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ABSTRACT

Motivated by applications in cartography and computer graphics, we study a version
of the map-labeling problem that we call the k-Position Map-Labeling Problem: given
a set of points in the plane and, for each point, a set of up to k allowable positions,
place uniform and non-intersecting labels of maximum size at each point in one of the
allowable positions. This version combines an aesthetic criterion and a legibility criterion
and comes close to actual practice while generalizing the fixed-point and slider models

found in the literature.

We present a general heuristic that given an e > 0, runs in time O(nlogn +
nlog(R*/e)log(k)), where R* is the size of the optimal label, and guarantees a con-
stant approximation for any regular labels. For circular labels, our technique yields a
(3.6 + €)-approximation, improving in the case of arbitrary placement over the previous
bound of approximately 19.5 obtained by Strijk and Wolff 28, We then extend our ap-
proach to arbitrary positions, obtaining an algorithm that is easy to implement and also
substantially improves the best approximation bounds. Our technique combines several

geometric and combinatorial properties, which may be of independent interest.

1. Introduction and Summary of Results
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The problem of automated label placement has received considerable attention
in the computational geometry community 21%:22:24:26.28 que to its applications in
the areas of cartography 191420 and computer graphics °. For example, the ACM
Computational Geometry Task Force ? has targeted it as one of the important areas
of research in Discrete Computational Geometry. We refer the reader to the Map
Labeling Bibliography website 33, for comprehensive information on this subject.

As pointed out by Marks and Shieber 24, four concerns are of particular impor-
tance in placing labels: (1) the degree to which labels overlap with each other—
non-intersecting labels are the most fundamental requirement '*—and obscure car-
tographic features; (2) the degree to which labels are clearly and unambiguously
associated with the features they identify; (3) a priori preferences among a canoni-
cal set of potential label positions; and (4) the number of features left unlabeled. In
general, cartographers first obtain computer solutions and then use their know-how
to refine the solutions in order to improve aesthetics—a painstaking and time-
consuming task.

Models for the study of label-placement problems can be broadly classified into
three types: fixed-position models, slider models, and arbitrary-orientation models.
(For more details, see 1%22.) We generalize these models with a model in which the
user can specify a set of k allowable positions for each point. It is crucial to note
that k is not fixed in advance, but can be specified by the user, so that the k-position
model indeed generalizes fixed-position and slider models and, for arbitrarily large
k (specified using a suitable succinct specification), also subsumes the arbitrary-
position models. Formally, an instance of the k-Position Map-Labeling (KPML)
problem consists of a set of points, and, for each point, a set of k allowable label
placements. The goal is to place a label for each point (with the point lying on the
boundary of the label) in one of the allowable placements so as to maximize the size
of the labels. In the slider model there is no constraint on k; in the fixed-position
models, £ is fixed. In contrast, the model proposed here allows the k positions to
be specified by the user; in particular, by allowing & = co we get the slider model
and by setting k = 4 we get the model of Formann and Wagner’s.

Our model reflects minimal constraints on aesthetics and association of labels
with point features (as expressed by the allowed placements), while maximizing
legibility (as expressed by overall size). For expository purposes, we focus on uni-
form circular labels; in a later section, we briefly outline how our technique extends
directly to any regular polygonal labels (albeit with slightly worse performance
guarantees).

Recall that an approximation algorithm for a maximization problem II provides
a performance guarantee of p > 1 if, for every instance I of II, the solution value
returned by the approximation algorithm is at least 1/p times the optimal value
of I. Our main result is an efficient and easily implementable polynomial-time
approximation algorithm with a performance guarantee of 3.6 for the KPML prob-
lem restricted to circular labels. This result has two important extensions that are
further discussed in Section 9.

e As our analysis shows, our algorithm works even for unbounded k without



any loss in performance, yielding a substantial improvement over the previous
bounds of roughly 30 by Doddi et al. ® and of approximately 19.5 by Strijk
and Wolff 28,

e By using a circumscribed regular polygon and an inscribed regular polygon
as lower and upper bounds, the algorithm yields a polynomial-time approxi-
mation (with slightly worse performance guarantees) for the KPML problem
when restricted to any regular polygon. In fact, the algorithm works even if
we are allowed a fixed set of regular polygons as surrogates for labels, with
each point having a different set of allowable positions.

Our approach is motivated by a similar approach taken by Formann and Wagner '3

to transform a 4-position map-labeling problem to instances of 25AT; in Section 3
we discuss why their idea cannot be extended directly to apply to our problem. Our
technique combines several combinatorial and geometric properties that characterize
the structure of label placements, properties that may be of independent interest.

Our paper is organized as follows. In Section 2, we briefly review past results.
In Section 3, we present the basic idea behind the algorithm. Section 4 gives defi-
nitions and notation as well as two crucial results—which allow us to conduct local
searches only. Section 5 develops a number of lemmata on the geometric relation-
ships inherent in the problem. Section 6 gives structural characterizations of the
problem and relates them to the geometry of the problem. In Section 7, we use all
of these results to develop an algorithm that selects two positions for each point
and show that the selection always contains a feasible solution if any exists. In
Section 8, we give the main algorithm. Finally, we present extensions of our results
in Section 9 and concluding remarks in Section 10.

2. Related Literature

Automated map labeling has been studied for nearly three decades in the car-
tography community. Current practical approaches typically include combinations
of techniques such as mathematical programming, gradient descent, simulated an-
nealing, etc.; a comprehensive survey can be found in Christensen et al. 4. A
comprehensive bibliography and other pertinent information on map labeling can
be found at the web site 3°.
13 studied the problem of labeling n points with uni-
form and axis-aligned squares. They gave a O(nlogn) algorithm with performance
guarantee of 2 and showed that this guarantee cannot be improved unless we have
P = NP. Kucera et al. 22 gave exact algorithms to solve this problem; one of their
algorithms runs in time O(4vV™) and returns an optimal solution.

Doddi et al. 8 considered two label-placement problems: maximizing label size
and maximizing the number of labeled points. For the problem of maximizing
label size, they gave constant-factor approximation algorithms with performance
guarantee of 8(2 4+ v/3) (~ 30) for circular labels and 8v/2/sin(7/10) (~ 37) for
square labels. For the problem of maximizing the number of labeled points subject
to placing labels of specified size, they developed a bicriteria approximation in which

Formann and Wagner



at least (1 —€) -n labels are placed, each of size at least (1 — c-¢€) times the optimal
label, for some positive constant c. Strijk and Wolff 2® improved the algorithm of
Doddi et al. for circular labels, obtaining an approximation ratio of approximately
19.5; they also proved that the problem is APX-hard.® Informally, the results in 28
and ® is based on the following observation: letting D3 denote the smallest diameter
of any three point subset of the input points, it is possible to labeling the input
points using labels that are a constant fraction of D3. The above observation allows
us to label a point using a local search, i.e. considering only points within certain
neighborhood distance. The basic difference between the work of 2® and 8 is in the
way the labels are placed. Intuitively, while placing labels for two points p and ¢
with minimal distance, ® place labels for p and ¢ that are as far apart as possible,
28 place labels for these points that are as close as possible.

While these efforts aimed at maximizing label size, a number of researchers have
also worked on maximizing the number of points that can be simultaneously labeled
by labels of a given size—the dual version of the size problem. This problem can be
cast as an independent set problem in an appropriately defined intersection graph, so
that results for finding independent sets in such graphs immediately yield analogous
results for maximizing the number of labeled points 1'%11:18:22  Agarwal et al. *
presented O(logn)- and (1 + €)-approximations when the labels are, respectively,
nonuniform and axis-aligned with uniform height. Kreveld et al. 22 proposed the
slider model, a direct extension of the model proposed in 8, and presented two
algorithms for maximizing the number of labelled points under this model: a fast
heuristic with a performance guarantee of 2 and a polynomial-time approximation
scheme, both restricted to the case of rectangular labels of the same height. Recently
Erlebach, Jansen and Seidel ' devised an elegant polynomial-time approximation
scheme for finding the maximum independent set of a set of circles; as observed
above, such an algorithm immediately yields one for maximizing the number of
points labelled with arbitrarily-sized circular labels.

Finally, a number of research papers have addressed extensions of the basic
model. These extensions include: (i) placing multiple labels per point; (ii) labeling
edge and point features; and (iii) associating weights with points and maximizing a

weighted objective. We refer the readers to 19-27:26:34:29 and the references therein.

3. The Basic Idea

Definition 1 Given a set S of points in the plane and, for each point a € S, a
set X, (with |X,| < k) of possible label placements, the k-Position Map Labeling
(KPML) problem is to identify the largest R > 0 such that, for each point a € S, a
label of size® R can be placed at one of the positions in X, such that no two such
labels intersect.

For the rest of the paper, we will assume that our labels form topologically open

¢Informally speaking an APX-hard problem cannot have a polynomial-time approximation
scheme unless P = NP. See 2% for more details.

bIn the case of circular labels, size is taken to be the radii of the circles; in the case of regular
polygons, size is taken to be the length of the sides.



sets. The position of a circular label of a given size that must include a given point
on its perimeter is fully specified by the angle made by the line passing through the
point and the center of the circle. Thus we shall assume that positions are given
as angles measured counterclockwise with respect to (w.r.t.) the positive abscissa.
Note that, in our development, a position, unless otherwise specified, can be any
angle whatsoever—it need not be limited to the allowable positions specified in the
input.

Our definition can be extended to regular polygons. In such a case, we need an
angle and also allowable orientations for the polygonal label. As stated earlier, we
focus here on circular labels in order to simplify the exposition.

The main result of this paper can be viewed as a polynomial-time approximate
reduction to the 2SAT problem. Thus our technique generalizes the idea of For-
mann and Wagner '3, who reduced the problem of placing uniform and axis-aligned
squares to the 25AT problem.

Let S denote the given set of points, R* the size of labels (radius or edge length)
in an optimal solution, and p > 1 some constant.

e A candidate label of size o labeling point a € S is called p-dead if a label of
size p-o placed in the same position contains some other point b € S, b # a. If
we have p-o < R* and a candidate label of size o is p-dead, then the position
used by that label cannot be used in an optimal solution.

e A candidate label of size o labeling point a € S is called safe if it does not
intersect any label of equal size labeling (in any position) a different point
of S. Clearly, if there exists a safe label, then it can be added to the solution
without worrying about the placement of labels at other points.

e A candidate label of size o labeling point a € S is called p-pending if it is
neither p-dead nor safe. A p-pending label of size o labeling point a € S may
intersect only with p-pending labels of other points in S.

The approximation algorithm uses the concept of a p-relazed procedure and the
corresponding certificates of failure as formulated by Hochbaum and Shmoys 6.
Informally speaking, a polynomial-time (p + €)-relaxed procedure TEST for a max-
imization problem II (where the optimal value for instance I is denoted by R*)
has the following structure: given a candidate solution with value M, TEST either
outputs a “certificate of failure,” implying R* < (p + €) - M, or succeeds, imply-
ing that the heuristic solution value is at least M. Such a procedure can then
be used to obtain a p-approximation for a combinatorial problem in the following
way. Let the optimal solution take a value from the range [LB,UB]. A binary
search over [LB,UB]J, in steps of €,° yields the largest value M such that TEST
with candidate solution value M succeeds but TEST with candidate solution value
(M + €') fails. Letting HEU(I) denote the heuristic solution, we can thus write

“In their original paper 1® applied the technique to graph problems. In their case, they needed
to search an ordered domain with polynomially many values. Thus they did not have to do binary
search. In our case the domain can be exponentially large. Hence we need to do binary search
over the given ordered domain in steps of € to obtain an efficient polynomial algorithm.



HEU(I) = M and R* < p-(M +¢€'), yielding a performance of p+¢, for any desired
e value (at the expense of an appropriate increase in the running time). This proce-
dure is a polynomial-time algorithm for the KPML problem, but it is not strongly
polynomial-time, because because its running time depends on €. Section 8.1 ana-
lyzes the exact running time of our procedure.

Although Formann and Wagner '3 do not state it explicitly (nor use the termi-
nology presented above), their algorithm can be viewed as an instance of this general
schema. Their algorithm starts by placing infinitesimally small and equally-sized
candidate labels at each of the four positions of each point. At each step, the size of
each label is uniformly increased; any p-dead label is removed and its corresponding
position eliminated. In the case of square, axis-aligned labels that must touch the
labeled point at one corner, Formann and Wagner showed that, for p > 2, there are
at most two p-pending labels. Using this fact, a 2SAT instance is constructed and
solved. The process is repeated until the 2SAT instance is no longer satisfiable; the
last feasible solution found is then returned. The transformation to a 2SAT formula
combined with a procedure for solving the 2SAT problem forms a 2-relaxed pro-
cedure in the sense of Hochbaum and Shmoys and yields a performance guarantee
of 2.

The 2SAT instance itself simply describes, using implications, the possible inter-
sections among p-pending labels. Since there are at most two possible positions per
point, the choice at each point can be encoded by a single Boolean variable. Let x,
and z; denote the variables corresponding to points a € S and b € S, respectively,
where z, is set to true iff the first of the two p-pending labels for point a is chosen
(and similarly for point b). If, say the first p-pending label for a intersects with the
second p-pending label for b, this is encoded with the implication x, — xp, or, in
25AT form, the clause {Z,,xp}. It is easily verified that a feasible solution exists
for the labeling problem iff the constructed 2SAT instance is satisfiable.

Our main algorithm also uses the idea of reduction to 25SAT. However, the num-
ber of p-pending positions for the KPML problem is much larger than 2—and, with
just k = 3, a straightforward application of Formann and Wagner’s technique will
yield an instance of 3SAT, which is of course NP-hard. Our main contribution is
a selection technique that combines several geometric and combinatorial properties
to select at most 2 feasible positions for each point—at the cost of using a slightly
larger p (in the case of circular labels, we use p < (3.6 + €)). The selection proce-
dure combined with an algorithm for solving 2SAT, yields the required p-relaxed
procedure.

In broad outline, our selection procedure is based on three crucial geometric
properties of (sub)optimal solutions. We call a position dead, safe, pending if the
label placed at that position is dead, safe, or pending, respectively.

Packing property: The first property concerns the packing of labels in (sub)optimal
solutions to the KPML problem. For the sake of analysis, we can ignore safe posi-
tions. (This is due to the fact that we can always place a label at a safe position
regardless of the placement of labels at other points.) Pick a € S and let C! denote
the circle of radius 0.8 - R* centered at a. Let S! C S denote the set of all points



of S that lie inside C/,. We show that, while placing labels at a, we can ignore any
point of S that lies outside C}. This is a crucial result, since it allows us to conduct
a local search within S only; using a packing argument, we further show |S!| < 4.
Sections 4 and 6 provide the necessary details.

Bounding dead and pending regions: The second property allows us to combine
contiguous dead, or pending, positions into regions and allows us to bound the
number of regions of each type. To begin with, we identify and eliminate all dead
positions of a. We call a contiguous set of dead positions a dead region. We consider
only maximal dead regions, in the sense that no two such regions share a dead
position. Thus any two dead regions must be separated by a region of pending
positions, which we call a pending region. We calculate the minimum angle of a
dead region and show that the number of dead regions (and thus also of pending
regions) is at most 2. Our aim is to select at most one position from each pending
region, thereby allowing us to encode the problem as an instance of 25AT. Section 5
discusses this part in detail.

Equivalent pending positions: Intuitively, the third property allows us to define
“equivalent positions” in pending regions, thereby allowing us to choose any one of
these positions for constructing the 2SAT instance. Let b € C!, as in Figure 1.

Figure 1: A clique-region and a uniform-region of point a.

As previously discussed, b must be surrounded by a dead region of a, which
we denote by D = Cone(a, 03,0, — €), where Cone(a,03,60;) denotes a contiguous
set of p-dead positions between €3 and 6; — e for infinitesimally small £ (using
anti-clockwise angles measured from the positive abscissa, with 03 < 61). Let
P, = Cone(a,01,602) be a pending region, a conical section of p-pending positions
between #; and 6, in anti-clockwise direction. P, has one of its boundaries, 61,
adjacent to the dead region D surrounding b. We show that the positions in the
conical region P, form one of two types of equivalence classes, a clique-region or a



uniform-region.

e The set of positions in the conical region P, forms a clique-region w.r.t. b if,
for each p-pending position 6, of b, a label of size R*/p placed at 6, touches
(i.e., intersects with an intersection of null area) a label of the same size placed
at some 0; € P,, while a p-enlarged label (of size R*) placed at 8, intersects
(with nonzero area) every p-enlarged label placed at any position inside P,.

e Similarly, the set of positions in the conical region P, forms a uniform-region
w.r.t. b if there exists a p-pending position 6, at b such that a label of size
R*/p placed at 6, intersects a label of same size placed at any position in P,.

Since each such set is adjacent to a dead region, for each point b in C!, we have two
cliqgue-regions of a w.r.t. b and two uniform-regions of a w.r.t. b—one on either side
of the vertical line as shown in Figure 1. Note that

No optimal solution can simultaneously place a label at positions 6, and
0, € P, since they intersect each other.

It is crucial to note the difference between these two types of regions.

e A clique-region is defined w.r.t. two positions, #; of a and 6, of b. Con-
sequently, the entire P, can be treated as a single position and hence any
position in P, can be selected and the remaining positions can be ignored
w.r.t. b.

e In contrast, a uniform-region P, is defined w.r.t. only 6, of b, so that an
optimal solution may place a label at 8, — ¢ for the point b and a label at
0> for the point a (refer to Figure 1). Thus only 62 can be selected and the
remaining positions can be ignored w.r.t. b.

Selection procedure: Our selection criterion depends on whether a set is a clique-
region or a uniform-region. Since, by definition, both clique-regions and uniform-
regions share a boundary position (the position 6;), one of these two sets of a w.r.t.
b must properly contain the other. Therefore, 8, is always a feasible position w.r.t.
b. In Section 5, we show that, if we have d(a,b) > 0.4 - R*, where d(a,b) denotes
the Euclidean distance between a and b, then the corresponding clique-region of
a w.r.t. b properly contains the uniform-region of a w.r.t. b. This is an important
observation, since it allows us to treat a uniform-region of a w.r.t. b as a clique-region
of a w.r.t. b.

Suppose C! has one more input point, say c. There are two possibilities: ¢ lies
in the same dead region that is surrounding b or c is surrounded by another dead
region. In the first case, it is easy to select two positions that are feasible w.r.t.
both b and ¢, as the clique-region and uniform-region of a w.r.t. b and the clique-
region and uniform-region of a w.r.t. ¢ share the same boundary position, namely
#,. However, when c lies in a different dead region, then the positions of a that are
considered feasible w.r.t. b may not be feasible w.r.t. c—this is the case where we
need a selection procedure.



Since uniform-regions of a are defined w.r.t. a given point, each point could
have a number of uniform-regions associated with it; the same holds for clique-
regions. It turns out that adjacent clique-regions or adjacent uniform-regions can
be merged to form larger conical regions. Informally, a P-region of a is the union of
all clique-regions and uniform-regions of a that share the same boundary position
(01), as illustrated in Figure 2. A P-region of a is thus the superset of least angle

Figure 2: Schematic diagram illustrating P-regions. The shaded region corresponds
to the D-region of a obtained by combining the dead regions w.r.t. p, ¢, and r. The
dashed cones represent the final P-regions obtained by combining the maximal
uniform/clique-regions w.r.t. p, ¢, and r.

covering all of the clique-regions and uniform-regions of a w.r.t. to the the points
that lie inside the same dead region (D). Thus a P-region must be a clique-region,
a uniform-region, or both w.r.t. at least one of these input points; we call this point
a reference point of the P-region. Furthermore, a P-region is maximal in the sense
that it is not properly contained in any P-region, dead region, clique-region, or
uniform-region. If Cone(a,6,0>) is a P-region, then 62 can be considered as a
feasible position w.r.t. to the points that lie inside D.

Since, by definition, a P-region is adjacent to a dead region, the number of P-
regions of a depends on the number of its dead regions. If ¢ has one dead region, it
can have at most two P-regions, and if a has two dead regions, it can have at most
four P-regions—see Figure 3. We study the properties of P-regions in Section 5.
Section 7 contains a detailed discussion of how to select two positions from the
P-regions that are feasible w.r.t. every input point that lies inside CJ.

4. Definitions and Preliminaries

In this section, we describe our notation and preliminary results used in the rest
of the paper. Figure 4 illustrates our notation.

d(a,b) denotes the Euclidean distance between points a,b € S.

C(a, 8, R) denotes the labeling circle of radius R labeling point a € S in position
6 (which may or may not be in the allowed set of positions X,).



o

Figure 3: Schematic diagram illustrating P-regions and D-regions. We have two
D-regions (shaded): the top one is w.r.t. r and the bottom w.r.t. p and q.

Figure 4: Our notation

R* denotes the radius of the labeling circles in the optimal solution.

C! denotes the circle (not a label) of radius 0.8R* centered at a € S; similarly
C!' and C!' denote the circles of radius 0.4R* and 0.1R* centered at a € S
respectively. (The constants produce the desired bounds in later lemmata.)

N(C}), N(CY) and N(C!") denote the number of points (other than a) of S that
lie inside C}, C' and C!"" respectively.

Angle(6;,6;) denotes the angle between #; and §; in counterclockwise direction,
starting from 6;.

Cone(a,b,02) denotes the conical region containing positions between ¢; and 62,
including #; and 65, such that 6; < 0 < 65.

¢ denotes an infinitesimally small positive value.
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We now formalize the definitions introduced in Section 3. We use p > 1 to
denote the approximation ratio; later, we shall fix p = 3.6.

Definition 2 Let a € S and let 8 be a position with respect to a (not necessarily in
X.). We call 0 dead if there exists b € S—{a} such that C(a, 8, R*) containsb € S.
We call 8 p-safe if for all b € S — {a} and for any angle v, C(a,8, R*/p) does not
intersect the circle C(b,v,R*/p) (a circle placed at any point b € S distinct from
a). We call 8 p-pending if it is neither dead nor p-safe.

A position 6 is dead if an optimal solution (using labeling circles of size R*) cannot
use it. In contrast, an approximation algorithm with performance p can safely place
a labeling circle of size R*/p at a p-safe position, regardless of chosen positions of
labeling circles of equal size labeling other points. Finally, p-pending positions are
those that may be used to place a labeling circle of size R*/p only for certain
placements of other labeling circles (of the same size) at other points. Note the
different quantifiers in the definitions of dead and pending positions: if a position
is dead, it does not matter which point in the input was responsible, but pending
positions are defined with respect to particular points and positions.

We now show that there is a minimum separation beyond which two points can
be handled independently of each other in an approximate solution. From here on,
in order to simplify our notation, we assume without loss of generality that points
a and p share the same ordinate.

Lemma 1 Assumep > 3.6. Leta,p € S withp ¢ C! and let 0, be a p-pending posi-
tion of a. Then any position 0, of p such that C(p,8,, R*/p) intersects C(a, 84, R*/p)
is a dead position.

Proof. Refer to Figure 5. Let o’ and a” denote the centers of C(a,8,, R*/p) and
C(a,8,, R*) respectively, and let p’ and p" denote the centers of C(p,8p, R*/p) and
C(p,0p, R*) respectively. We proceed to show that, for any d(a,p) > 0.8R*, we
have §(a,p") < R*, which implies that 6, is a dead position.

d(a,p") is maximized by maximizing ¢, and minimizing 6,. In turn, 6, is maxi-
mized just as the position that it denotes becomes dead, so that we can assume that
0, is € away from being dead, for arbitrary small € > 0. Therefore p lies just outside
C(a,8,, R*); since ¢ is infinitesimal,? we simply assume that p lies on the perimeter
of C(a,8,, R*). The triangle aa"p is thus isosceles; note that, if the line pp” inter-
sects that triangle, we are done, since we must then have d(a,p"”) < d(p,p") = R*.
(Equality occurs when we actually have a” = p”.) Thus we need only show that,
whenever the line pp” lies outside that triangle, no intersection of the two p-scaled
labels can occur.

The farthest extent of C(a,6,, R*/p) when projected onto the ap segment is
one radius (or 5R*/18 with our choice of p) plus the projection of the segment
aa', or 2R* /18; similarly, the farthest extent of C(p,6,, R*/p) when projected onto
the ap segment occurs when the line pp” is (nearly) aligned with pa and is then
also one radius plus the projection of the segment pp’ (minus some infinitesimal
constant), for a contribution of 7R*/18. Thus the projection of the two circles onto

dMany of the sets we define in this paper are open sets; in all cases, we treat them as closed
sets in order to derive bounds.
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Figure 5: Illustration of Lemma 1.

the segment ap (which has length 0.8 R*) spans at most 14R*/18 < 0.8 R*, so that
the two circles do not intersect. This implies that if 6, is a position such that
C(p,0,,R*/p) intersects C(a, 8y, R*/p), then §(a,p") < R*. O
The lemma is stated around a point a, but implies a dead position for point p.
This lemma is crucial in our development, as it implies that, while placing a label
(circle) of size R*/p (p = 3.6) at point a, we can safely ignore any points outside C/,
and thus restrict our scope to a strictly local search. We formalize this important
observation in the next theorem.
Theorem 1 Leta,p € S withp ¢ C),. Then we can ignore p while selecting feasible
positions 8, € X, to place a label (circle) of radius R*/p (p = 3.6).
Proof. We need to consider two possibilities: (i) for all 8, € X, C(p,0,, R*/p) does
not intersect C(a,f,, R*/p) or (ii) there exists a 6, € X, such that C(p,6,, R*/p)
intersects C(a,0q, R*/p). In the first case, since the label C(a,8,, R*/p) does not
intersect with any possible label w.r.t. p, p can be ignored. In the second case,
consider a position 6, € X, satisfying the condition; then by Lemma 1, this position
is a dead position and hence can never be used for placing a label. Thus all such
positions can be safely ignored. O
Counsider a point p € C!. Suppose there exists no pending position 6, € X, such
that the corresponding circle C(p,8,, R*/p) intersects the circle C(a,8,, R*/p), for
any pending position 6, € X,. Then the point p can also be ignored, as it does not

12



affect the placement of a label of size R*/p at a. From here on, we assume that,
for each point p € C,, there exists a pending position 6, such that C(p,8p,, R*/p)
intersects the circle C(a,8,, R*/p) for some pending position 8, € X,.

In the remaining sections, we assume p = 3.6 (and thus drop the p from terms
like safe or pending, although we still use it in some equations in order to show
where the constants come from) and, when working on the labeling of point a,
restrict our attention to points within C!—i.e., to points within 0.8 R* of a.

5. Some Interesting Conical Regions

This section elaborates on the second and third geometric ideas discussed in
Section 3, namely combining contiguous dead or pending positions into regions and
obtaining upper bounds on the number of regions of each type. In subsection 5.1 we
define formally D-regions—obtained by combining overlapping dead regions created
by distinct points in the input; the main result of this subsection is summarized in
Corollary 1: for any given point a € S, there exist at most two D-regions. Subsec-
tion 5.2 formally defines clique-regions and uniform-regions. Just as dead regions
created by distinct points can be combined to form D-regions, we can combine over-
lapping uniform-regions or clique-regions w.r.t. distinct points to form P-regions.

5.1. The D-regions and their Properties

We extend Definition 2 to a conical region Cone(a,6;,602). We first consider a
region formed by a contiguous set of dead positions.
Definition 3 Pick a € S. Then Cone(a,6;,62) is a maximal dead conical region
or D-region, whenever

1. every position 0, 6, < 0 < 05, is dead w.r.t. to some p € C!; and

2. neither 61 — € nor 0> + ¢ is dead.

The second condition indicates that any two D-regions are separated by at least one
non-dead position. If some point p is located within C?, then it must be surrounded
by a D-region, as illustrated in Figure 6.

We now determine the minimum angle of a D-region, which will enable us to
bound the number of D-regions and other types of regions that can exist for a point
in S.

Lemma 2 The minimum angle of a D-region is 132.8°.

Proof. Pick a,p € S with p € C!, and denote by D = Cone(a, 1, 6>) the D-region
of a w.r.t. p (see Figure 6). For any £ > 0, the point p must lie outside both C'(a, 6, —
g, R*) and C(a, 8> + ¢, R*). It is easily seen that, as d(a, p) increases, Angle(6:,02)
decreases, so that Angle(fy,6>) is minimized when p lies on the perimeter of C”.
Let a’ denote the center of C(a,f; — &, R*), for any fixed € > 0; note that we have
d(p,a’) > d(a,a’) = R*. By the law of cosines, we can write

d(a,p)” + 8(a,a’)® — d(a’, p)?
26(a, p)é(a, a’)

(1)

cos(/a'ap) =
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C(a, 61, R*) C(a, 02, R")

Figure 6: A D-region (shown in shaded) of a surrounding p

Substituting known values yields

6(&,[))2 + R*2 — R*2 _ 6((]’71)) (2)
20(a,p)R* 2R*

cos(Za'ap) <

Because p lies in C!,, we have é(a,p) < 0.8R*; substituting, we get cos(/a'ap) < 0.4
and thus Za’ap > 66.4°. By symmetry, the minimum angle of a D-region is 132.8°.
O

Corollary 1 For any given point a € S, there exist at most two D-regions.

5.2. Pending Regions and their Properties

We now consider conical sections formed only by pending positions for a given
point. By Corollary 1, a point a can have at most two D-regions and thus also two
disjoint regions of largest possible angle of pending positions. We formalize the two
types of equivalence classes introduced earlier: clique-regions and uniform-regions.
We then discuss the conditions under which such sets can be combined to form
P-regions.

5.2.1. The clique-regions

Pick a,p € S with p € C!, so that p must be surrounded by a D-region. Let p
lie directly below a. Let Cone(a,8:,62) be a conical section of pending positions,
with 8; adjacent to the D-region surrounding p. Suppose there exists a position 6,
(not necessarily in X,) at point p such that C(p,6,, R*/p) touches C(a,6,,R*/p).
If we enlarge the size of the labeling circles to the optimal value, then C(p,8,, R*)
will intersect potential labeling circles for a placed at positions closer to 6s; consider
the case where it intersects C'(a, 2, R*) itself. Then C(p,8,, R*) intersects every
C(a,8,R*), for ; < 6 < 6. Clearly, no optimal solution can simultaneously place
a labeling circle for point a at position 6 and one for point p at position 8, since
C(p,0,, R*) and C(a,d, R*) intersect. Therefore, Cone(a,6,0) is an equivalence
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class of positions w.r.t. p, so that, while selecting a position that is feasible w.r.t.
p, we can ignore all but one position in X, € Cone(a, 01,0>).

In Lemma 3, we derive expressions for the positions 6, 62 and 8, Definition 4.
The larger the angle of Cone(a,8;,62), the more positions can be treated as equiv-
alent. Corollary 2 shows that, as d(a,p) increases, 5 increases monotonically in
the first and second quadrants; since this situation corresponds to a clique in a
geometric intersection graph, we call Cone(a,81,62) a cliqgue-region.

Definition 4 Assume a,p € S. Let Cone(a,0;,02) denote a conical section such
that 61 is adjacent to the D-region of a w.r.t. p. We call Cone(a,61,6) a clique-
region of a w.r.t. p whenever there exists a position 6, such that:

1. C(p,6p, R*/p) touches C(a,01,R*/p);

2. V6,6, <6 <80y, C(p,6p,R*) intersects C(a,d,R*).
A maximal clique-region of a w.r.t. p is a clique-region of a w.r.t. p that is not
properly contained in any clique-region of a w.r.t. p.

Figure 7 illustrates the basic tenets of the definition. We summarize the above
definition as follows. Noting Definition 4, it is clear that a maximal clique-region is

O

Figure 7: Cone(a,01,62) is a maximal clique-region of a w.r.t. p.

adjacent to a D-region, so that a point a € S has at most two maximal clique-regions
w.r.t. some given point p € C!.

Lemma 3 Picka,p € S withp € C!, and assume that no other point of S lies within
C!. Further assume that a and p share the same ordinate. Let Cone(a,01,63) and
Cone(a,bs,04) denote two mazimal clique-regions of a w.r.t. p. Let 6, be as in
Definition 4 and let " and p"' denote the centers of C(a,61,R*) and C(p,6,,R*),
respectively. We then have

6(a,p)
2R*

1. 6; = — arcsin
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2 2 2
_ 8(a,p)*+6(a,p”)>—R* 8(a,p")*+R* —4R* \
2. 65 = arccos( 55(a.p)0 (@) ) + arccos( 55 (ap )

3. 93:7{'—92 and04:37”—01

NE

(2p—1)é(a,p) plp—1)é(a,p)®—2R*" )
2V/p(p=1)6(a,p)2+R*> 2R*\/p(p—1)8(ap)2+ R*2
5. 65 monotonically increases as 6(a,p), whenever 6(a,p) > 0.4R* increases.

4. 8, = T — arccos( ) — arccos(

Figure 8 illustrates the situation; note that two maximal clique-regions may overlap.

0> 03

Figure 8: The geometry of Lemma 3. Cone(a,0:,62) and Cone(a,fs,604) denote
two maximal clique-regions of a w.r.t. p.

Proof. The first relationship follows easily from considering the isosceles trian-
gle aa"p; the second from writing 8, = /pap" + /p"ab—%; the third from symmetry
along the ap axis; and the last from writing 6, = 7/2 — Zp'pa’ — Za'pa, where a'
and p’ are the centers of C(a, 61, R*/p) and C(p,0,, R*/p), respectively, and noting
that the equality d(p,a’)? = (R** + p(p — 1)8(a,p)*)/p? (derived below).

Consider the triangle paa’. By law of cosines, we have:

d(a,p)* +d(a,a')* = d(p,a’)?
20(a,p)d(a,a’)

(3)

cos(/paa’) =

We now determine the value of cos(/paa’) in terms of §(a, p). Since the points a
and p share the same ordinate, the position 6 lies in the fourth quadrant. Therefore,
we can get that

6, = 270° + Lpaa' = cos(Lpaa') = —sinb; (4)
Using expression 1 in Lemma 3, we obtain the value of sin; as follows:

sinf; = —d(a,p)/2R* (5)
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Since the value of aa’ corresponds to the radius of smaller circle, we have §(a, a’)
R*/ 2 Substituting these values in the expression for cos(/paa’), we get 6(p, a’)?
(R* + p(p = 1)d(a,p)?) /p*.

We now prove the monotonicity property. Using the law of cosines in App”a,
we can write

d(a,p")? = R* +6(a,p)(8(a, p) — 2R" cos(Lapp")) (6)

Substituting in the expression for 2, we conclude that 62 monotonically increases
as 0(a,p) increases (see Figure 9). m|

160

1401 1

120r 1

80r 1

40 1 1 1 1
04 05 0.6 0.7 0.8 0.9

dap)

Figure 9: The monotonicity of maximal clique-regions. As d(a,p) increases from
0.4R* to 0.8R*, the size of the maximal clique-region Cone(a,61,0>) increases, as
illustrated here by observing how 6, varies with increasing J(a, p).

In Lemma 3, the expressions for positions 6; and 62 are derived based on the
assumption that the points a and p share the same ordinate. Therefore, the position
0 lies in the fourth quadrant and the position 6 lies either in the first quadrant or
the second quadrant of the point a. As d(a,p) increases, the corresponding value
of #; decreases and the corresponding value of 85 increases. Therefore, the value of
the clique-region, denoted by Cone(a,8;,802), increases.

Since the positions ), 63 and 6, are mirror images of the positions 6, 82 and 6,
respectively, the clique-region of a, denoted by Cone(a,8s,64) also increases. (Note
that the expression for 0;, is not equal to the expression for 8, and it needs to be
derived based on the positions 03 and 6, respectively.)
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Since 6; monotonically decreases (or alternatively 6, increases) as d(a,p) in-
creases we can show that a maximal clique-region of a w.r.t. p increases as §(a, p)
increases, which is summarized below.

Corollary 2 Assume p € C! — CY (i.e., 0.8R* > 6(a,p) > 0.4R*); then we have:
(i) Angle(62,64) < 132.6°; (ii) Angle(61,03) < 132.6°; and (iii) 65 > 58°.

The bound of 132.6° is the reason for our specific choice of p: our proof of Lemma 8
will need these angles to be no larger than 132.8°, the minimum angle of a D-region.
We summarize the important features of properties of clique-regions as follows.

1. A clique-region of a € S is defined w.r.t. some input point p € C! and a
p-pending position 6, (not necessarily in X,) of p. X,).

2. A maximal clique-region of a € S is defined w.r.t. an input point p € C!, (as
opposed to a position).

3. A maximal clique-region of a w.r.t. p € C/, is adjacent to the D-region that is
surrounding p.

4. The input point a € S has two maximal clique-regions w.r.t. p € C!.

5. Suppose Cone(a,b;,0>) denotes the D-region surrounding the input point p.
Then one maximal clique-region of a w.r.t. p is adjacent to #; and the other
to 92.

5.2.2. The uniform-regions

Suppose now that there exists p € S and 6, such that C(p,8,, R*/p) intersects
both C(a, 61, R*/p) and C(a, 8, R*/p). Clearly, C(p,6,, R*/p) uniformly intersects
every C(a,8, R*/p), for §; < 6 < 65. We call the region Cone(a,:,62) a uniform-
region. Clearly, no optimal solution can simultaneously place a label at 65 for the
point a at 6, for the point p. However, unlike a clique-region, where every position
can be treated as a feasible position, in this case, only the position #» can be
considered feasible. This is due to the fact that an optimal solution may place a
label at a position in X, which is 8, — ¢ and place a label at position 6,.

In Lemma 4, we derive expressions for the positions #; and 5. As a corollary of
Lemma 4, we show that 65 decreases, in the first quadrant, as §(a, p) increases. This
is a crucial observation as, for any d(a,p) > 0.4R*, it allows us to treat a uniform-
region of a w.r.t. p as a clique-region of a w.r.t. p. In Corollary 3, we determine the
minimum value of 6, for any é(a,p) > 0.4R*.

Definition 5 Cone(a,0;,62) is a (p-)uniform-region of a w.r.t. p and pending posi-
tion 0, whenever Cone(a, 01, 62) is a region of only pending positions and C(p,6,, R*/p)
intersects C(a,0, R*[p), for every 8 € Cone(a,b,,602). A maximal uniform-region
of a w.r.t. p and 8, is a uniform-region of a of largest angle w.r.t. p and 6,. A
maximal uniform-region of a w.r.t. p is a mazximal uniform-region of a w.r.t. p and
0, where 0}, is the largest angle preserving a ¢ C(p,0,, R*).°

®Here we assume that 0; to be on the right of the line joining a and p.
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Figure 10 illustrates the second part of the definition; note that uniform-regions,
like clique-regions, are contiguous regions of pending positions, so that, even though
Cone(a, by, 6,) meets the intersection requirements, it is not a uniform region, since
all of Cone(a, b, ;) falls within a dead region.

Cl

00 C(p,0p,R*/p)

Figure 10: Cone(a,;,6>) is a maximal uniform-region of a w.r.t. p and ,,.

At this stage, it is important to make a distinction between a maximal uniform-
region w.r.t. both point p and position 6, and a maximal uniform-region w.r.t. just
a point p. The defintion of a maximal uniform-region w.r.t. p and 6, is specific to
a particular position—the position 8, in this case. Suppose Cone(a,6:,6>) denotes
a maximal uniform-region w.r.t. p and 6,. In this case, although every region
Cone(a,b1,05) C Cone(a,b1,0>) is a uniform-region w.r.t. p and 6, it cannot be
called maximal w.r.t. p and 6,, since it is properly contained in Cone(a,61,62).
However, it is possible that Cone(a, 61,6%) may be a maximal uniform-region w.r.t.
p and position 6, where ), # 6,,.

Consider a maximal uniform-region w.r.t. just a point p. It is associated with all
label positions of p, meaning it is not properly contained in any uniform-region w.r.t.
p and 6,, for any #,. Therefore, Cone(a,61,02) may not be a maximal uniform-
region w.r.t. p, since it may be properly contained in some other maximal uniform-
region of a w.r.t. p.

Since a maximal uniform-region of a w.r.t. p cannot be a subset of any uniform-
region of a w.r.t. p, it must be adjacent to a D-region. In Figure 10, the position
0, delimits both a D-region of a w.r.t. p and a maximal uniform-region of a w.r.t.
p and #,. Thus we already know one of the angles from Lemma 3. The other
angle is also easy to compute: denote by p' the center of C(p,8,, R*/p) and by
a' the center of C(a,f2, R*/p) and write 0y = Zpap' + /p'aa’ — 5. Maximizing
the angle 6, gives a situation similar to that of Lemma 3 and allows us to write
§(a,p')? = (R*2 +p(p—1)6(a,p)?)/p?. The following lemma can be proved similarly
as Lemma 3. For the monotonicity of 05, see Figure 11.

Lemma 4 Let Cone(a,0,,02) denote a mazimal uniform-region w.r.t. p and let 6,
be adjacent to the D-region surrounding p. We have

6(a,p)
2R*

1. 6; = — arcsin
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(20—1)d(a,p) p(p—1)5(a,p)? —2R*" ) —
2v/p(p—1)é(a,p)> +R*> 2R*\/p(p—1)0(a,p)*+R*>
3. 8> monotonically decreases as 6(a,p) increases.

2. 65 = arccos(

) + arccos( z
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50+

50 . . . . . . . .
0 01 02 03 04 05 06 07 08 09

d@a,p)

Figure 11: Monotonicity of maximal uniform-regions. In contrast to maximal
clique-regions, the size of maximal uniform-regions as denoted by the conical re-
gion Cone(a,f;,02) decreases as d(a, p) increases.

Corollary 3 Let Cone(a,01,62) be a mazximal uniform-region w.r.t. p, with p €
(CL = C); then we have 6 < 48°.

We summarize the important properties of uniform-regions as follows.

1. A uniform-region of a € S is defined w.r.t. some input point p € C! and its
p-pending position say 6, (not necessarily in X,).

2. A maximal uniform-region of a € S is defined w.r.t. an input point p € C},
(as opposed to a position).

3. A maximal uniform-region of a w.r.t. p € CJ is adjacent to the D-region
surrounding p.

4. The input point a € S has two maximal uniform-regions w.r.t. p € C.

5. Suppose Cone(a,6;,0>) denotes the D-region surrounding the input point p.
Then one maximal uniform-region of a w.r.t. p is adjacent to #; and the other
uniform-region of @ w.r.t. p is adjacent to 5.

5.8. P-regions and their Properties

Let D be a D-region of a with limiting angle 6, and let Cone(a,8;,621) denote
a maximal clique-region w.r.t. p and Cone(a,0;,622) denote a maximal uniform-
region w.r.t. p—in both conical sections, 6; is adjacent to D. Pick p € C! — CY; by
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Corollaries 2 and 3, we have 021 > 02, so that Cone(a, 81, 022) is also a clique-region
w.r.t. p.

Lemma 5 Pick a,p € S with 0.4R* < §(a,p) < 0.8R*; then a mazimal uniform-
region of a w.r.t. is also a cliqgue-region of a w.r.t. p.

Suppose p is the only point in C}, i.e., we have N(C!) = 1. Let Cone(a,04,61)
denote the D-region of a surrounding p. Then a has two maximal uniform-regions,
where one is adjacent to 8; and the other to 84. Let Cone(a,6;,62) and Cone(a, s, 604)
denote these two sets. By definition, at least one pending position from X, must
be present in these two sets, as otherwise R* cannot be optimal./ Then, clearly,
we can select (one or) two positions, one in Cone(a, 61,602) N X, and the other one
in (Cone(a,0;,02) — Cone(a,8s,64)) N X,, and ignore the remaining positions, so
that any feasible solution guarantees to place a label of size R*/p for a at one of
these two positions. Now suppose that we have N(C!) > 1. Then the selection of
the two positions must be such that they form a pair of feasible positions w.r.t. the
other input points in C?. However, this situation can get complicated due to the
fact that, for each input point say p € C!, we have two maximal uniform-regions
and two maximal clique-regions of a w.r.t. p, resulting in a large number of maxi-
mal uniform-regions and maximal clique-regions for a. We now present a number
of results that allow us to select a pair of feasible positions w.r.t. all of the input
points in CY,.

We first recall that maximal clique-regions and maximal uniform-regions are
adjacent to a D-region. Therefore, maximal uniform-regions and maximal clique-
regions of a w.r.t. the points that lie in the same D-region must share a boundary
position adjacent to it. We use this idea in Lemma 5 to show that, for é(a,p) >
0.4R*, a maximal uniform-region is also a maximal clique-region. Lemma 5 is useful
only for N(C!) = 1. We need a similar result for N(C/) > 1. Lemma 6 generalizes
Lemma 5 when the number of D-regions at a is one, N(C}) is larger than 1, and all
the points lie outside C!' but inside C},. That is, Lemma 6 shows that all maximal
uniform-regions of a are also clique-regions of @ w.r.t. the points in C},. Therefore, in
this case, we can select a pair of positions that are feasible w.r.t. to all of the input
points in C7. In order to deal with situations where C}/ also has points and a has
more than one D-region, we use the concept of a P-region, formed by the union of all
maximal clique-regions and maximal uniform-regions that share the same boundary
position. Our aim is to select at most one position in each P-region. Since each
P-region is adjacent to a D-region, a can have at most four P-regions. In Lemma 8,
we show that @ has at most two P-regions when we have N(C}) > N(CY), a crucial
result for our selection algorithm.

We now allow more than one point in (C}, — CY). Let p € S and ¢ € S be
located within (C, — C¥) and within D, a D-region of a. (The three points a, p,
and g of S are distinct.) Let Cone(a,6,,62) denote the conical section of minimum
angle surrounding the maximal uniform-regions of a w.r.t. p and ¢. (Assume that
position 6; is adjacent to D.)

fTt is possible that at most one of the sets Cone(a,01,02) N Xq and Cone(a,f3,04) N X, can
be empty.
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Lemma 6 Let p, q and Cone(a,01,02) be defined as above. Suppose the minimum
angle of each of the mazimal uniform-regions of a w.r.t. p and q is greater than
zero. Then Cone(a,6,,0-) is a clique-region w.r.t. both p and q.

Proof. We assume d(a,q) > d(a,p). Let Cone(a,0;,6}) and Cone(a,b1,60%) be the
maximal uniform-regions of a w.r.t. p and g respectively—by assumption, we have
Angle(64y,61) > 0 and Angle(65,6,) > 0.

Let 6, be a pending position of p such that C(p,8,, R*/p) almost intersects
C(a,02, R*[p), i.e., 8, is ¢ away from being a dead position. Let 6, be a pending po-
sition of p of least absolute angle such that C(p,0,,, R*/p) intersects C'(a, 61, R*/p),
i.e., Cone(p,0,,0,) is a maximal uniform-region of p w.r.t. a. Let 6, be a pending
position at ¢ such that C(q,8,, R*/p) intersects C(a, 6, R*/p)—in order for our
assumption, i.e., Angle(85,61) > 0, to hold, such a 6, must exist.

We claim that ¢ cannot lie inside C'(p, 8, R*) or outside C'(p, 8, R*/p). Suppose
that g lies inside C(p,0,, R*). It is easily verified that every 6, € Cone(a,0],0,)
becomes a dead position, implying that Cone(a,8;,65) is not a maximal uniform
set w.r.t. p, a contradiction. Suppose now that ¢ lies outside C(p, 8, , R*/p). Then
C(q,0q, R*/p) cannot intersect C(a, 81, R*/p), implying that Cone(a, 6:,64) is not
a maximal uniform-region w.r.t. ¢, another contradiction. Thus we can establish
65 > 6. By Corollaries 2 and 3, we can further verify that Cone(a,8;,62) is a
clique-region of @ w.r.t. both p and gq. a

Let D denote a given D-region. We know that each boundary position of D
is adjacent to a maximal clique-region and to a maximal uniform-region. Given a
maximal clique-region w.r.t. p and a maximal uniform-region w.r.t. ¢, both adjacent
to the same boundary position of D, one must contain the other, which allows us
to combine them.

Definition 6 Cone(a,61,62) is a P-region if it is not contained in any mazximal
clique-region or mazximal uniform-region of a w.r.t. p, for any point p € S within
C!; if this region is a clique-region or uniform-region w.r.t. p, then we call p the
reference point of the P-region.

A P-region can be a maximal uniform-region, a maximal clique-region, or both
(with more than one reference point). The maximality condition of a clique-region or
uniform-region is preserved in the definition of a P-region: neither Cone(a, 8, —¢,85)
nor Cone(a,f;,6> + €) is a P-region. The following lemma is easily proved.
Lemma 7 Let P be a P-region for a with reference point p. If p belongs to C},—C!,
then P is a clique-region.

We now study several useful properties of P-regions. We first note that the
region, excluding any D-regions, surrounding a given point a € S can be partitioned
into P-regions. Our aim is to select one allowable position from each P-region and
eliminate all others. Assuming that we can select an allowable position from each
P-region, then we need to find an upper bound on the number of P-regions that
can exist for any point. A simple upper bound is 4, since each P-region is adjacent
to a D-region. However, in order to construct a 2SAT instance, we need to select
at most 2 positions for each point.

Lemma 8 Let a € S denote a point with N(C.) > N(C!). Then the number of
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P-regions at a is at most 2.

Proof. If the number of D-regions at a is one, then the number of P-regions is
at most two. Consider then the case where there are two D-regions, Dy and Ds;
note that they must be non-intersecting. Since each D; is determined by a different
point of S within C},, we must have N(C?) > 2. Pick p,q € S such that p lies inside
D, and q lies inside D5. Since N(CY) is larger than N(C?), assume without loss of
generality that p lies outside CY/.

Consider adding points p and ¢ in that order to the neighborhood of a. After
adding p, we have two P-regions, each adjacent to one border position of Dy; call
them Cone(a, 61, 6-2) and Cone(a, 03,6,)—assume that 8, and 6, are adjacent to D; .
(Note that these two P-regions may intersect.) By Lemma 7, these two P-regions
are maximal clique-regions; furthermore, by Corollary 2, we have Angle(6,,03) <
132.6° and Angle(#2,04) < 132.6°. Adding ¢ creates the D-region D,, which has
an angle of at least 132.8°. This implies that D, must include at least one of the
following three pairs of positions: (i) (61,83), (ii) (02, 04), or (iii) (62,63). In the first
two cases, at least one of the two existing P-regions vanishes, thus preserving our
conclusion. When D, intersects both 6> and 63, the P-regions w.r.t. p simply shrink
and thus remain maximal clique-regions w.r.t. p. Any P-region caused directly by
the addition of ¢ is a subset of either Cone(a, 61, 62) or Cone(a,f3,64)—so that no
new P-region gets created. By the same reasoning, adding a third or even a fourth
point of S within C! simply causes further shrinking of the P-regions without
increasing their number. |
Corollary 4 If the number of D-regions is 2 and we have N(C!) > N(CY), then
each P-region is a mazimal clique-region w.r.t. p € (C,, — CV).

Corollary 4 implies that we can select a pair of positions, one from each P-regions,
so that they are feasible w.r.t. the points in C!, — C?/. We summarize the important
properties of P-regions as follows.

1. A P-region of a € S is a union of all the maximal clique-regions and maximal
uniform-regions that share the same boundary adjacent to D-region.

2. A P-region of a € S has a reference point say p € C/,.

3. A P-region of a € S can be a maximal clique-region, a maximal uniform-region
or both.

4. A P-regions of a is adjacent to a D-region.

6. Structural Packing Properties

In this section we provide geometric lemmata that capture the structural prop-
erties of the KPML problem and relate them to the conical regions described in the
previous section. In particular, we determine upper bounds on the number of input
points that lie inside C!, and C'.

We begin by bounding the number of points that can appear within various radii
of a given point. We use the well-known packing result given below.
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Proposition 1 Let C be a circle of radius r and let S be a set of circles of radius
r such that every circle in S intersects C' and no two circles in S intersect each
other. Then we have |S| < 5.

Proposition 1 implies that C! can have at most five input points, including a, since
each of these points needs to be labeled with a label of size R*. Thus a simple
upper bound on N(C?) is four. Let B/, B, and B' denote the circles centered
at a € S (not labels) of radius 0.8R, 0.4R, and 0.1R respectively. Furthermore, let
N(B!), N(BY), and N(B.') denote the numbers of points of S (other than a) that
lie inside B!, B!, and B!, respectively, with the condition that each such point
can be labeled using a circular label of size R. Our bounds can be summarized as
follows.

Lemma 9 Let a € S and let C,, Cl!, C!", N(C.), N(C.), and N(C!') be as

defined in Section 4.
1. N(Cl) <4
2. N(CI)<2
3. N(C")>0= N(C.) <3.

4. N(Cl) =2 = N(CL) = N(CY) =2

5. N(C!")=1= N(CV)=N(C!")=1.

6. Let B, B!, B!", N(B.), N(BY) and N(B.!') be as defined above. Then we
have (i) N(B.) < 4, (i) N(BY) < 2, (i) N(B)) >0 = N(B)) <3, (iv)
N(B!y=2= N(B.) =N(BY), and (v) N(BY)') =1= N(Bl) = N(Bl").

Figure 12 informally shows why a labeling circle associated with a third point ¢

cannot be forced within C! or even within C! if two other points (p and r) lie
within C!/—these are the second and fourth assertions of the lemma.

Figure 12: Illustration of parts 2 and 4 of Lemma 9.

Proof.

1. If we had N(C!) > 5, C} would contain at least 6 points, contradicting
Proposition 1.
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2. Assume N(C) > 3, with three input points denoted by s1, s2, and s3, and
set sop = a, s1 = p, s = q and s3 = r. There must be a placement of
non-intersecting circles, of radii R*, at these four points. With out loss of
generality, let us assume that a circle of radius R* is placed at the point sq,
as shown Figure 12. Thus we have three points s;, s» and s3 which must
lie outside the circle placed at sg. With out loss of generality, let us further
assume that these three points, s1, s and s3, lie in the order of anticlockwise
direction starting from s, as shown in Figure 12.

For each ¢, 0 < i < 3, let s} denote the center of circle labeling the point
s; and let ¢; denote the angle between the rays sos; and sgsj,; (using the
modulo 4). Thus these angles ¢; discretize the total angle around the point
a, and hence we have E?:[) ¢; = 360°. Since the radius of optimal label is
R* we have 6(s;, s;) = R* and (so, s;) < 1.4R*. Since no two optimal labels
intersect, we have (s}, s}, ;) > 2R".

By the law of cosines, we have

§(a,a")? + d(a, s))? —6(d’, s))?

cos(¢o) = 2(a, )0 (a5 = ¢p > 111° (7)
1\2 2 Ioor\2
cosn) = 20 &?széia 85(51,52) =6 >91° ()
1\2 2 Ioor\2
R e
and ) 1\2 K} 2 5la’. s 2
cos(s) = W8) 0@ @) =0 sg)” s 450 (10)

26(a, s%)d(a,a’)

The total angle is Z?:[) ¢; = 111°4+91°491°4+111° = 404°. This implies that
at least one of the two assumptions, i.e., 6(s}, sj, ;) > 2R* and 6(a, sj) < 1.4R*
must be false. Suppose (s}, sj, ;) > 2R* is false. Then the labels intersect
implying that radius of optimal label must be strictly less than R*. Suppose
d(a, st) > 1.4R*. Then N(CY) < 3, implying that the assumption N(C!) > 3
is false. In each case, we have the desired contradiction.

3. Similar to part 4.

4. For the sake of contradiction, let us assume N(C?) = 3. As shown in Figure 12
and Figure 13, we have two possible cases. We consider the second case. Let
p and ¢ denote the input points inside C!' and o', p’, and ¢’ denote the centers
of the circles each of size R* placed at the points a, p, and ¢ respectively. Pick
r € (C!, — CY) and let r' denote the center of the circle of size R* placed at
r. We now determine the minimum value of §(a,r')—if it is less than 1.8R*,
then we have N(C.) > N(C!). By the law of cosines we have:

d(a,r")* = d(a,q')* +6(¢',r")* — 2cos(Lag'r")d(a, ¢')d(g ") (1)
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Figure 13: Illustration of part 4 in Lemma 9.

We have §(a,q¢') < 1.4R* and 6(¢',r') = 2R*; so we need to compute cos(Zag'r’).
We can easily verify Za’aq’ < 158°. From the known value of Za'aq’, we
conclude §(a’,r") < 2.36 R*. By applying the law of cosines we next obtain
/aq'r’ > 63°. By substituting these values in the above expression, we finally
get d(a,r') > 1.84R*, so that r cannot lie inside C. The analysis of the
other case is similar. In both cases, we conclude §(a, ') > 1.8 R*, the desired
contradiction.

5. Similar to part 4 (see Figure 14).
6. Similar to parts 1 through 5.

O

Corollary 5 Let a,p,q € S be three points with p,q € C obeying 6(p,q) < 0.4R*.
Then, for any point r € S distinct from a, p, and q, we have r ¢ Cy, v ¢ C,, and
r ¢ Cy.
Proof. By Lemma 9, we have r ¢ C}. Since we have §(p,a) < 0.4R* and d(p, q) <
0.4R*, we also have N(C}/) > 1. Therefore, by Part 3 of Lemma 9, we have
N(C,) = N(C}), implying r ¢ C,. Mutatis mutandis, the same reasoning proves
the result for ¢ as well. a
Corollary 5 indicates that the points a, p, and ¢ can be labeled separately from
the rest of the points in S.

7. Selecting Feasible Positions

We combine the results in the preceding sections to design an efficient procedure
to select two positions per point that guarantees a feasible solution if one exists;
we call such positions feasible. By Lemma 1, only the points inside C/, need to be
considered to establish the feasibility of positions at a.
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Figure 14: Illustration of part 5 in Lemma 9.

7.1. Overall Idea

Consider a point a € S and let Cone(a,61,62) be its P-region with a reference
point p € S. (Assume that p lies in the D-region adjacent to #1.) Let o be a
pending position at p with least absolute angle such that C(p, o, R*/p) intersects
C(a,01,R*/p). If we have p € (C! — C!), then, by Lemma 7, Cone(a,1,6) is a
clique-region w.r.t. p. Observe that no optimal solution can simultaneously contain
labels C(p,ap, R*) and C(a,8, R*), for any 68 € Cone(a,61,02), as they intersect
each other. Now suppose we have p € C/; then by Lemma 7, Cone(a,8;,62) is a
uniform-region w.r.t. p. Let (3, be a position of largest absolute angle at p such
that C(p, 8, R*/p) intersects C(a, 62, R*/p). Clearly, C(p, By, R*/p) also intersects
C(a,0, R*/p), for every 8 € Cone(a,b1,63). Thus it is sufficient to consider 6 and
ignore the remaining positions inside Cone(a,1,6-). In both cases, position 6 is
feasible w.r.t. p; however, it may be possible that 65 is infeasible w.r.t. some other
point, say ¢ € C’. This situation may arise when a has more than two P-regions
and ¢ lies in a D-region that is different from the D-region associated with p. We
show that, regardless of the positions of points p and ¢ in C!, we can always find

a?’
two feasible positions for a.

7.2. Selecting Positions for One Point

By Lemma 9, we know that N(C?) < 2. Thus we need to consider three distinct
cases: (i) N(CJ) =0, (ii) N(CY) =1 and (iii) N(C)) = 2. Lemma 10 handles the
first two cases while Lemma 11 handles the third case.

Lemma 10 Let P, and P> denote the P-regions of pointa € S. Assume N(C!) =0
or N(C?) =1 and let p be defined as above. Then, given the sets X, N (P, — P»)
and X, N (P2 — P1), we can select two feasible positions 6',,0" €€ X, O(1) time.

a’”a
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Proof. By Lemma 9, we have N(C!) > N(C/').9 Thus, by Lemma 8, the number
of P-regions at a is at most 2. Let P, = Cone(a,b,02) and P, = Cone(a,03,04)
denote the two P-regions at a, and assume that 6, and 4 are adjacent to a D-region
of a. (If the number of D-regions at a is 2, then all four positions 6; are adjacent to
a D-region of a.) Without loss of generality, assume 6; € X,, for 1 < i < 4. Finally,
let U; C P; be the uniform-region with maximum angle, i.e., among all maximal
uniform-regions that lie inside of P;, U; has the largest angle. We now consider two
cases.

Case 1: N(C!)=0.
By Lemma 8, each P; must be a clique-region w.r.t. each point in C?. (This is

also true when a has only one D-region, since, by assumption, there are no safe
positions.) Thus we can select 0, € X, N (P, — P2) and 6] € X, N (P, — Pp). (If
either X, N (P, — P>) or X, N (P, — Py) is empty, we select just one pending position
0!, from a nonempty set X, N P;.) It is easily verified that the positions 6/, and 6!
are feasible. In this case, we can select any position 6!, € X, N (P, — P») and any
position 0 € X, N (P, — Py).

Case 2: N(C!)=1.

Pick p € C!' and denote its associated D-region by Cone(a,84,60,). Assume that p
is vertically below a, so that P; and P» lie on the right and left of @p, respectively.
Let ¢ and r be the points of S that lie inside (C, — CY)). If a has two D-regions, we
set 6!, = 6, and 6!/ = 63, positions that are easily verified to be feasible. If a has a
single D-region, call it Cone(a,84,6,), the points p, ¢ and r must all lie inside that
region. We then have two sub-cases to consider.

Case 2(a): p is reference point of at most one P;.

Suppose p is a reference point of at most one F;; let it be P,. Thus P; is a maximal
uniform-region w.r.t. p and we have Uy = P,. Let the reference point of P, be
g. By Lemma 6, U; must be a clique-region w.r.t. both ¢ and r. (By Lemma 6,
U, is a clique-region w.r.t. r if and only if r has a pending position €, such that
C(r,0,,R*/p) intersects C(a,61,R*/p). If no such position 6, exists, then every
position inside P; is feasible w.r.t. r; thus we can still treat U; as a clique-region
w.r.t. r.) We can ignore r, as positions feasible w.r.t. p and ¢ must also be feasible
w.r.t. r. Choosing 0/, € X,N (U —Uz) and 0! € X, N (U, —Uy) allows us to obtain
the required feasible positions (see Figure 15).

Case 2(b): p is reference point of both P, and P».

Suppose p is a reference point of both P, and P, i.e., we have P; = U;. This can
happen only when a has one D-region. (This is due to the fact that ¢ or r cannot
lie in a D-region different from the D-region containing p as, by Lemma 8, it would
also imply that both P, and P, as clique-regions w.r.t. ¢ and r.) Furthermore,
this can happen when p has two D-regions and a lies in a D-region different from
the D-region containing ¢ and r. (As shown in Figure 16, in order for p to be a
reference point of both Py and P», there must exist two pending positions ¢, and

9 Although it is possible that we have N(CJ) = N(C!) =0 and N(C,) = N(C!) = 1, we can
treat these as special cases of Lemma 11.
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Figure 15: Illustration of the selection of positions in Case 2a

Figure 16: Possible positions of ¢ and r

¢,. The points ¢ and r cannot lie in C(p,6,,, R*) and C(p,0,, R*), as the positions
¢, and ¢ will become dead. Therefore, the points must lie in the shaded region.
Using a packing argument, we can further verify that both ¢ and r cannot lie inside
the shaded region.) Furthermore, using a simple packing argument, we can verify
that ¢ or r must lie outside C!. Say r lies outside C; we have two possibilities: (i)
d(p,q) < 0.4R* and (ii) 6(p,q) > 0.4R*. In the first case, by Lemma 11, the points
a, p, and ¢ can be labeled separately. In the second case, p has two D-regions.
By Lemma 8, P-regions at p are clique-regions w.r.t. q. Therefore, every pending
position of p is a feasible position w.r.t. ¢. Thus we select two pending positions,
each from a different P-region of p, that are farthest away from a. For each of the
two feasible positions selected for the point p, we can select a feasible position for
a. Thus we have two feasible positions for a. At least one such feasible position for
a must exist—otherwise, R* would not be optimal.

Important Remark: In all the above cases selection of positions is limited to
conical sections Py — P, and P, — P;. We have two cases to consider: (i) k = O(|S])"
and (i) k = oc.

k= 0(|S]): In this case, the selection of positions 8/, and 6!/ must be restricted to
the sets X, N (P, — P2) and X, N (P, — P;). As discussed above, any position
from X,N(P; —P,) and any position from X,N (P, — P;) form a pair of feasible

h Any polynomial function of |S| would suffice for the argument to hold. On the other hand if
k is fixed (independent of input size) then the selection can be seen to take O(1) time.
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positions. Thus, given the sets X, N (P; — P) and X, N (P> — P;) a pair of
positions can be selected in O(1) time. (Note, however, that determining the
sets X, N (P, — P) and X, N (P> — P;) involves identifying and eliminating
the positions in X, that do not belong to the sets X, N (P, — P) and X, N
(P; — Pp). In Theorem 2, we show that it takes O(log k) time determine the
sets X, N (P, — P,) and X, N (P, — P).)

k = oo: In this case, any position from P; — P, and any position from P, — P; can
be selected. This can be easily done in O(1) time. (In Theorem 2, we show
that it takes only O(1) time to update these conical sections.)

O

to specification), Lemma 10 implies that, regardless of the selection of positions
at p, ¢ and r, a feasible solution exists that places a circle of size R*/p at a. We
now handle the third case.
Lemma 11 Let P, and P> denote the P-regions of point a € S. Pick p,q € S such
that we have p,q € C!' and thus N(C!) = 2. Then, given the sets X, N (Py — Px)
and X, N (P, — Py), two feasible positions for each of the points a, p and q can be
selected in O(1) time.
Proof. By Part 3 of Lemma 9, we have N(C!) = N(C!) = 2. Thus we assume
N(C!) = N(C!). (Note that we can treat the cases with N(C’) = N(C/) =0 and
N(Cl) = N(C!) =1 as special cases of this lemma, by ignoring the corresponding
points in N(C}).) Additionally by Part 5 of the same lemma, we get N(C!") = 0.
Thus we have 6(a,p) > 0.1R* and §(a,q) > 0.1R*. We break the analysis into two
subcases.

Case 1: 0(p,q) < 0.4R*.
In this case, Corollary 5 implies that a, p, and ¢ can be labeled separately from the
rest of the points.

Case 2: 0(p,q) > 0.4R*.

Let us first consider the point p. We have a € C}/, a € Cy/, and ¢q € C},. Without
loss of generality, assume that points p and a share the same ordnate. Since we have
N(C}) > 0, by Lemma 9, we also have N(C,) < 3. Thus N(C}) can contain at
most one other input point; denote it by r € S—{a,p, ¢}. Since we have N(C") = 2,
we can write d(a,r) > 0.8R*.

Let us now determine the possible positions of the input points ¢ and r. First
consider the point ¢. Since we have d(p,q) > 0.4R* and §(a,q) < 0.4R*, we can
conclude Zapg < 90° (see Figure 17). Consider the point r. Since we have 6(a,r) >
0.8R*, r cannot lie inside C}/. As shown in Figure 17, the shaded region represents
the possible position of 7 inside C},. We can easily verify Zapr > 70°. Without loss
of generality, let us assume that r lies on the right side.

Since we have N(C}) > 0, p must have at least one D-region. By Corollary 1,
the number of D-regions at p cannot exceed two. Thus we distinguish between two
sub-cases: (i) p has one D-region and (ii) p has two D-regions.

Case 2(a): p has one D-region.
Let us first consider the case where p has one D-region; we let this D-region be
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Figure 17: The possible positions of r.

denoted by D = Cone(p,0pa,60p1), with 8,4 > 6p1. Since r lies on the right-hand
side, 0 lies in the first or second quadrants, i.e., we have 6; < 180°. In this case, the
points a, g, and r lie in D. Thus the region Cone(p, 0p1,0,4) represents a contiguous
set of pending positions. Since each P-region must be adjacent to a D-region, p
can have at most two P-regions. Let us denote them by P, = Cone(p,8p1,0p2) and
P> = Cone(p,8p3,0ps). Our aim is to show that we can select one position from
each of these P-regions resulting in a pair of feasible positions.

Let Upa,i,Upq,isUpri € Pi, 1 < 4 < 2, denote the maximal uniform-regions
of p wr.t. a, ¢, and r, respectively, with Upq,1, Upg1 and Uy,.1 are adjacent to
6. Because r lies on the right side and we have §(a,p) > 0.1R*, Up,,1 and Up,
are empty—they do not exist. (In other words, for any 6, and any position 6, €
Upa,i — Upa,2, if C(a, 84, R*/p) intersects C(p,8p, R*/p) then the p-enlarged circle
C(a,8,, R*) contains the point r and thus 6, becomes a dead position.) Let Up
denote conical region of minimum angle surrounding both Uy,q1 and Uy, 1. Suppose
the minimum angles of both U,y 1 and Uy, 1 are greater than zero. By Lemma 6,
Up: is a clique-region of both ¢ and r. Clearly, any position in U, N X, and any
position in P> — Up; form a pair of feasible positions w.r.t. both ¢ and r. Consider
the point a. Since Up,,1 is empty, every position in Py — Upq 2 N X, is feasible w.r.t.
a. Thus we can select two positions, one in each P;, that are feasible w.r.t. a, g,
and r.

Case 2(b): p has two D-regions.
In this case, by Lemma 8, we know that both P, and P, are clique-regions w.r.t.
r. Thus we can ignore the point r, as any position in P;, 1 < i < 2, is a feasible
position w.r.t. r. Since this reasoning also holds for ¢, we can conclude that both p
and ¢ can be labeled separately from the rest of the points in S — {a}.

In all the above cases, the selection of feasible positions !, and 8’/ is similar to
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Lemma 10. Hence two feasible positions can be selected in O(1) time. |

7.3. The position Selection Procedure

Now our selection algorithm is clear. We assume that the sets P, and P, are
given as part of the input—they can be computed in polynomial time. The selection
algorithm first selects positions for each point a € S obeying N(C”) < 1 as discussed
in Lemma 10; it then selects two positions for each point a and the points that lie in
C!' obeying N(C}') = N(C.) = 2 using local search; let H denote these positions.
The selection procedure is summarized in Figure 18. Note that the running time
of the selection procedure is independent of the number of positions k&, if the labels
can be placed in any position. It does depend on k if the set of positions is given
as a part of input. These facts will be used in the next two sections for analyzing
the running time of the algorithm.

PROCEDURE SELECT

e Input: A label radius bound A, S = (S, S2) and P-regions associated with
each point.
Remark: The partition of points in S into S; and S is on the basis of
Lemmata 11 and 10;i.e.,a € Sy <= N(CJ) <1, and,a € S; < N(C]) =

2,
e Output: H = a set of two feasible positions {f.,,6" |a € S}, for each point
in S.

1. 8] « S1, S+ So, and H + ¢.
2. While(|S3| > 0)

(a) Let a € S and p,q € CJ.

(b) Select pairs 0], and 6, 8, and 6}/, and 6; and 6 for the points
a, p, and ¢ respectively (they must exist by Lemma 11).

(c) H+~ HU{,,00.6  6'6 60" S+ S,—{a,p,q}

a’’a’’prYpriqrrq
3. While(|S]| > 0)

(a) Let a € S7.
(b) Select 8, and 6! as in Lemma 10.
(c) H+— HU{O,,00}, S{+ S| —{a}

a’”a

Figure 18: Description of the selection procedure.

8. Overall Algorithm and Its Analysis

Before we describe our algorithm, we need one last concept.
Definition 7 Given a set S of points, the diameter of any subset of points is the
maximum distance between any two points in the subset. The minimum 3-diameter
of S, denoted D3(S), is the smallest value of the diameter among all subsets of S
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of size 3.

Two important facts about D3(S) in our context are:

Proposition 2 The minimum 3-diameter D3(S) of a set of points S can be com-
puted in O(nlogn) time ®'2; and D3(S)/5.26 < R* < 3.74D3(S) 8.

Let A denote the current label radius. Using the known bounds on the size of
optimal labels in terms of D3(S) (Proposition 2), we do a binary search in steps of
€1 over the interval [3_65%, 3.74D3) ! to find the largest value of A for which we can
place non-intersecting labels at each point and return this as our final solution. The

algorithm is formally described in Figure 19. Procedure TEST-SATISFIABLE decides

ALGORITHM MAIN

e Input: A set S of points along with a set of positions X, for each point a € S
and a required precision € > 0.

e Output: A set of uniform circular labels, one for each point in S. The radius
of the labels is at least R*/(3.6 + €), where R* denotes the radius of labels in
an optimal solution.

1. Set A =0 and ¢ = 0. Compute D3(S). For each a € S, compute the set B,
of its 4 closest neighbors.

2. Perform a binary search over the interval Z = [D3(S)/(3.6 x 5.26), 3.74D3(S)]
with a spacing of €, = €/3.6 to find maximum value of A (denoted Ajp) such
that Procedure TEST-SATISFIABLE(A, B, ) returns true.

3. Return the labels and their sizes as used in the construction of instance Ia in
Procedure TEST-SATISFIABLE(A, B,).

Figure 19: Description of the main algorithm.

whether labels of size A can be placed at each point. We start with two P-regions
for each point. At each step, we update the P-regions based on the new A. We
then call PROCEDURE SELECT, which selects two feasible positions for each point,
transform the resulting collection into an instance of the 2SAT problem, and check
whether the resulting instance is satisfiable. Figure 20 summarizes these steps.

8.1. Analysis

We now analyze the performance guarantee and the running time of ALGORITHM
MAIN.
Theorem 2 Given a set S of n of points, presorted lists X, of positions for each
point a € S, and for any € > 0, ALGORITHM MAIN [abels all points in S with non-
intersecting uniform circular labels of radius at least R*/(3.6 + €) in O(nlogn +
nlog(R*/e)log(k)) time.
Proof. Correctness of Binary Search: Observe that we do a binary search in
[3_6’3%, 3.74Ds). In order for the binary search to work, the procedure
iPerforming[,; a search over an interval [a,b] in steps of ¢ means searching at all values a + ke,
k=0,...,[%=b].

the interval
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PROCEDURE TEST-SATISFIABLE
e Input: the set of input points .S, an estimate A on the radius of the circular
label and sets B, for all a € S.

e Output: Return true if the set S can be labeled with labels of size A, false
otherwise.

1. Set the radii C}, and C! to 0.4A and 0.8A respectively. Determine N(CY})
and N(CY) for each a from its set of closest neighbors.

2. Construct the P-regions for each point @ € S using A as label radius and
using the data structure computed in Step 1 of ALGORITHM MAIN.

3. H «+ SELECT(S,A,P).
4. Construct a 2SAT instance In from H.

5. If Ia is satisfiable, then return true, the instance Ia and H, else return false.

Figure 20: The testing procedure

Test-Satisfiable must output true for all R < R*/3.6 and false for R > R*. The
procedure Test-Satisfiable returns false if R > R*, since R* is the optimal labeling
size. We argue that all the results in Sections 5 through 7 hold for any R < R*.
First consider Lemma 1 and consider an input point p such that §(a,p) > 0.8R*.
For any R < R*, we still have d(a,p) > 0.8R. Since C} and C! are defined w.r.t.
R = R*, the input point p still lies outside C!, for any R < R*. This implies that
Lemma 1 still holds for any R < R*.

We derived the results in the Sections 5 and 6, by setting R = R* = 1 and
keeping é(a,p) as a fraction of R, i.e., a fraction of 1. Thus for any R < R*,
the value of é(a,p), i.e., the fraction, will only increase, implying N(C!) and thus
N(C!) is non-increasing. Consider a and p such that §(a,p) < R* and consider the
expressions derived in Section 5. For any smaller R < R*, we have two possibilities:
p lies either (i) inside C/, or (ii) outside of C!. Consider the first case. Since in this
case 0(a,p) increases, the angle of a maximal clique-region of a w.r.t. p increases
and the angle of maximal uniform-region of a w.r.t. p decreases. Therefore, as R
gets smaller, we have potentially more feasible positions. Similarly, in Section 6,
Lemma 9 holds under general conditions. Now consider the second possibility, i.e.,
p lying outside C/. In this case, by Lemma 1, we can ignore p. Combining these
facts we can conclude that Test-Satisfiable must output true, for all R < R*/3.6.

Performance guarantee: By Steps 2 and 3 of ALGORITHM MAIN, letting Ay, be
the heuristic label size and R* be the optimal label size for the point set S, we get
that R* < 3.6(Ap + €/3.6) = 3.6Ap, + ¢, the required performance guarantee.

Running time: For each point a, the points of S that lie in C}, must be determined.
Since we have N(C!) < 5, these points can be computed in O(nlogn) time with
the algorithm of Dickerson et al. 7, after which the algorithm takes only O(n) time
to compute P- and D-regions for all points. We first determine the running times
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of PROCEDURE SELECT and PROCEDURE TEST-SATISFIABLE.

The selection of feasible positions in Lemmata 10 and 11, PROCEDURE SELECT
requires the computation of P, — P, and P, — P;, which can be done in O(n) time
for all the points.

We have two cases to consider: (i) k¥ = O(|S]) and (ii) k¥ = oo.

k= 0O(|S]): This case requires the determination of two sets X, N (P, — P2) and
XN (P, — Pp). That is to idenitify sets of positions of X, that lie within the
conical sections (P, — P») and (P, — P;). Since X, is a sorted list of positions,
the selection can be done efficiently. First identify the extreme positions of
the sets P, — P, and P, — P;. This takes only O(1) time per point. Then we
do a binary search of these extreme positions on the list X, to determine the
sublists that form the sets X, N (P, — P») and X, N (P> — Py;). Since we have
only four extreme positions, the binary search takes only O(logk) time per
point assuming X, is presorted. Thus this step takes O(nlogk) time for all
the points.

k = oo: In this case, we need to compute only the conical sections (P, — P») and
(P, — Py). Hence this step takes only O(n) time.

follows.

Next consider PROCEDURE TEST-SATISFIABLE. Step 1 of the procedure takes
O(n) time. Step 2 makes one call to Procedure SELECT and thus takes O(logk)
time. Step 3 takes O(n) time since we create at most one variable and a constant
number of clauses per point (because we need to consider the interaction of this
point with no more than its four closest neighbors). Step 4 takes O(n) time using
the well-known algorithm for solving 2SAT '5'7 because the instance produced in
Step 3 has a linear number of variables and clauses. Thus one call to PROCEDURE
TEST-SATISFIABLE takes O(n) time to compute.

Let us now complete the argument by determining the execution time of ALGO-
RITHM MAIN. By Proposition 2, D3(S) can be computed in O(nlogn) time. Using
the algorithm of 7, the five nearest neighbors of each point can be calculated in
advance in O(nlogn) time. Thus the total running time of Step 1 of ALGORITHM
MAIN is O(nlogn). By Proposition 2, we need O(log(R*/¢)) iterations of Step 2;
and each iteration of Step 2 makes one call to PROCEDURE TEST-SATISFIABLE.
Thus the total running time of Step 2 is O(nlog(R*/¢)log(k)). Step 3 takes O(n)
time. Thus the total running time of the algorithm is O(n log n+nlog(R*/e€) log(k)).
For k = oo, our algorithm runs in time O(nlogn + nlog(R*/¢)). O

This theorem assumes that k£ in the KPML problem is polynomial in the number
of points. It also does not deal with potential time savings resulting from the
maintenance of P-regions from iteration to iteration, something easily done since
P-regions must decrease monotonically as the label size increases.

9. Extensions

First consider placing regular polygonal labels at each point. By using appro-
priate lower and upper bounds obtained via inscribed and circumscribed circles, it
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is easy to see that, for all e > 0, we obtain an O(nlogn +nlog(R*/e)) time approx-
imation algorithm for the KPML problem when restricted to any regular polygon.
The performance guarantee is upper bounded by (3.6v/2+¢). In fact, the algorithm
even works if we are allowed a fixed set of regular polygons as surrogates for labels,
with each point having a different set of allowable positions. Note that, for regu-
lar polygons, an allowable position is characterized by the angular displacement of
the position as well as the orientation of the polygon. Note also that we have not
attempted to optimize the bounds for regular polygons.

Now consider the case where a label can be placed in any position. This model
is also known as arbitrary orientation model and was considered in & and 28. In this
case, we have k = co. A naive application of Theorem 2 will yield an algorithm
whose running time is not polynomially bounded due to the nature of its dependence
on k. Nevertheless, as discussed earlier (section 7.3) the selection procedure in fact
takes O(1) time per point. that The rest of the details are straightforward. We
thus get the following result.

Theorem 3 In the arbitrary orientation model, given a set S of n points, and for
any € > 0, ALGORITHM MAIN labels each point at in S with uniform circular labels
of size at least R* /(3.6 + €) in O(nlogn + nlog(R*/€)) time.

Thus, as mentioned earlier, Theorem 3 improves upon the previous performance
guarantees for the map-labeling problem considered by ® and 28.

10. Conclusions

We have described an efficient approximation algorithm for the k-Position Map-
Labeling Problem: given a set of points in the plane and, for each point, a set of up
to k allowable positions, place uniform and non-intersecting labels of maximum size
at each point in one of the allowable positions. The approximation algorithm can
be easily extended to obtain an efficient algorithm for placing labels in arbitrary
positions.

Based on the problem considered in this paper and the recent interest in plac-
ing multiple labels for each point, we propose the following general map-labeling
problem for further investigation:

Multilabel, multiposition map-labeling: given a set S of points in the plane, a set
of positions O, a collection {R;} of subsets R; C O of allowable combinations
of positions,” one for each point s; € S, find a placement of r; uniform labels of
maximum size at each point s; so that (i) each label occupies a distinct position
and (ii) the set of positions P; occupied by these labels belongs to the allowable
position combinations R;.

This problem formulation can be easily extended to the weighted case and can
also be extended to specify relations that capture allowable positions between sets
of points rather than for a given point. The general problem allows much more
flexibility to the cartographer in terms of label placement. One motivation for this
comes from a similar formulation of general constraint satisfaction problems that

JThese positions may or may not be intersecting, depending on the cartographer’s requirements.
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have been studied in computer science. We have begun a preliminary study of this
problem in ?. See 33 for similar formulations motivated by constraint satisfaction
problems.

Given the applications of automated map-labeling in Geographic Information
Systems, in which some of the points may represent mobile objects, a separate
problem of significant interest is to devise dynamic algorithms for the maintenance of
a collection of labels, either within a conventional framework of dynamic algorithms
or within a kinetic framework.
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