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POINT OF COLLAPSE AND CONTINUATION METHODS FOR LARGE 
AC/DC SYSTEMS 
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Escuela Polite'cnica Nacional-Quito 

P.O. Box 17-08-8339, Quito, Ecuador 

Abstract: This paper describes the implementation of both 
Point of Collapse (PoC) methods and continuation methods 
for the computation of voltage collapse poirds (saddle-node 
bifurcations) in large ac/dc systems. A comparison of the 
performance of these methods is presented for real systems 
of up to  2158 buses. The paper discusses computational 
details of the implementation of the PoC and continuation 
methods, and the unique challenges encountered due to  the 
presence of high voltage direct current (HVDC) transmis- 
sion, area interchange power control, regulating transform- 
ers, and voltage and reactive power limits. The  characteris- 
tics of a robust PoC power flow program are presented, and 
its application to  detection and solution of Xoltage stability 
problems is demonstrated. 
Keywords: Voltage collapse, large ac/dc systems, saddle- 
node bifurcation, point of collapse, direct methods, contin- 
uation methods. 

INTRODUCTION 

During the last few years several methodologies for de- 
tecting saddle-node bifurcations in dynamic systems using 
steady state analysis techniques [l], have b+.en tailored and 
applied to  the determination of loadability limits of power 
systems. In this paper dynamic saddle-node bifurcations, or 
voltage collapse points, will be considered to be detectable 
by looking only for singularities of the steady state power 
flow Jacobian, since, under certain assumptions, saddle- 
node bifurcations of ac/dc dynamic systems with algebraic 
constraints can be  shown to  occur when the corresponding 
power flow Jacobian becomes singular [6, 71. 

One simple alternative to  find loadability limits is to use 
an ordinary power flow and to  gradually increase loads un- 
til convergence is no longer obtained. In addition to  the 
need for manual intervention, this approach often suffers 
from convergence difficulties and one is never certain where 
the limits actually are. A more precise determination of 
the proximity of a limit is essential when one is interested 
in effects of various possible control actions on the location 
of these limits. In addition, the conventional power flow 
method is generally not able to  reliably find low voltage 
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solutions that are necessary for some of the direct energy 
function methods, or to  directly determine the direction of 
maximum security increase. The Point of Collapse (PoC) 
method [2, 3, 4,  51 is one way of performing a direct com- 
putation of these limits. The  method has been shown to 
be computationally feasible and well suited for determining 
proximity to  voltage collapse in integrated ac/dc dynamic 
networks [6, 71. Continuation methods have also proven to 
be a good way of calculating bifurcation points in ac power 
systems [5, 8, 91. 

This paper presents brief quantitative and qualitative de- 
scriptions of these two methods, and describes the additional 
modifications needed to  handle an arbitrary number of ac 
limits and dc links. A detailed account of the implemen- 
tation of these methods in C code and the characteristics 
of the resulting program are also presented. This tool is 
then used for determining voltage profiles and loadability 
margins for several ac/dc systems. 

THE POINT OF COLLAPSE METHOD 

A general one-parameter nonlineaf. dynamic system can 
be represented by the vector field 

2 = f (z ,  A) (1) 

where z e R" and X E R. This system presents a bi- 
furcation at the equilibrium point (20 ,  XO) when the corre- 
sponding linearization (Jacobian) is singular. Saddle-node 
bifurcations are typical in practice [l, 10, 111, and are char- 
acterized by the steady state Jacobian D,f(zo, XO)  having 
a simple and unique zero eigenvalue, with nonzero right 
eigenvector v and left eigenvector w. This condition can 
be summarized by the set of vector equat,ions (2)  for the 
right eigenvector, and (3) for the left eigenvector. 

f(2, A) = 0 

D,f(z, A) v = 0 

I1 v II z 0 

f(z, A) = 0 

DTf(Z, A) w = 0 

I I  w I I  # 0 

(3) 

The solution to  these equations yields the saddle-node bi- 
furcation point. 

This paper tests this concept using the ordinary power 
flow equations for f .  The bifurcations that are compute for 
the load flow equations can be directly related to bifurca- 
tions of certain dynamic equations of the form (1) as shown 
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in [12]. These dynamic equations include generator swing 
dynamics, which depend only on frequency and the real and 
reactive power balance at  the load. Some dynamic power 
system models (particularly those with detailed generator 
models) do not have this form. In these cases, the use of 
the standard load flow equations'is not appropriate (see [13] 
and [14]). However, our approach can be extended without 
difficulty if the right hand side of the dynamic equations 
is substituted for the load flow equations. The paper also 
recognizes that some features of load modeling are crucial 
in computing voltage collapse points (see for example [15]). 
Attention is restricted to loads whose incremental behav- 
ior is that of classic constant PQ models. Once again, the 
approach extends easily to encompass changes in the load 
models. Load models appropriate to  voltage collapse com- 
putations remain controversial. 

For power system dynamic models, the parameter X t y p  
i c d y  stands for load increase throughout the network. One 
can solve equations (2) or (3) to  determine the maximum 
loading factor (A,) and the point of voltage collapse (20). 

Equations (2) are used by Seydel in [l] to  determine saddle- 
node bifurcations of general dynamic systems, and have 
been applied to  voltage stability analysis of ac systems in 
[2, 3,5].  A variation of equations (3) was used in [4] to deter- 
mine voltage collapse points of purely reactive ac systems; 
here (as in [16]) the nonzero condition for the left eigenvec- 
tor, 11 w 11 # 0, is replaced by the saddle-node bifurcation 
condition (4) depicted below. In all these cases the Jacobian 
can be shown to be nonsingular a t  the bifurcation point [7]. 
This makes these methods numerically appealing. 

(4) 

These PoC or direct methods have the advantage of pro- 
ducing right and left eigenvector information. The right 
eigenvector can be used to detect variables (areas) in the 
network prone to  voltage collapse [12], whereas the left 
eigenvector can be used to compute an optimal control strat- 
egy to  avoid saddle-node bifurcations [17]. The use of right 
eigenvector information to improve the maximum loadabil- 
ity margin for a 173 bus ac/dc system is illustrated later. 

When these methods are applied to  real sized ac/dc sys- 
tems, there are several factors that  have to  be taken into 
account in order to  obtain consistent and reliable results. 
Good initial guesses for the system variables, particularly 
the eigenvectors, are essential, otherwise a Newton-Raphson 
approach for obtaining the solution to  the PoC equations ei- 
ther yields undesirable results or does not converge. This 
becomes important for large systems with an arbitrary num- 
ber of ac/dc state variable limits. 

AC limits considered in this paper are voltage regulating 
transformer and phase shifter tap limits, and voltage and re- 
active power limits a t  generator buses. The HVDC system 
introduces additional limits: commutation transformer tap 
limits, converter angle limits, and current and power limits. 
Enforcing ac system limits does not present major difficul- 
ties if d system variables, including reactive power at  PV 
generator buses, are explicitly represented in the power flow 
equations. However, when a variable reaches an operational 
limit in the HVDC link, the system changes control mode, 
which can be modeled by a change in the state variables 
used to simulate the dc steady state behavior. A scheme 

Fig. 1: Control modes of HVDC link for power flow solu- 
t ion, when ac bus voltage at the rectifier side changes. Mar- 
gin switching at the inverter side is  assumed. 

Fig. 2: Control modes of HVDC link for power p o w  solu- 
t ion, when ac bus voltage at the inverter side changes. Mar- 
gin switching at the inverter side is assumed. 

has to be devised to  accurately represent the dynamic con- 
trol logic at both converter stations. Figures 1 and 2 depict 
the transition logic used to  simulate the switching between 
different control modes for the rectifier and inverter when 
the ac bus voltage at  either side of the dc line changes. The 
boxes represent the four dc active control variables. 

I t  is also possible to  control, for example, Q at the in- 
verter instead of y, or to  control P at  the rectifier instead 
of I d .  In both cases, the control is performed by means 
of an outer loop. The control of Q, in particular, has the 
advantage of helping regulate the ac voltage in the vicin- 
ity of the inverter. However, as the system approaches an 
extreme point it is more than likely that both the inverter 
tap position ai and the extinction angle yi will be pushed 
to  their limits to provide the maximum amount of reactive 
support possible. This results in switching out of constant 
Q mode and into constant y mode, as shown in figure 2. 
Thus, whether reactive power control is represented or not, 
the collapse point limits found are likely to  be identical. For 
power control, substitute active power for dc current in both 
figures. The notation in these figures is as follows: z stands 
for rectifier and i for inverter; a is the firing angle and y is 
the extinction angle; I d  is the dc link current and v d  is the 
corresponding dc voltage; N represents a nominal value, M 
is a maximum value, and m is a minimum value. The reader 
is referred to [18, 191 for more details. 

The state variables z are initialized to the values obtained 
from a base case power flow solution. Initial guesses for 
the eigenvectors v and w are obtained from 4 or 5 itera- 
tions of the inverse power method [20] applied to the initial 
power flow Jacobian. The parameter X is initially set to 
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zero. These initial guesses are unreliable when limits are 
reached. To improve the convergence characteristics of the 
method, new values for the eigenvectors are calculated ev- 
ery time the ac/dc system reaches a limit. This is done by 
applying a few iterations of the inverse power method to  the 
Jacobian of the new set of ac/dc equations evaluated at the 
switching point. 

For systems far from the bifurcation point, the initial 
guesses described above are not sufficient t o  obtain consis- 
tent results. By initially stressing the system beyond the 
base case one can resolve this difficulty. This initial load 
can be calculated using the tangent vector to the system 
branch [l, 101 at  the base case (see figure 3)’ which is a 
technique used in continuation methods to find system volt- 
age profiles [ 5 ,  8, 91. This tangent vector, dz/dA, can be 
found by a factorization and a repeat solution of the base 
case power flow Jacobian, D,f(zl,O) = $I1,  assuming a 

linear loading pattern. Thus, 

d f  

- dz  = -D;lf(z1,0) af 
dX ( 5 )  

The amount of added load comes from the normalization of 
the tangent vector, i.e., 

k 

dz  
dX 

AA = 
II dz/dX 111 

AZ = AX- 

Equation (7) is used to  calculate an initial guess (z1 + Az) 
for solving the power flow problem at  the new load setting. 
Tests demonstrate that  an accurate solution to  this new 
power flow is not required to  obtain a set of good initial 
values for the PoC variables. 

The scaling constant k in equations ( 6 )  denotes relative 
system loading. When k = 0, the system is a t  base case 
conditions. As mentioned above, i t  is usually better t o  start  
the solution for some k > 0. The  initial choice of k affects 
the performance of the method. This choice does not af- 
fect the final result. An a-priori optimal choice for initial 
I ;  for all cases simply does not exist. However, experiments 
with a variety of practical systems suggests that  the de- 
gree of loadability of a system beyond a “normal” base case 
increases somewhat less than linearly with the number of 
generators in the system. That  is, the more generators a 
system has available for dispatch, the greater the loadabil- 
ity. The following entirely empiricalinitial choice for t gave 
good results in most of our experiments and permitted reli- 
able “hands-off” solutions: 

where n, is the number of generators. If some of the gener- 
ators in the system are a t  their limit in the base case, this 
number must be reduced. Several variants of this idea were 
tested. 

Experience with the PoC method has demonstrated that 
the left eigenvector equations yield better results than their 
right eigenvector counterpart. Using an infiqite norm con- 
dition as the third PoC equation in ( 3 ) ,  i.e., 11 w lloo = 
max{w,} = 1, proves to  be a more reliable way for finding 
the voltage collapse point. 

Fig. 3: Continuation method geometry in state space and 
parameter space. 

CONTINUATION METHODS 

Continuation methods present another way of determin- 
ing proximity to  saddle-node bifurcations in dynamic sys- 
tems. These methods are thoroughly described in [I] for 
general systems, and were applied to  the analysis of voltage 
collapse in ac only systems in [ 5 ,  8, 91. References [ 5 ,  91 
show a direct application of the parameterized continuation 
methods to the ac power flow equations. In [8], although 
the authors do not use the parameterization approach, a 
perpendicular intersection is utilized to  improve the conver- 
gence characteristics of these methods. The  software pre- 
sented in this paper uses both techniques, i.e., parameter- 
ization and perpendicular intersection, to trace the branch 
(voltage profiles) of realistic ac/dc networks. 

Continuation methods consist of a three step approach 
to tracing the equilibrium points as one parameter in the 
system changes, i.e., find the solutions to  the power flow 
equations f(z,X) = 0 for a given set of parameter values. 
Normally the loading factor X is the varying parameter; how- 
ever, as the system gets closer t o  bifurcation the classical 
power flow Jacobian becomes ill-conditioned. A parameter- 
ization (e.g., switching from X to, for example, a bus voltage 
zi E z) makes the power flow Jacobian nonsingular at  the 
voltage collapse point. 

Figure 3 shows graphically how these methods work. The 
manifold, depicted as a boldface curve, represents the sys- 
tem equilibria as the system parameter changes. Assuming 
that the system is initially a t  the state (z l ,  X I ) ,  one can pre- 
dict the new equilibria (22, XZ) by using AX and the scaled 
tangent vector AZI defined in equations (6) and (7), respec- 
tively, since for a small step z2 z z1 +Az1 and XZ % XI +AX. 
To obtain the actual values of z2 and Xz,  one can use the 
perpendicular hyperplane to the tangent vector to find the 
desired point in the branch. Mathematically this can be 
summarized in the following three steps: 

1. Predictor: Find the step A i  and Ap in stat,e space and 
parameter space by solving equation (8). 

Hence, one can arbitrarily chose the length of the step 
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to  take, i.e.,  flow I-aAbBsCFOhHiljJkKlLMnNpPgQrRltTvVwW] inputdle  outputdlc 
Turns off tap and angle limits in regulating trmsformers. 

The parameter p is initially set to A, and the state vari- 
ables 2 are equivalent to z. As the process approaches 
the bifurcation, p is likely to change to one of the ac bus 
voltages (see step 3), with the loading factor X becom- 
ing part of 2. Although the constant k is user defined, 
k = 1 yields good results. 

Corrector: Find the intersection between the perpen- 
dicular plane to  the tangent vector and the branch, i.e., 
solve equations 

f ( i , p )  = 0 (9) 
A p  ( p  - p i  - A p )  + A i T ( i  - ii - A i )  = 0 

where p1 and i l  come from the previous iteration. By 
initially setting i to  il + A i  and p to p l  + A p ,  solving 
this set of equations usually takes one or two iterations. 
If the process fails to  converge, the steps A i  and A p  are 
cut in half until convergence is attained. Enforcing ac 
and dc limits is done with ease, since the initial guesses 
are good estimates of the actual solution. If the initial 
values violate ac/dc limits, the steps are cut so that 
all limits are met, and then the continuation equations 
(9) are solved. When lApl is cut to less than certain 
tolerance (typically the corresponding equations 
are changed according to the variable limits that  have 
been reached. 

Parameterization: Check the relative change in all the 
system variables, and trade p with the variable that 
presents the largest change. In other words, 

Experience with the method has demonstrated that as 
the process approaches the bifurcation, p changes from 
X to the system bus voltage that is varying the most, 
and after a few iterations of the method it returns back 
to  A. However, in all the cases tested, one can ob- 
tain good results even without switching parameters. 
Using this automated approach for the choice of the 
parameter p ,  resulted in no difficulties even in highly 
compensated systems. 

By changing the parameter p from X to a state variable 
t, E z, one guarantees that the Jacobian of equations (8) 
is nonsingular a t  the bifurcation point [I]. At the bifurca- 
tion point the tangent vector dz/dX is a scaled version of 
the right eigenvector v. It can be shown that the Jacobian 
of equations (9) is also nonsingular at the voltage collapse 
point, even for p = X (singular power flow Jacobian). Notice 
that approximate right eigenvector information can be ob- 
tained from this method when close to  the point of voltage 
collapse. 

The method naturally goes around the collapse point, al- 
lowing the user to  trace the “unstable” side of the branch. 

option.: -a 
-A 
-Cfile 

-ffile 

-Hfile 

I 
- k i d  

-Kfile 

-Jfile 

-Lval 

-n 
-N 
-P 
-P 
-q 
-9 

1 

Turns off inierchang; area control. 
Point of Col1ap.a studies, i.e., find the maximum loading factor 
lambda for a dven generation and load direction. The base case 
loading can be initialised Udng the -L option; ncverthele.., 
the prosram cdculatcs an initid loading of the system before 
the PoC method i. applied. The left eigenvector is written 
in ’file’ (optiond). Must be used with -K option. 
Output EPRI binrry informrtion to file (Interface to 
SSSP and ETMSP program). 
Increase. the lording factor lambda using a prrameterised 
homotopy continortion method for findin6 voltage profiles. 
The output (optional ‘file’) i s  a list of 6 random AC voltages 
plus 3 additional variable, for each DC bus. Must be used with 
-K option. 
Input data in IEEE common fornut. 
Factor ‘val’ used in the homotopy continuation method for 
finding the increment. in the loading factor lambdr (def. 1).  
Must be used with the -H option. 
Read generation rad load distribution factors from ’file’. 
The data i. d1 p.u. ard mnut be scparrtcd by spaces, i.e., 
BusNumbcr BusName DPg DP1 DQl. If the  input variables are 
unknown five them a value of sero. The generation factors 
are normrlised for each area, i.e.. IlPgll=l in each area. 
Buses not in the list are aasumed t o  have sero distribution 
factors. If BusName ha. spaces, wrap it in double or .in& 
quote.. 
Write the Jacobian of the solved case in I J VALUE format in 
’fi1e.j.c’. The equation mismatches and the system variables 
ale d s o  written in ’file.-.’ and ‘file.var’, respectively. 
If no ’file’ is given the program writes to standard output. 
Loading factor ‘val’ (dei. 0). Simulates load changes in 
conjunction with the load distribution factor. (-K option). 
Turns off all AC system limits. 
Turns off all A C  mystem controls. 
Turn. off P m d  Q limit. in rcxulating transformers. - .  
Turns off P and Q control by re6nlating transformers. 
Turns off Q limit. in P V  buses. 
Turr. off remote voltage generator control. The generators 
will just control their terminal voltage to its initial value. 
Turui off V limits in regulating transformers and PV buses 

-R Turn. off V control by rcpIlatin(l transformer.. 
-Wfile Write solved eane in ’file’ using IEEE common format. 

Fig. 4: Part of the P o C  power flow help feature. 

This turning point must be detected in order to  change the 
sign of A p  in equations ( 8 ) .  For p = A, the bifurcation point 
can be detected by a sign change in the determinant of the 
power flow Jacobian, which is a by-product of its factoriza- 
tion. On the other hand, for p = p i ,  the turning point is 
detected by a sign change in A X .  

THE POINT OF COLLAPSE POWER FLOW 

This program is a portable C code implementation of the 
methods described above. It has been successfully tested 
in several Unix workstations, namely, SUN, H P  and DELL, 
and is also running in PC machines under DOS 3.3 (a Win- 
dows 3.0 version is currently under development). The pro- 
gram is capable of handling any size system, limited only 
by the available memory and swap space. It reads WSCC 
[21], EPRI [22], and Common Format [23] input files, and 
produces a variety of ASCII and binary files, depending on 
the user defined options. It was designed to  be a produc- 
tion type software for research and commercial applications, 
hence, speed and versatility were the main concerns during 
the development of this program. 

The program solves the ac/dc power flow using a Newton- 
Raphson iterative process with automatic stepsize adjust- 
ment. The factorization routines were taken from the Sparse 
Matrix Manipulation System (SMMS) [24]. The PoC and 
continuation methods were implemented with all the prac- 
tical details explained in the two previous sections. A so- 
lution to the voltage collapse problem can be obtained for 
any ac/dc systems with a variety of operational limits. 

To test the validity and performance of the program, 
results were compared against three commercial software 
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packages: EPRI’s power flow versions 3 and 5 [21, 221, and 
Electrocon’s power flow version 3.10 [25]. The  results and 
performance yielded by this program are shown and dis- 
cussed in the next section. 

Figure 4 shows some of the user defined options of the 
PoC power flow. Notice that  the load distribution factors 
(DP1, DQ1) and the generator participation factors (DPg) 
defined using the -K option, give a direction in demand space 
and generation space to  realistically solve the voltage col- 
lapse problem. However, these directions can also be used 
to solve the base case power flow problem with a distributed 
slack-bus and different loading levels. 

RES U LT S 

The  program was tested in a variety of ac/dc systems, 
ranging from 14 t o  2158 buses. Figure 5 depicts a 14 bus 
system designed to  replicate some of the characteristics of 
electric networks in the western part of the United States. 
The 173 bus network is a reduced version of a real 2158 bus 
system developed jointly with CEPEL. A 133 bus system, 
which is a modification of the 173 bus system, was also used. 

Figures 6 and 7 show two different set of voltage profiles 
obtained by applying the continuation method to the 173 
and 2158 ac/dc bus systems, respectively. The  first profile 
shows the sharp voltage changes due to the reactive power 
limits a t  the generation buses. This is an issue reported in 
[4], and is produced by the loss of reactive support through- 
out the network when a generator or group of generators 
reach a Q limit, hence, sharply reducing the maximum load- 
ability margin XO of the system. For example, Xo for the 
173 bus system without Q-limits is 6.0725% above the ini- 
tial system load, whereas when these limits are included 

Figure 7 shows another interesting phenomenon where 
the system becomes immediately unstable when a generator 
reaches a reactive limit. This was also observed in the 133 
bus system. This seems to occur rather close to  the bifurca- 
tion. (For a detailed explanation of this kind of instability 
the interested reader is referred to the work by Dobson et  
al in [26].) 

The “nose” of the curves in Figure 7 requires some expla- 
nation. When obtaining these curves it is assumed that P V  
(generation) buses are operated at  constant V until the limit 
for Q is reached, and only then is the value of Q fixed at  its 
limit. For these curves, the system does not, strictly speak- 
ing, reach a bifurcation based on this operating regime. This 
is because the point of maximum loadability occurs a t  the 
point where a Q limit is reached. If the Point of Collapse 
method is applied to  the equations considering this limit, 
no solution possible and the method fails. However, if one 
were to permit Q to  reach its limit, and then ask the ques- 
tion of where is the nearest bifurcation point with Q fixed 
at this l imit, then one would discover that this bifurcation 
point occurs a t  a slightly higher voltage, and that this point 
allows a slightly larger power transfer capability than the 
solution based on holding the voltage constant until the Q 
limit is reached. This is the meaning of the incomplete up- 
per “third solution” near the nose. The point is not entirely 
fictitious: a different operating policy for the system, based 
on extra Q injection at  the bus, rather than constant V, 
would permit this point t o  be reached. However, in every 

Xo = 2.0275%. 

case tested the difference in the loadability level attainable 
with either method was virtually negligible. 

I t  was confirmed that constant active power control in 
the HVDC link, as opposed to  constant dc current control, 
reduces the loadability margin of the ac/dc system [27, 281. 
For the 14 bus system, changing the HVDC control mode 
from constant power to constant current in both dc links, 
increases XO from 11.269% t o  11.568%. 

Another important feature of the PoC method is that 
i t  yields the right or left eigenvectors corresponding to  the 
zero eigenvalue at the bifurcation point. For the 173 bus sys- 
tem, the maximum element values of the saddle-node right 
eigenvector shows that a lack of reactive power support in 
the area conformed by buses 74, 75 and 76 is the source of 
the voltage stability problem. Hence, increasing the shunt 
reactive support from the original 550 MVAR to 850 MVAR 
in bus 75, moves the collapse point from XO = 2.0275% to 

(For examples on possible applications of 
the left eigenvector see [17].) 

Table 1 shows the maximum loading factors XO, and the 
time performance for different ac/dc and ac systems ob- 
tained in a SUN-SPARC IPC Unix workstation. The times 
shown include all program operations, including input and 
output, which in a dedicated Unix workstation correspond 
to real times. The  ac only systems in this table were sim- 
ulated by treating the HVDC links as constant active and 
reactive power injections. For the 2158 bus system, several 
types of regulating transformers, area interchange power 
control, bus voltage and reactive limits are included. Limits 
significantly increase the computation time. 

The convergence problems observed in the last two en- 
tries of table 1 when using the continuation method are due 
to  the sharp turning point and the step cutting technique 
used. The  predictor, when applied to  a “sharp” nose curve 
close to  the bifurcation, yields a large step. Thie creates 
convergence problems for the corrector part of the method 
(indicated by $ in the table), since there is no crossing with 
the bifurcation branch of the equilibria. Step cutting would 
produce the right answer; however, if the step is cut below 
the convergence tolerance of the Newton solver, the program 
will take this slightly incorrect value as the solution. 

The PoC method consistently performed faster, by about 
a factor of 2, than the continuation method. This method 
also generates right and left eigenvector information that 
can be used to  increase loadability margins. However, con- 
tinuation methods have the advantage of producing volt- 
age profiles, and as a by-product yield unstable equilibrium 
points that  can be useful for system stability analysis. An- 
other advantage of the continuation methods is that  they are 
able to detect immediate instabilities due to reactive power 
limits, although in practice these points and the bifurcations 
are very close. Finally, the step cutting technique used in 
the continuation methods to improve convergence can lead 
to  slightly incorrect results in cases of sharp turning points. 

= 2.3117%. 

CONCLUSIONS 

A detailed description of the implementation of the PoC 
and continuation methods is presented, including the prac- 
tical considerations that allow to  obtain consistent results in 
a diversity of ac and ac/dc systems. A brief description of 
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Fig. 5: 14 bus ac/dc system. 
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Fig. 6: Voltage Profiles for 173 bus ac/dc system. Sharp 
corners correspond to generator Q limits. 
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Fig. 7: Voltage Profiles for 2158 bus ac/dc system. Corner 
points correspond to Q-limit instabilities. The P o C  is only 
slightly beyond. 

System 

14 AC buses 
2 DC bipoles 
21 AC elem. 
5 Gen. 
2 Areas 
173 AC buses 
255 AC elem. 
29 Gen. 
173 AC buses 
2 DC bipoles 
255 AC elem. 
29 Gen. 
133 AC buses 
213 AC elem. 
41 Gen. 
133 AC buses 
2 DC bipoles 
213 AC elem. 
41 Gen. 
2158 AC buses 
2 DC bipoles 
3402 AC elem. 
384 Gen. 
62 V reg. trf. 
8 PQ reg. trf. 
23 Areas 
2158 AC buses 
2 DC bipoles 
3402 AC elem. 
384 Gen. 
2 158 AC buses 
3402 AC elem. 
384 Gen. 

tQ lim; 

5.5m 

nstability $Convergence p 

TiiiG- - - 
3.6s 

- 
25.4s 

- 
23.3s 

- 
29.9s 

34.9s 

- 
l h  

31.2m 

38.4m 

- 
29.5m 

,lems 

Table 1: Continuation and PoC method results for SUN 
SPARC-IPC Unix workstation. 

the computational characteristics and requirements of these 
methods is also shown. Finally, some of the test cases and 
results are discused, in particular those related to a real 
ac/dc 2158 bus network with a variety of operational limits 
and controls. 

The PoC method yields voltage sensitivity information 
and time performances that  justify its use as a production 
tool. The  performance of this method can be significantly 
enhanced by using specialized sparse matrix techniques to 
reduce computation times, like block factorization as sug- 
gested in [4]. On the other hand, continuation methods, al- 
though slower, produce additional information that can be 
used in the analysis of other stability issues. For these two 
reasons the authors believe that  these two methods comple- 
ment each other, particularly for systems where one of the 
methods might fail in producing the desired results. 
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Discussion 

M. K. Pal (Public Service Electric and Gas Company, Newark, 
N.J.): This paper does not seem to differentiate between the 
loadability limit obtained from the solution of the steady-state 
network equations and the actual voltage stability limit (or 
collapse point). Contrary to what is claimed in the paper, 
dynamic saddle-node bifurcation, which is also equated with 
voltage collapse points, has never been rigorously shown to 
occur when the corresponding power flow Jacobian becomes 
singular. Actually, for the constant P, Q load assumed by the 
authors in their analysis, the dynamic saddle-node bifurcation 
will occur well before the point at which the power flow 
Jacobian becomes singular. This is seen from the dynamic 
system model of equation ( I )  of the paper. Since the dynamic 
equations include the generator swing dynamics, even with a 
simple generator model, the system Jacobian (obtained from 
equation I )  is not the same as the power flow Jacobian. The 
bifurcation computed from load flow equations cannot, therefore, 
be related to bifurcation of the dynamic equation ( I ) .  This 
discussor recognizes that such claims have been made in the 
literature. However, these have never been justified on a rigorous 
theoretical basis. 

The loadability limit depends on the load level as well as the 
distribution of load throughout the system, which is rarely 
known precisely. As such, the determination of the exact limit 
based on an assumed load distribution is not very meaningful. 
Conventional power flow can get fairly close to the limit very 
easily. 

We also take issue with the authors’ method of handling the 
reactive power limit. While it is true that the loadability margin 
is greatly reduced by the generators reaching reactive limits, the 
reactive limit should not be modeled by simply changing a 

paper addresses the problem correctly, as perhaps implied by the 
authors in the paper. 

The statement ” ... with Q fixed at this limit .... bifurcation 
point occurs at a slightly higher voltage ...” is a little confusing. 
Further clarification would be appreciated. Does this mean that 

~ 

I I generator bus from a PV bus to a PQ bus. Reference [26] of the 

I 
I 

I at nominal V, the Q limit will never be reached? 

C. A. CaiiizareP, F. L. Alvarado** (*Escuela PolitCcnica Nacional- 
Quito, **University of Wisconsin-Madison): The authors wish to thank 
Mr. M. K. Pal for his interest on the paper. He raises several issues 
that must be addressed for completeness of the paper. Most of Mr. 
Pal’s comments have been already discussed in the closure of [All; 
however, we will try to address and answer all of Mr. Pal’s concerns 
and questions. 

Although the intention of the paper is just to compare two different 
techniques of efficiently detecting singularity of static equations’ Jaco- 
bians, we would like to comment on Mr. Pal’s observation regarding 
whether the ordinary power flow can be used to detect actual saddle- 
node bifurcations of dynamic equations (1). We disagree with Mr. 
Pal’s assertion that singularity of power flow Jacobians have not been 
formally proven to correspond to true dynamic saddle-node bifurca- 
tions. Reference [A31 shows that for a simple dynamic power system 
model, where generator swing dynamics and ordinary load dynamics 
are considered, the actual power flow equations can be used to detect 
the real bifurcation point. This can be shown using the simple example 
that Mr. Pal mentions, i.e., a generator-line-PQ load system, as de- 
picted in the closure to [All, where it can be demonstrated that the 

dynamic saddle-node bifurcation, due to generator swing dynamics, 
corresponds to the maximum power transfer point (maximum loadabil- 
ity limit); this point is also the point of voltage collapse. Saddle-node 
bifurcation conditions for a dynamic ac/dc system model also have 
equivalent conditions in the corresponding ordinary power flow equa- 
tions for constant PQ load models. Theorems to this effect have 
appeared in [MI. Some of these ideas have been discussed in [All. 
The form of the static load model used in important, since it can be 
shown that constant current and constant impedance load models 
yield bifurcation points that do not correspond to the maximum power 
transfer limit. We completely “agree” with Mr. Pal that for more 
complicated dynamic models the complete set of static system equa- 
tions must be used to detect these kinds of bifurcations. This has also 
been pointed out by several other authors (e.g., [141). 

As to whether the saddle-node bifurcation point for certain loading 
pattern is not of real interest, to paraphrase Mr. Pal, we think that this 
is an oversimplification. The PoC and continuation methods not only 
yield the limit to collapse, which gives the user an idea on how loaded 
the system is, but it also yields the areas prone to voltage stability 
problems (right eigenvector v) and how to most effectively prevent 
these problems (left eigenvector w). Furthermore, the left eigenvector 
can be used to iteratively detect the closest bifurcation point for any 
loading pattern [16]. We also agree that ordinary power flow programs 
can be used to get solutions close to these bifurcation points; however, 
using ordinary power flow programs instead of the proposed methods 
is equivalent to using trail-and-error methods to find solutions of 
nonlinear systems of equations instead of more efficient methods. The 
methods discussed in the paper are by far better than simple power 
flow runs, since they have better numerical properties at the singular 
point, yield more information, and find the saddle-node bifurcation 
point automatically without the need for manual user intervention. 

Regarding the modeling of the generator voltage control loop by 
simply assuming the generator terminal voltage constant within gener- 
ator Q-limits, we agree that this is not the exact way to deal with the 
problem from the dynamic view point. The model proposed in [26] is 
more adequate. Nevertheless, the VQ model is a first approximation 
to the real generator voltage control system, and it is a widely 
accepted way of handling the voltage regulator phenomena when close 
to equilibria [A41, which is what bifurcation analysis is all about. 

Finally, the statement made in the paper about the voltage value at 
the bifurcation point when Q-limits are considered is just an empirical 
observation about the actual values obtained for different cases in 
several systems. This comment was made just to support the notion 
that Q-limits reduce loadability margins when constant PQ load mod- 
els are used. 
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