h (median 3 h)

per process. The total running time for all 3D printers

was 10,271 h, with an average of 11.29 h (median 6 h)

per process. However, working time and 3D printing

time were different depending on the type of product

Fig. 1 Distribution of the UPAM3D activity for departments that have requested product manufacturing

Fig. 2 Surgical procedure: combining augmented reality and 3D printing. Ewing tumor. Location, right leg. Date, 2018
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Table 1 Distribution of required products for each product utility

Product utility

Communication Teaching Instrumental Research Intraoperative
utility

Preoperative
planning

Others Total
(%)

Required product

Surgical guide/interventional
procedure

0.11 0.11 11.44 11.66

Anatomical model 9.35 12.54 0.55 18.26 0.66 38.61 7.04 87.02

Navigation tool 0.77 0.44 0.11 1.32

Total (%) 9.46 12.54 0.55 19.14 12.54 38.72 7.04 100.00

Table 2 Distribution of products and input data by departments

Surgical guide/interventional
procedure

Anatomical model Navigation Total
(%)

3D
model

DICOM Other Total 3D
model

DICOM Other Total 3D
model

DICOM Total

Anesthesiology 0.99 0.22 1.21 1.21

Vascular surgery 0.11 0.11 0.22 1.32 2.53 0.11 3.96 4.18

Biochemistry 0.44 0.44 0.44

Cardiology 0.44 0.11 0.55 0.55

Cardiovascular surgery 1.43 0.11 0.66 2.20 2.20

General surgery 0.44 0.11 0.11 0.66 0.11 0.11 0.77

Maxillofacial surgery 0.44 1.43 1.87 1.43 3.19 0.44 5.06 6.93

Orthopedic surgery and
traumatology

4.95 1.98 0.44 7.37 13.97 28.93 2.09 44.99 0.33 0.11 0.44 52.81

Pediatric surgery 0.11 0.66 0.77 0.33 0.33 1.10

Plastic surgery 0.22 0.33 0.11 0.66 0.66

Thoracic surgery 0.22 1.21 1.43 1.43

Hospital pharmacy 0.22 0.22 0.22

Gynecology and obstetric 4.29 0.77 5.06 5.06

Hospital research institute 4.07 0.11 1.98 6.16 0.77 0.77 6.93

Physical medicine and
rehabilitation

0.11 0.11 0.22 0.22

Neonatology 0.22 0.22 0.22

Neurosurgery 1.43 1.43 1.43

Radiotherapy oncology 0.22 0.11 0.33 0.33

Otorhinolaryngology 0.11 0.11 0.11

Radiology 0.33 0.55 0.11 0.99 0.99

Radiophysic 0.11 0.11 0.11

UPAM3D’s research activity 6.16 0.55 1.76 8.47 8.47

Urology 1.43 1.43 0.66 1.21 1.87 3.30

Other departments 0.11 0.22 0.33 0.33

Total (%) 5.61 5.61 0.44 11.66 36.96 41.91 8.14 87.02 1.10 0.22 1.32 100.00
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and the input data. The production time for a product

must consider both the working time of the staff in-

volved in the design and printing processes (medical and

technical team) and the manufacturing time required by

the 3D printer.

The annual distribution of working and printing hours

(Fig. 4) shows two lines that cross during the study

period, due to a more significant number of working

hours in the first years with increased printing times in

recent years. This behavior can be explained by the in-

crease in the complexity of the products being printed,

combined with a reduction of the segmentation and

image processing times required to obtain virtual 3D

models from input data.

Total 3D printing material consumed was 100,587 g,

with an average of 110.65 g (median of 64 g) per process

(Table 3). 3D printers with FDM technology have been

the most used, accounting for 94.65% of 3D printing ma-

terial, being polylactic acid (PLA) the most widely used

(79.30%). This is a rigid material replicating bone struc-

tures with remarkable realism. Many other materials

have been tested in specific projects, some of them flex-

ible such as thermoplastic polyurethane (TPU) or Fila-

flex (thermoplastic elastomer based on polyurethane and

certain additives). They allow replicating vascular struc-

tures, solid organs, or muscular-tendon structures. Sup-

porting materials, such as polyvinyl alcohol (PVA),

facilitate post-processing, and improve printing quality.

The contribution of PVA is depicted in Fig. 5, showing a

phantom with internal cavities that could be manufac-

tured with rigid supports. The recent introduction of

SLA resins, biocompatible, and certified for medical use,

allowed us to respond to an increased demand for posi-

tioning guides or patient-specific instruments. In total,

Fig. 3 Reverse engineering. Sterilizable surgical light handle with camera attachment. Date, 2016

Table 3 Technical details of the 3D printing projects

Surgical guide/interventional procedure Anatomical model Navigation Total

3D model DICOM Other Total 3D model DICOM Other Total 3D model DICOM Total

Work time (hours)

Mean 13.39 3.21 6.75 8.24 1.85 5.73 10.59 10.07 1 30.5 5.91 9.79

Median 10 2 1 4 3 2 3.5 2 10 1.5 6 3

3D printing time (hours)

Mean 2.96 7.78 14.75 5.72 8.07 16.78 6.23 12.08 4.9 25 8.25 11.29

Median 2 4 6.5 2 4.5 12 2 7 7 2 5 6

Quantity 3D printing material (grams)

Mean 41.74 74.96 193 63.41 90.64 149.53 73.4 117.31 63.6 157.5 79.25 110.65

Median 30 72 61 42.5 51 97 29.5 66 83.5 25.5 81 64
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4.95% of products have been printed with biocompatible

resins (Dental SG Resin and Dental LT Clear Resin, For-

mlabs), representing 5.35% of the consumed material.

Figure 6 shows several projects printed in biocompatible

SLA resins.

Our experience as a manufacturing university hospital

has increased our capacity to work with different com-

mercial companies in the sector, participating in the co-

design of personalized implants [35] (Fig. 7) or collabor-

ating with external research groups in bioprinting [36,

37] (Fig. 8).

Discussion

3D printing addresses the growing complexities in

healthcare and enables a more sustainable future as a

scalable and cost-effective technology. It is a patient-

specific process (Fig. 9) that increases the efficiency in

different steps of the treatment workflow, bringing

higher level of customization and predictability, as pro-

posed by the GIRFT methodology (Getting It Right First

Time) [19, 38–42].

Hospital General Universitario Gregorio Marañón has

pioneered the transversal implementation of hospital 3D

printing with an “in-house” medical 3D printing labora-

tory integrated into the clinical workflow of more than 20

medical-surgical specialties. The hospital has obtained

authorization from the local government to manufacture

medical devices, in compliance with the international

standard ISO 13485 for quality management systems for

medical products [43–48]. During the first 2 years,

UPAM3D activity focused on identifying and optimizing

specific software and hardware, materials, and manufac-

turing parameters. This profile is reflected in the results,

showing higher involvement of the research departments

and a large number of working hours. The expertise

Fig. 4 Working and 3D printing times. Annual distribution. Data for 2015 and 2020 are not included (incomplete)

Fig. 5 3D printing materials (TPU, PVA). Pediatric intubation training. Date, 2018
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Fig. 6 3D printing materials (biocompatible resin). Surgical guides. Clinical applications: urogenital malformation surgery (a), orthognathic surgery

(b), orthopedic oncology (c-e)

Fig. 7 Customized implant. Preoperative X-ray of a tibial deformity (a). Anatomical model and customized implants (b). Post-operative X-ray (c)

Date, 2017

Calvo-Haro et al. 3D Printing in Medicine            (2021) 7:11 Page 7 of 14



acquired during this initial phase resulted in a decrease in

working hours every year, and the inclusion of new

requesting users from clinical departments.

It is important to identify the clinical areas gaining the

most benefits from integrating 3D printing in their clin-

ical workflow. The Radiological Society of North Amer-

ica 3D printing group (3D Special Interest Group

RSNA) states that musculoskeletal, craniofacial, vascular,

or congenital heart defects are the specialties in which it

is most efficient to use anatomical models [49]. Our re-

sults show that Orthopedic Surgery and Traumatology,

Maxillofacial Surgery, Gynecology and Obstetrics, and

Vascular Surgery accounted for 68.98% of the total activ-

ity. Research activity (UPAM3D or the Research Insti-

tute) reported 15.4%, and the remaining 15.62% (142

cases) included other clinical departments. Our role as a

manufacturing university hospital has allowed adaptation

and optimization of response times. This is important in

Fig. 8 Human skin bioprinting. Date, 2016

Fig. 9 Preoperative planning. Congenital heart defect. Date, 2017

Calvo-Haro et al. 3D Printing in Medicine            (2021) 7:11 Page 8 of 14



surgical specialties such as Traumatology [50] or Vascu-

lar Surgery [51], where traditional manufacturing pre-

sents restrictions in lead times, process outsourcing, or

associated costs.

The use of anatomical models for preoperative plan-

ning is an interesting utility in all surgical specialties

[49]. Anatomical models are replicas of a patient-specific

organ or anatomical region manufactured in different

materials with millimetric accuracy. They are used as a

communication tool with patients or between profes-

sionals [3], facilitate decision-making, and allow simula-

tion before the surgical procedure [2]. These simulators

of medical techniques such as orotracheal intubations

[52], sutures [53], endoscopies [54], endovascular

Fig. 10 Airway simulator. Date, 2017

Fig. 11 Simulation of interventional procedures. Sacral root neuro stimulation. Date, 2016
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interventions [55], or other surgical procedures [56–58]

can be developed at a very low cost. They can also be an

alternative to corpses for teaching anatomy [59–61].

In this study, 86.80% of the required products were ana-

tomical models, useful not only in surgical planning but

also as a communication or research tool. In the same

way that a university hospital complements university

education enriching the academic environment, a manu-

facturing university hospital does not replace factories. In

this setting, 3D printing goes hand-in-hand with transla-

tional research and teaching, acting as an accelerator for

clinical innovation. Figures 10, 11, 12, and 13 show

Fig. 12 Simulators for gynecological training. Date, 2016

Fig. 13 Anatomical models for teaching. Fetal cardiology. Date, 2019
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examples of this approach for medical training. Our “in-

house” 3D printing approach has allowed complete con-

trol and monitoring of the process, from the indication to

the manufacture of a customized medical-surgical solu-

tion. It also presents added value when manufacturing

guides, instruments, or customized implants [62–64]. As

an example, Fig. 14 shows a complex co-design with radi-

ation oncologists and physicists to evaluate intraoperative

radiation therapy dose on patient-specific data.

The technical details in Table 3 show how the dur-

ation of the process depended on the type of product re-

quired and the input data received. It may seem that

work time should be lower for an anatomical model than

for a surgical guide, since the last requires a specific de-

sign. However, the average work time showed no signifi-

cant differences between these two products in our

study. This can be explained by the segmentation and

image processing time required by anatomical models,

which can be quite laborious for complex anatomical

areas, as shown in Fig. 15. Anatomical models showed

both long printing times and a large amount of material

compared to surgical guides. We also observed an in-

crease in 3D printing time in the last 2 years, justified by

the complexity of 3D-printed products, which usually re-

quired the optimization of manufacturing parameters

with different materials.

The availability of machines for “in-house” manufac-

turing by material extrusion and vat photopolymeriza-

tion has allowed the production of anatomical models,

surgical guides, and patient-specific instruments. A

multidisciplinary team, with valuable experience and

clinical knowledge, achieved low response times, main-

taining the enrollment of most hospital departments in

the POC manufacturing model. This approach is aligned

with the current regulatory framework of this technology

applied to personalized medicine, which identifies the

Fig. 14 Sacral tumor. Radiotherapy treatment simulation. Dose measurement. Date, 2017

Fig. 15 Anatomical model of a complex anatomical area. Date, 2019
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prescribing physician as the final responsible for the

process [65–68].

Conclusions

This study identifies the possibilities of integrating 3D

printing technology in a hospital. This experience shows

the conceptual evolution of the hospital’s 3D printing

workflow toward POC manufacturing. Our results are

limited to a single center, so it is essential to propose

multicenter studies and elaborate consensus documents

to take advantage of the upcoming contributions of 3D

printing in healthcare.
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