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Abstract

We present a simultaneous localization and mapping (SLAM) algorithm for a hand-held 3D
sensor that uses both points and planes as primitives. We show that it is possible to register 3D
data in two different coordinate systems using any combination of three point/plane primitives
(3 planes, 2 planes and 1 point, 1 plane and 2 points, and 3 points). Our algorithm uses the
minimal set of primitives in a RANSAC framework to robustly compute correspondences and
estimate the sensor pose. As the number of planes is significantly smaller than the number of
points in typical 3D data, our RANSAC algorithm prefers primitive combinations involving
more planes than points. In contrast to existing approaches that mainly use points for
registration, our algorithm has the following advantages: (1) it enables faster correspondence
search and registration due to the smaller number of plane primitives; (2) it produces plane-
based 3D models that are more compact than point-based ones; and (3) being a global
registration algorithm, our approach does not suffer from local minima or any initialization
problems. Our experiments demonstrate real-time, interactive 3D reconstruction of indoor
spaces using a hand-held Kinect sensor.
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Abstract— We present a simultaneous localization and map-
ping (SLAM) algorithm for a hand-held 3D sensor that uses
both points and planes as primitives. We show that it is possible
to register 3D data in two different coordinate systems using
any combination of three point/plane primitives (3 planes, 2
planes and 1 point, 1 plane and 2 points, and 3 points). Our
algorithm uses the minimal set of primitives in a RANSAC
framework to robustly compute correspondences and estimate
the sensor pose. As the number of planes is significantly smaller
than the number of points in typical 3D data, our RANSAC
algorithm prefers primitive combinations involving more planes
than points. In contrast to existing approaches that mainly
use points for registration, our algorithm has the following
advantages: (1) it enables faster correspondence search and
registration due to the smaller number of plane primitives;
(2) it produces plane-based 3D models that are more compact
than point-based ones; and (3) being a global registration
algorithm, our approach does not suffer from local minima
or any initialization problems. Our experiments demonstrate
real-time, interactive 3D reconstruction of indoor spaces using
a hand-held Kinect sensor.

I. INTRODUCTION

Interactive 3D reconstruction has always been a useful

technique for various applications in robotics, augmented

reality, and computer vision. Although there has been several

impressive results for real-time sparse [1] and dense [2], [3]

3D reconstruction using a hand-held 2D camera, several chal-

lenges such as reconstruction of textureless regions continue

to persist. The emergence of inexpensive 3D sensors such as

Kinect has addressed this issue. As newer and more exciting

applications are being identified to harness the potential of

such 3D sensors, two roadblocks are yet to be dismantled:

• Fast and Accurate 3D Registration: The limited field

of view and resolution of 3D sensors usually result in

a partial reconstruction of the entire scene. We need

an accurate and fast registration algorithm that fuses

successive partial depth maps to model the entire scene.

• Compact and Semantic Modeling: The depth maps

are usually noisy point clouds, which require a large

memory and do not convey any semantic information.

In this paper, we propose a simultaneous localization and

mapping (SLAM) algorithm that uses both points and planes

as primitives to address these issues. The use of planes

along with points enables both faster and more accurate

registration than using only points, because the number of

planes is much smaller than the number of points in typical

3D data, and planes generated by many points are less

affected by measurement noise. Local algorithms such as

the iterative-closest point (ICP) algorithm [4] are prone to

Fig. 1. A 3D model reconstructed from the sequence in Figure 4.
Our system not only generates registered 3D point clouds (top), but also
reconstructs a scene as a set of planes (bottom). Note that the plane-based
model is obtained from plane landmarks, which are generated by our SLAM
system in real time, not in post-processing. In this model, the number of
keyframes registered is 86, and the numbers of point and plane landmarks
are 17290 and 32, respectively.

local minima issues under fast motion of the 3D sensor. Our

method performs feature-based global registration and bundle

adjustment using both points and planes, and hence does not

assume any motion model.

Note that our system is different from systems such as [5],

[6] that extract planes from registered 3D point clouds;

instead, our system uses planes along with points extracted

from individual frames to register them. Our approach

achieves more efficient registration and generates a plane-

based model of the scanned scene, which provides a compact

and semantic interpretation of the scene. Figure 1 shows an

example of the plane-based model as well as registered point

clouds. Note that the plane-based model is generated by our

SLAM system in real time, not in a post-processing step.

A. Contributions

We summarize our main contributions:

• We show that any combination of three 3D point/plane

primitives allows for registration between two different

coordinate systems.



• We present a bundle adjustment framework using both

3D points and 3D planes.

• We demonstrate a real-time SLAM system using the

proposed techniques with a hand-held Kinect sensor.

B. Related Work

3D-to-3D Registration: Alignment or registration of 3D

data is a fundamental problem that has been solved using

several techniques. Registration algorithms can be classified

into local and global methods. Local methods start with a

good initialization and register two 3D point clouds using

iterative techniques. The most popular local method is the

ICP algorithm [4], which alternates between finding cor-

respondences between 3D points and making local moves

using a closed-form solution [7], [8], [9].

Global methods typically consider the entire point cloud,

identify some key geometric features, match them across

point clouds, and generate an optimal hypothesis using a

minimal set of correspondences in a RANSAC framework.

The registration obtained by global methods can be refined

by local methods. Global methods do not need any initial-

ization, but they suffer from incorrect and insufficient cor-

respondences. The basic geometric primitives used in such

global methods are points, lines, and planes. Several regis-

tration problems have been studied given both homogeneous

and heterogenous correspondences. For example, one can

find a closed-form solution for the registration given point-

to-point [7], [8], [9], line-to-line [10], plane-to-plane [11],

point-to-line [12], point-to-plane [13], and line-to-plane [14]

correspondences. Walker et al. [15] presented a closed-form

solution using both point-to-point and direction-to-direction

(e.g., normal-to-normal) correspondences based on the dual

quaternion representation. Olsson et al. [16] described a

method obtaining a global optimal solution from point-

to-point, point-to-line, and point-to-plane correspondences

using branch-and-bound. Li and Hartley [17] used branch-

and-bound to obtain the optimal correspondences as well as

transformation for the point-to-point registration problem.

SLAM Using 3D Sensors: SLAM using a 2D laser

scanner or an array of ultrasonic sensors, which provides

3D data only on a planar slice, has been well studied in

mobile robotics for the planar 3 degrees-of-freedom (DOF)

motion [18]. More recently, 3D sensors providing full 3D

point clouds have been used to compute the 6 DOF motion.

Several variants of the ICP algorithm have been used for

frame-by-frame tracking of the 6 DOF sensor motion [19],

[20]. KinectFusion [21] extended conventional ICP algo-

rithms by registering a current depth map to a virtual

depth map generated from a global truncated signed distance

function (TSDF) representation. The TSDF representation

integrates all previous depth maps registered into a global

coordinate system and enables higher-quality depth map gen-

eration than using a single frame, leading to more accurate

registration. These ICP-based local registration algorithms

work well for slow and smooth motion, but suffer from local

minima issues under fast and discontinuous motion.

Henry et al.’s RGB-D mapping system [22] extracts key-

points from RGB images, back-projects them in 3D using

the depth maps, and uses 3 point-to-point correspondences

to find an initial estimate of the pose using RANSAC,

which is further refined using the ICP algorithm. Weingarten

and Siegwart [23] presented a SLAM system using plane-

to-plane correspondences, which are determined based on

motion prediction using odometry or the ICP algorithm.

Pathak et al. [24] addressed the plane-to-plane registration

problem with unknown correspondences and presented an

efficient approach for computing correspondences using ge-

ometric constraints between planes. Trevor et al. [25] used a

combination of a small field-of-view (FOV) 3D sensor and a

large FOV 2D laser scanner for developing a SLAM system

using both plane-to-plane and line-to-plane correspondences.

Feature-based global registration methods that solely de-

pend on points [7], [8], [9], [22] suffer from insufficient or

incorrect correspondences in textureless regions or regions

with repeated patterns. Plane-based methods [11], [23], [24]

suffer from degeneracy issues in scenes containing insuf-

ficient numbers of non-parallel planes especially if using a

limited FOV 3D sensor; Trevor et al. [25] addressed this issue

by adding a large FOV laser scanner, but with an additional

cost and system complexity. For single-shot 3D sensors like

Kinect, line correspondences are hard to obtain because they

suffer from noisy or missing depth values especially around

depth boundaries.

Driven by these issues, our approach uses both points

and planes to avoid the failure modes that are typical while

using one of these primitives. This mixed scenario has not

been addressed before and we present a closed-form solution

to registration using both point-to-point and plane-to-plane

correspondences in a unified fashion. To perform global

registration without using any motion prediction, we present

an efficient RANSAC procedure using geometric constraints

between points and planes for solving the correspondence

problem.

II. SYSTEM OVERVIEW

Figure 2 shows the flow chart of our SLAM system. The

input to the system is a pair of a color image and a depth

map (RGB-D data). We use the standard terminology of mea-

surements and landmarks: Our system extracts measurements

from the input data and generates/updates landmarks in a

global map. This is done by extracting points and planes

from the incoming data and registering them with point/plane

landmarks in the global map, generated using the previous

measurements. Our main contributions in the system are (1)

a RANSAC-based registration algorithm using the minimum

number of primitives and (2) a map optimization algorithm

using both points and planes, which are detailed in Section III

and Section IV, respectively. Here we briefly describe each

component of our system.

Point Measurement: Our system extracts 2D keypoints

from each color image and back-projects them using the

corresponding depth map to obtain 3D point measurements.

Each point measurement is represented by (pm,Dm), where
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Fig. 2. Overview of our SLAM system. The system extracts 3D points and planes as measurements from each frame, and registers them with the 3D
point and plane landmarks in the map to compute the current camera pose. The landmarks in the map are updated using the registered measurements. The
landmarks are periodically optimized with our bundle adjustment algorithm using both points and planes.

pm denotes the 3D position and Dm denotes the keypoint

descriptor. We use SURF implemented in OpenCV as the

descriptor.

Plane Measurement: To extract plane primitives from the

3D point cloud generated from the depth map, we use the

following multi-stage RANSAC algorithm:

1) Randomly select several (20 in our experiments) ref-

erence points in the 3D point cloud.

2) For each reference point, find an optimal plane using

nearby points inside a small local window (101× 101
pixels).

3) Find all inliers (with a threshold of 20 mm) that form

a connected component with the reference point with

respect to a grid graph on the image space.

4) Identify an optimal plane as the one with maximum

and sufficient (>10000) number of inliers.

5) If the optimal plane is found, remove the inliers

corresponding to it and return to stage 1). Otherwise,

terminate the algorithm.

Each plane measurement is represented by (πm, Im), denot-

ing the plane parameters and the inliers, respectively. The

4D vector πm = (nT

m, dm)T, where nm is the unit normal

vector and dm is the distance to the origin of the camera

coordinate system.

Registration: The pose of the current frame is computed

by registering the measurements to the landmarks in the map

using our RANSAC-based registration algorithm. Section III

presents the closed-form solution for the registration problem

using both point-to-point and plane-to-plane correspondences

and an efficient RANSAC procedure.

Map Update: In the global map, our system maintains

point and plane landmarks generated from measurements in

keyframes. Our system adds the current frame as a keyframe

to the map if its pose computed using the RANSAC-based

registration is sufficiently different from poses of previous

keyframes. The result of the RANSAC-based registration

is also used to determine whether a measurement in the

keyframe is associated with an existing landmark (if it is

an inlier) or it generates a new landmark (if it is an outlier).

Each point landmark is represented by (pl,Dl), where pl

denotes the 3D position and Dl denotes the set of keypoint

descriptors obtained from associated point measurements.

Each plane landmark is represented by (πl,I l), where πl =
(nT

l , dl)
T denotes the plane parameters and I l denotes the
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Fig. 3. Registration using the minimal number of point/plane primitives.
Our algorithm prefers plane primitives over point primitives, because the
number of planes in 3D data is typically smaller than that of points and
planes are more robust to noise in 3D data, leading to more accurate
registration.

set of inliers from associated plane measurements.

Map Optimization: To have a globally consistent result,

our system runs bundle adjustment to optimize the poses of

keyframes and the point/plane landmarks using all measure-

ments. This step is explained in Section IV. As in [1], the

bundle adjustment runs asynchronously along with the main

camera tracking thread.

III. REGISTRATION USING BOTH POINTS & PLANES

In this section, we first present a closed-form registra-

tion algorithm using both point-to-point and plane-to-plane

correspondences. The algorithm is applicable to 3 or more

correspondences; thus it can be used to generate hypotheses

in our RANSAC framework, as well as to refine the camera

pose with all inliers. We then present our efficient RANSAC

procedure, which prioritizes plane primitives over point prim-

itives because the number of planes in 3D data is typically

smaller than the number of points. We also describe several

geometric constraints to prune false correspondences using

an interpretation tree [11].

A. Closed-Form Solution for Mixed Point-to-Point and

Plane-to-Plane Correspondences

Let {pi} and {p′

i}, i = 1, . . . ,M be corresponding 3D

points, and {πj = (nj
T, dj)

T} and {π′

j = (n′

j
T
, d′j)

T},



j = 1, . . . , N be corresponding 3D planes in two coordinate

systems. We wish to find the rigid body transformation [R, t]
between the coordinate systems.

Solutions for Individual Cases: For the point-to-point

correspondence case, it has been shown that the rotation and

translation components can be decoupled [7], [8], [9]. Let

p̄ = 1

M

∑

i pi and p̄′ = 1

M

∑

i p′

i be the centroids of the 3D

point sets, and qi = pi− p̄ and q′

i = p′

i− p̄′. Then the least-

squares solution of the rotation is obtained by minimizing
∑

i

‖q′

i − Rqi‖
2. (1)

This problem can be solved using the quaternion repre-

sentation of rotation [7] or singular value decomposition

(SVD) [8], [9]. Using the estimated rotation R̂, the translation

is computed as the difference between the rotated centroids:

t̂ = p̄′ − R̂p̄. (2)

For the plane-to-plane correspondence case [11], the rota-

tion is obtained by minimizing
∑

j

‖n′

j − Rnj‖
2, (3)

which can be solved similar to the case of point-to-point

correspondences. For computing the translation, we can stack

a linear constraint

n′

j

T
t = dj − d′j (4)

for 3 or more planes and solve the linear system.

Solution for Mixed Case: Now we consider the mixed

case where we have both point-to-point and plane-to-plane

correspondences. We exploit the decoupling used in the in-

dividual cases to first compute the rotation and then compute

the translation.

To compute the rotation, we combine Eqs. (1) and (3) as
∑

i

‖q′

i − Rqi‖
2 +

∑

j

wj‖n
′

j − Rnj‖
2, (5)

where wj is a weight assigned to the jth plane correspon-

dence. This equation shares the same form as Eqs. (1) and

(3), and the optimal rotation is obtained in the same manner.

Specifically, we define a 3 × 3 correlation matrix K [26] as

K =
∑

i

q′

iqi
T +

∑

j

wjn
′

jnj
T. (6)

Let K = UDV
T be the singular value decomposition of K,

where D = diag(σ1, σ2, σ3), σ1 ≥ σ2 ≥ σ3 ≥ 0. Then the

optimal rotation R̂ is given by [9], [26]

R̂ = U





1
1

det(UV
T)



 V
T. (7)

To compute the translation, we minimize

M‖t − (p̄′ − R̂p̄)‖2 +
∑

j

wj

(

n′

j

T
t − (dj − d′j)

)2

. (8)

This corresponds to defining a linear system
(

A1

A2

)

︸ ︷︷ ︸

A

t =

(
b1

b2

)

︸ ︷︷ ︸

b

, (9)

A1 = M I3 , b1 = M(p̄′ − R̂p̄) ,

A2 =






w1n
′

1

T

...

wNn′

N
T




 , b2 =






w1(d1 − d′
1
)

...

wN (dN − d′N )




 ,

(10)

where I3 is the 3 × 3 identity matrix. A1 and b1 disappear

if the number of point correspondences M is zero, while A2

and b2 disappear if the number of plane correspondences N

is zero. The least-squares solution is given by

t̂ = (AT
A)−1

A
Tb. (11)

B. Degeneracy Issues

To uniquely extract R and t, the correlation matrix K

in Eq. (6) and the matrix A in Eq. (9) should satisfy

certain conditions. To uniquely compute R, the rank of K

should be greater than 1 and at least one of the following

conditions must hold true [26]: (1) det(UV
T) = 1; (2) The

minimum singular value of K is a simple root (σ2 6= σ3).

For the translation t to be uniquely determined, the matrix

A should be rank 3. Note that if there is at least one point

correspondence (M > 0), the rank of A is 3 (because of A1).

The matrices K and A satisfy the above properties if the

correspondences possess at least one of the following as

shown in Figure 3:

1) 3 non-colinear points (rank(K) = 2).

2) 2 points and 1 plane where the vector joining the

two points is not parallel to the normal of the plane

(rank(K) = 2).

3) 1 point and 2 non-parallel planes (rank(K) = 2).

4) 3 planes whose normals span R
3 (rank(A2) = 3,

rank(K) = 3).

C. Efficient RANSAC Procedure

In contrast to correspondences in the 2D image space,

the 3D primitives provide several invariants that can be

used to prune false correspondences. These invariants are

the geometric entities that are independent of the coordinate

systems. We identify the following three invariants:

• I1: Distance between two points.

• I2: Distance between a point and a plane.

• I3: Angle between two plane normals.

Invariants can be denoted by a vector I = (i1, i2, i3), where

i1, i2, and i3 represent the number of invariants of the types

I1, I2, and I3, respectively. We can observe that all the

corresponding triplets involving points and planes possess

a total of three invariants as shown below:

• 3 points: I = (3, 0, 0)
• 1 plane and 2 points: I = (1, 2, 0)
• 2 planes and 1 point: I = (0, 2, 1)
• 3 planes: I = (0, 0, 3)



In our system, we use an interpretation tree [11] to prune

false correspondences using these invariants.

Prior to the pruning based on invariants, we need to

obtain some initial candidates of correspondences. In the

case of points, we obtain such candidates by using nearest-

neighbor descriptor matching between point measurements

in the current frame and point landmarks in the map. In

the case of planes, we use all possible combinations as

candidates. We start the RANSAC procedure using 3-plane

correspondences, because the number of planes in 3D data is

usually much smaller than that of keypoints. Moreover, since

planes are generated by many points, they are less affected by

the noise in 3D data, leading to more accurate registration. If

the measurements include less than 3 planes or if the number

of inliers computed using 3-plane correspondences is small,

then we try 2-plane and 1-point correspondences and so on,

as shown in Figure 3. We terminate the RANSAC procedure

by using a standard criteria on the minimum number of

triplets required to be sampled [27].

IV. BUNDLE ADJUSTMENT USING BOTH POINTS &

PLANES

Conventional bundle adjustment approaches simultane-

ously optimize the poses of all keyframes and/or point

landmarks using measurements obtained from 2D images [1],

[28] or 3D sensors [29], [30], [31]. We extend such ap-

proaches for 3D sensors by adding plane landmarks: We

simultaneously optimize point and plane landmarks as well

as the poses of all keyframes.

We denote the variables to be optimized as

• Point landmarks: pi
l = (xi, yi, zi)T

• Plane landmarks: π
j
l = (aj , bj , cj , dj)T

• Keyframe poses: T k = (tkx, tky , tkz , θk
x, θk

y , θk
z )T

Here, tk = (tkx, tky , tkz)T are the (x, y, z) components of the

translation of the kth keyframe, and θk = (θk
x, θk

y , θk
z )T

represent the rotation around the (x, y, z) axes. The rotation

matrix R
k of the kth keyframe is represented by R

k =
Rz(θ

k
z )Ry(θk

y)Rx(θk
x). We compute the Jacobian matrices

using the point and plane measurements as follows.

Point Landmarks: For point landmarks, we minimize

the distance error between a point landmark pi
l and an

associated point measurement pk
m = (xk

m, yk
m, zk

m)T in the

kth keyframe, which is expressed as

∥
∥pi

l −
(
R

kpk
m + tk

)∥
∥

2

= 0. (12)

Using the current estimate of the landmark p̂
i
l = (x̂i, ŷi, ẑi)T

and the keyframe pose [R̂k, t̂
k
], we linearize the equation as

∥
∥
∥p̂

i
l + ∆pi

l −
(

∆R
kp̂

k
m + ∆tk

)∥
∥
∥

2

= 0, (13)

where p̂
k
m = R̂

kpk
m + t̂

k
and

∆R
k =





1 −∆θk
z ∆θk

y

∆θk
z 1 −∆θk

x

−∆θk
y ∆θk

x 1



 . (14)

From Eq. (13), we obtain 3 equations separately for each

(x, y, z) component. The equation for the x component is

















2(x̂i − x̂k
m)

0
0

2(x̂k
m − x̂i)
0
0
0

2ẑk
m(x̂k

m − x̂i)
2ŷk

m(x̂i − x̂k
m)

















T















∆xi

∆yi

∆zi

∆tkx
∆tky
∆tkz
∆θk

x

∆θk
y

∆θk
z

















= −(x̂i − x̂k
m)2, (15)

and those for the y and z components can be similarly

obtained.

Plane Landmarks: For plane landmarks, instead of min-

imizing an algebraic error between planes, we minimize a

geometric error defined by the sum of distances between a

plane landmark and 3D points sampled from associated plane

measurements in a keyframe. Specifically, we uniformly

sample 3D points xk,s
m from inlier 3D points of a plane

measurement πk
m, and compute the distance between each

sampled point and the associated plane landmark π
j
l . The

minimization is expressed as

∑

s

(

π
j
l

)T
(

R
kxk,s

m + tk

1

)

= 0. (16)

We linearize the equation using the current estimate of the

plane landmark π̂
j
l = (âj , b̂j , ĉj , d̂j)T and the keyframe pose

[R̂k, t̂
k
] as

∑

s

(

π̂
j
l + ∆π

j
l

)T
(

∆R
kx̂

k,s
m + ∆tk

1

)

= 0, (17)

where x̂
k,s
m = R̂

kxk,s
m + t̂

k
= (x̂k,s

m , ŷk,s
m , ẑk,s

m )T. After

simplifying the equation, we have

∑

s



















x̂k,s
m

ŷk,s
m

ẑk,s
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j
l
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(
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k,s
m

1

)

.

(18)

Solution: By stacking Eqs. (15) and (18) for all

point/plane landmarks and keyframes, we obtain a linear

system J∆ = −ǫ0, where J represents the Jacobian matrix,

ǫ0 is the error vector given the current estimates of the vari-

ables, and ∆ is the update vector consisting of ∆pi
l , ∆π

j
l ,

and ∆T k to be computed. Our system currently computes

the entire linear system whenever the bundle adjustment

process is called, and solves it using the Gauss-Newton

iteration method with a sparse linear solver in Eigen1. It

1http://eigen.tuxfamily.org



(a)

(c)

(b)

(d)

Fig. 4. An example of real-time 3D reconstruction using a hand-held Kinect. (a) Color images and (b) depth maps from the captured sequence. (c) Our
system performs plane fitting and segmentation to extract plane measurements from the depth maps. Each plane measurement is depicted with different
colors. (d) Snapshots of our interactive visualization system. Plane landmarks (transparent polygons with different colors) and point landmarks (cyan points)
are superimposed on the current frame (colored point cloud), demonstrating the correct registration. White camera icons represent the poses of keyframes,
while the orange one shows the current pose. Please refer to the supplementary video demonstrating results for the entire sequence.

could be made more efficient by using hierarchical [30] or

tree-based [31] graph structures that allow us to compute

incremental updates and solutions of the linear system.

V. EXPERIMENTS AND DISCUSSION

We use a Kinect sensor that provides color images and

depth maps at a resolution of 640 × 480 pixels. Figure 4

shows a sequence captured in an office room. Figures 4(a)

and 4(b) show examples of the color images and depth

maps from the sequence. Figure 4(c) depicts plane extraction

results from the corresponding depth maps. Figure 4(d)

shows snapshots of our interactive visualization of the SLAM

result. Results for the entire sequence are available in the

supplementary video.

Our system superimposes the point and plane landmarks

onto the current point cloud when the registration is success-

ful. If the registration fails, our system indicates it to the user

(see the supplementary video). Note that our system always

performs global registration of the current frame with respect

to the map. Thus registration failure of any frame does not

affect subsequent ones; the user can simply bring the sensor

to a location from which a part of the reconstructed map is

observable.

A 3D model reconstructed from the sequence is shown

in Figure 1. Figure 5 shows other reconstruction examples.

In addition to registered point clouds, our system provides

reconstructed plane landmarks as a plane-based model of

the scene, which is more compact and provides semantic

information.

Note that in Figure 4(d) and in the video, several planes

are visualized as a single colored plane even if they are not

physically connected (e.g., two table tops at the same height).

This is because our registration algorithm handles planes

as infinite planes; the algorithm associates such planes to

a single plane landmark for better registration. Nevertheless,

we maintain plane inliers for each plane measurement and

use them to compute plane boundaries in the reconstructed

models; thus those planes are separately depicted in the

models shown in Figures 1 and 5.

Comparison: Figure 6 compares the 3D models recon-

structed by our approach and the conventional approach that

uses only point correspondences. After scanning the entire

room and returning to the initial location (the round table),



Fig. 5. Reconstruction results for different scenes, depicted as (top) registered point clouds and (bottom) plane-based models. The result on the left was
generated by registering 44 keyframes, including 8986 point and 39 plane landmarks. The result on the right was generated by registering 120 keyframes,
including 7301 point and 30 plane landmarks.

(b) Using points only(a) Using both points and planes (ours)

Fig. 6. Comparison of SLAM results obtained using (a) both points and
planes (ours) and (b) only points. Note that we started the SLAM process
at the location of the round table, scanned the entire room, and returned to
the start location as shown in the supplementary video. The result obtained
using only points exhibits drifts, appearing as the ghosting artifacts of the
table, while our result shows correct registration.

the conventional approach using only points produced drifts,

appearing as the ghosting artifacts of the round table in

Figure 6, while our approach maintained correct registration.

This is because (1) plane correspondences are more accurate

and stable than point correspondences especially in texture-

less regions and regions with repeated patterns; and (2)

plane correspondences can provide long-range interactions

among several frames (e.g., frames including the floor are

associated with a single plane landmark of the floor), leading

to globally consistent registration. Note that the conventional

TABLE I

PROCESSING TIME FOR EACH COMPONENT AVERAGED OVER THE

SEQUENCE SHOWN IN FIGURE 4 (IN MSEC).

Point Measurement Extraction 129

Plane Measurement Extraction 210

RANSAC Registration 138

Other (Map Update, Data Copy) 5

Total 482

TABLE II

NUMBER AND PERCENTAGE OF EACH REGISTRATION TYPE SELECTED

OVER THE SEQUENCE SHOWN IN FIGURE 4.

3 Planes 2 Planes 1 Plane Total
1 Point 2 Points 3 Points Registration

31 (22%) 60 (42%) 48 (33%) 5 (3%) 144

point-based approach could correct the misalignment with a

refinement step using the ICP algorithm, but with additional

computational costs. Moreover, in some cases where our

approach found a good solution, the conventional point-based

approach failed without providing any hypothesis.

Processing Time and Analysis: Currently our system

runs at 2–3 frames per second, depending on the number

of landmarks, on a standard PC with Intel Core i7-950

processor. Table I summarizes the average processing time

for each component of the system over the sequence shown

in Figure 4. Map optimization using bundle adjustment took

up to 10 seconds depending on the accuracy of the initial

solution and the number of variables, increasing as the

system adds more keyframes. However, it does not affect the

system frame rate due to the asynchronous update. Currently

the majority of the processing time is spent by the point/plane

measurement extraction. By using faster keypoint and plane

extraction algorithms [32], [33] we could further improve the

speed of our system.



Table II shows the number of each registration type

selected out of 144 successful RANSAC registration trials,

demonstrating that our system prefers plane primitives over

point primitives. Nevertheless, using only planes (i.e., 3

planes) is not enough for many cases, because there are

frames containing only a few non-degenerate planes due to

the limited field of view of the 3D sensor.

VI. CONCLUSIONS

We presented a real-time SLAM system for hand-held

3D sensors that uses both point and plane primitives for

registration. This mixed approach enables faster and more

accurate registration than using only points. Our system

generates a 3D model as a set of planes, which provides

more compact and semantic information of the scene than

point-based representations.
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