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Abstract. For any n, k, n > 2k > 0, we construct a set of n points in the plane with

ne?1°9% «_sets, Thisimproves the bounds of Erdés, Lovész, et a. As a consequence, we
also improve the lower bound for the number of halving hyperplanesin higher dimensions.

1. Introduction

For aset P of n pointsin the d-dimensional space RY, ak-set issubset P’ ¢ P such that
P’ = P N H for some open half-space H, and | P’| = k. The problem is to determine
the maximum number of k-sets of an n-point set in RY. Even in the most studied two-
dimensional case, we are very far from the solution, and in higher dimensions even less
is known.

The first results in the two-dimensional case are due to Lovasz [L] and Erd6s et al.
[ELSS]. They established an upper bound O(n+v/k), and a lower bound €2 (nlogk).
Despite great interest in this problem [GP1], [W], [E2], [S], [EVW], [AACS], partly
due to its importance in the analysis of geometric agorithms [EW2], [CP], [CSY],
[E2], there was no progress until the very small improvement due to Pach et al. [PSS].
They improved the upper bound to O(n+/k/ log* k). Recently, Dey [D] obtained an es-
sential improvement of the upper bound; his bound is O(n¥/k). There was no improve-
ment on the lower bound of Erdés et a., besides little improvements on the constant
[EwW1], [E3], [EL].

* This research was supported by NSF Grant DM S-99-70071, OTKA-T-020914, and OTKA-F-22234.



188 G. Toth

Theorem 1. For any n, k, n > 2k > 0, there exists a set of n points in the plane with
ne?(V109k k-sets,

Inthedual setting, Theorem 1 givesan arrangement of n linessuch that the complexity
of the k-level (the number of intersection points having exactly k lines above them) is

ne? W19k A similar bound was obtained by Klawe et al. [KPP] for the complexity of
the median level (k = n/2) in pseudoline arrangements (see also [GP2] and [AW]).
However, our construction seems to be essentially different.

Definition 1. Letn > d > 2,n—d even, andlet P beaset of n pointsin RY in general
position (no d + 1 of them lie in the same hyperplane). A hyperplane determined by
d points of P is called a halving hyperplane (resp. halving line for d = 2 and halving
planefor d = 3) if it has exactly (n — d)/2 points of P on both sides.

In the plane there is a one-to-one correspondence between complementary pairs of
n/2-setsand halving lines[AG] and, for any fixed d, the number of halving hyperplanes
is proportional to the number of |n/2]-sets [E2], [DE]. Theorem 1 is based on the
following result.

Theorem 2. For any n > 0 even, there exists a set of n points in the plane with
ne?W'%9M halving lines.

The k-set problem in space seems even harder than in the plane. The most interesting
and studied case is k = n/2, i.e, finding the maximum number of halving planes.
The first nontrivial upper bound was given by Barany et al. [BFL]. It was improved by
Aronov et a. [ACE™], Eppstein [E4], and then by Dey and Edelsbrunner [DE] (see also
[AACS]). Thebest known bound, O(n®?), wasfound very recently by Sharir et al. [SST].
Ind > 3dimensions, the trivial upper bound, O(n%), was only very slightly improved,
to O(nd—*¢), by Zivaljevic and Vretica[ZV] (see also [ABFK]). The best known lower
boundind > 3dimensions, 2 (n®~*logn), followsdirectly from the lower bound in the
plane, as described in [E2]. Using Theorem 1 and the method shown in [E2], we obtain
an immediate improvement.

Theorem 3. Foranyn>0,d> 2, thereexistsaset of n pointsin RY with nd-1g®(/!09m
halving hyperplanes.

2. ldeaof the Construction

Itisnot hard to see and is shown in the next section that it is enough to consider the case
k = n/2, i.e, the case of halving lines. Then the construction for other values of k can
be obtained easily.

Weconstruct aseguenceof point sets, Vo, V1, Vo, ..., recursively.Fori =0,1,2, ...,
point set Vi hasn; pointsand at least m; halving lines. Supposethat we already have V; _1
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uy U u, uy Uz Uy

Fig. 1. Theextrapointsx and y, and the new halving lines.

with parameters n; _; and m;_;. We can assume that none of the lines determined by the
pointsishorizontal. Replace each of thepointsv € V,_; by a = & points, vy, v, . .., va,
lying from left to right on a short horizontal segment very close to v. Let the resulting
point set be V/"_;. Now we have an;_1 points. If the line uw is a halving line of V;_,
then uywa, Upwa—1, ..., Uawy are al halving lines of V/'_; (Fig. 1). Therefore, we get
am; _; halving lines. Clearly, this recursive construction would give only m; = O(n;).
Now suppose that for each v € V;_1, the points vy, vy, .. ., v, replacing v are placed
equidistantly on the corresponding very short horizontal segment. Let uw be a fixed
halving line of V;_;. Suppose aso that u lies higher than w. Then the corresponding a
halving lines of V{"_;, U1wa, Upwa_1, . . ., Uaw1, Passthrough the same point q (Fig. 1).
Add two more points, x and y to V/_,. Let x be a point on the horizontal line through
g, very close to g and to the left of it, and let y be anywhere on the left side of the

oriented line Xu; and on the right side of Xwy. Then ujw,, Uswy_1, ..., Uawy are not
halving lines any more, since they have two more points on one of their sidesthan on the
other. Observe, however, that thelinesxuy, Xuo, ..., Xug and Xwq, Xwo, ..., Xw, areall

halving lines now. Consequently, by adding two extra points, we obtain 2a halving lines
corresponding to the original halving line uw, instead of a, asin V;’_;. We would like
to add those extra points similarly for each pair u, w € V;i_1, whenever uw isahalving
line of Vj_1. The problem is that these extra points x and y work very well locally for
uw, but they might ruin the other halving lines as they might be on their same side.

Once u and w are replaced by the a equidistant points, q is given, and we have very
little freedom in choosing the location of x. On the other hand, we have much more
freedom with y. The only way we can essentially relocate g, and hence x, is to change
the distance between the consecutive points replacing u and v. In our construction we
place the extra points x and y for each halving-pair u, w € Vj_; and introduce some
further extra points, in such a way that none of the halving lines is ruined. So, finally
every original halving lineisreplaced by 2a halving lines, and the number of pointsisjust
slightly more than a times the original number of points. More precisely, mj = 2am;_;
and n; ~ an;_;. With aproper choice of a = g;, thiswill give the desired bound.
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Fig. 2. Constructing a point set with many k-sets from point sets with many halving lines.

3. Proofsof Theorems 1 and 2
First we show how Theorem 1 follows from Theorem 2, and then we prove Theorem 2.

Proof of Theorem1. Letn, k befixed,n > 2k > 0, let m = [n/2k], and let m" =
n — 2km. Let X1, Xa, ..., Xy be the vertices of a regular m-gon, inscribed in a unit
circlewith center C. Let ¢ > 0 bevery small and let X; (¢) be the e-neighborhood of X;
(i=1,2...,m)andlet C(e) bethe e-neighborhood of C.

By Theorem 2 there exists a 2k-element point set S, with 2ke®/1°9%) halving lines,
Forany 1 < i < m apply a suitable affine transformation A; to S such that A (S) =
S C Xj(e) and for any halving line £ of §, dl Xj(¢),1 < j <m, j #i, aeonthe
sameside of ¢. Finally, let S beaset of m' pointsin C(e). Thentheset T =S U, §

has m2k + m’ = n points and m2ke?V'°9% — ne? (V109K k_gets (Fig. 2). O

Definition 2. For apositive integer a and ¢ > 0, let P(a, ¢) be a set of a equidistant
points lying on a horizontal line such that the distance between the first and last points
ise. Then P(a, ¢) iscalled an (a, ¢)-progression. We say that apoint p is replaced by
an (a, ¢)-progression if p isidentical to one of the pointsin the progression.

Definition 3. A geometric graph G isagraph drawninthe plane by (possibly crossing)
straight line segments, i.e., itisdefined asapair G = (V, E), where V isaset of points
in general position (no three on aline) in the plane and E is a set of closed segments
whose endpoints belong to V (see aso [PA]).

Proof of Theorem2. We construct a sequence of geometric graphs Go(Vo, Ep),
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Gi1(V1, E1), Ga(Vo, Ep), ..., recursively with the property that, for any i, every edge
e € Ejisahavinglineof V;.Fori = 0,1, 2, ..., graph G; has|Vi| = n; vertices and
|Ei| = m; edges. Denote the maximum degree of avertex in G; by d;.

Let Go have two vertices (points) and an edge connecting them. Suppose that we
have already constructed G;_1. Assume without loss of generality that no edge of G;_1
is horizontal. Let ¢ = & > 0 bevery small, and let vy, vy, ..., vy_, bethe vertices of
Gj_1. Thegraph G; (Vi, E;) is constructed in three steps:

Stepl. Forj =1,2, ..., ni_1,replacev; by an (a;, el)-progression. Theexact value
of a = & will be specified later. The resulting point setisV;/_,.

Step 2. Let e be an element of E;_; with endpoints u and w. Then, for some 1 <
o, B < ni_1, wehaveu = v, w = vg. Suppose without loss of generality
that o« < B. Denotethe pointsof the arithmetic progression replacing u (resp.
w) by ug, Uy, ..., Uy (resp. wy, wo, ..., wy). Let g be the intersection of the
linesujwy, Upwy_1, ..., Ugws (Fig. 1). Add two more points, x and y, to the
point set as follows.

Place x so that xq ishorizontal, x isto the left of g, and the distance Xq is

so small that, for 1 < j < a, the line Xu; separates wi, wy, ..., wa—j from
Wa—j+1, - - - » Wa, and, similarly, theline xw; separatesuy, up, ..., Ua—j from
Ua7j+1, ceey Ua.

Finally, let z be the intersection point of the line xu, with the line passing
through w1, wo, . . ., wa, and place y so that the vectors Gz and zy are equal
(seeFig. 1).

Add the edges {xuy, XUy, ..., XU, Xw1, XWy, ..., Xwa} to Ej.

Since ¢ isvery small and @ < 8, we obtain that x and y are in a small neighborhood

of w. Moreover, w1, wy, ..., wa Must be very close to the midpoint of the segment xy.

Therefore, any linevw, withw € {w1, wo, ..., wa},v € V_j,andv & {uy, Uz, ..., Ua},

intersects the segment xy very closeto its midpoint, in particular, it separates x and y.
Execute Step 2 for every edgee € E;_;.

Step 3. Letubeanelementof Vi _;. InStep 1wereplaced u by an (a, ¢})-progression,
say {uj, Uy, ..., Ug}, from left to right. In Step 2 we possibly placed some
pairs of points in a small neighborhood of u. Denote the number of those
points by 2D. For each edge of G;_; adjacent to u, we placed zero or two
points in the neighborhood of u, and the number of those edges is at most
di_1. Therefore, wehave D < dj_;.

Place di_; — D points on the line of {uy, uy, ..., Uy}, to the left of uy,
such that their distance from u; is between ¢ and 2¢. Analogously, place
di_1 — D pointson theline of {us, uy, ..., Uy}, to theright of u,, such that
their distance from u, is between ¢ and 2¢ (see Fig. 3).

;U u,

dpy -D poins diy -1 points

Fig. 3. Placedi_1 — D points both to the left and to theright of ug, uy, ..., Ua.
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Execute Step 3 for every vertex u € Vi_1, and, finally, perturb the points very slightly so
that they arein general position. Let G; (V;, E;) be the resulting geometric graph.

Claim 1. All edgesin E;, introduced in Step 2, are halving lines of V;.

Proof of Claim1. Lete e E;_; beany edge of G;_; with endpointsu, w € Vi_;. Use
the notations introduced in Step 2. Let 1 < j < a. We know that the line xu; separates
W1, W2, ..., Wa—j fromwa_j41, ..., wa. Therefore, it is ahaving line of the point set
{X,y, U1, Uy, ..., Us, w1, wa, ..., ws}. All the other points in the neighborhoods of u
and w are introduced in pairs, one on each side of the line xu;. Since uw is a halving
line of Vi_1, thereare exactly (n,_; — 2)/2 points of V;_; on both sides of uw, and each
of them isreplaced by exactly a+ 2d; _; pointsin their small neighborhoods. Therefore,
we can conclude that the number of points of V; lying on different sides of uw are the
same. O

Each vertex of Gj_; isreplaced by a + 2d; _; points. Therefore, |Vi| = nj = (a +
2d; _1)nj_1. For each edge e € E;j_1, we introduced 2a edges in E;. Consequently,
|Ei| = mj = 2am;_;. Let a = 4d;_;. Then we have

ni = 6di_1ni_1, D
m; = 8di_1mi_1. )

Now we calculate d; . There are three types of pointsin V;:

1. Those points which are introduced in Step 1. They have the same degreein G; as
the original point in G;_;. Hence, the maximum degree of those pointsisd;_;.

2. Those points which are introduced in Step 2. Half of them have degree zero, the
other half have degree 2a = 8d; _;.

3. Those points which areintroduced in Step 3. They all have degree zero.

The_refore, fori > 0, the maximum degreeisd; = 8d,_;. Since dy = 1, we have
d =8.Using (1) and ng = 2,

n=2- 6i . 81+2+---+(i—1) — 8i2/2+(logs 6—1/2)i+1/3.

Analogously, using (2) and mg = 1,

m = 8i ~81+2+"'+(i_1) — 8i2/2+i/2'

Therefore,
m =n 8(1—I0g86)i—1/3 =n eﬂ(a/logni)'

Thisproves Theorem 2if nisof theform2.6' - 812+ +(-D for somei > 0. Itisnot
hard to extend the result for every n, using the following easy and well-known results
[L],[ELSS], [E2]. Let f (n) bethe maximum number of halving lines of aset of n points
in the plane.
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Clam2. Fora,n> 0, (i) f(an) > af (n),and (ii) f(n+2) > f(n).

Proof of Claim2. Let P beaset of n pointswith f (n) halving lines and suppose that
no line determined by the points of P is horizontal. For (i), replace each point of P by
an (a, ¢)-progression. (See also the previous section and Fig. 1.)

For (ii), add two pointsto P, one very far from P to the left and one very far to the
right. Then all halving lines of P are halving lines of the new point set. O

This concludes the proof of Theorem 2. O

4. Proof of Theorem 3

Let f4(n) be the maximum number of halving hyperplanes of a set of n pointsin R,

Clam3. Forn >0, fq(n+2) > fq(n).
Proof of Claim 3. The proof is analogous to the proof of Claim 2(ii). |

Suppose for simplicity that d is even. For d odd, the proof is analogous. By Claim
3, we can assume without loss of generality that n isdivisible by 6. Let P; be a set of
n/3 pointsin the intersection of the hyperplanes x; = 0 and X, = 1 suchthatnod — 1
of them lie in a common (d — 3)-dimensional affine subspace. Let P, = —Py, that is,
P, isthereflection of P; about the origin. Any hyperplane that contains the x;-axis and
avoids Py, also avoids P, and cuts the set P; U P, into two equal subsets. Let P; be a
set of n/3 points in the plane spanned by the x;- and xq4-axes, with ne?(/logm halving
lines, such that the points of P; are very close to the origin, and all halving lines have
very little angles with the x;-axis. Now any hyperplane which contains a halving line
of P; and avoids P, U P, is a halving hyperplane of the set P, U P, U Ps. Since, for
any halving line of Ps, there are © (n9~2) combinatorially different such hyperplanes,
Theorem 3 follows. O

Remarks. 1. The proofs of Theorems 1 and 2 imply the lower bound ne?-282vInk-2.1
for the number of k-sets. If we use a better choice for the value of a;, a proper ordering
of the vertices of G;_; before Step 1, and place the additional points in Step 3 more
carefully, we can obtain the lower bound ne®744vink-27 -y 20)2vInk

2. Based on Theorem 3 and the proof of Theorem 1, it is not hard to construct an

n-element point set in RY with nkd-2e2(v/1090 k_gets,

Acknowledgment

We are very grateful to Janos Pach for his comments.



194 G. Toth
References

[AACS] P K. Agarwal, B. Aronov, T. M. Chan, M. Sharir: On levels in arrangements of lines, segments,
planes, and triangles, Discrete and Computational Geometry 19 (1998), 315-331.
[AW] A. Andrzejak, E. Welzl: k-Sets and j-facets—a tour of discrete geometry, in preparation.
[ABFK] N. Alon, I. Barany, Z. Firedi, D. J. Kleitman: Point selections and weak ¢-nets for convex hulls,
Combinatorics, Probability and Computing 1 (1992), 295-302.
[ACE*] B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, R. Wenger: Points and triangles
in the plane and halving planesin space, Discrete and Computational Geometry 6 (1991), 435-442.
[AG] N. Alon, E. Gy6ri: The number of semispaces of a finite set of points in the plane, Journal of
Combinatorial Theory, Series A 41 (1986), 154-157.
[BFL] I.Barany, Z. Firedi, L. Lovasz: Onthenumber of halving planes, Combinatorica 10 (1990), 175-183.
[CP] B. Chazelle, F. P. Preparata: Half-space range search: an algorithmic application of k-sets, Discrete
and Computational Geometry 1 (1986), 83-93.

[CSY] R. Cole, M. Sharir, C. K. Yap: On k-hulls and related problems, SSAM Journal on Computing 16

(1987), 61-77.
[D] T. K. Dey: Improved bounds for planar k-sets and related problems, Discrete and Computational
Geometry 19 (1998), 373-382.
[DE] T. K. Dey, H. Edelsbrunner: Counting triangle crossings and halving planes, Discrete and Compu-
tational Geometry 12 (1994), 281-289.
[E1] E. Early, Personal communication.
[E2] H. Edelsbrunner: Algorithmsin Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[E3] D. Eppstein: Sets of points with many halving lines, Technical Report ICS 92-86, University of
California, Irvine (1992).
[E4] D.Eppstein: Improved boundsfor intersecting trianglesand halving planes, Journal of Combinatorial
Theory, Series A 62 (1993), 176-182.
[ELSS] P Erdbs, L.Lovéasz, A. Smmons, E. G. Straus: Dissection graphs of planar point sets, In: A Survey of
Combinatorial Theory (J. N. Srivastavaet al., eds.), North-Holland, Amsterdam, 1973, pp. 139-149.
[EVW] H. Edelsbrunner, P. Valtr, E. Welzl: Cutting dense point sets in half, Discrete and Computational
Geometry 17 (1997), 243-255.

[EW1] H. Edelsbrunner, E. Welzl: On the number of line separations of afinite set in the plane, Journal of
Combinatorial Theory, Series A 38 (1985), 15-29.

[EW2] H. Edelsbrunner, E. Welzl: Constructing belts in two-dimensional arrangements with applications,
SIAM Journal on Computing 15 (1986), 271-284.

[GP1] J. E. Goodman, R. Pollack: On the number of k-subsets of a set of n pointsin the plane, Journal of
Combinatorial Theory, Series A 36 (1984), 101-104.

[GP2] J. E. Goodman, R. Pollack: Allowable sequences and order types in discrete and computational
geometry, in: New Trends in Discrete and Computational Geometry (J. Pach, ed.), Algorithms and
Combinatorics, vol. 10, Springer-Verlag, New York, 1993, pp. 103-134.

[KPP] M. Klawe, M. Paterson, N. Pippenger: Unpublished manuscript, 1982.

[L] L. Lovasz: On the number of halving lines, Annales Universitatis Scientiarum Budapestinensis de
Rolando E6tvos Nominatae Sectio Mathematica 14 (1971), 107-108.
[PA] J. Pach, P. K. Agarwal: Combinatorial Geometry, Wiley, New York, 1995.

[PSS] J. Pach, W. Steiger, E. Szemerédi: An upper bound on the number of planar k-sets, Discrete and
Computational Geometry 7 (1992), 109-123.

[S] M. Sharir: On k-setsin arrangements of curves and surfaces, Discrete and Computational Geometry
6 (1991), 593-613.

[SST] M. Sharir, S. Smorodinsky, G. Tardos: An improved bound for k-setsin three dimensions, in prepa-

ration.
[W] E.Welzl: More on k-sets of finite setsin the plane, Discrete and Computational Geometry 1 (1986),
95-100.
[ZV] R.T.Zivajevit, S. T. Vretica The colored Tverberg's problem and complexes of injective functions,
Journal of Combinatorial Theory, Series A 61 (1992), 309-318.

Received September 10, 1999, and in revised form January 27, 2000. Online publication May 8, 2000.



