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SERIES EDITOR’S INTRODUCTION

Maps are spatial representations of information, and when that information can be characterized by
location on a map it becomes a spatial pattern. Spatial patterns, like other forms of information, can be
analyzed statistically. This book is an introduction to the statistical analysis of such spatial or point patterns.

Many phenomena can be represented by points on a map: towns, stores and centers for shopping, industrial
locations, parks, archaeological sites, plant and animal species, the home site of a person with a possible
environmentally related disease, and so on.

The authors introduce the reader to the general analysis of the location of points on maps. Map patterns are
assumed as having been created by one or more spatial processes in the human or physical world. Often
the causal forces are known, but more frequently the researcher is seeking to identify the causal forces. The
analysis of the spatial pattern of the phenomena under study can be a precursor for revealing the underlying
causal relationships. Guidelines are provided here for the exploration of spatial patterns for situations where
the causal processes can be either known or unknown.

The authors detail in a step-by-step manner the methods required for the analysis of spatial patterns. These
methods generally evaluate the dispersion and the arrangement of characteristics of the phenomena under
study. Dispersion measurements focus upon the density of the points, whereas arrangement measurements
focus upon the relationship of the points to one another.

Professors Barry Boots and Arthur Getis are the leading authorities in point pattern analysis, and together
translate the complex research on spatial point patterns for the reader who is new to the field. They assume
that the reader does not possess mathematical skills more than that normally expected of first-year college
undergraduates. By pitching the discussion at an introductory level, the reader is freed from unnecessary
mathematical derivations and statistical arguments. The emphasis is upon applications, so each method for
the analysis of point patterns is accompanied by a clear informative example explained in a step-by-step
manner. Students and researchers in such diverse fields as city planning, forestry, geology, archaeology,
epidemiology and environmental health, and human and physical geography will benefit from this introduction.

-Grant Ian Thrall
Series Editor
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1 Introduction

A common concern that runs through the diverse branches of geography is the examination of the spatial
occurrence of a particular phenomenon. For example, we may be interested in the location of towns in a
state, industrial plants in a city, sinkholes in a karstic region, or polluters along a body of water. In each case
it is possible to display the data in the form of a map. Through cartography, objects in the three-dimensional
real world are displayed as symbols in a two-dimensional plane. Usually these symbols are of three basic
geometric forms: points, lines, and areas.

One of the most common types of map produced using such symbols is one in which the occurrences of
the phenomenon studied are represented as points. We shall call these point pattern maps. Although the
real-world objects themselves are not points, such a representation is possible because the physical sizes of
the objects are very small relative to both the distances between them and the extent of the area in which
they occur.

Geographers examine point pattern maps for a variety of reasons. A major reason is their belief that such
maps represent one source of evidence that may be helpful in learning more about the phenomenon represented
and the processes responsible for generating it. Sometimes our ideas concerning a phenomenon are sufficiently
developed that we may be able to build an explanatory model of it. Quite often hypotheses concerning the
locational behavior of the phenomenon can be derived from such models. For instance, central place theory
suggests that settlements should be regularly distributed over a region. Support for such a hypothesis, and
thus the model from which it is derived, can be obtained from analysis of point pattern maps showing the
distribution of central places.

Similarly, economic considerations contained within theories of urban rent suggest that individual occurrences
of some activities will repel each other, thus dispersing the activity, whereas individual occurrences of some
other activities may attract each other, thus producing spatial aggregations. Some types of retailing such as
shopping malls are examples of the former activity; some types of industrial and office activities are examples
of the latter. Again, such locational expectations can be tested by examination of point pattern maps.

Another example comes from the study of the diffusion of information. Various theories imply that new
information spreads according to principles relating to the proximity of potential communicants and their
susceptibility to receiving new information. These notions can be tested by analyzing point pattern maps
showing different periods in time and different environmental conditions.

Even when our knowledge of a phenomenon is very rudimentary, information gained from the analysis of
point pattern maps may enable us to acquire some initial insights into the phenomenon. For example, the
discovery that drumlins are often spaced differently on the margins of drumlin fields than they are at the
center of such fields may lead us to investigate the possibility of different forces operating at those locations
or the possibility of the same forces operating but with different relative intensities. Similarly, the knowledge
that incidences of cases of a little understood disease are widely dispersed over a region might lead us to
consider that it was not spread by contagion.

In this book it is our purpose to introduce a sample of the procedures that have been used in geography to
analyze point patterns. The presentation will stress those techniques and their derivatives that have been
most extensively used in geography. Our objectives are to enable readers to evaluate the appropriateness of
existing applications of point pattern analysis and to provide sufficient background for the readers to pursue
examples of their own. In terms of the techniques presented, our presentation is selective and emphasizes
typical problems that the reader is most likely to encounter in practice. Because of this emphasis, when
formulae are used neither their derivations nor their proofs are presented. Those readers who are interested in
such issues or who wish to pursue more exhaustive and sophisticated treatments of point pattern techniques
are referred to the recent reviews by Cliff and Ord (1981: chap. 4), Cormack (1979), Diggle (1979a, 1983),
Getis and Boots (1978), Ripley (1981) and Upton and Fingleton (1985). The literature in the field of spatial
analysis is vast. For example, Upton and Fingleton cite about 500 books and articles.

In the remainder of this chapter we first review the different situations in which point pattern analysis has
been employed and then examine the fundamental characteristics of point patterns and the processes that
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generate them. This material represents the stimulus for the development of this book. Our goal is briefly to
present in as simplified form as is reasonable the main ideas and techniques of point pattern analysis.

1.1 Overview of the Development and Application of Techniques of Point Pat-
tern Analysis

The origins of the techniques currently used in the statistical analysis of point patterns arose over 50 years
ago in plant ecology. These early studies, which are now primarily of historical interest, are reviewed by
Greig-Smith (1964: chap. 3). With the exception of a study in geography involving the location of villages in
two areas of the Tonami Plain of Japan (Matui, 1932), most of the work on’ statistical point pattern analysis
over the next 25 years continued to be in ecology, although during this time such work was extended to cover
animals as well as plants. Plant and animal ecologists have used such techniques to explore both the spatial
distribution of individual species and the interrelationships of two or more species. Their overall aim was
to identify factors of the individuals and their environment that influence such patterns. In general, these
techniques are most appropriate for subjects that have a fixed location, such as individual members of a plant
or tree species and conspicuous and relatively immobile animals or features associated with them such as
nests, food caches, or display sites. Earlier studies involving subjects as diverse as grasshoppers, frogs, snails,
and beetles are reviewed in Southwood (1966: 39-40; 1978: 47-48). Examples of more recent studies include
those of granary trees of acorn woodpeckers (Roberts 1979; Burgess et al. 1982; Mumme et al. 1983; Burgess
1983; Brewer and McCann 1985), pits made by ant-lion larvae in both experimental and field situations
(McClure 1976; Simberloff et al. 1978; Simberloff 1979), caddisfly populations (Lamberti and Resh 1983) ant
nests (Harrison and Gentry 1981; Levings and Franks 1982), and feeding cells of cicadas in soil (White et al.
1979).

In the early 1960s, as geographers entered a phase in the development of the discipline now referred to as the
“quantitative revolution,” the techniques developed by ecologists were introduced into geography to refine
and substantiate previous qualitative descriptions, particularly of settlement patterns. Initially, most studies
focused on examining the extent to which characteristics of settlement location predicted by central place
theory (King 1985) could be identified in real-world situations (Dacey 1960, 1962; King 1961, 1962; Birch
1967). Soon after, geographers recognized the potential of such techniques in testing hypotheses concerning
the processes responsible for the patterns they described. Under the leadership of Michael Dacey they began
to develop and extend models of their own that produced alternative patterns to those proposed by central
place theory. In particular, models leading to clustered patterns of settlements were emphasized (Dacey 1963
through 1973b; Dacey and Tung 1962; Harvey 1966, 1968a, 1968b; Hudson 1969, 1971; Getis 1974).

Simultaneously, point pattern techniques were extended to analyses of phenomena other than settlement
patterns, in particular, retail establishments. Initially, they were used to identify patterns in the distribution
of urban retailers (Artie 1959; Clark 1969; Rogers 1965, 1969a, 1969b, 1974) and changes in these patterns
over time (Getis 1964; Lee 1974; Shaw 1978). The results of such analyses have also been used to rank retail
functions and examine temporal changes in the rankings (Artie 1965; Sherwood 1970; Sibley 1972). More
recent work has concentrated on exploring the relationship of spatial patterns of stores with other aspects
of the retailing environment such as the distribution of customers (Guy 1976) and city size characteristics
(Sibley 1975).

Geographers and others have also used point pattern analysis to examine the spatial characteristics of a
number of physical features of the landscape including drumlins (Smalley and Unwin 1968; Trenhaile 1971,
1975; Hill 1973; Gravenor 1974; King 1974; Muller 1974; Jauhiainen 1975; Rose and Letzer 1975), cirques
(Sugden 1969; Robinson et al. 1971; Unwin 1973), volcanic craters (Tinkler 1971), sinkholes in Day 1976),
tors (Bardsley 1978; Sneyd 1982), inselbergs.(Faniran 1974), river basin outlets (Morgan 1970), and junctions
in river channel networks (Dacey and Krumbein 1971; Oeppen and Ongley 1975).

It was primarily from geography that point pattern analysis was introduced to archaeology and anthropology.
Here such techniques have been used in three circumstances: to study artifact distributions within a site, to
study artifact distributions over an area, and to study the distribution of sites. Examples of each type of
application are reviewed in Hodder and Orton (1976). Interest in point pattern analysis in archaeology has
been such that recent contributions to theory have been made (for example, Pinder et al. 1979; McNutt 1981;
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Stark and Young 1981) as well as continuing empirical applications (for example, Adams and Jones 1981;
Carmack and Weeks 1981; Ward 1983; Weeks 1983).

There have also been less frequent applications of point pattern analysis in other disciplines such as astronomy,
where it has been used to study the distribution of galaxies (Neyman and Scott 1952, 1958; Neyman et al.
1956; Peebles 1974), and materials science, where it has been used to study the distribution of particles in
metals (Werlefors et al. 1979; Wray et al. 1983).

Finally, in the last few years, a number of statisticians have developed more complex and wide-ranging
techniques of point pattern analysis. Foremost among this group are Ripley (1981) and Diggle (1983).

1.2 Some Fundamental Properties of Point Pattern Maps

In general, a point pattern map contains two major types of components: the points representing the objects
being studied and the geographical area in which they are located. We shall refer to these components as
the point pattern and the study area, respectively. Before we discuss techniques for analyzing point pattern
maps it is necessary to become familiar with some basic properties of both point patterns and study areas.
Although some of these properties are quite obvious, they are important because they may influence the
selection of an appropriate analytical technique as well as particular decisions that relate to making individual
techniques operational.

One of the most obvious properties of a point pattern is its size. This is simply the number of points, N, in
the pattern. The study area may be represented by features of various dimensions. For example, if we are
examining the locations of stops along a transit line, clothing stores along a downtown street, or effluent
discharge points along a river, it would be appropriate to represent the study area as a line (one dimensional).
If we are concerned with the locations of settlements in a, past residences of recent movers in an urban area, or
sinkholes in karstic topography, the study area will be two-dimensional. Similarly, in some geomorphological
or meteorological instances, a three-dimensional study area might be more suitable. We shall refer to this
aspect as the dimension of the study area. In this book we limit our attention to study areas of one or two
dimensions. We use the symbol W to denote the length of a one-dimensional study area and the symbols A
and B to the size and perimeter length, respectively, of a two-dimensional study area.

Two-dimensional study areas may be bounded in a variety of ways. We shall refer to the figure enclosed by
the boundary as the shape of the study area. Thus, study areas of one dimension do not have this property.
For our purposes, the most important aspect of the shape is whether it is regular or irregular. Examples of
such boundaries are shown in Figure 1.1.

Figure 1.1 Regular and Irregular Study Area Boundaries
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Further, the study area may represent a real geographic unit, such as a state, a city, a trade area, a river, or
simply be imposed on reality by ourselves or others. Study areas of the former type will be said to have a
real boundary, whereas those of the latter type will be said to possess an arbitrary boundary. Usually-but not
always-real bounded study areas are irregular in shape. For convenience those with arbitrary boundaries are
more often regular.

Finally, we may study the location of the points in the pattern with respect to the study area or with respect
to each other. In the former case we are examining the dispersion of points, whereas in the latter case we
are studying the arrangement of the points. As we shall see, in many cases these two properties are highly
correlated. However, since arrangement refers to properties of the relative locations of points, its study can
be useful when the real boundary of the study area is unknown or difficult to define (for example, the limits
of a particular soil or vegetation type or the margins of a waterbody) or where we do not wish to impose an
arbitrary boundary.

1.3 Fundamental Types of Point Patterns and Fundamental Processes for Gen-
erating Point Patterns

We have suggested that the main reason we examine point pattern maps is to attempt to learn something
of the processes that generated the pattern. When analyzing point patterns, geographers have most often
made use of a scheme that involves establishing a theoretical pattern with respect to which other patterns
are identified. The theoretical pattern chosen is one that results from the operation of what is formally called
a homogeneous planar Poisson point process. In this process points are generated in a study area subject to
two conditions:

(1) each location in the study area has an equal chance of receiving a point (uniformity); and

(2) the selection of a location for a point in no way influences the selection of locations for any other points
(independence).

Alternatively, these conditions may be interpreted, respectively, as implying that the study area is completely
homogeneous in all regards and that there is no interaction between the points. Hence the pattern that
results from such a process can be considered one that would occur by chance in a completely undifferentiated
environment. We will call such a pattern complete spatial randomness (CSR) after Diggle (1983). An example
of CSR appears in Figure 1.2a. In view of the conditions involved in the generation of such a pattern, it is
unlikely that true CSR occurs in any real-world situation. However, the processes acting in the real world are
many and diverse and when no strongly dominant ones prevail, the net effect may be to produce a pattern
that has the appearance of CSR, that is, the end product of the processes is to produce a pattern that is
indistinguishable from CSR.

Figure 1.2 Fundamental Types of Patterns: (a) Complete Spatial Randomness (CSR), (b)
Clustered Pattern, and (c) Regular Pattern
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Our interest in CSR is primarily for its role as an idealized standard. The two conditions mentioned earlier
that are assumed to exist when CSR results provide a simple model that can be useful in many circumstances.
For instance, if we know little about the processes responsible for a particular pattern, we can begin by
testing the hypothesis that the pattern is CSR produced by a homogeneous planar Poisson point process.
This allows for the exploration of a set of data, often leading to the formulation of other geographically
relevant hypotheses. Whether or not the initial hypothesis relating to CSR is rejected, a description of the
pattern remains. The CSR model is mathematically described by the Poisson probability distribution given
in section 2.1.

Classes of patterns can be recognized using CSR as the benchmark. Clustered patterns are those in which the
points are significantly more grouped in the study area than they are in CSR (see the example in Figure
1.2b), whereas regular patterns (sometimes also called uniform or dispersed patterns) are those in which the
points are more spread out over the environment than they would be in CSR (see Figure 1.2c). Clustered
and regular patterns can arise as the result of changing either or both of the conditions of the homogeneous
planar Poisson point process.

A major way of changing the uniformity condition of this model is to turn the homogeneous study area into a
heterogeneous one. Environmental heterogeneity implies that some locations in the study area are less likely
to receive a point than other locations or might even be prohibited from receiving a point. We would expect
to find more points in the favored environmental parts of the study area than elsewhere, thereby producing a
clustered pattern.

One way of relaxing the independence assumption is to permit interaction among points: Points may either
attract or repulse one another. Attraction may result from processes such as agglomeration, association,
voluntary or involuntary segregation, and some types of diffusion and competition. In each instance the result
is a clustered pattern. Such situations, where different processes result in similar spatial patterns, are not
unusual in point pattern analysis. In such circumstances, if the only evidence we have is the pattern itself,
further analysis is necessary to determine the conditions responsible for the observed clustering.

Instead of points attracting each other, in some circumstances-such as diffusion or competition-points may
repel each other. Repulsion will likely produce regular patterns. The types of models that produce non-CSR
outcomes are considered by Haggett et al. (l977: chap. 13), Getis and Boots (1978), Ripley (1981), Cliff and
Ord (1981), Diggle (1983), and Upton and Fingleton (1985).

1.4 Procedures Involved in Point Pattern Analysis

In section 1.2 we suggested that we may analyze either the dispersion or arrangement characteristics of a
point pattern and that the analytical techniques would be presented in terms of which of these characteristics
is considered. Regardless of the techniques employed, the general procedures are essentially the same and
follow the traditional logical procedures used in hypothesis testing [see Boots and Getis (1977) for a formal
presentation of these procedures]. We begin by specifying a null hypothesis, H0. The null hypothesis in the
examples that follow is always the same: It is that the pattern under investigation is CSR resulting from a
homogeneous planar Poisson point process. The most simple and general alternative or “research” hypothesis,
H1, is that the pattern is not CSR. Even when one has a preconceived notion of the processes that generated
the pattern, it is often a useful starting point to test a null hypothesis relating to CSR. Diggle (1983:5)
suggests three reasons for this. First, if the null hypothesis of CSR is not rejected, further formal statistical
analysis is not warranted. Second, as indicated in section 1.3, a null hypothesis of CSR provides a dividing
hypothesis between clustered and regular patterns. Finally, even when we anticipate that a null hypothesis of
CSR will be rejected, the results of the test can be used as an aid to formulating new null hypotheses.

In such circumstances, the research hypothesis chosen may emphasize specific dependence among observations.
Such a hypothesis of dependence might arise from one of the many situations in which like objects are drawn
together or evened out. For example, the location of earthquakes in a region can be modeled as a series of
clusters, and the location of towns in a rural area can be represented by a dispersion model.

Alternatively, the research hypothesis may concern the heterogeneity of point locations. Such a hypothesis
might be used when environmental conditions such as soil types and water and food availability help or
hinder location of plant and animal life and human settlement in certain areas.

12



Once the hypotheses are formulated, statistics are computed using information collected from the map pattern
and these are evaluated in terms of the likelihood of their occurrence under the assumptions of the null
hypothesis. In all examples considered here we use a significance level of α = 0.05. This procedure leads to
either the acceptance or rejection of the null hypothesis. Acceptance of the null hypothesis means that the
point pattern under investigation is not significantly different from CSR. Rejection of the null hypothesis
indicates that the point pattern is significantly different from CSR. Even if the research hypothesis is not
specific in terms of the nature of the difference, we are usually able to suggest whether the pattern is a
clustered or a regular one. When the null hypothesis is rejected, it is common to formulate a new one that
may specify the operation of particular processes leading to the particular type of pattern indicated. Such
hypotheses, not discussed in this book, can then be tested in ways similar to those employed here to test the
null hypothesis of CSR.

In the next chapter we begin our discussion of particular techniques of point pattern analysis. First, we discuss
dispersion as it is commonly studied, by means of the use of quadrat units. In Chapter 3, the discussion of
dispersion continues, but here distance methods are introduced. In Chapter 4 we cover a variety of techniques
that are used to study patterns when arrangement is the focus. Finally, the summary in Chapter 5 contains
advice on choosing one approach rather than another.

The problems discussed in this monograph can be programmed for solution on computers. We decided not
to include programs here because they were written in several languages for different types of computer
installations. Readers interested in these programs are invited to contact either of the authors.

13



2 MEASURES OF DISPERSION: QUADRAT METHODS

As stated in section 1.2, techniques of point pattern analysis can be grouped into two classes; those that
examine the location of the points relative to the study area and those that examine the location of points
relative to each other. We call the former class measures of dispersion and the latter measures of arrangement.
The measures of dispersion may be divided further into two classes; quadrat methods and distance methods.
The former is the subject of this chapter, and distance methods are discussed in Chapter 3. Measures of
arrangement are examined in Chapter 4.

Quadrat is the name given to a sampling area of any consistent shape and size. Quadrats may be located in
a study area as isolated individuals or in blocks of contiguous individuals. Techniques involving the former
are described in section 2.1; those involving the latter are examined in section 2.2.

2.1 Scattered Quadrats

The procedure described in this section was originally developed by plant ecologists (Greig-Smith 1964)
who were concerned with examining point patterns where both N and A were large (often N > 1000) and
sometimes unknown.

As an example of this approach, consider Figure 2.1, which shows the location of settlements of populations
of 300 or greater in 1971 in the Canadian province of Saskatchewan between the border with the United
States and latitude 54 degrees north. Here the quadrats are circular. We will discuss below the selection
of the appropriate shape, size, and other characteristics of quadrats. In Figure 2.1, 35 quadrats have been
placed over the study area according to the CSR assumptions. By this we mean that the positions of the
centers of the quadrats are selected so that each location in the study area has an equal chance of receiving a
quadrat center and that the selection of a location for a quadrat center in no way influences the selection of a
location for other quadrat centers. Recall that these are the same conditions used to generate a CSR point
pattern (see section 1.3). In practice, the positions of the quadrat centers can be obtained by overlaying
an (X, Y ) coordinate grid on the point pattern and randomly selecting pairs of (X, Y ) coordinates. These
pairs of coordinates become the quadrat centers. Once the quadrats have been located we record the number
of points, x, in each quadrat. We omit from subsequent analysis the 5 quadrats that are truncated by the
boundary, leaving 30 quadrats. Some points may appear to fall on the boundary of a quadrat; however,
since points are considered dimensionless such points are recorded as being inside the quadrat. We use this
information to construct a table in which we record the frequency of occurrence of a quad rat with a given
number of points (see columns 1 and 2 of Table 2.1). Next we determine what the frequencies would look
like if the H0 (of a CSR pattern) was correct. This involves calculating a set of expected frequencies. To do
this, we must first calculate p(x), the probability of finding a quadrat with x points in a CSR pattern. This
probability is given by the Poisson probability distribution, which is

p(x) = (e−λλx)/x! for x = 0, 1, 2, . . . (1)

where:

λ is the expected number of points per sample area. This value may be estimated by the mean
number of points per quadrat. e is the mathematical constant 2.718282.

For Figure 2.1 the total number of points recorded in the 30 complete quadrats is 78 so that we estimate
as λ as 78/30 = 2.6. Thus, to obtain the probability p(x) when x = 0 (that is, the probability of an empty
quadrat) in a CSR pattern we substitute x = 0 and λ = 2.6 into equation 1, noting that 0! = 1, so that

p(x) = [e−2.6(2.6)0]/0!

= e−2.6

= 0.0743.

For x = 1
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p(x) = [e−2.6(2.6)1]/1!

= e−2.62.6

= 0.1931,

and for x = 2

p(x) = [e−2.6(2.6)2]/2!

= .2510.

1 Prince Albert
2 Saskatoon
3 Regina
4 Yorkton
5 Swift Current

Figure 2.1 Location of Settlements of 300 or Greater Population in 1971 in Southern
Saskatchewan
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TABLE 2.1 Quadrat Analysis of Towns in Southern Saskatchewan

In a similar way the values of p(x) for x = 3 through 8 can be obtained.1 Although there are no quadrats
with more than eight points, the probability of p(x) for x greater than eight is not zero and so we calculate
p(x > 8). Since all the probabilities must sum to one, this value is obtained from the equation

p(x > 8) = 1 −
8

∑

x=0

p(x) (2)

In this case p(x > 8) = 1 − 0.9985 = 0.0015. When we have obtained all the probabilities of the occurrence of
a quadrat with x points (see column 3 of Table 2.1), we obtain the expected frequencies of quadrats with
x points by multiplying the appropriate probability by the total number of quadrats. In this example, the
number of quadrats is 30 so that the expected frequency of empty quadrats is (30) (0.0743) = 2.23, the
expected number with one point is (30) (0.1931) = 5.79, with two points is (30) (0.2510) = 7.53, and so
on. The complete set of these expected frequencies is shown in column 4 of Table 2.1. Our test of the H0

consists of comparing the expected frequencies with the observed frequencies in column 2. The procedure
most often used is the chi-square one sample, goodness-of-fit test. This test uses the following formula to
obtain a chi-squared statistic, X2, to compare the two sets of frequencies:

X2 =

K
∑

i=1

(Oi − Ei)
2/Ei (3)

where:

0i is the observed frequency in the ith category
Ei is the expected frequency in the ith category
K is the number of categories.

The value of K used in the test depends on the expected frequencies. Although there is some disagreement
on this matter, a conservative suggestion is that the expected frequencies in any category should be at
least five. If some expected frequencies are smaller than five, adjacent values are combined until five is
reached or exceeded. Thus, in Table 2.1 the expected frequencies for x ≤ 1 and for x ≥ 4 are combined into

1Alternatively, once p(0) has been found, successive values of p(x) can be found using the following recursive equation (Pielou
1974: 139):

p(x + 1) = [λ/(x + 1)]p(x) x = 0, 1, 2, . . .
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single categories. The corresponding observed frequencies are grouped accordingly. This leaves us with four
categories (K = 4). Column 5 of Table 2.1 lists the individual values of equation 3, which are summed to
obtain X2 = 2.85. This value is compared to the value of chi-square (χ2) obtained from statistical tables. To
use the statistical tables, the degrees of freedom (df) for the test must be computed. The number of df is
equal to the number of comparisons made minus one, (K − 1), and an additional df is lost for each value
estimated in order to obtain the expected frequencies. In this example, because we need to estimate λ the
appropriate df for the test are (4-1-1) = 2. Values of X2 that fall below the value of χ2 for the predetermined
significance level (in our case, α = 0.05) indicate that we cannot reject the H0. Values of X2 greater than
χ2 mean that the H0 may be rejected. From statistical tables with df = 2, χ2 = 5.99. Since our computed
X2 2.85, the H0 is accepted. Therefore, we conclude that the observed pattern of towns is not significantly
different from CSR.

2.2 The Variance/Mean Ratio

Consider for a moment what would have happened if our value of X2 in the previous example was such that
we would reject the H0. Assuming that our H1 is that the pattern is not CSR, can we say that the observed
pattern is a regular or a clustered one? Strictly speaking, the answer is no. However, we can use the data
collected already to create another test that will enable us to reach an answer. This is the variance of the
number of points per quadrat, V. This may be calculated using

V =

∑

x
(x − λ)2fx

n
(4)

where

n is the number of quadrat
fx is the observed frequency of x.

In a Poisson probability distribution, the value of λ is expected to equal V . Thus, comparisons of the V and
λ derived from our data provide a convenient test of the hypothesis of CSR. If we have a regular pattern, each
quadrat will contain a similar number of points and thus the value of V will be less than λ. On the other
hand, for a clustered pattern there will be many quadrats with few or no points, corresponding to the spaces
between the individual clusters in the pattern and a few quadrats, located in the clusters, which contain a
relatively large number of points. Such a situation will generate a value of V in excess of λ. This idea can be
expressed more formally and used to provide an alternative to the chi-square test discussed earlier. This
alternative test involves calculating a t statistic using the following equation

t =
(V − λ)

[2/(n − 1)]1/2
(5)

The calculated value of t may be compared with the value of t from statistical tables for the appropriate
significance level. The degrees of freedom, df , for the test are (n−1). If the absolute calculated value of t does
not exceed the value from the tables, we cannot reject the H0 of CSR. However, if the absolute calculated
value t exceeds the value from the tables, we may reject the H0. In such cases, if the calculated value of t is
positive, V must be greater than λ and a clustered pattern is indicated, whereas a negative value of t arises
because V is less than λ, suggesting a regular pattern. For the pattern in Figure 2.1, V is 2.51 so that

t = (2.51 − 2.60)/(2/29)1/2

= −0.35

and df = 29. The value of t from statistical tables is 2.05, so that we retain the H0 confirming the result we
obtained above for the chi-square test.

2.3 Contiguous Quadrats

The “scattered quadrat” method described earlier has been used only rarely in geography. This is mainly
because the patterns examined by geographers usually are much more restrictive in terms of both N and A.
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In such circumstances, in order to obtain sufficient points for the analysis, the size of the quadrats relative to
A must be increased. This increases the likelihood of quadrats overlapping (as happened in the example in
Figure 2.1). When quadrats overlap, they are no longer independent of each other, thereby violating the
independence condition involved in generating CSR (see section 1.3). In order to avoid this, applications of
quad rat analysis in geography usually employ a grid of quadrats that are superimposed on the study area.
This procedure does not violate the independence condition and also has the advantage that most of the
points in the pattern are used in the analysis. However, there are still a number of problems that have to
be resolved. First, what should be the shape of the quadrats? Although various packable shapes such as
triangles, hexagons, and rectangles could be used, square quadrats are used almost invariably. This is because
they are easy to construct and, if desired, may be aggregated easily into larger units.

The choice of quadrat size is a more difficult issue. First, there is a tendency for large quadrats to produce a
situation where there are approximately the same large number of points in all of the quadrats thus biasing
the result toward an even pattern. However, if the quadrats are too small, they may effectively subdivide any
clusters present in the pattern leading to a situation with only two possible outcomes for a quadrat, a single
point or no point, producing a bias toward CSR. Obviously, some compromise must be found between these
extremes, and a number of studies have attempted to do so (these are discussed in Pielou 1969: 100-104;
Upton and Fingleton 1985:31). One useful rule of thumb suggested by some of these studies is that the
appropriate size of a quadrat can be approximated as twice the size of the area per point. Thus, if we use
square quadrats, the length of a side, Q, would be in the order of

√

(2A/N). However, it should be stressed
that this is only a rule of thumb and other factors may influence the final decision on quadrat size. In fact,
it is not unusual to select a number of different quadrat sizes and repeat the tests. In such circumstances
square quad rats are advantageous because they can be combined easily. Such aggregation means, however,
that the tests at the different scales may well correlate with each other.

Another variable associated with a grid of quad rats is its orientation. This is not important if we are testing
an H0 of CSR since the two conditions associated with the process that generates CSR ensure that there will
be no directional trends in the pattern.

2.4 Spatial Autocorrelation

Perhaps the most severe limitation of quadrat analysis is that by summarizing the point pattern as a set
of frequencies it loses the spatial dimension of the pattern (Dacey 1966a). This means that quite different
patterns, such as the three in Figure 2.2, when summarized by quadrats are reduced to the same set of
frequencies with the effect that any quadrat analysis performed on them produces identical results. This
illustrates that quad rat analysis is insensitive to the spatial arrangement of the quadrats containing varying
numbers of points and that if such characteristics are to be accounted for, an additional statistical procedure
is required. Most often this involves an examination of the extent of spatial autocorrelation (Odland 1987) in
the values in the quadrats. Simply defined, spatial autocorrelation is a measure of the correlation among
neighboring observations in a pattern. If the observations are numbers of points in individual quadrats, then
spatial autocorrelation will determine the extent to which values in neighboring quadrats are correlated. No
spatial autocorrelation implies that there is no correlation between neighboring values. This is the situation we
would expect for a CSR pattern since one of the conditions involved in its generation is that of independence
among points (see section 1.3). Thus, in the case of an H0 of CSR, even if the quadrat analysis leads to the
acceptance of the H0, we should in addition perform some test to find out if we have spatial autocorrelation
in the quadrat values.
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Figure 2.2 Different Point Patterns that Produce the Same Set of Quadrat Frequencies

To illustrate some of these concerns, consider Figure 2.3, which shows the location of Separate (Roman
Catholic) schools in metropolitan Toronto, excluding the eastern municipality of Scarborough in 1976. Here
the usual grid of square quadrats is used. Each quadrant has a side of 2.32 kms. This somewhat strange
value arises because this size corresponds to a quadrat of side 2.5 inches on the map used in the analysis.
Nevertheless, since A = 453.26 sq. kms and N = 134, the size chosen is of the same order as that suggested
by the rule of thumb given above since Q =

√

(2A/N) = 2.60 kms. Since the study area has an irregular
boundary the numbers of rows and columns in the grid are not equal and the grid is positioned so that as few
quadrats as possible truncate the boundary (and are consequently lost to the analysis). Once the grid is in
position, we proceed as before by recording the number of points in each quadrat and constructing a table of
these frequencies (see columns 1 and 2 of Table 2.2). These frequencies are also shown in Figure 2.4a. Note we
do not include those quadrats that overlap the study area boundary. In this way 18 quadrats containing a total
of 15 points are lost from the analysis, leaving the 72 quadrats shown in Figure 2.4a. As before, the probability
of a quadrat containing x points in a CSR pattern is obtained from equation l (see column 3 of Table 2.2). In
this case, since both N and A are known, we estimate λ from (N/A)Q2 = (134/453.26)(2.32)2 = 1.595. These
probabilities are multiplied by the number of quadrats (72) to obtain the expected frequency of quadrats with
x points (see column 4 of Table 2.2). Equation 3 is used to obtain X2 which is 2.16 with df = (5 − 1 − 1) = 3.
From the chi-square tables the value of χ2 with df = 3 and α = 0.05 is 7.82. Thus, the H0 cannot be
rejected; at the same time it cannot be concluded that we have CSR until we test for the extent of spatial
autocorrelation in the quadrat values.

TABLE 2.2 Quadrat Analysis of Separate Schools in Metropolitan Toronto
(Excluding the Borough of Scarborough )
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Figure 2.3 Location of Separate Schools in Metropolitan Toronto (Excluding the Municipality
of Scarborough) in 1976

A variety of procedures has been developed to measure spatial autocorrelation (see Cliff and Ord 1981:
chapter1chapts. 1 and 2; Odland 1987) but one that is appropriate here is the I statistic developed by Moran
(1950):

I =

n

2a

n
∑

i=1

n
∑

j=1

δij

i 6=j

(xi − x̄)(xj − x̄)

n
∑

i=1

(xi − x̄)2

(6)

where:
n is the number of quadrats
δij is a measure of the contiguity between quadrat i and quadrat j. δij = 1 if i and j

are contiguous, δij = 0, otherwise. Contiguity may be defined as having at least one
edge in common (rook’s case), at least one vertex in common (bishop’s case), or at
least one edge or one vertex in common (queen’s case)

xi is the number of points in quadrat i
xj is the number of points in quadrat j
x̄ is the mean number of points per quadrat

2a is equal to

n
∑

i=1

n
∑

j=1

i 6=j

δij
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Figure 2.4 Quadrat analysis of Separate Schools in Metropolitan Toronto: (a) Frequencies of
Occurrence of Schools, and (b) Identification Numbers of Quadrats

The calculated value of I can be compared with the set of all possible values I can take on if the values of xi

(number of points per quadrat) are repeatedly randomly permuted over the set of quadrats. There are n!
such values and the expected value, E(I) is given by

E(I) = −(n − 1)−1 (7)

The difference between the observed and expected values of I can be evaluated by a normally distributed
statistic, z, of the form

z = [I − E(I)]/
√

var(I) (8)

where

var(I) = E(I2) − [E(I)]2 (9)
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and

E(I2) ={n[4a(n2 − 3n + 3) − 8(a + d)n + 12a2] (10)

− b2[4a(n2 − n) − 16(a + d)n + 24a2]}/[4a2(n − I)(n − 2)(n − 3)]

where

d = 1/2

n
∑

i=1

Li(Li − 1) (11)

where

Li = the number of quadrats contiguous to quadrat i

and
b2 = m4/m2

2 (12)

where

m2 =
n

∑

i=1

(xi − x̄)2/n

and

m4 =

n
∑

i=1

(xi − x̄)4/n

In this test the H0 is no spatial autocorrelation, which implies that the values are randomly distributed over
the quadrats. However, if I is found to be significantly greater than E(I) the pattern of quadrat values is
said to display positive spatial autocorrelation-that is, similar values are located in proximity to each other.
If I is significantly less than E(I), we have negative spatial autocorrelation implying that like values are close
to unlike ones.

To illustrate this procedure, consider again the grid of quadrats and their associated values shown in Figure
2.4a. Begin by calculating, x̄, the average number of points per quadrat, which appears in both the numerator
and denominator of equation 6. Since there are 119 schools and 72 quadrats, x̄ = 1.653.

Next consider the denominator of equation 6. This instructs us to calculate the sum over all quad rats of
the squared deviation between the number of points, xi, in quadrat i and the average number, x̄. The steps
involved are given in Table 2.3. If the individual quadrats are numbered as in Figure 2.4b, columns l and 2 of
Table 2.3 give the quadrat indentification number, i, and the number of points in the quadrat, xi, respectively.
Column 3 of Table 2.3 gives the difference between xi and the mean number of points per quadrat, x̄, whereas
column 4 gives the square of this value. The sum of the individual values in column 4 of Table 2.3 is the term

n
∑

i=1

(xi − x̄)2

of equation 6. This value is equal to 170.29.

Now consider the term
n

∑

i=1

n
∑

j=1

i 6=j

δij(xi − x̄)(xj − x̄)

of equation 6. This involves evaluating δij(xi − x̄)(xj − x̄) for all pairs of quadrats, i, j(i 6= j). Note, however,
that the measure of contiguity, δij , between quadrats i and j can take on only two values, 1 and 0. The value
0 occurs if two quadrats are not contiguous. When this occurs the corresponding value of δij(xi − x̄)(xj − x̄)
for that pair of quadrats is zero and contributes nothing to the overall sum. Thus, we need only consider
those pairs of quadrats that are contiguous and for which δij equals l. Inspection of Figure 2.4b reveals that
there are 252 such contiguous pairs. Those pairs for the top row only of the grid of quadrats in Figure 2.4b
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are given in columns l and 2 of Table 2.4. Columns 3 and 4 of Table 2.4 show the corresponding numbers
of points, xixj , in the contiguous quadrats, whereas columns 5 and 6 show the differences between these
values and x̄, the mean number of points per quadrat. Finally, column 7 of Table 2.4 gives the product term
(xi − x̄)(xj − x̄) If this value is also calculated for the remaining 224 pairs of contiguous quadrats in Figure
2.4b and added to those values in column 7 of Table 2.4 the result is the term

n
∑

i=1

n
∑

j=1

i 6=j

δij(xi − x̄)(xj − x̄).

For this example, this value is equal to 157.104.

Table 2.3 Calculation of
n

∑

i=1

(xi − x̄)2 in Equation 6

[1] [2] [3] [4] [5]
Number of Points

Quadrat in Quadrat
i xi (xi − x̄) (xi − x̄)2 (xi − x̄)4

1 0 -1.653 2.732 7.464
2 3 1.347 1.814 3.291
3 0 -1.653 2.732 7.464
4 3 1.347 1.814 3.291
5 0 -1.653 2.732 7.464
6 0 -1.653 2.732 7.464
7 2 9.347 0.120 0.014
8 4 2.347 5.508 30.338
9 3 1.347 1.814 3.291
10 1 -0.653 0.426 0.181
11 1 -0.653 0.426 0.181
12 0 -1.653 2.732 7.464
13 2 0.347 0.120 0.014
14 3 1.347 1.814 3.291
15 1 -0.653 0.426 0.181
16 1 -0.653 0.426 0.181
17 2 0.347 0.120 0.014
18 1 -0.653 0.426 0.181
19 0 -1.653 2.732 7.464
20 2 0.347 0.120 0.146
21 0 -1.653 2.732 7.464
22 1 -0.653 0.426 0.181
23 3 1.347 1.814 3.291
24 1 -0.653 0.426 0.181
25 2 0.347 0.120 0.014
26 0 -1.653 2.732 7.464
27 2 0.347 0.120 0.014
28 0 -1.653 2.732 7.464
29 0 -1.653 2.732 7.464
30 2 0.347 0.120 0.014
31 1 -0.653 0.426 0.181
32 1 -0.653 0.426 0.181
33 1 -0.653 0.426 0.181
34 4 2.347 5.508 30.338
35 1 -0.653 0.426 0.181
36 1 -0.653 0.426 0.181
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[1] [2] [3] [4] [5]
Number of Points

Quadrat in Quadrat
i xi (xi − x̄) (xi − x̄)2 (xi − x̄)4

37 1 -0.653 0.426 0.181
38 0 -1.653 2.732 7.464
39 1 -0.653 0.426 0.181
40 2 0.347 0.120 0.014
41 0 -1.653 2.732 7.464
42 2 0.347 0.120 0.014
43 0 -1.653 2.732 7.464
44 3 1.347 1.814 3.291
45 3 1.347 1.814 3.291
46 0 -1.653 2.732 7.464
47 1 -0.653 0.426 0.181
48 1 -0.653 0.426 0.181
49 1 -0.653 0.426 0.181
50 0 -1.653 2.732 7.464
51 1 -0.653 0.426 0.181
52 2 0.347 0.120 0.014
53 1 -0.653 0.426 0.181
54 2 0.347 0.120 0.014
55 5 3.374 11.202 125.485
56 3 1.347 1.814 3.291
57 2 0.347 0.120 0.014
58 0 -1.653 2.732 7.464
59 1 -0.653 0.426 0.181
60 1 -0.653 0.426 0.181
61 1 -0.653 0.426 0.181
62 4 2.347 5.508 30.338
63 2 0.347 0.120 0.014
64 0 -1.653 2.732 7.464
65 4 2.347 5.508 30.338
66 8 6.346 40.284 1622.801
67 5 3.347 11.202 125.485
68 2 0.347 0.120 0.014
69 5 3.347 11.202 125.485
70 3 1.347 1.814 3.291
71 1 -0.653 0.426 0.181
72 2 0.347 0.120 0.014

Finally, in order to complete the calculation of I in equation 6 we need to calculate n/2a, where n, the
number of quadrats, is 72 and 2a is the number of pairs of contiguous quadrats, which is 252. Thus n/2a =
0.286. Inserting the above values in equation 6 yields

I = (0.286)(157.104)/170.290

= 0.2639.

From equation 7, E(I) = −(72 − 1)−1 = −0.0141. The values of Li in equation 11 can be obtained by
examining Figure 2.4b. Thus, L1, the number of quadrats contiguous to quadrat I is 2, L2 = L3 = L4 =
L5 = L6 = L7 = L8 = L9 = 3, L10 = 2, L11 = 3, L12 = 4 and so on. Inserted in equation 11 these values yield
d = 329.
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TABLE 2.4 Calculation of
n

∑

i=1

n
∑

j=1

i 6=j

δij(xi − x̄)(xj − x̄) in Equation 6

[1] [2] [3] [4] [5] [6] [7]
Number
of Points

Quadrat in Quadrat
i j xi xj (xi − x̄) (xj − x̄) (xi − x̄)(xj − x̄)
1 2 0 3 -1.653 1.347 -2.227
1 11 0 1 -1.653 -0.653 1.079
2 1 3 0 1.347 -1.653 -2.227
2 3 3 0 1.347 -1.653 -2.227
2 12 3 0 1.347 -1.653 -2.227
3 2 0 3 -1.653 1.347 -2.227
3 4 0 3 -1.653 1.347 -2.227
3 13 0 2 -1.653 0.347 -0.574
4 3 3 0 1.347 -1.653 -2.227
4 5 3 0 1.347 -1.653 -2.227
4 14 3 3 1.347 1.347 1.814
5 4 0 3 -1.653 1.347 -2.227
5 6 0 0 -1.653 -1.653 2.732
5 15 0 1 -1.653 -0.653 1.079
6 5 0 0 -1.653 -1.653 2.732
6 7 0 2 -1.653 0.347 -0.574
6 16 0 1 -1.653 -0.653 1.079
7 6 2 0 0.347 -1.653 -0.574
7 8 2 4 0.347 2.347 0.814
7 17 2 2 0.347 0.347 0.120
8 7 4 2 2.347 0.347 0.814
8 9 4 3 2.347 1.347 3.161
8 18 4 1 2.347 -0.653 -1.533
9 8 3 4 1.347 2.347 3.161
9 10 3 1 1.347 -0.653 -0.880
9 19 3 0 1.347 -1.653 -2.227

10 9 1 3 -0.653 1.347 -0.880
10 20 1 2 -0.653 0.347 -0.227

For equation 12, m2 is equal to the term
n

∑

i=1

(xi − x̄)2

already calculated in the computation of I, divided by n. Thus m2 = (170.29/72) = 2.365. Since (xi − x̄)4

equals [(xi − x̄)2]2, m4 in equation 12 can be calculated by taking the values in column 4 of Table 2.3, squaring
them and summing. The resulting values are given in column 5 of Table 2.3 and yield m4 = 2281.488/72 =
31.687. Thus, in equation 12, b2 = (31.687)/(2.365)2 = 5.665. Inserting this value of b2 together with the
values of n = 72, a = 126, and d = 329 into equation 10 gives E(I2) = 0.0074. This, in turn, inserted in
equation 9 gives var(I) = 0.0072. Finally, using equation 8, we get z = [0.2639 + 0.0141]/

√

(0.0072) = 3.276.
Since the value for z from the tables of the Normal distribution for α = 0.05 is 1.96, we reject the H0 in
favor of one that indicates positive spatial autocorrelation. We cannot accept that the pattern of schools is
CSR as suggested by quadrat analysis alone. In fact, since the positive spatial autocorrelation results from
a clustering of like values, we might hypothesize that the pattern reflects a greater probability of schools
occurring in some areas of metropolitan Toronto due to spatial variation in the distribution of Catholic
children of school age.
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Quadrat analysis has been used in geography to examine a wide variety of phenomena. In human geography
these include shop location (Getis 1964; Rogers 1965, 1974; Artie 1965; Sibley 1972; Lee 1974), central place
systems (Olsson 1966), settlement patterns (Dacey 1964, 1966a, 1966b, 1968, 1969a-e; Birch 1967), urban
growth simulation (Malm et al. 1966) and the diffusion of agricultural innovations (Harvey 1966). Examples
of the use of quadrats in physical geography include the study of karst depressions (McConnell and Horn
1972), drumlins (King 1974; Gravenor 1974; Trenhaile 1971) area volcanism (Tinkler 1971), and river channel
networks (Oeppen and Ongley 1975). Reviews of this and other works are provided by Thomas (1979, 1981).
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3 MEASURES OF DISPERSION: DISTANCE METHODS

In view of the problems and limitations of quadrat techniques, other methods of measuring dispersion
properties of point patterns have been developed. The largest set of such alternative techniques is that which
is collectively known as distance methods. These techniques analyze a point pattern by way of statistics that
are calculated using characteristics of the distances separating individual points in the pattern.

Like quadrat analysis, distance methods were originally developed by plant ecologists (Greig-Smith 1964;
Southwood 1966: 39-43; Pielou 1969: chap. 10). The earliest methods involved examining the average of the
distances between each point in the pattern and the closest point to it (Clark and Evans 1954). Such methods
are referred to as nearest neighbor analysis and are described for two- and one-dimensional study areas in
sections 3.1 and 3.4, respectively. As originally developed, the nearest neighbor techniques were subject to
several limitations. Two major limitations, inaccuracy in interpretation in some situations and edge effects,
are examined in sections 3.2 and 3.3, respectively. More recently, techniques using the entire distribution of
distances between each point and its nearest neighbor have been developed. These procedures are referred
to as refined nearest neighbor analysis (Diggle 1979a: 79) and form the topic of section 3.5. Other recent
developments involve using other interpoint distances in addition to those between individual points and
their nearest neighbors. These are known as second-order procedures and are discussed in section 3.6.

3.1 Nearest Neighbor Analysis in Two Dimensions

The nearest neighbor distance for any point is defined as the distance between it and the nearest other point
in the pattern. One of the simplest of such nearest neighbor tests involves selecting a number of points from
the pattern at random. As before, this means that each of the points in the pattern has an equal chance
of being selected and that the selection of any point in no way influences the selection of other points. In
practice, in order to perform this sampling procedure, we have to number uniquely each point in the pattern
and randomly select individual sample points. We identify the nearest neighbor distance (di) for each of the
sample points (i), sum these

n
∑

i=1

di,

and obtain the mean nearest neighbor distance

d̄ =

n
∑

i=1

di/n

where n is the number of sampled points. Assuming our usual H0, d is compared to that which would be
expected for a random sample of points from a CSR pattern.

As an example of this approach, consider Figure 3.1, which shows the locations of fires that caused in excess
of $1000 damage in 1981 in the city of Kitchener in southern Ontario, Canada. There are 132 points in the
pattern. We have selected 50 of these points at random and these are shown by the filled circles in Figure 3.1.
Then we find the nearest neighbor distance for each of the sampled points. Five examples of such distances
are shown in Figure 3.1. Using these distances, we get a value of d= 0.22 miles. Clark and Evans (1954)
show that the expected value of the average nearest neighbor distance, E(di), for a random sample of points
from a CSR pattern is approximated by the equation

E(di) = 0.5
√

(A/N). (13)

In this example A = 52.17 sq. miles and N = 132, so that equation 13 gives E(di) = 0.31 miles. The observed
and expected values may be compared using a normally distributed z statistic of the form

z = [d̄ − E(di)]/

√

var(d̄) (14)

where
var(d̄) = 0.0683A/N2 (15)
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Figure3.1 Locations of Fires Causing in Excess of $1000 Damage in 1981 in the City of
Kitchener, Ontario

Equation 15 gives var(d̄) = 0.000205; substituting this value into equation 14 yields

z = (0.22 − 0.31)/
√

0.000205 = −6.58

The value of z from tables of the normal distribution for α = 0.05 is 1.96. Since the absolute value of the
calculated z is greater than 1.96, we reject the H0 and accept the H1. In this example the calculated value of
z was negative because d̄ < E(di). This implies that, on average, the individual points are closer than they
would be in a CSR pattern, indicating that we have a clustered pattern. In this example such clustering
probably represents a greater likelihood of fires starting in areas of the city with certain environmental
characteristics, such as old, crowded, dilapidated buildings. On those occasions when the H0 of CSR is
rejected and d̄ > E(di) a regular pattern is indicated.

For many of the patterns encountered by geographers, N is typically quite small and usually N is typically
quite small and usually N < 100. In such circumstances, measuring the di’s for a random sample of points
from the pattern is not very practical. Instead of doing this, we may measure the di’s for all the points in
the pattern and use these to calculate d̄. When we perform nearest neighbor analysis using all the di’s, the
individual di’s can no longer be considered mutually independent as they would be for a random sample of
points when the size of the sample is small relative to N. Theoretically, this lack of independence is important
because it is assumed in Clark and Evans’s derivation of equations 13 and 15 (Hsu and Mason 1974; Cliff and
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Ord 1975). However, Diggle (1976) has shown that this lack of independence has little effect on equations 13
and 15, so that they may also be used when d̄ is calculated using all the dis.

Nevertheless, this technique of nearest neighbor analysis does have two major inherent problems. These are
discussed in the next two sections.

3.2 Higher-Order Neighbor Distances

A problem arises with nearest neighbor analysis when the pattern under study is the result of the operation
of more than one distinct process. Figure 3.2 shows a pattern in which individual points form pairs but
in which the pairs form a more or less regular pattern (couples on a dance floor, perhaps). Application of
the nearest neighbor technique described above would yield a value of d̄ < E(di) suggesting that we have a
clustered pattern and thus revealing only part of the story.

Figure 3.2 Pattern Resulting from the Operation of More than One Process

However, if in addition to examining distances to the closest point, we examine the distance between each
point and its second nearest neighbor, the regular nature of the spatial locations of the clusters would be
identified. Distances other than those between a point and its closest neighbor are often referred to as second-,
third-, or higher-order neighbor distances. The number of distances we choose to examine will depend on
the pattern being studied. However, the form of the test remains the same as that described in equation 14,
except that it is necessary to make changes in the values of the constants in equations 13 and 15 depending
on the order of the neighbor distances. The values for the constants are given in Table 3.1. Examples of
the use of higher-order nearest neighbor analysis include Dacey and Tung (1962), Dacey (1963, 1965), Jones
(1971), Trenhaile (1971, 1975), and Tinkler (1971).

3.3 Edge Effects

Another assumption underlying Clark and Evans’s derivation of equations 13 and 15 is that the values in
these equations relate to the nearest neighbor properties of an infinite or unbounded CSR pattern. Depending
on the circumstances, application of equations 13 and 15 in the context of the bounded situations encountered
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in real-world patterns can lead to spurious results. Thus, to use the test statistic in equation 14 it is necessary
to have some means of compensating for empirical patterns being bounded.

TABLE 3.1 Values of Constants in Expressions for E(dj) and var(d̄) for First-Order
and Higher-Order Nearest neighbors in a Random Pattern

Order of Neighbors E(di) = γ1

√

A/N var(d̄) = γ2A/N2

γ1 γ2

1 0.5000 0.0683
2 0.7500 0.0741
3 0.9375 0.0760
4 1.0937 0.0770
5 1.2305 0.0775
6 1.3535 0.0778

Source: Thompson (1956).

There are four methods that are used to compensate for such edge effects; which method is used depends on
both N and the shape of the study area. First, if the study area is a rectangle or a square, several studies
(Dacey 1975; Ingram 1978; Ripley 1979a,b; Griffith and Amrhein 1983) suggest it is best to convert it to a
torus. This involves the joining together the opposite edges of the study area to form a “doughnut” type of
figure over whose surface we measure the required distances. The folding procedure is illustrated in Figure
3.3. In practice, toroidal mapping is achieved by surrounding the study area with identical point1patterns as
shown in Figure 3.4a. By adopting such a strategy, we assume that the same processes responsible for the
location of the points in the study area are operating beyond its boundaries. Of course, if the study area
does not possess a regular boundary, toroidal mapping cannot be used.

Figure 3.3 Creation of a Torus from a Planar Surface

Second, an alternative to toroidal mapping to overcome the boundary problem is to include in the calculation
of d̄ only those values of di that are less than the distance between i and the boundary of the study area.
This procedure, illustrated in Figure 3.4b, is equivalent to ignoring all points in the pattern that are closer
to the study area boundary than they are to any point in the pattern. This disregard strategy has the
effect of reducing the number of distances that can be measured. This may be particularly awkward if N is
already small or if we are measuring higher-order neighbor distances. It also leads to bias because it favorsthe
retention of small di’s.

A third strategy for overcoming the boundary problem, illustrated in Figure 3.4c, is to delimit the study
area as a smaller part of the entire point pattern. The area of the point pattern outside of the study area is
known as the “buffer zone.” Nearest neighbor distances are only measured for those points within the study
area even though these may be distances to points in the buffer zone. This procedure also has the effect of
reducing the number of measurements.

A fourth solution to the boundary problem can be used if toroidal mapping is not possible or if the disregard
and buffer zone strategies reduce the number of distances prohibitively. This strategy is to add a “correction
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factor” to equations 13 and 15 to account for the boundary effects. Donnelly (1978) has shown that when N
is greater than 7 and the study area is not highly irregular, the value of E(di) is approximated by

E(di) = 0.5
√

(A/N) + (0.0514 + 0.041/
√

N)B/N (16)

and
var(d̄) = 0.070A/N2 + 0.037B

√

(A/N5) (17)

where B is the length of the perimeter of the study area. Since equations 16 and 17 were obtained by
examining simulated point patterns in study areas of various shapes including circles, ellipses, squares, and
rectangles, they should not be used for irregularly shaped study areas. Examples of such shapes where this
strategy may not be used are shown in Figure 3.5. The calculated values of E(di) and var(d̄) from equations
16 and 17, respectively, are used in equation 14 to calculate the z statistic.

Figure 3.4 Methods of Dealing with the Effeccts of Study Area Boundaries: (a) Toroidal
Mapping, (b) Disregard, and (c) Buffer Zone
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Figure 3.5 Example of Study Area Shapes for Which Donnelly’s Correction Formulas Are
Inappropriate

The following example illustrates the use of Donnelly’s solution to the boundary problem. In Figure 3.6 the
locations are shown of branches of the Royal Bank that had computerized teller facilities in metropolitan
Toronto (excluding the eastern borough of Scarborough) in September 1982. In this example the shape of the
study area prohibits toroidal mapping, whereas the limited size of the pattern (N = 25) together with the
peripheral location of several of the points makes either the disregard or buffer zone methods undesirable; the
disregard technique reduces the number of points to 16. The value of d̄ is found to be l.89 kms., B is 92.47
kms, and A is 453.26 sq. kms. Using equation 16 we get

E(di) = 0.5
√

(453.26/25) + (0.0514 + 0.041/
√

25)92.47/25

= 2.35 kms.

and using equation 17

var(d̄) = 0.070(453.26)/(25)2 + 0.037(92.47)
√

(453.26/252)

= 0.0741

Substituting these calculated values of E(di) and var(d̄) in equation 14 we get

z =
1.89 − 2.35√

0.0741

= −1.69

Figure 3.6 Location of Royal Bank Branches with Computer Facilities in Metropolitan Toronto
(Excluding the Municipality of Scarborough) in September 1982

32



This value of z does not exceed the value of z from tables of the normal distribution for α = 0.05(z = 1.96).
Therefore, the H0 is accepted. This acceptance suggests that the location of the bank branches is not unlike
a CSR pattern. Perhaps this result is the outcome of the operation of conflicting forces of dispersion caused
by attempting to spread out the branches over the metropolitan area to increase consumer access, versus the
inhomogeneity of the demand for such services resulting from a higher demand for banking services in the
main financial and retailing districts of the metropolitan area and a lower demand in manufacturing and
suburban residential districts.

Examples of the use of nearest neighbor analysis in geography to study patterns in two dimensions include
the work of King (1961, 1962), Dacey (1962, 1963), and Birch (1967) on urban settlement locations; Getis
(1964), Clark (1969), and Sherwood (1970) on the locations of intra-urban facilities; Smalley and Unwin
(1968), Jauhiainen (1975), and Rose and Letzer (1975) on drumlins; Williams (1972b) and Day (1976) on
dolines; and Morgan (1970) on river basin outlets.

3.4 Nearest Neighbor Analysis in One Dimension

So far in this book we have considered patterns where the points represent locations in a two-dimensional
study area. However, geographers often encounter situations where phenomena can be represented as points
along a line. Examples include cities along a highway, retail stores along a street, effluent discharge outlets
along a river, and volcanoes along a fault line.

As with points in two dimensions we can measure the distance, di, to the nearest neighbor of each point, i,
along the line. Lines, like areas, can be bounded. However, lines are more simple than areas because each
line is limited to a maximum of two boundaries: the ends of the line.

Selkirk and Neave (1984) consider two situations for the relationship of the points in the pattern to the ends
of the line: points located at both ends of the line and no points located at either end of the line.

When points are located at both ends of the line, the expected value of the average nearest neighbor distance,
E(di) for a CSR pattern is

E(di) = [W (N + 2)]/[2N(N − 1)] (18)

and the variance, var(d̄), is

var(d̄) = [W 2(2N2 + 7N − 36)]/[12N3(N − 1)2] (19)

where W is the length of the line. These values can be used in equation 14 to calculate a z statistic that
has an approximately normal distribution. When N is small, say N ≤ 20, equation 14 should not be used.
Instead, the appropriate value can be found in Table l of Selkirk and Neave (1984).

In the case where no points are located at the ends of the line the appropriate values of E(di) and var(d̄) are

E(di) = [W (N + 2)]/[2N(N + l)] (20)

and
var(d̄) = [W 2(2N2 + 17N + 12)]/[12N2(N + 1)2(N + 2)]. (21)

When N > 20 these values can also be used in equation 14 to yield a z statistic that has an approximately
normal distribution. If N ≤ 20, the exact tables published in Selkirk and Neave (1984) should be consulted.

As an example of a pattern of points along a line, consider Figure 3.7, which shows the locations of
interchanges along Highway 401 (the main east-west provincial highway in Ontario, Canada) as it passes
through metropolitan Toronto. There are 24 interchanges and the distance between the eastern and western
boundaries of metropolitan Toronto is 44.4 kms. The value of d̄ 1.37 kms.

Since the ends of the line are demarcated by the eastern and western boundaries of metropolitan Toronto, we
use equations 20 and 21.
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From equation 20, E(di) is 0.96 kms and from equation 21 var(d̄) = 0.0276. Thus

z = (1.37 − 0.96)/
√

0.0276

= 2.47.

Since this value of z exceeds the value of 1.96 from tables of the normal distribution for α = 0.05, we reject
the H0. Further, since d̄ > E(di) there is evidence that the interchanges are regularly spaced.

Figure 3.7 Locations of Interchanges along Highway 401 in Metropolitan Toronto

In those situations where the study area is a line, the nearest neighbor distance for any point not located at
one of the end points must be the distance to either the preceding point or the succeeding point encountered
on the line. Thus, the nearest neighbor distances are part of the set of all interpoint distances on the line.
Several tests make use of this more extensive information. One such test uses a statistic, S, suggested by
Durbin (1965).

In Durbin’s test the interpoint distances are first converted to proportions of the sum of the interpoint
distances. The resulting scaled values, gi, are then ranked from the smallest, g1, to the largest, gn; where n is
the number of interpoint distances. These values are used to calculate the statistic, S, where

S = 2n − 2

n
∑

i=1

igi. (22)

The expected value of this statistic for a CSR pattern is given by

E(S) = (n − 1)/2 (23)

with variance
var(S) = (n − 1)/12. (24)

The observed and expected values may be compared using a normally distributed statistic, z of the form

z = [S − E(S)]/
√

var(S) (25)

Durbin’s S statistic can be illustrated using information from the previous example of the location of
interchanges along Highway 401. The 23 interpoint distances between the highway interchanges are given in
column 2 of Table 3.2. Column 3 of Table 3.2 shows these interpoint distances as proportions of the sum of
interpoint distances of 39.3 kms.

These proportions are then ranked from the smallest (0.0178) to the largest (0.0840). The ranking of each
proportion is given in column 4 of Table 3.2. Inserting the value from column 5 into equation 22 gives

S = 2(23) − 2(14.4178)

= 17.1644.
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Equations 23 and 24 yield E(S) = 11 and var(S) = 1.8333, respectively. Substituting these values into
equation 25 yields z = 4.55. Since this calculated value of z is both positive and larger than the value of z =
1.96 ( α = 0.05) obtained from the tables of the normal distribution, the H0 is rejected in favor of one that
indicates regularity in the point pattern, confirming the result of the nearest neighbor test applied previously
to the data.

TABLE 3.2 Illustration of the Application of Durbin’s S Statistic to the Locations of Inter-
changes Along Highway 401

3.5 Refined Nearest Neighbor Analysis

The distance techniques examined above involve the calculation of a single summary statistic. In calculating
the statistic it has been necessary to measure a number of individual distances. The conversion of these sets
of individual distances into a single statistic represents a loss of information. This situation has prompted
several researchers (Cowie 1967; Campbell and Clark 1971; Roder 1974, 1975; Diggle 1979a) to suggest using
tests that retain the original information.

The most common of such tests has been called refined nearest neighbor analysis (Diggle 1979a). It involves
comparing the complete distribution function of the observed nearest neighbor distances, F (di), with the
distribution function of expected nearest neighbor distances for CSR, P (di).

F (di) is obtained by taking the nearest neighbor distances, di, and ranking them from the smallest to the
largest. Once we have done this, we are able to determine what proportion F (di ≤ r), of the nearest neighbor
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distances are less than or equal to some chosen distance, r. Usually, the values of r are chosen so that they
correspond with values of di. Pielou (1969: 111-112) shows that the corresponding proportion of expected
nearest neighbor distances less than or equal to r for an unbounded CSR pattern P (di ≤ r) is given by
equation 26.

P (r) = 1 − e−πr2λ (26)

where:

e is the mathematical constant 2.718283
π is the mathematical constant 3.141593
r is the specified distance
λ is estimated from N/A

Diggle (1981) has suggested that F (r) and P (r) can be compared using a statistic, dr, of the form

dr − max |F (r) − P (r)| (27)

where max | • | means the largest absolute value obtained for corresponding values of r. Since the observed
nearest neighbor distances are not mutually independent, Diggle (1981: 26) suggests that in order to evaluate
the significance of dr we must use a Monte Carlo test procedure. This involves generating a set (usually
99) of CSR patterns each with the same number of points as the empirical pattern located in a study area
identical to that of the empirical pattern (Diggle 1979a). dr is calculated for each of these simulated patterns.
We can then examine where the value of dr for the empirical pattern falls within the entire set of 100 values
(99 from the simulated patterns plus one from the empirical pattern) thus giving us an indication of the
likelihood of the real pattern occurring under the conditions of the random process described in section 1.3.
Should the value of dr for the empirical pattern be among the five largest of the 100 values of dr, the H0

of CSR can be rejected for α = 0.05. Further, Diggle (1979a) suggests that if for dr, F (r) > P (r), then a
clustered pattern is indicated, whereas F (r) < P (r) indicates a regular pattern of points.

To illustrate the use of refined nearest neighbor analysis, consider Figure 3.8, which shows the locations of 74
central places in southcentral England that provided bus services to surrounding rural areas in the 1950s
(Green 1955). We begin by measuring the nearest neighbor distance, di, for each point, i, in the pattern.
The individual di; values are then ranked and converted to proportions. To find the proportion of points
in the pattern for which di; is less than or equal to, for example, r = 1.95 miles, we count the number of
points for which di ≤ r and divide this number by the total number of points, N. However, since equation 26
relates to an unbounded CSR pattern, we must make allowance for the impact of edge effects on the pattern
under study. To do this we measure the distance, ui, of each point, i, from the study area boundary. We
then subtract from N the number of points for which di > r and ui < r. Thus, as r changes, the number of
points subtracted from N may change. For the pattern in Figure 3.8, for r = 1.95 miles, there are 2 points
for which di ≤ r (see column 2 of Table 3.3) and 11 points for which di > r and ui < r (see column 3 of Table
3.3) so that the observed proportion, F (r), shown in column 4 of Table 3.3 is given by 2/(74 - 11) = 0.0317.
For r = 2.66 miles, di ≤ r for 4 points and ui < r < di for 12 points so that F (r) = 4/(74 − 12) = 0.0645.
The remaining values of F (r), given in column 4 of Table 3.3 are found in a similar way.

We use equation 26 to calculate the values of P (r). In this example N = 74 and A = 7259.71 sq. miles, so
that λ is estimated from N/A = 0.0102. Thus

P (r ≤ 1.95 miles) = 1 − exp[−π(1.95)2(0.0102)]

= 0.1135,

P (r ≤ 2.66 miles) = 1 − exp[−π(2.66)2(0.0102)]

= 0.2015.

The complete set of P (r) values obtained in this way is given in column 5 of Table 3.3.

The values of F (r) and P (r) in columns 4 and 5, respectively, are then compared for corresponding values of
r (see column 6 of Table 3.3) and the largest of the values in column 6 of Table 3.3 is equal to dr as defined
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in equation 27. In this case dr = 0.2940 at r ≤ 4.39. Further, since F (r) < P (r) at this value of r, a regular
pattern is indicated.

Figure3.8 Bus Service Centers in South-Central England
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TABLE 3.3 Refined Nearest Neighbor Analysis in Two-Dimensions: Bus Service Centers in
South-Central England

[1] [2] [3] [4] [5] [6]
Observed Observed
Distances Distances Observed Expected
for Which for Which Proportion Proportion

r (miles) di 6 r Ui < r < di F (r) P (r)) |F (r) − P (r)|
1.95 2 11 0.0317 0.1135 0.0818
2.66 4 12 0.0645 0.2015 0.1369
3.44 6 15 0.1017 0.3133 0.2116
3.97 8 18 0.1429 0.3929 0.2501
4.39 9 19 0.1636 0.4576 0.2940
4.63 11 19 0.2000 0.4935 0.2935
4.71 12 19 0.2182 0.5054 0.2873
4.81 14 19 0.2345 0.5195 0.2650
4.97 15 19 0.2727 0.5436 0.2709
5.13 16 20 0.2963 0.5662 0.2699
5.26 17 20 0.3148 0.5836 0.2688
5.42 18 20 0.3333 0.6066 0.2732
5.63 20 20 0.3704 0.6344 0.2641
6.00 22 20 0.4074 0.6803 0.2729
6.16 23 20 0.4259 0.6995 0.2736
6.27 25 20 0.4630 0.7131 0.2501
6.30 26 20 0.4815 0.7164 0.2349
6.39 28 20 0.5185 0.7265 0.2080
6.53 30 20 0.5556 0.7409 0.1853
6.59 32 20 0.5926 0.7481 0.1555
6.64 33 20 0.6111 0.7528 0.1417
7.03 34 20 0.6296 0.7912 0.1616
7.30 35 20 0.6481 0.8153 0.1672
7.47 36 21 0.6792 0.8293 0.1501
7.78 38 21 0.7170 0.8532 0.1362
8.03 39 23 0.7647 0.8704 0.1057
8.11 40 23 0.7843 0.8759 0.0916
8.31 42 23 0.8235 0.8880 0.0645
8.59 43 23 0.8431 0.9036 0.0605
8.68 44 23 0.8627 0.9082 0.0455
8.89 45 23 0.8824 0.9143 0.0319
8.91 46 23 0.9020 0.9174 0.0154
9.23 47 23 0.9216 0.9330 0.0114
9.77 48 23 0.9412 0.9516 0.0104

10.70 49 23 0.9607 0.9736 0.0129
12.02 50 23 0.9804 0.9898 0.0094
12.09 51 23 1.0000 0.9903 0.0097

In order to determine if the value of dr = 0.2940 is sufficient to reject an H0 of a CSR pattern for the bus
service centers, it is necessary to perform the Monte Carlo test procedure described earlier. This involves
generating 99 patterns according to the two conditions in described section 1.3 that produce a CSR pattern.
In each of the 99 simulations we locate the same number of points as in the empirical pattern--namely,
74--over a study area of the same size and shape as the empirical study area shown in Figure 3.8. For each of
the 99 CSR patterns we calculate dr. As Table 3.4 shows, of the 99 runs generated, only one produced a dr

value greater than that for the empirical pattern and so we conclude that the H0 of CSR can be rejected in
favor of a more regular pattern.
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A similar procedure may be applied when the study area is a line (Roder 1974). However, in this case the
distribution function of expected nearest neighbor distances for an unbounded CSR pattern is given by

P (r) = 1 − e−2rλ (28)

where:

λ is the density of points per unit length.

TABLE 3.4 Cumulative Distribution of dr for 99 Monte Carlo Simulations of Random Patterns
in Two Dimensions

Value of dr Frequency > dr

0.06 99
0.08 95
0.10 81
0.12 62
0.14 46
0.16 23
0.18 10
0.20 5
0.22 5
0.24 1
0.26 1
0.28 1
0.30 1

To illustrate this procedure, consider Figure 3.9, which shows the locations of interchanges on the western
part of provincial Highway 401 in southern Ontario, between its beginning at the U.S. border at Windsor
and the western boundary of metropolitan Toronto.

Figure 3.9 Locations of Interchanges Along Highway 401 Between Windsor, Ontario, anf the
Western Boundary of Metropolitan Toronto.
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We begin by identifying the nearest neighbor distances. These are ranked from the smallest to the largest
(see column 1 of Table 3.5). To allow for edge effects in calculating F (r) we ignore those points for which
di > r and ui < r. In this way the interchange closest to the border of metropolitan Toronto is removed from
the analysis. Thus, for example, since there are 47 interchanges, F (r ≤ 0.8 kms) = 2/(47 − 1) = 0.0435. This
and the remaining values of F (r) are shown in column 3 of Table 3.5.

TABLE 3.5 Refined Nearest Neighbor Analysis in One Dimension: Interchanges Along High-
way 401, Ontario

[1] [2] [3] [4] [5]
Observed Observed Expected
Number Proportion Proportion | [4] [5] |

r (kms) di 6 r F (r) P (r) |F (r) − P (r)|
0.8 2/46 0.0435 0.1958 0.1524
1.6 4/46 0.0870 0.3533 0.2664
1.9 6/46 0.1304 0.4041 0.2737
2.3 8/46 0.1739 0.4656 0.2917
2.7 10/46 0.2174 0.5208 0.3034
2.9 12/46 0.2609 0.5262 0.2853
3.4 14/46 0.3043 0.6040 0.2997
3.9 16/46 0.3478 0.6544 0.3066
4.3 18/46 0.3913 0.6901 0.2988
4.5 21/46 0.4565 0.7066 0.2501
5.6 22/46 0.4783 0.7826 0.3043
5.8 23/46 0.5000 0.7941 0.3941
6.2 25/46 0.5435 0.8153 0.2718
6.3 26/46 0.5652 0.8203 0.2551
6.8 28/46 0.6086 0.8432 0.2345
6.9 30/46 0.6522 0.8474 0.1952
7.1 32/46 0.6957 0.8555 0.1598
7.3 33/46 0.7174 0.8632 0.1458
7.4 35/46 0.7609 0.8668 0.1059
7.9 36/46 0.7826 0.8838 0.1012
8.2 41/46 0.8913 0.8929 0.0016
8.6 43/46 0.9348 0.9040 0.0308
9.2 44/46 0.9565 0.9185 0.0380
9.5 45/46 0.9783 0.9249 0.0534

12.2 46/46 1.0000 0.9640 0.0360

Equation 28 is used to obtain the values of P (r) for the corresponding values of r. In equation 28, λ can
be estimated by using the ratio of the number of points to the line length in the empirical pattern. Since
N = 47 and W = 345 kms, λ 0.1362. Thus P (r ≤ 0.8 kms) = l - exp[-2(0.8)(0.1362)] = 0.1958. This and the
other values of P (r) obtained similarly are shown in column 4 of Table 3.5.

As with refined nearest neighbor analysis in two dimensions the corresponding values of F (r) and P (r) are
used to define the dr statistic in equation 27. In this case dr = 0.3066 for r ≤ 3.9. The significance of dr, is
tested using the Monte Carlo approach described earlier. This involves generating 99 CSR patterns each with
the same number of points as the empirical pattern located along a line of the same length as the empirical
one and calculating dr, for each of the simulated patterns. Since none of the dr, values obtained from the
simulated patterns exceeds 0.30, (see Table 3.6), the H0 of CSR is clearly rejected at α = 0.05. Further, since
at r ≤ 3.9, F (r) < P (r), regularity in the location of interchanges along Highway 401 is indicated.

In those instances of a linear study area in which interpoint distances have been calculated, as was the case
with Durbin’s S statistic in section 3.4, a similar approach may be used except that the expected values in a
CSR pattern are given by

P (r) = 1 − erλ (29)
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TABLE 3.6 Cumulative Districution of dr for 99 Monte Carlo Simulations of Random Patterns
in One Dimension

Value of dr Frequency of > dr

0.06 99
0.08 94
0.10 79
0.12 63
0.14 48
0.16 28
0.18 17
0.20 10
0.22 6
0.24 3
0.26 1
0.28 1
0.30 0

3.6 Second-Order Analysis

Another technique used to examine the dispersion characteristics of a point pattern is second-order analysis.
This technique requires as data the distance measurements between all combinations of pairs of points. In its
descriptive form it is the study of interevent distances, where the events are mapped points. In its theoretical
form, it is called second order analysis to indicate that the focus is on the variance, or second moment, of
interevent distances.

The study of interevent distances has a number of advantages over the more traditional techniques of analysis.
First, the dataset yielded by even a modest number of points allows for a detailed view of pattern spacing
characteristics. More information about pattern is potentially available from this analysis than from any other
existing technique. Second, the CSR model available for the interevent distances can be used as the basis for
tests for statistical significance (second-order analysis). Third, because a statistically defensible boundary
correction technique has been developed for second-order studies, arbitrary border correction schemes are
not necessary. Finally, a convenient method exists for the study of various distance subdivisions, or distance
zones.

In the following pages we describe in detail the analysis of the population pattern of McHenry County, Illinois
(see Figure 3.10). The location of 9 centers of population were identified by use of census data; each location
is noted by a number. The analysis of interevent distances is based on the number of pairs of points, i, j,
identified within a given distance, d, of each of the i points. Imagine centering a circle of radius d on each
point. Each of the points covered by the circle is paired with the center point of that circle, and it is this
number of pairs that forms our data (see Figure 3. 11). As the size of the circle is increased uniformly around
each point, we note the increasing number of pairs of points contained within the circles. In the usual analysis,
the value of d is increased from 0 to a distance beyond which statistical bias (discussed later) is evident.

The analysis of interevent distances depends on the expected number of pairs of points in a Poisson process
(the CSR model). Our task is to compare the number of observed pairs with the expectation at all distances,
taking into consideration the density of points, the borders, and the size of the sample.

The CSR formula given by Ripley (1981: 159-160) is

L(d) = [(ASk(i, j))/πN(N − 1)]1/2 (30)

where L(d) is a linear expression of the expected number of events (points) within distance d of all i events
(points), and where

S denotes

N
∑

i=1

N
∑

j=1

i 6=j
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and Sk(i, j) is defined as the number of j points within distance d of all i points, and A is the size of the
study area. Note that the summation sign calls for the enumeration of all pairs within d except when i and j
are the same; thus, a center point is not paired with itself. The square root sign and π serve to make L(d) a
linear function of d. In fact, the expectation of L(d) is d.

Figure 3.10 Location of the 9 Principal Centers of Population in McHenry County, Illinois, in
1980

Figure 3.11 Circles of Radius d = 10 Miles Centered on Points 1 to 9 of McHenry County (24
Pairs of Points are Encircled)
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If no border corrections are employed, beyond a certain point d the number of additional pairs per unit
distance decreases. This bias is of no interest if the goal is simply to describe the pattern of points. In order
to test for CSR, however, one must assume that the point process is continuous beyond the boundaries of the
study area. Before the edge correction is given, refer to Table 3.7. This gives the matrix of all N(N − 1) or
72 possible distances for the 9 points of McHenry County.

TABLE 3.7 Straight-Line Distance in Miles Between all 9 Centers of Population in McHenry
County, Illinois

Population
Center 1 2 3 4 5 6 7 8 9
1 – 22.09 14.84 22.94 30.02 27.02 28.64 30.92 34.12
2 22.09 – 11.24 4.50 13.60 15.03 18.06 22.14 20.01
3 14.84 11.24 – 9.62 15.21 12.38 14.42 17.46 19.45
4 22.94 4.50 9.62 – 9.39 10.55 13.58 17.68 15.66
5 30.02 13.60 15.21 9.39 – 5.39 7.43 11.10 6.52
6 27.02 15.03 12.38 10.55 5.39 – 3.04 7.16 7.11
7 28.64 18.06 14.42 13.58 7.43 3.04 – 4.16 6.18
8 30.92 22.14 17.46 17.68 11.10 7.16 4.12 – 7.43
9 34.12 20.01 19.45 15.66 6.52 7.11 6.18 7.43 –

The data in Table 3.7 are given in miles. Note that the table is symmetrical; that is, the distances are the
same in each direction. For example, the distance from point l to point 5 equals the distance from point 5
to point 1. Instead of using straight line distances, one might have used transportation distances or travel
time, where such factors as one-way streets could make the distance matrix asymmetrical. In that case, the
number of distinct distance measures would be N(N − 1) instead of N(N − 1)/2.

Note, too, that the number of ordered pairs of points make up the data base. For illustration, when i is set
at 1 and j at 5 and d is greater or equal to the distance from point l to point 5, the combination 1,5 counts
as one pair. When i is set at 5 and j is 1, the combination 5, l counts as another pair within d.

Distances are calculated using the Pythagorean theorem. First, the coordinates of each point X(i), Y (i) are
identified. The distance d separating points i and j is

d =
√

([X(i) − X(j)]2 + [Y (i) − Y (j)]2) (31)

In Table 3.8, columns 1, 2, and 3 identify the McHenry County point pairs by distance. In Figure 3.12 the
number of pairs are graphed by distance, revealing, as expected, that the number of pairs increases at a
decreasing rate toward the right-hand side of the curve.

The assumption of continuity beyond the boundaries requires that any point beyond the boundary must be
counted within the circle centered on a point in the study area. We assume that the pattern of points outside
of the study area is like the nearby pattern within the study area. Mathematically, this is accomplished by
weighting pairs of points within d whose distance apart (i to j) is greater than the distance that point i is to
the border. The weight will increase the value of the pair to something greater than one, so as to take into
account the “missing” points from outside of the study area.

The procedure for weighting can be made clear if we focus our attention on points 7 and 8 of Figure 3.11.
Figure 3.13a shows the area around point 8 in greater detail. If the boundary is a straight line, as it is in this
case, the following formula given by Getis (1984) can be used to find the contribution of the pair 8,7 to the
total number of pairs within d :

k(i, j) = {1 − [cos−1(e/d)/π]}−1 (32)

where e is the distance to the nearest edge. This formula describes the inverse of the ratio of the fraction
of the circumference of the circle contained within the study area to the whole circumference. The longer
the circumference of the circle outside of the study area the larger will be k(i, j). In the example shown, the
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boundary is 2.22 miles from point 8 and the distance, d, to 7 is 4.12 miles. Thus, instead of counting as one
pair, k(8,7) counts as 1.47 pairs.

TABLE 3.8 Second-Order Data for the Population Centers of McHenry County, Illinois

[1] [2] [3] [4] [5] [6] [7]
Pair Pair
i, j Numbers d K(i, j) S K(i, j) L(d) L(d) − d
6,7 1 3.04 1.00
7,6 2 3.04 1.00 2.00 3.38 0.34
7,8 3 4.11 1.00
8,7 4 4.12 1.47 4.47 5.05 0.83
2,4 5 4.50 1.00
4,2 6 4.50 1.00 6.47 6.07 1.57
5,6 7 5.39 1.07
6,5 8 5.39 1.00 8.54 6.98 1.59
7,9 9 6.18 1.17
9,7 10 6.18 1.98 11.68 8.16 1.99
5,9 11 6.52 1.25
9,5 12 6.52 2.05 14.98 9.24 2.72
6,9 13 7.11 1.00
9,6 14 7.11 2.15 18.13 10.17 3.06
6,8 15 7.16 1.00
8,6 16 7.16 1.67 20.80 10.89 3.76
5,7 17 7.43 1.30
7,5 18 7.43 1.33
8,9 19 7.43 2.20
9,8 20 7.43 1.68 27.31 12.48 5.05
4,5 21 9.39 1.35
5,4 22 9.39 1.45 30.11 13.10 3.71
3,4 23 9.62 1.00
4,3 24 9.62 1.37 32.48 13.61 3.99
4,6 25 10.55 1.41
6,4 26 10.55 1.65 36.54 14.43 3.88
5,8 27 11.10 1.93
8,5 28 11.10 1.80 40.27 15.15 4.05
2,3 29 11.24 1.58
3,2 30 11.24 1.00 42.85 15.63 4.39
3,6 31 12.38 1.00
6,3 32 12.38 1.90 45.74 16.15 3.77
4,7 33 13.58 2.08
7,4 34 13.58 2.18 50.00 16.89 3.31
2,5 35 13.60 1.91
5,2 36 13.60 2.22 54.13 17.57 3.97
3,7 37 14.42 1.00
7,3 38 14.42 2.25 57.39 18.09 3.67
1,3 39 14.84 2.27
3,1 40 14.84 1.00 60.66 18.60 3.76
2,6 41 15.03 2.04
6,2 42 15.03 2.14 64.84 19.23 4.20
3,5 43 15.21 1.00
5,3 44 15.21 2.36 68.20 19.72 4.51
4,9 45 15.66 2.26
9,4 46 15.66 2.93 73.39 20.46 4.80
3,8 47 17.46 1.11
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[1] [2] [3] [4] [5] [6] [7]
Pair Pair
i, j Numbers d K(i, j) S K(i, j) L(d) L(d) − d
8,3 48 17.46 2.63 77.13 20.97 3.51
4,8 49 17.68 2.40
8,4 50 17.68 2.64 82.17 21.65 3.97
2,7 51 18.06 2.26
7,2 52 18.06 2.51 86.94 22.26 4.20
3,9 53 19.45 1.21
9,3 54 19.45 3.09 91.24 22.81 3.36
2,9 55 20.01 2.37
9,2 56 20.01 3.11 96.72 23.48 3.47
1,2 57 22.09 2.68
2,1 58 22.09 2.47 101.87 24.10 2.01
2,8 59 22.14 2.48
8,2 60 22.14 2.86 107.21 24.72 2.58
1,4 61 22.94 2.72
4,1 62 22.94 2.66 112.59 25.34 2.40
1,6 63 27.02
6,1 64 27.02
1,7 65 28.64
7,1 66 28.64
1,5 67 30.02 Region of bias
5,1 68 30.02
1,8 69 30.92
8,1 70 30.92
1,9 71 34.12
9,1 72 34.12

Figure 3.12 Cumulative Frequency of Pairs of Points by Distance for McHenry County
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In the case shown in Figure 3.13b, that is, when a point is closer to two right angle boundaries than it is to a
point j, the weighting formula given by Getis (1984) is

k(i, j) = {1 − ([cos−1(e1/d) + cos−1(e2/d) + (π/2)]/2π)}−1 (33)

Figure 3.13 Detail of Border Conditions

In Figure 3.13b, the situation of point 9 is shown in relation to point 7. e1 is the distance to the nearest
vertical border, and e2 is the distance to the nearest horizontal border; as a result, k(9,7) is 1.98. Table
3.9 shows the distances to the nearest boundaries from each of the points; column 4 of Table 3.8 gives the
contribution to Sk(i, j) of each of the pairs of points.

TABLE 3.9 Straight-Line Distances in Miles from the Population Centers to the Nearest
Boundaries of McHenry County

e1 e2

Population Nearest Nearest
Center Vertical Border Horizontal Border

1 7.78 8.89
2 9.44 11.11
3 16.67 19.44
4 6.39 11.11
5 5.28 10.28
6 10.00 8.89
7 10.56 5.56
8 11.11 2.22
9 4.44 4.44
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The two edge correction formulae are inappropriate for irregular or curved borders. One can, however,
estimate the value k(i, j) in those circumstances by recalling that k(i, j) is the ratio of the entire circumference
to the proportion of the circumference inside the study area. Because of points near corners it might be wise
to question the inclusion of values k(i, j) greater than 4. In any case, the border correction device only helps
to create unbiasedness for distances d less than the circumradius of the study area or, more conservatively,
one-half the lesser of the length or the width of the study area when the study area is a rectangle. For McHenry
County, which is 38.06 miles by 33.89 miles, the circumradius is 25.48 miles d =

√

((38.06/2)2 + (33.89/2)2).
In the succeeding analysis we will use 25 miles as the cutoff distance.

McHenry County has an area, A, of 1289.81 square miles. When this value is placed into equation 30, L(d)
can be calculated for each observed distance (see Table 3.8, column 6). Recall that L(d) represents the
expected value in CSR. By comparing the various L(d) with d, one immediately gets an indication of the
second-order structure of the interevent distances (see Table 3.8, column 7). An L(d) greater than d at short
distances indicates clustering, whereas an L(d) less than d at short distances indicates an inhibition effect,
that is, points are consistently separated from one another. At long distances interpretation is more complex
because results there are dependent on the short distances outcomes.

Figure 3.14 shows the second-order pattern of population centers in McHenry County. First, an inhibition
distance of 3 miles is evident followed by what appears to be clustering that reaches a peak at 7.4 miles
and begins to fade, especially beyond 16 miles. The inhibition results from the obvious fact that population
centers represent a spatial cluster of population that precludes the location of another center of population
nearby. The peak indicates that there is a tendency for a short-distance spacing regularity of 7.4 miles. Since
a small sample was used, this phenomenon is readily evident in the southeast quadrant of the county. The
decline in clustering at the longer distances is as much a function of the short distance clustering as it is of
the tendency for several of the points to be rather far removed from the more noticeable cluster. In most
studies, concern is with short distance L(d). Longer distance values tend to be blurred by the effect of the
short-distance measurements.

Figure 3.14 Observed and Expected L(d) and the .05 Level of Statistical Significance for Pop-
ulation Centers in McHenry County
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The statistical test on the hypothesis of CSR can be carried out by engaging in a rather elaborate series of
simulation experiments. The procedure that is usually followed is to use a computer to simulate as many as
99 samples of Poisson process-generated point patterns of size N and to compare the extreme case results
[the max and min of L(d) of the simulations with the observed values of L(d) for all d]. If the observed L(d)
either exceeds the maximum or is less than the minimum for any value of d, the H0 of CSR is rejected at the
.01 level. Of course, this may become a time-consuming and expensive procedure; therefore, we will suggest a
much simpler approach that has been developed by Ripley (1979a).

Based on his experience with many simulations, Ripley concluded that a good test at the .05 level is
T = ±1.45At/2/N . If any value of L(d) − d is positively or negatively greater than T, statistical significance
obtains at the .05 level. Again, high positive values indicate the rejection of a CSR model, with the implication
that a model of clustering would be more appropriate. A high negative value indicates the rejection of a
CSR model, with the suggestion that a model of evenness or inhibition would be more appropriate. In the
McHenry County case, the largest difference between L(d) and d is 5.05 when d = 7.43 miles, but the test
value is T = 5.79, and thus we conclude that the CSR process cannot be rejected. Most likely, the small
sample contributed to this result. The bands representing the .05 level are shown on Figure 3.14.

The remaining aspect of this analysis concerns the study of the number of pairs of points within specified
equal-size distance bands. For the McHenry County study, arbitrarily, we have selected zones of 5 miles.
By taking the cumulative curve of Figure 3.14 and subdividing it into 10 distance zones, we see on Figure
3.15 the tendency for clustering in each of the zones. We denote ∆L(d) as the difference in L(d) taking the
distance at the two ends of the zone as the cutoffs. Figure 3.15 was constructed by partitioning Table 3.8
into classes, the boundaries of which are d values divisible by 2.5. For example, when d = 5 and 7.5, the
values of L(d) are 6.07 and 12.48, respectively. This means that as the expectation rose by 2.5, the observed
value rose by (12.48 - 6.07), or 6.41. This is 3.91 above the expectation of 2.5 and is thus an indication of the
distinct clustering tendency therein. Inhibition is clearly evident in the zone 0 to 2.5 miles. At the longer
distances, the tendency for evenness becomes evident. Of course, one could have chosen smaller zones for
more detailed analysis, and for larger N that strategy seems to make more sense. At present, no test exists
for the significance of these results, although a difference of proportions test might be indicative of the level
of significance.

Figure 3.15 Observed and Expected ∆L(d) for Population Centers in McHenry County

In an analysis such as that just described, the researcher has to select a distance increment for study. In the
McHenry County case, since we had so few observations, we let the distance matrix indicate which distances
we would look at closely. Usually, one chooses rather small distance increments to study, since one can always
combine these for study at a larger scale of resolution. A suggestion is that the basic distance increment be
1/100 of the length of a side of a square study area. Many times, for simplicity and comparability between
study areas, the area A is set equal to one. In that case, all measurements are taken with that value in mind.
Another choice one has is whether or not to include the border correction. If one fails to select this option,
the study becomes one of pattern description. See section 4.3 for a discussion of this approach.
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For further study and examples of the use of interevent distance/second-order analysis in geography, see
Raining (1982) and Getis (1983, 1984). The theoretical literature, with many practical examples taken mainly
from biology, is thoroughly discussed in Ripley (1981) and Diggle (1983).
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4 MEASURES OF ARRANGEMENT

Measures of arrangement are techniques that examine characteristics of the locations of points relative to
other points in the pattern. From a practical standpoint, these techniques have two advantages over measures
of dispersion discussed in Chapter 3. First, arrangement measures are “density free.” This means that in
order to obtain arrangement properties of a CSR pattern against which the observed properties are compared,
we do not need to estimate any values from the observed data. In the case of quadrat analysis, for example
(see section 2.1), it was necessary to estimate λ (the expected number of points per quadrat) before we could
obtain the expected quadrat frequencies for a CSR pattern. In addition, since arrangement measures are
concerned with the locations of the points relative to each other and not relative to the study area, as is the
case with dispersion measures, they are essentially free of edge effects introduced by the nature and shape of
the study area boundary.

Measures of arrangement are not without their problems, however. First, such measures are usually less
rigorous than measures of dispersion, in something like the way that nonparametric statistics are usually less
powerful than their parametric equivalents. This situation arises primarily because measures of arrangement
are insensitive to some differences in some pattern characteristics so that identical values may be expected for
patterns that are different in some way. In addition, the statistical theory underlying measures of arrangement
is generally less well developed than that for measures of dispersion, so that a greater element of subjectivity
enters into the interpretation of the results of analyses involving measures of arrangement.

4.1 Reflexive Nearest Neighbor Analysis

In some of the nearest neighbor analyses in Chapter 3 the reader may have observed that there were instances
where two points were the nearest neighbors of each other. Such points are said to be reflexive (reciprocal)
nearest neighbors. This notion can be extended to identify higher-order reflexive nearest neighbors. One
simple test of arrangement involves comparing the number of reflexive nearest neighbors in the pattern under
study with that expected in a CSR pattern.

To illustrate this technique, consider Figure 4.1, which shows the locations in a portion of northern Ontario
of lakes that in 1978, because of pollution, contaminated one or more species of fish that were unsafe for
human consumption. Of the 57 points in this pattern, 36 have reflexive first nearest neighbors (see Figure
4.1). The probability that a point in a CSR pattern is a reflexive nearest neighbor is 0.6215 (Clark and
Evans 1955). Multiplying this probability by N gives the expected number of reflexive nearest neighbors in a
CSR pattern, which here is (57) (0.6215) = 35.43. Note that since a reflexive point must be a member of a
pair, the observed value must always be an even number. In this example, if we round the expected value
to the nearest even number, we get 36, which is identical to the number observed in the empirical pattern.
Unfortunately, no test 1s available to evaluate the significance of the difference between the observed and
expected values. Moreover, although a high proportion of reflexive pairs implies that the points occur as
isolated and relatively uniformly arranged couples (as in Figure 3.2), it is not entirely clear how to interpret
other departures from the CSR expectation (Porter 1960; Pielou 1969: 122; Haggett et al. 1977: 442-445).

Because of both the lack of a test of significance and the lack of unanimity in interpreting the results, it is
common to extend the analysis of reflexive nearest neighbors to higher orders (Dacey 1969; Cox 1981). Table
4.1 gives the probabilities that a point in a random pattern is the jth nearest neighbor of its own jth nearest
neighbor (for j ≤ 6). In interpreting the number of observed pairs in relation to CSR values most researchers
suggest that more higher-order values in excess of the CSR expectations indicate a measure of regularity in
the arrangement of points, whereas lower empirical values imply elements of grouping in the pattern. In our
example the number of second-order reflexive nearest neighbors is 20; the expected number is (57) (0.3291) =
18.76. For the third-order nearest neighbors the observed number of reflexive points is 14 and the expected
value is (57) (0.2431) = 13.86. In both cases the difference between the observed and expected values is
slight and, together with the values for the first-order reflexive nearest neighbors, suggest that the pattern of
polluted lakes is CSR.
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Figure 4.1 Location of Polluted Lakes in a Part of Northern Ontario in 1978

TABLE 4.1 Probability that a Point in a Random Pattern in Two Dimensions is the jth Nearest
Neighbor of its Own jth Nearest Neighbor

j Probability
1 0.6215
2 0.3291
3 0.2431
4 0.2015
5 0.1760
6 0.1582

SOURCE: Cox(1981)

The reflexive nearest neighbor procedure may also be applied in those instances where the study area is a
line (Dacey 1960). However, this does involve the use of a different set of probabilities for the CSR pattern
(Clark 1956). These probabilities are given in Table 4.2.

To illustrate the use of linear reflexive nearest neighbor analysis, consider Figure 4.2, which shows the locations
in August 1982 of “fast food” outlets (restaurants providing take-out facilities) on the eastern side of King
Street, which is the main street passing through the twin cities of Kitchener-Waterloo in southern Ontario.
Of the 32 points, 22 are reflexive nearest neighbors (see Figure 4.2). The expected number for a CSR pattern
is (32)(0.6667) = 21.33, thus suggesting that the arrangement characteristics of the pattern are essentially the
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same as those of a CSR pattern. The observed numbers of second- and third-order reflexive nearest neighbors
are 10 and 6, respectively, with the corresponding expected values being 11.84 and 8.70. This suggests that
there are some tendencies toward grouping of points in the pattern.

TABLE 4.2 Probability that a Point in a Random Pattern Along a Line is the jth Nearest
Neighbor of its Own jth Nearest Neighbor

j Probability
1 0.6667
2 0.3704
3 0.2716
4 0.2241
5 0.1952
6 0.1753

SOURCE: Dacey (1969)

Figure 4.2 Locations of Fast Food Outlets on the Eastern Side of King Street, Kitchener-
Waterloo, August 1982
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4.2 Polygon Techniques

Polygon techniques are still being developed in geography, but the present indications are that they are likely
to prove much more sensitive to various pattern arrangements than the reflexive nearest neighbor techniques
presented above. However, the polygon techniques do require much more computational effort.

To illustrate these procedures, consider Figure 4.3, which shows the locations in 1973 of settlements in an area
of southeastern Montana. For any point pattern in two dimensions, such as this one, it is possible to construct
a set of Thiessen polygons, more readily known outside of geography as Voronoi polygons or Dirichlet domains.
These polygons are obtained by associating with each point in the pattern all locations in the study area
that are closer to it than to any other point in the pattern. Those locations in the study area that are
equidistant from two points will lie on the boundary of two adjacent polygons. Similarly, any locations
that are equidistant from three or more points in the pattern will form the vertices of adjacent polygons.
The result of this procedure is the creation of a tessellation of contiguous, space-exhaustive polygons. The
Thiessen polygons for the 30 settlements are shown in Figure 4.3. Examination of these polygons reveals that
three edges are incident at each vertex. The incidence of more than three edges at a vertex is very rare since
for this to occur four neighboring points in the pattern must lie on the circumference of a circle whose interior
contains no other points. Since this is highly unlikely to occur in real-world patterns, we may discount this
situation.

Figure 4.3 Loctaions of Settlements in Southeastern Motana, 1973

The set of Thiessen polygons can be used to produce another contiguous, space-exhaustive tessellation known
as the Delaunay triangulation. This involves joining all points in the pattern whose Thiessen polygons have
an edge in common. The resulting tessellation consists exclusively of triangles. The Delaunay triangulation
for the Montana settlements is also shown in Figure 4.3.
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It is possible to examine several different properties of these triangles but the most obvious density-free
property is the sizes of the angles of the triangles. Each triangle has three angles and it is possible to identify
the smallest one, which, of course, cannot be greater than 60 degrees. Mardia et al. (1977) have produced
results that enable us to determine what the probability is of obtaining a triangle minimum angle less than
or equal to some value, x, for a Delaunay triangulation associated with a CSR pattern. This probability,
P (x), is given by

P (x) = 1 + 1/2π[(6x − 2π) cos 2x − sin 2x − sin 4x] (34)

Values of P (x) for between 1 and 60 degrees (in one-degree intervals) derived from equation 34 are given in
Table 4.3.

TABLE 4.3 Probability that the Minimum Angle of a Triangle in a Delaunay Triangulation
for a Random Point Pattern is Less than or Equal to a Given Value, x

[1] [2] [3]
Radians Degrees Probability

x P (x)
0.017453 1 0.000610
0.034906 2 0.002436
0.052359 3 0.005479
0.069812 4 0.009731
0.087265 5 0.015189
0.104718 6 0.021843
0.122171 7 0.029683
0.139624 8 0.038698
0.157077 9 0.048871
0.174530 10 0.060185
0.091983 11 0.072619
0.209436 12 0.086152
0.226889 13 0.100757
0.244342 14 0.116406
0.261795 15 0.133068
0.279248 16 0.150707
0.296701 17 0.169287
0.314154 18 0.188768
0.331607 19 0.209107
0.349060 20 0.230256
0.366513 21 0.252170
0.383966 22 0.274794
0.401419 23 0.298074
0.418872 24 0.321954
0.436325 25 0.346374
0.453778 26 0.371271
0.471231 27 0.396582
0.488684 28 0.422240
0.506137 29 0.448177
0.523590 30 0.474322
0.541043 31 0.500604
0.558496 32 0.526949
0.575949 33 0.553283
0.593402 34 0.579531
0.610855 35 0.605617
0.628308 36 0.631463
0.645761 37 0.656994
0.663214 38 0.682133
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[1] [2] [3]
Radians Degrees Probability

x P (x)
0.680667 39 0.706804
0.698120 40 0.730930
0.715573 41 0.754437
0.733026 42 0.777252
0.750479 43 0.799303
0.767932 44 0.820518
0.785385 45 0.840830
0.802838 46 0.860173
0.820291 47 0.878482
0.837744 48 0.895699
0.855197 49 0.911765
0.872650 50 0.926626
0.890103 51 0.940232
0.907556 52 0.952537
0.925009 53 0.963498
0.942462 54 0.973077
0.959915 55 0.981240
0.977368 56 0.987960
0.994821 57 0.993212
1.012274 58 0.996977
1.029727 59 0.999243
1.047179 60 1.000000

The specific test involves generating the Delaunay triangulation for the point pattern under investigation and
then identifying the minimum angle in each of the triangles in this triangulation. We count the number of
minimum angles in the pattern in specified intervals of x. These counts for the triangles in Figure 4.3 are
given in column 2 of Table 4.4 Note that in counting the observed frequencies, in order to avoid edge effects,
we ignore the angles from those triangles where one or more of the sides forms part of the outer boundary of
the Delaunay triangulation of the point pattern. The observed frequencies are then cumulated (see column
3 of Table 4.4) and F (x) is calculated by dividing each of the observed cumulative frequencies by the sum
of the frequencies. The values of F (x) so obtained are shown in column 4 of Table 4.4. The corresponding
values, P (x), for a CSR pattern can be obtained from column 3 of Table 4.3 and are shown in column 5 of
Table 4.4. The values of F (x) and P (x) can be compared using a one-sample Kolmogorov-Smirnov (K-S)
test (Yeates 1974: 204-206; Taylor 1977: 137-139; Norcliffe 1977: 102-107; Shaw and Wheeler 1985: 129-130).
This test involves obtaining the absolute difference between the values of F (x) and P (x) for corresponding
values of x (see column 6 of Table 4.4) The largest of the values in column 6 determines the test statistic,
Dmax, which is compared with the appropriate value from statistical tables of critical values.

For the pattern in Figure 4.3, Dmax is 0.0680, whereas the critical value from the statistical tables for α =
0.05 is 0.2178. Thus we cannot reject the H0 of a CSR pattern for the settlements.

However, could we have proceeded any farther if the results had led to the rejection of the H0? The answer
is a tentative yes. If the points were arranged perfectly regularly (as in Figure 1.2c) all the Thiessen polygons
would be regular hexagons and all the triangles would be equilateral so that all angles in the pattern would
measure 60 degrees. Thus, if for a real-world pattern, the H0 is rejected and there is an excess (relative
to the proportions expected for a CSR pattern) of minimum angles at the upper tail, a regular pattern is
indicated. Similarly, if the points are located so that they approximate a square grid (see Figure 4.4, which
shows such a pattern produced by displacing points originally located on a square lattice), the resulting
Thiessen polygons will all be four-sided and the triangles will be close to right-angled so that the minimum
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angles will be approximately 45 degrees. Thus, a significant excess of angles close to 45 degrees indicates a
pattern that approximates a square grid. Note that column 2 of Table 4.4 indicates that the distribution of x
is bimodal with one of the modes occurring at 45 degrees, which suggests that the pattern of settlements
possesses some elements of a square grid. In a pattern that has clusters of points some Delaunay triangles
will have edges that represent links between points on the periphery of different clusters. Such triangles will
be obtuse so that their minimum angles will be small. Thus, distributions of x that contain a significant
excess of small angles are indicative of a clustered arrangement of points. Examples of the use of polygon
techniques are found in Boots (1974, 1975), Vincent et al. (1976, 1983), and Vincent and Howarth (1982).

TABLE 4.4 Analysis of Locations of Settlements in Southeastern Montana Using the Minimum
Angle Technique

[1] [2] [3] [4] [5] [6]
Cumulative Cumulative Cumulative

α Observed Observed Observed Expected
(Degrees) Frequency Frequency Proportion Proportion | [4] - [5] |

F (x) P (x) |F (x) − P (x)|
0-5 1 1 0.0256 0.0152 0.0104
6-10 4 5 0.1282 0.0602 0.0680
11-15 0 5 0.1282 0.1331 0.0049
16-20 2 7 0.1795 0.2302 0.0508
21-25 6 13 0.3333 0.3464 0.0131
26-30 8 21 0.5385 0.4743 0.0642
31-35 2 23 0.5897 0.6056 0.0159
36-40 4 27 0.6923 0.7309 0.0381
41-45 7 34 0.8718 0.8408 0.0310
46-50 4 38 0.9744 0.9266 0.0478
51-55 1 39 1.0000 0.9812 0.0188
56-60 0 39 1.0000 1.0000 –

Figure 4.4 A Pattern of Points Approximating a Square Grid
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4.3 Interevent Distances Without Boundaries

The discussion in section 3.6 on interevent distances / second-order analysis is designed to enable researchers
to test hypotheses on CSR. In that approach if one disregards the need to correct for statistical bias, tests
are invalid, but one is still left with a comprehensive description of the arrangement of points. Thus, by
eliminating the correction for boundaries and dropping concern for CSR--that is, by counting each linked pair
as one--we have a measure of spatial arrangement. Rather than confuse this value with L(d), we shall call
this measure A(d). The formula for A(d) is

A(d) = SI(i, j)/N(N − 1) (35)

where S is defined as in equation 30, SI(i, j) is the sum of all pairs of points within distance d of all i, and N
is the total number of points.

The McHenry County data can be used to illustrate the approach outlined in equation 35. In Figure 3.12
the curve of the cumulative frequency of pairs by distance represents SI(i, j). Figure 4.5 shows A(d). A(d)
gives the proportion of all pairs of points within distance d of all i. As was the case with L(d), A(d) may
be broken into distance zones [∆A(d)] so that one may look more carefully at particular trends in the data
(Figure 4.6). For example, from Figures 4.5 and 4.6 it can be seen that points are no closer than three miles
apart, 20 of the 72 (28%) pairs are within 7.5 miles of each other, and over half of those are between 6 miles
and 7.5 miles. As a further example, the distribution of ∆A(d) is shown for the arrangement of points (one
for each 1000 people) in the Des Moines Standard Metropolitan Statistical Area in 1980 (Figure 4.7).

Figure 4.5 A(d) for Population Centers of McHenry County

Figure 4.6 ∆A(d) for Population Centers of McHenry County
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Figure 4.7 ∆A(d) for Population Pattern of Des Moines, Iowa

4.4 Information Theory

Another approach to point pattern analysis involves using concepts developed in information theory. Informa-
tion theory measures the degree of organization in a given system. The entropy statistic, H

H =
N

∑

i=1

pi ln(1/pi) (36)

where:

ln is the natural logarithm and
pi is defined in the following text

is one measure of organization for a pattern of N points (Shannon and Weaver 1949). It measures variations
in the frequency of occurrence of points over the study area.

The values of pi in equation 36 can be derived in two ways. If the pattern is summarized by a set of quadrats,
the index i in equation 36 represents the different outcomes for the number of points observed in a quadrat
and pi is the observed proportion of quadrats with outcome i (Semple and Golledge 1970). As an alternative
to using quadrat values to obtain the values of pi, pi can be calculated using the Thiessen polygons for each
of the points in the pattern. In this case, pi is calculated as the ratio of size, ai, of the Thiessen polygon
of point, i, to the size of the study area, A (Chapman 1970). However, in order to avoid edge effects, we
disregard from the analysis any point for which one or more of the boundaries of its Thiessen polygon is part
of the study area boundary, so that pi is actually calculated using

pi = ai/

nc
∑

i=1

ai (37)

where nc is the number of points free from edge effects.

There are several problems involved in interpreting the value of H in equation 36 for a given point pattern.
The main problem is that marked clustering and extreme evenness among points in a pattern both yield very
similar values of H, whereas CSR patterns with different numbers of points yield drastically different values
of H. To overcome these problems, statistics that measure information in a relative way have been proposed.

One such statistic that may be used if the quadrat method is employed to evaluate pi is the information gain
statistic, I(p : q). This statistic is given by

I(p : q) =
∑

I

pi ln pi/qi (38)

where qi is the expected proportion of quadrats with i points in a CSR pattern. Values of qi can be obtained
from equation 1 in section 2.1. The value of two times I(p : q) can be evaluated as a χ2 statistic with (K − 2)
degrees of freedom, where K is the number of values of i (Kalbfleisch 1979: 167).
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When the Thiessen polygon approach is used, I(p:q) cannot be evaluated since q1 has no meaning in this
context. In such situations another measure of relative information can be used. This is the redundancy
measure, R∗, derived by Theil (1967: 92) and given by

R∗ = Hmax − H (39)

Hmax is the maximum value that H can take on. It corresponds to that situation in which we have no
information about the pattern other than N and A. In this case, our best guess for any particular point in
the pattern would be that ai = A/N. This would mean that pi would equal 1/N for all N points so that

Hmax = N{1/N ln[1/(1/N)]} = ln N (40)

Once computed, the value of R∗ is compared to that expected for a CSR pattern, E(R∗). Estimates of E(R∗)
and var(R∗) have been obtained by Lenz (1979) and are given in columns 2 and 3, respectively, of Table
4.5. In addition, Lenz suggests that, if N > 15, the difference between R∗ and E(R∗) can be tested using a
normally distributed statistic, z, of the form

z = [R∗ − E(R∗)]/
√

var(R∗) (41)

Note that R∗ = 0 for a regular pattern and that it increases as the clustering of points in the study area
increases.

TABLE 4.5 Estimates of the Expected Values and Standard Deviations of Thiel’s Redundancy
Measure for a Random Pattern

[1] [2] [3]
N E(R∗) var(R∗)
15 0.118 0.0389
30 0.122 0.0286
60 0.124 0.0211
90 0.125 0.0165

180 0.125 0.0123
360 0.125 0.0087
∞ 0.126 0

SOURCE: Lenz(1979).

A more detailed discussion of the theory underlymg these procedures appears in Getis and Boots (1978:
81-85, 142-144) and Lenz (1979); additional empirical examples include Medvedkov (1967, 1970), Semple
(1973), Garrison and Paulson (1973), Chapman (1973), and Haynes and Enders (1975).
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5 SUMMARY

In this book the reader has been introduced to a variety of techniques for examining point patterns and
he or she may now be prompted to ask, “Which one is best?” The answer is that there is no one single
optimal technique for all applications and that the selection of a particular procedure is influenced by both
practical and statistical concerns. Consequently, we offer in the following text some suggestions that are
intended to help the reader in deciding upon an “appropriate” procedure to adopt in any given situation. We
stress however, that these suggestions are in the nature of pointers since formal comparative studies are few.
In addition, with the exception of those studies by Diggle (1979b) and Ripley (1979b), these comparisons
are limited in terms of the extent of techniques and pattern types examined. However, enough is known to
indicate that the power of most point pattern techniques (that is, their ability to eliminate false hypotheses)
varies according to the type of pattern under examination so that some techniques are better than others in
detecting clustering, whereas others are better in detecting regularity.

In general, techniques that measure the dispersion characteristics of a point pattern appear better than those
that measure its arrangement properties, particularly since the latter techniques require more subjectivity in
the interpretation of their results. Such dispersion measures include the quadrat and distance techniques
discussed in Chapters 2 and 3, respectively.

However, when used in association with dispersion techniques, arrangement techniques such as the reciprocal
nearest neighbor, polygon, and information theory techniques discussed in Chapter 4 can provide confirmation
of results and sometimes also provide additional insight into the pattern. In addition, it is safer to use
arrangement techniques when the researcher considers it undesirable to estimate values from the point pattern
or when no obvious boundary can be defined for the point pattern.

Within the set of dispersion techniques, quadrat methods require fewer calculations to be performed than
distance methods in order to obtain the test statistics. However, if the researcher has access to a digitizer
and a computer, this advantage becomes negligible. Further, if the size of N is small, distance techniques are
usually more practical. In such circumstances those procedures such as second-order analysis that use all
the interevent distances obviously make more use of the limited available information than those procedures
that use only average values. Also, as we saw in section 2.2, quadrats suffer from the spatial arrangement
problem, so that in many instances it is necessary to perform some additional test of the extent of spatial
autocorrelation in the quadrat values. Studies of interevent distance can be rather comprehensive, but one
can lose sight of nearest neighbor properties. One might think of second-order and nearest neighbor analysis
as complementary, and thus a particularly sensitive analysis might include both.

If the goal of the researcher is simply to evaluate an H0 of a CSR pattern, distance measures appear more
powerful than quadrat analysis (Holgate, 1972). However, quadrat analysis may be preferable if the researcher
plans on testing some alternative H0 since results have been derived for a range of alternative models specified
in quadrat form (see Rogers 1974; Haggett et al. 1977: chap. 13; Getis and Boots 1978: chaps. 3 and 4).
Few such analytical results have been derived for distance procedures. However, if a computer is available,
we may attempt to simulate the process underlying the hypothesized pattern and use a Monte Carlo testing
procedure such as that discussed in section 3.5. Recall that this involves measuring one or more properties
of the pattern under investigation and considering this pattern to be the outcome of a specified process.
This process is then simulated in order to obtain a number of other patterns (usually 99 to correspond with
conventional significance levels). The same properties are measured for each of the simulated patterns. We
can then examine where the value for the real pattern falls within the entire set of 100 values (99 simulated
plus one real pattern) thus giving an indication of the likelihood of the real pattern occurring under the
conditions of the specified process. A more detailed discussion of this testing procedure is given by Diggle
(l979a).

Finally, we should point out that point pattern analysis is one area in which ongoing research is continuing
and indeed expanding, particularly as statisticians become more aware of the area and its challenges. This
means that new techniques of point pattern analysis are being developed and existing ones are being refined.
Consequently, as we stated in Chapter 1, the particular techniques discussed in this book should be considered
as a selection of those presently available.
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