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Abstract. A subset D of the vertex set V(G) of a graph G is called point-set dominating, 
if for each subset 5 C V(G) — D there exists a vertex v e D such that the subgraph of G 
induced by SU {v} is connected. The maximum number of classes of a partition of V(G), 
all of whose classes are point-set dominating sets, is the point-set domatic number dp(G) 
of G. Its basic properties are studied in the paper. 
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The point-set domatic number of a graph is a variant of the domatic number d(G) 

of a graph, which was introduced by E. J. Cockayne and S. T. Hedetniemi [1], and of 

the point-set domination number "/P(G), which was introduced by E. Sampathkumar 

and L. Pushpa Latha in [3] and [4]. We will describe its basic properties. All graphs 

considered are finite undirected graphs without loops and multiple edges. 

A subset D of the vertex set V(G) of a graph G is called dominating, if for each 

vertex x £ V(G) - D there exists a vertex y € D adjacent to x. It is called point-set 

dominating (or shortly ps-dominating), if for each subset 5 C V(G) - D there exists 

a vertex v e D such that the set 5 U {v} induces a connected subgraph of G. A 

partition of V(G) is called domatic (or point-set domatic), if all of its classes are 

dominating (or ps-dominating, respectively) sets in G. The maximum number of 

classes of a domatic (or point-set domatic) partition of V(G) is called the domatic 

(or point-set domatic, respectively) number of G. The domatic number of G is 

denoted by d(G), the point-set domatic number of G is denoted by dp(G). Instead 

of "point-set domatic" we will say shortly "ps-domatic". 

For every graph G there exists at least one ps-domatic partition of V(G), namely 

{V(G)}. Therefore dp(G) is well-defined for every graph G. 
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Evidently each ps-dominating set in G is a dominating set in G and thus we have 
a proposition. 

Proposition 1. For every graph G the inequality 

dp(G) < d(G) 

holds. 

Each vertex of a complete graph Kn forms a one-element ps-dominating set and 
therefore the following proposition holds. 

Proposition 2. For every complete graph Kn its ps-domatic number satisfies 

dp(Kn) = n. 

A similar assertion holds for a complete bipartite graph K,,hn. 

Proposition 3. Let Km,n be a complete bipartite graph with 2 < m ^ n. Then 

dp(Km,n) = m. 

P r o o f . Let U,V be the bipartition classes of Km,n. Let u 6 U, v 6 V and 
consider the set D = {u,v}. Let S C V(Km,n) - D. If S C U, then S U {v} 
induces a subgraph which is a star and thus it is connected. If S C V, then so is 
S U {«}. Suppose that S n U j= 0, S n V ^ 0. The set S itself induces a connected 
subgraph, namely a complete bipartite graph. The vertex u is adjacent to a vertex 
of S n V and thus also SU {«} induces a connected subgraph; the set D = {u,v} 
is ps-dominating. If U — {ui,... ,um}, V = {vi,... ,vn}, we take D; = {ui,Vi} for 
i = 1 , . . . , m - 1 and Dm = {um,vm,...,vn}. Then {D j , . . . ,D m } is a ps-domatic 
partition of Km,n and dp(Km,n) ^ m. On the other hand, dp(K„hn) ^ d(Km,n) — m 
and thus dp(Km,n) = «»• • 

Proposition 4. Let n be an even integer, let G be obtained from the complete 
graph Kn by deleting edges of a linear factor. Then 

dP(G) = n/2. 

P r o o f . Evidently each pair of non-adjacent vertices in G is ps-dominating and 
there exists a partition of V(G) into n/2 such sets. On the other hand, no one-vertex 
ps-dominating set exists. This implies the assertion. • 



Now we will prove some theorems. By da(x,y) we denote the distance between 
vertices x,y in a graph G. By diam(G) we denote the diameter of G. 

Theorem 1. Let G be a graph. If dp(G) > 3, then diam(G) sC 2. 

P r o o f . Let dp(G) = fc ^ 3. Then there exists a ps-domatic partition 
{£>i,... ,Dk} of G. Let x,y be two vertices of G. As k > 3, at least one of the 
sets £>j,. . . ,£>jc contains neither x nor y. Without loss of generality let it be £>i. 
We have {x,y} C V(G) - £>i and therefore there exists a vertex v € £>i such that 
{v, x,y} induces a connected subgraph of G. If x,y are adjacent, then dc(x, y) = 1. 
If x,y are not adjacent, then v must be adjacent to both x and y and dg(x,y) = 2. 
As x, y were chosen arbitrarily, we have diam(G) < 2. D 

Theorem 2. Let G be a graph. Ifdp(G) = 2, then diam(G) sg 3. 

P r o o f . Let dp(G) = 2. There exists aps-domatic partition {£>i,£>2} of V(G). 
Let x,y be two vertices of G. If both x,y are in £>i, then {x,y} C V(G) - £>2 and 
dc(x,y) ^ 2 analogously as in the proof of Theorem 1. Similarly in the case when 
both x,y are in £>2. Now let x e £>i, y e D2. As {y} C V(G) - Dx, there exists 
v 6 £>i adjacent to y. As both .x, D are in £>i, we have da(x,v) ^ 2, da(v,y) = 1 
and thus da(x,y) < 3. As x,i/ were chosen arbitrarily, we have diam(G) ^ 3 . D 

Now we shall consider bipartite graphs. 

Corollary. Let G be a bipartite graph. If dp(G) ^ 3, tJien G is a complete 

bipartite graph. 

This follows from the fact that every non-complete bipartite graph has the diam
eter at least 3. 

Theorem 3. Let G be a iion-compJete bipartite graph. Then dp(G) = 2 if and 
only ifG has a spanning tree T with diam(T) ^ 3. 

P r o o f . Let T be a tree with diam(T') ^ 3. If £>i, £>2 are the bipartition classes 
of T, then {£>i, £>2} is aps-domatic partition of T and dv(T) sj 2 and thus dp(T) = 2. 
If G is a graph such that T is its spanning tree and G is a non-complete bipartite 
graph, then obviously also dp(G) = 2 . 

Now suppose that dp(G) = 2 and let {£>i,£>2} be a ps-domatic partition. Let 
Vi, V2 be the bipartition classes of G. First suppose that £>i is a proper subset of V. 
Then Vi -£>i C V(G)-Di and for each v 6 £>i the set (Vi-£>i)U{u} is independent, 
i.e. it does not induce a connected subgraph of G. Hence this case is impossible and 
moreover £>i cannot be a proper subset of Vi and £>2 cannot be a proper subset of V\ 
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or of V2. Now consider the case D, = V,. Then D2 = V2. We have V2 C V(G) - D, 
and there exists a vertex i>i G Vi adjacent to all vertices of V2. Analogously, there 
exists a vertex «2 6 V2 adjacent to all vertices of V . All edges joining v\ with vertices 
of V2 and all edges joining v2 with vertices of V\ form the spanning tree T; its central 
edge is v\v2 and its diameter is 3. The case D, = V2, D2 = V\ is analogous. Now 
the case remains when D, n V, ^ 0, Dx n V2 ± 0, D2 n V\ £ 0, D2 n V2 ^ 0. Let 
V! e D inVi , x2 £ D\DV2. We have {x\,x2} C V(G)-D2 and there exists a vertex 
v € D2 such that {v,x\,x2} induces a connected subgraph of G. As x\,x2 belong 
to distinct bipartition classes of G, the vertex v cannot be adjacent to both of them 
and thus x\, x2 are adjacent. Therefore D2 induces a complete bipartite subgraph on 
the sets D2 n V,, D2 n V2 and analogously, D\ induces a complete bipartite subgraph 
on the sets D, n Vi, D, n V2. We have Dx n Vx C V(G) - D2 and therefore there 
exists a vertex w2 e D2 adjacent to all vertices of D2 n V\; evidently w2 € D2 n V2. 
Analogously, there exists a vertex w\ € D\ n V, adjacent to all vertices of D, n V2. 
The vertex w\ is adjacent to all vertices of V2 and the vertex w2 is adjacent to all 
vertices of V\. Obviously w\,w2 are adjacent. There exists a spanning tree T with 
the central edge w\w2 which has the diameter 3. D 

Now we turn to circuits. By Cn we denote the circuit of the length n. 

Theorem 5. For the circuits we have 

dp(C3) = 3, 

dp(CA) = 2, 

d p ( C 5 ) = 2 , 

dp(Cn) = 1 for n Js 6. 

P r o o f . The circuit C3 is the complete graph K3 and thus dp(Cs) = 3. The 
circuit C4 contains a spanning tree which is a path P3 of length 3 and therefore 
dp(C4) = 2; note that C4 is a bipartite graph. Consider C5 and let its vertices be 
u i , . . . ,U5 and edges u;«i+i for i = 1, . . . ,4 and v,su\. There exists a ps-domatic 
partition {D\,D2}, where D\ = {u,,u2 ,«4}, D2 = {«3,U5}; thus dp(Cs) ^ 2. As 
the domatic number d(C5) = 2, we have dp(C5) = 2 as well. The circuit Cr, is 
a bipartite graph and does not contain any spanning tree of diameter 3, therefore 
dp(C6) = 1. Now consider C7. Suppose that in C7 there exists aps-domatic partition 
{Di,D2} and denote its vertices by u\,...,m in the usual way. Any two vertices 
with the distance 3 are in distinct classes of {Di, D2}; this follows from the proofs of 
Theorem 1 and of Theorem 2. If u, € D\ (without loss of generality), then U4 e D2, 
u7 € Di, «3 6 D2 , u6 e D\, u2 6 D2 , u5 e Di, «i e D2 , which is a contradiction 
and thus dp(Ci) = 1. For n > 8 w e have diam(C„) > 4 and thus dp(Cn) = 1. D 



Theorem 6. For the complement Cn of a circuit Cn we have 

dP(C3) = 1, 

d„(C4) = 1, 

dp(Cn)= [n/2\ for n 2 5. 

P r o o f . The graphs C3 and CA are disconnected and therefore they have the 
ps-domatic number 1. If n > 5, then any pair of non-adjacent vertices in Cn is a ps-
dominating set, which can be easily verified by the reader. There exists a partition 
of V(Cn) into [n/2J sets, each of which is a pair of non-adjacent vertices, except at 
most one which has three vertices from which only two are adjacent. There exists 
no one-element ps-dominating set, therefore dp(C„.) = [n/2\. D 

In the end we will prove an existence theorem. 

Theorem 7. Let V be a finite set, let k be an integer, 1 ^ k ^ \V\, let 
{Di,..., Dk} be a partition of'V. Then there exists a graph G such that V(G) = V, 
dp(G) = k and {D\,..., D^} is a ps-domatic partition of G. 

P r o o f . For i = 1 , . . . , k choose a vertex Vi € D; and join it by edges with all 
vertices not belonging to Di- The resulting graph is the graph G. For each subset 
S C V(G) — Di there exists a vertex of Di which is adjacent to all vertices of S, 
namely V{. Therefore {D\,..., Di/} is a ps-domatic partition of G and dv(G) ~M k. If 
\Di\ = 1 for all i, then G is Kk and dp(G) = k. If |D,:| > 2 for some i, then a vertex 
u e Di - {m} has the degree k - 1 and thus the domatic number satisfies d(G) ^ k 
(by [1]) and d,,(G) < d(G) ^ fe. This implies dp(G) = k. D 

In the end we will give a motivation for introducing the point-set domination. The 
concept of a dominating set is usually motivated by the displacement of certain ser
vice stations (medical, police, fire-brigade) which have to provide service for certain 
places (vertices of a graph). In the case of the point-set dominating set we want that 
for any chosen region (set of vertices) there might exist a station providing services 
for the whole region. Note that the point-set domination number is also a variant of 
the set domination number introduced in [5] and mentioned in [21. .,- ~ - -̂  
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