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Abstract. For any n, k, n ≥ 2k > 0, we construct a set of n points in the plane with

ne�(
√

log k) k-sets. This improves the bounds of Erdős, Lovász, et al. As a consequence, we
also improve the lower bound for the number of halving hyperplanes in higher dimensions.

1. Introduction

For a set P of n points in the d-dimensional space Rd , a k-set is subset P ′ ⊂ P such that
P ′ = P ∩ H for some open half-space H , and |P ′| = k. The problem is to determine
the maximum number of k-sets of an n-point set in Rd . Even in the most studied two-
dimensional case, we are very far from the solution, and in higher dimensions even less
is known.

The first results in the two-dimensional case are due to Lovász [L] and Erdős et al.
[ELSS]. They established an upper bound O(n

√
k), and a lower bound � (n log k).

Despite great interest in this problem [GP1], [W], [E2], [S], [EVW], [AACS], partly
due to its importance in the analysis of geometric algorithms [EW2], [CP], [CSY],
[E2], there was no progress until the very small improvement due to Pach et al. [PSS].
They improved the upper bound to O(n

√
k/ log∗ k). Recently, Dey [D] obtained an es-

sential improvement of the upper bound; his bound is O(n 3
√

k). There was no improve-
ment on the lower bound of Erdős et al., besides little improvements on the constant
[EW1], [E3], [E1].
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Theorem 1. For any n, k, n ≥ 2k > 0, there exists a set of n points in the plane with

ne�(
√

log k) k-sets.

In the dual setting, Theorem 1 gives an arrangement of n lines such that the complexity
of the k-level (the number of intersection points having exactly k lines above them) is

ne�(
√

log k). A similar bound was obtained by Klawe et al. [KPP] for the complexity of
the median level (k = n/2) in pseudoline arrangements (see also [GP2] and [AW]).
However, our construction seems to be essentially different.

Definition 1. Let n > d ≥ 2, n −d even, and let P be a set of n points in Rd in general
position (no d + 1 of them lie in the same hyperplane). A hyperplane determined by
d points of P is called a halving hyperplane (resp. halving line for d = 2 and halving
plane for d = 3) if it has exactly (n − d)/2 points of P on both sides.

In the plane there is a one-to-one correspondence between complementary pairs of
n/2-sets and halving lines [AG] and, for any fixed d, the number of halving hyperplanes
is proportional to the number of �n/2�-sets [E2], [DE]. Theorem 1 is based on the
following result.

Theorem 2. For any n > 0 even, there exists a set of n points in the plane with

ne�(
√

log n) halving lines.

The k-set problem in space seems even harder than in the plane. The most interesting
and studied case is k = n/2, i.e., finding the maximum number of halving planes.
The first nontrivial upper bound was given by Bárány et al. [BFL]. It was improved by
Aronov et al. [ACE+], Eppstein [E4], and then by Dey and Edelsbrunner [DE] (see also
[AACS]). The best known bound, O(n5/2), was found very recently by Sharir et al. [SST].
In d > 3 dimensions, the trivial upper bound, O(nd), was only very slightly improved,
to O(nd−εd ), by Živaljević and Vrećica [ZV] (see also [ABFK]). The best known lower
bound in d ≥ 3 dimensions, �(nd−1 log n), follows directly from the lower bound in the
plane, as described in [E2]. Using Theorem 1 and the method shown in [E2], we obtain
an immediate improvement.

Theorem 3. For any n >0, d ≥2, there exists a set of n points in Rd with nd−1e�(
√

log n)

halving hyperplanes.

2. Idea of the Construction

It is not hard to see and is shown in the next section that it is enough to consider the case
k = n/2, i.e., the case of halving lines. Then the construction for other values of k can
be obtained easily.

We construct a sequence of point sets, V0, V1, V2, . . . , recursively. For i = 0, 1, 2, . . . ,

point set Vi has ni points and at least mi halving lines. Suppose that we already have Vi−1
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Fig. 1. The extra points x and y, and the new halving lines.

with parameters ni−1 and mi−1. We can assume that none of the lines determined by the
points is horizontal. Replace each of the points v ∈ Vi−1 by a = ai points, v1, v2, . . . , va ,
lying from left to right on a short horizontal segment very close to v. Let the resulting
point set be V ′

i−1. Now we have ani−1 points. If the line uw is a halving line of Vi−1,
then u1wa, u2wa−1, . . . , uaw1 are all halving lines of V ′

i−1 (Fig. 1). Therefore, we get
ami−1 halving lines. Clearly, this recursive construction would give only mi = O(ni ).

Now suppose that for each v ∈ Vi−1, the points v1, v2, . . . , va replacing v are placed
equidistantly on the corresponding very short horizontal segment. Let uw be a fixed
halving line of Vi−1. Suppose also that u lies higher than w. Then the corresponding a
halving lines of V ′

i−1, u1wa, u2wa−1, . . . , uaw1, pass through the same point q (Fig. 1).
Add two more points, x and y to V ′

i−1. Let x be a point on the horizontal line through
q, very close to q and to the left of it, and let y be anywhere on the left side of the
oriented line xu1 and on the right side of xw1. Then u1wa, u2wa−1, . . . , uaw1 are not
halving lines any more, since they have two more points on one of their sides than on the
other. Observe, however, that the lines xu1, xu2, . . . , xua and xw1, xw2, . . . , xwa are all
halving lines now. Consequently, by adding two extra points, we obtain 2a halving lines
corresponding to the original halving line uw, instead of a, as in V ′

i−1. We would like
to add those extra points similarly for each pair u, w ∈ Vi−1, whenever uw is a halving
line of Vi−1. The problem is that these extra points x and y work very well locally for
uw, but they might ruin the other halving lines as they might be on their same side.

Once u and w are replaced by the a equidistant points, q is given, and we have very
little freedom in choosing the location of x . On the other hand, we have much more
freedom with y. The only way we can essentially relocate q, and hence x , is to change
the distance between the consecutive points replacing u and v. In our construction we
place the extra points x and y for each halving-pair u, w ∈ Vi−1 and introduce some
further extra points, in such a way that none of the halving lines is ruined. So, finally
every original halving line is replaced by 2a halving lines, and the number of points is just
slightly more than a times the original number of points. More precisely, mi = 2ami−1

and ni ≈ ani−1. With a proper choice of a = ai , this will give the desired bound.
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Fig. 2. Constructing a point set with many k-sets from point sets with many halving lines.

3. Proofs of Theorems 1 and 2

First we show how Theorem 1 follows from Theorem 2, and then we prove Theorem 2.

Proof of Theorem 1. Let n, k be fixed, n ≥ 2k > 0, let m = �n/2k�, and let m ′ =
n − 2km. Let X1, X2, . . . , Xm be the vertices of a regular m-gon, inscribed in a unit
circle with center C . Let ε > 0 be very small and let Xi (ε) be the ε-neighborhood of Xi

(i = 1, 2, . . . , m), and let C(ε) be the ε-neighborhood of C .

By Theorem 2 there exists a 2k-element point set S, with 2ke�(
√

log k) halving lines.
For any 1 ≤ i ≤ m apply a suitable affine transformation Ai to S such that Ai (S) =
Si ⊂ Xi (ε) and for any halving line � of Si , all X j (ε), 1 ≤ j ≤ m, j �= i , are on the
same side of �. Finally, let S′ be a set of m ′ points in C(ε). Then the set T = S′ ∪m

i=1 Si

has m2k + m ′ = n points and m2ke�(
√

log k) = ne�(
√

log k) k-sets (Fig. 2).

Definition 2. For a positive integer a and ε > 0, let P(a, ε) be a set of a equidistant
points lying on a horizontal line such that the distance between the first and last points
is ε. Then P(a, ε) is called an (a, ε)-progression. We say that a point p is replaced by
an (a, ε)-progression if p is identical to one of the points in the progression.

Definition 3. A geometric graph G is a graph drawn in the plane by (possibly crossing)
straight line segments, i.e., it is defined as a pair G = (V, E), where V is a set of points
in general position (no three on a line) in the plane and E is a set of closed segments
whose endpoints belong to V (see also [PA]).

Proof of Theorem 2. We construct a sequence of geometric graphs G0(V0, E0),
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G1(V1, E1), G2(V2, E2), . . ., recursively with the property that, for any i , every edge
e ∈ Ei is a halving line of Vi . For i = 0, 1, 2, . . ., graph Gi has |Vi | = ni vertices and
|Ei | = mi edges. Denote the maximum degree of a vertex in Gi by di .

Let G0 have two vertices (points) and an edge connecting them. Suppose that we
have already constructed Gi−1. Assume without loss of generality that no edge of Gi−1

is horizontal. Let ε = εi > 0 be very small, and let v1, v2, . . . , vni−1 be the vertices of
Gi−1. The graph Gi (Vi , Ei ) is constructed in three steps:

Step 1. For j = 1, 2, . . . , ni−1, replace vj by an (ai , ε
j )-progression. The exact value

of a = ai will be specified later. The resulting point set is V ′
i−1.

Step 2. Let e be an element of Ei−1 with endpoints u and w. Then, for some 1 ≤
α, β ≤ ni−1, we have u = vα , w = vβ . Suppose without loss of generality
that α < β. Denote the points of the arithmetic progression replacing u (resp.
w) by u1, u2, . . . , ua (resp. w1, w2, . . . , wa). Let q be the intersection of the
lines u1wa, u2wa−1, . . . , uaw1 (Fig. 1). Add two more points, x and y, to the
point set as follows.

Place x so that xq is horizontal, x is to the left of q, and the distance xq is
so small that, for 1 ≤ j < a, the line xuj separates w1, w2, . . . , wa− j from
wa− j+1, . . . , wa , and, similarly, the line xwj separates u1, u2, . . . , ua− j from
ua− j+1, . . . , ua .

Finally, let z be the intersection point of the line xua with the line passing
through w1, w2, . . . , wa , and place y so that the vectors −→qz and −→zy are equal
(see Fig. 1).

Add the edges {xu1, xu2, . . . , xua, xw1, xw2, . . . , xwa} to Ei .

Since ε is very small and α < β, we obtain that x and y are in a small neighborhood
of w. Moreover, w1, w2, . . . , wa must be very close to the midpoint of the segment xy.
Therefore, any line vw, with w ∈ {w1, w2, . . . , wa}, v ∈ V ′

i−1, and v �∈ {u1, u2, . . . , ua},
intersects the segment xy very close to its midpoint, in particular, it separates x and y.

Execute Step 2 for every edge e ∈ Ei−1.

Step 3. Let u be an element of Vi−1. In Step 1 we replaced u by an (a, ε j )-progression,
say {u1, u2, . . . , ua}, from left to right. In Step 2 we possibly placed some
pairs of points in a small neighborhood of u. Denote the number of those
points by 2D. For each edge of Gi−1 adjacent to u, we placed zero or two
points in the neighborhood of u, and the number of those edges is at most
di−1. Therefore, we have D ≤ di−1.

Place di−1 − D points on the line of {u1, u2, . . . , ua}, to the left of u1,
such that their distance from u1 is between ε and 2ε. Analogously, place
di−1 − D points on the line of {u1, u2, . . . , ua}, to the right of ua , such that
their distance from ua is between ε and 2ε (see Fig. 3).

Fig. 3. Place di−1 − D points both to the left and to the right of u1, u2, . . . , ua .
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Execute Step 3 for every vertex u ∈ Vi−1, and, finally, perturb the points very slightly so
that they are in general position. Let Gi (Vi , Ei ) be the resulting geometric graph.

Claim 1. All edges in Ei , introduced in Step 2, are halving lines of Vi .

Proof of Claim 1. Let e ∈ Ei−1 be any edge of Gi−1 with endpoints u, w ∈ Vi−1. Use
the notations introduced in Step 2. Let 1 ≤ j ≤ a. We know that the line xuj separates
w1, w2, . . . , wa− j from wa− j+1, . . . , wa . Therefore, it is a halving line of the point set
{x, y, u1, u2, . . . , ua, w1, w2, . . . , wa}. All the other points in the neighborhoods of u
and w are introduced in pairs, one on each side of the line xuj . Since uw is a halving
line of Vi−1, there are exactly (ni−1 − 2)/2 points of Vi−1 on both sides of uw, and each
of them is replaced by exactly a + 2di−1 points in their small neighborhoods. Therefore,
we can conclude that the number of points of Vi lying on different sides of uw are the
same.

Each vertex of Gi−1 is replaced by a + 2di−1 points. Therefore, |Vi | = ni = (a +
2di−1)ni−1. For each edge e ∈ Ei−1, we introduced 2a edges in Ei . Consequently,
|Ei | = mi = 2ami−1. Let a = 4di−1. Then we have

ni = 6di−1ni−1, (1)

mi = 8di−1mi−1. (2)

Now we calculate di . There are three types of points in Vi :

1. Those points which are introduced in Step 1. They have the same degree in Gi as
the original point in Gi−1. Hence, the maximum degree of those points is di−1.

2. Those points which are introduced in Step 2. Half of them have degree zero, the
other half have degree 2a = 8di−1.

3. Those points which are introduced in Step 3. They all have degree zero.

Therefore, for i > 0, the maximum degree is di = 8di−1. Since d0 = 1, we have
di = 8i . Using (1) and n0 = 2,

ni = 2 · 6i · 81+2+···+(i−1) = 8i2/2+(log8 6−1/2)i+1/3.

Analogously, using (2) and m0 = 1,

mi = 8i · 81+2+···+(i−1) = 8i2/2+i/2.

Therefore,

mi = ni 8
(1−log8 6)i−1/3 = ni e

�(
√

log ni ).

This proves Theorem 2 if n is of the form 2 · 6i · 81+2+···+(i−1) for some i ≥ 0. It is not
hard to extend the result for every n, using the following easy and well-known results
[L], [ELSS], [E2]. Let f (n) be the maximum number of halving lines of a set of n points
in the plane.
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Claim 2. For a, n > 0, (i) f (an) ≥ a f (n), and (ii) f (n + 2) ≥ f (n).

Proof of Claim 2. Let P be a set of n points with f (n) halving lines and suppose that
no line determined by the points of P is horizontal. For (i), replace each point of P by
an (a, ε)-progression. (See also the previous section and Fig. 1.)

For (ii), add two points to P , one very far from P to the left and one very far to the
right. Then all halving lines of P are halving lines of the new point set.

This concludes the proof of Theorem 2.

4. Proof of Theorem 3

Let fd(n) be the maximum number of halving hyperplanes of a set of n points in Rd .

Claim 3. For n > 0, fd(n + 2) ≥ fd(n).

Proof of Claim 3. The proof is analogous to the proof of Claim 2(ii).

Suppose for simplicity that d is even. For d odd, the proof is analogous. By Claim
3, we can assume without loss of generality that n is divisible by 6. Let P1 be a set of
n/3 points in the intersection of the hyperplanes x1 = 0 and x2 = 1 such that no d − 1
of them lie in a common (d − 3)-dimensional affine subspace. Let P2 = −P1, that is,
P2 is the reflection of P1 about the origin. Any hyperplane that contains the x1-axis and
avoids P1, also avoids P2 and cuts the set P1 ∪ P2 into two equal subsets. Let P3 be a

set of n/3 points in the plane spanned by the x1- and xd -axes, with ne�(
√

log n) halving
lines, such that the points of P3 are very close to the origin, and all halving lines have
very little angles with the x1-axis. Now any hyperplane which contains a halving line
of P3 and avoids P1 ∪ P2, is a halving hyperplane of the set P1 ∪ P2 ∪ P3. Since, for
any halving line of P3, there are �

(
nd−2

)
combinatorially different such hyperplanes,

Theorem 3 follows.

Remarks. 1. The proofs of Theorems 1 and 2 imply the lower bound ne0.282
√

ln k−2.1

for the number of k-sets. If we use a better choice for the value of ai , a proper ordering
of the vertices of Gi−1 before Step 1, and place the additional points in Step 3 more
carefully, we can obtain the lower bound ne0.744

√
ln k−2.7 > (n/20)2

√
ln k .

2. Based on Theorem 3 and the proof of Theorem 1, it is not hard to construct an

n-element point set in Rd with nkd−2e�(
√

log k) k-sets.
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