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ABSTRACT

Point Spread Function Engineering for Scene Recovery

Changyin Zhou

A computational camera uses a combination of optics and processing to produce images that

cannot be captured with traditional cameras. Over the last decade, a range of computational cameras

have been proposed, which use various optics designs to encode and using computation to decode

useful visual information. What is often missing, however, is the quantitative connection between

camera design and the captured visual information, and little systematic work has been done to

evaluate and optimize these computational camera designs. While computational cameras can be

designed in complicated ways, many of them can be effectively characterized by their point spread

functions (PSFs): the intensity distribution on an image sensor as a response to a point light source

in a scene.

This thesis explores the techniques to characterize, evaluate and optimize computational cam-

eras via PSF engineering for various scene recovery tasks in computer vision. I first demonstrate

the quantitative connection between PSF and the loss of image detail in blurry images. A captured

image can appear blurry for a number of reasons, including defocus, lens aberration, atmospheric

turbulence, and object motion. Image blurring can be formulated as a convolution of the latent

sharp image and a PSF, and deconvolution techniques must be used to recover details from a blurred

region. Here, I propose a comprehensive framework of PSF evaluation for the purpose of image

deblurring, which takes the effects of image noise, deblurring algorithm, and the structure of natural

images into account.

In the case of defocus blur, it is well known that the shape of a defocus PSF is largely determined

by the aperture pattern of the camera lens. By using the derived evaluation criterion, it is possible

to optimize the pattern of lens aperture to preserve many more image details when defocus occurs.

Both through simulations and experiments, I demonstrate the significant improvement gained by

using optimized coded apertures.



While defocus causes a loss in image detail, it also encodes depth in images. A typical depth

from defocus (DFD) technique computes depth from two images captured with circular apertures

of different sizes. Circular apertures produce circular defocus PSFs. In this thesis, I present that

the use of a circular aperture severely restricts the accuracy of DFD, and propose a comprehensive

framework of PSF evaluation for depth recovery. With this framework, we can derive a criterion

for evaluating a pair of apertures with respect to the precision of depth recovery. This criterion is

optimized using a genetic algorithm and gradient descent search to arrive at a pair of high resolution

apertures. The two coded apertures are found to complement each other in the scene frequencies

they preserve. With this property it becomes possible to not only recover depth with greater fidelity

but also to obtain a high quality all-focused image from the two defocused images.

While depth recovery can significantly benefit from optimized aperture patterns, its overall per-

formance is rigidly limited by the lens aperture’s physical size. To transcend this limitation, I pro-

pose a novel depth recovery technique using an optical diffuser - referred to as depth from diffusion

(DFDiff).

I show that DFDiff is analogous to conventional DFD, in which the scatter angle of the diffuser

determines the system’s effective aperture. High precision depth estimation can be achieved by

choosing a proper diffuser and no longer requires the large lenses that DFD requires. Even a con-

sumer camera with a low-end small lens can be used to do high-precision depth estimation when

coupled with an optical diffuser. In my detailed analysis of the image formation properties of a

DFDiff system, I show a number of examples demonstrating greater precision in depth estimation

when using DFDiff.

While the finite depth of field (DOF) of a lens camera leads to defocus blur, it also produces

artistic visual experience. Many of today’s displays are interactive in nature, which opens up a

possibility for new kind of visual representations. Users could, for example, interactively refocus

images to different depths, so that they can experience the artistic narrow DOF images while simul-

taneously making available the image detail for the entire image. To enable image refocusing, one

typical approach is to capture the entire light field. But this method has the drawback of a significant

sacrifice in spatial resolution due to the dimensionality gap: the captured information (light field) is

4D, while the required information (focal stack) is only 3D.

In this thesis, I present an imaging system that directly captures focal stacks by a sweeping



focal plane. First, I describe how to synchronize focus sweeping with image capturing so that the

summed DOF of a focal stack efficiently covers the entire depth range. Then, I take a customized

algorithm to enable a seamless refocusing experience, even in textureless regions or with moving

objects. Prototype cameras are presented to capture real space-time focal stacks. There is also an

interactive refocusing viewer available online at www.focalsweep.com.
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diopter) by |Ẑi − Ẑ| = 2ûc/A. (b) In order to have an efficient and complete focus

sampling, the DOFs of consecutive sensor positions (e.g., v̂i−1, v̂i, v̂i+1) must have

no gap or overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



6.3 Two focal sweep camera prototypes. (a) Prototype 1 drives sensor sweep using a

voice coil; (b) Prototype 2 drives lens sweep using a linear actuator. . . . . . . . . 87

6.4 For a given pixel size, frame rate, and f-number, the overall capture time and total

image count are highly related to focal length and scene distance range. (a) shows

the f −T plot of the overall capture time T with respect to focal length f to cover a

wide depth range from 0.4m to infinity. (b) shows the f − k plot of the total image

number k with respect to focal length f to cover a wide depth range from 0.4m to

infinity. (c) and (d) show the plots of overall time T and total image number k with

respect to the depth range (in both diopter and meter), respectively (f = 9mm). In

each plot, the red spot indicates the most typical setting in our implementation. . . 89

6.5 A sample space-time focal stack captured using our focal sweep camera prototype

1. (a) A space-time focal stack of 25 images; (b) A 2D slice of the 3D stack; (c)

The first frame of the stack where the foreground is in focus; (d) The last frame of

the stack where the background is in focus. The capturing frame rate is 120fps. It

took the focal sweep camera about 0.2sec to capture the whole sequence. . . . . . 90

6.6 A diagram illustrating the process from capturing a space-time focal stack, to gen-

erating an in-focus index map, and to interactive image refocusing. . . . . . . . . 91

6.7 Space-time in-focus images computed using different approaches and their close-

ups. (a) The mean of all images in the stack; (b) The mean image deconvolved

using an integral PSF; (c) Weighted average of all images in the stack; (d) The best

focused patches in the captured focal stack. . . . . . . . . . . . . . . . . . . . . . 92

6.8 (a) A pyramid of space-time in-focus images; (b) A pyramid of space-time index

maps; (c) A reliable index map that is computed from (b) using index consistence;

(d) An over-segmentation of the full-resolution in-focus image; (e) Our final depth

map computed from (c) and (d) by hole-filling; (f) An index map computed using a

traditional algorithm which uses difference-of-Gaussians as focus measure. . . . . 94

xiii



6.9 More experimental results. Each row corresponds to a scene. From left to right, (a)

and (b) are the first and last frames captured with focal sweep, (c) are the computed

space-time in-focus images, and (d) are the estimated space-time in-focus index

maps. The resulting index maps are used for image refocusing, as demonstrated on

our website www.focalsweep.com. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

E.1 Geometry of diffusion in a pinhole camera. An optical diffuser with a pillbox diffu-

sion function of degree θ is placed in front of a scene point P and perpendicular to

the optical axis. From the viewpoint of pinhole, a diffused pattern AB appears on

the diffuser plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

F.1 Geometry of diffusion in a pinhole camera. The diffuser is tilted by a small angle β. 113

xiv



List of Tables

3.1 Genetic Algorithm for Coded Aperture Optimization . . . . . . . . . . . . . . . . 27

5.1 Comparison of DFD and DFDiff for different depth precision requirements and ob-

ject distances. On the left are FOV, object distance, and depth sensitivity that we

want to achieve; on the right are the required EFL, F# or aperture size D in DFD

and diffusion angle θ in DFDiff. In bold are lenses required by DFD which are

too complicated to manufacture (e.g. a 500mm focal length lens with 4m diameter

aperture). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



Dedicated to my beloved mother, father, brother and sisters,

and to my beloved wife Elaine.

xvi



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Point spread function engineering for scene recovery

A camera is a device that collects light (Figure 1.1 (a)). Over the last century, the evolution of

cameras has been truly remarkable. Throughout the course of this evolution, however, the basic

model underlying cameras has remained essentially unchanged (Figure 1.1 (b)). The traditional

camera has a detector and a lens that captures only the principal rays passing through its optical

center, and produces the familiar perspective image. In other words, the traditional camera performs

a very simple and restrictive sampling of the complete set of rays, or the light field, that resides in

real scene [108] [109] [183].

A computational camera (Figure 1.1 (c)) combines novel optics and computation to produce the

final image. The novel optics are used to map rays from the scene onto pixels on the detector in an

unconventional fashion. For example, the ray shown in Figure 1.1 (c) is geometrically redirected

by the optics to a different pixel than the one it would have reached in the case of a traditional

camera. As illustrated by the change in color from yellow to red, the ray can also be photometrically

altered by the optics. Although the images captured by computational cameras are optically coded

and may not be visually meaningful in their raw form, the information can be recovered by using

computation. In all cases, the new arrangement of the rays helps to encode more useful visual

information in the captured images compared to conventional cameras.

Over the last decade, a wide variety of computational cameras have been developed, which all

encode more useful visual information in the captured images as compared to conventional cam-
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Figure 1.1: (a) In a typical scene for imaging, light rays from sources are reflected by objects, col-

lected by camera lens, and then converted to digital signals for further processing. (b) A traditional

camera model captures only those principal rays that pass through its center of projection to produce

the familiar linear perspective image. (c) A computational camera uses optical coding followed by

computational decoding to produce new types of images.

eras. The coding methods used in today’s computational cameras can be broadly classified into six

approaches: object side coding, pupil plane coding, sensor side coding, illumination coding, camera

arrays and clusters, and unconventional imaging systems ([109] [183]). The design space for the

optics of computational cameras is large. It would be desirable to have a single design method-

ology that produces an optimized optical system for any given set of imaging specifications. This

optimization criteria would have to formulate the complex optical systems, which can be pretty

complicated, and incorporate a variety of factors, including performance and complexity. However,

such a systematic design and optimization approach is largely missing in literature. As a conse-

quence, just as in the case of traditional optics, the design of computational cameras remains part

science and part art.

In this thesis, I explore the techniques to optimize computational camera designs using point

spread function (PSF) engineering. PSF is the intensity distribution on a camera sensor as a response

to a point light source in the scene. It gives an efficient and simple way to characterize imaging

systems. The amount of the spreading is often used directly as a measure for the quality of an
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imaging system. For a typical Lambertian scene without occlusion, the image formation can be

formulated as an integral of the corresponding PSF of every scene point:

F (x, y) =

∫

p∈Ω
K(x, y|p) · I(p)dp,

where p is any visible 3D point on the scene geometry Ω, I(p) is the light intensity at p, and

K(x, y|p) is the PSF for the point p. This image formation is well known to be a process of dimen-

sion reduction, in which a large amount of information is lost. We can see that the PSF K(x, y|p)

is the kernel of the mapping from a 3D scene to a 2D image in this process. As the kernel of image

formation, PSF determines how the scene texture I(p) is distorted and how the scene geometry Ω is

encoded in the 2D image.

This kernel K(x, y|p) is solely determined by camera design. For example, in an ideal pin-

hole camera model, K(x, y|p) is a Dirac delta function by ignoring diffraction; in a typical thin

lens model, K(x, y|p) is a disk function, whose scale is determined by the relative position of p to

the focal plane (shown in Figure 1.2); and for most lens designs, the PSFs due to diffraction and

lens aberrations can be concisely modeled based on their lens profiles by using Zernike polynomi-

als [179]. By properly designing a computational camera via PSF optimization, I will be able to

preserve more useful information for scene recovery.

One fundamental problem is how to precisely model the connection between PSFs and the useful

information for scene recovery. Once we have a precise model, we would be able to analytically

evaluate any camera design via its PSF, and then accordingly optimize the camera design. In this

thesis, we address this problem in the context of various tasks of scene recovery and make the

following contributions:

• Texture detail of a scene is often lost in a captured image due to defocus, lens aberration, or

diffraction. We study the effects of PSFs in recovering scene texture from blurry images, and

propose a close-form criterion to evaluate the “goodness” of PSFs according to the expected

quality of deblurring.

Defocus is the most commonly seen image blur in photographs. For a traditional camera as

shown in Figure 1.2, an object will appear in-focus when it is on the focus plane and will

appear blurry as it deviates from the focus plane. The shape of defocus PSF is determined
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Figure 1.2: (a) The geometry of defocus in a traditional lens camera. Objects at greater distances

away from the focal plane will appear increasingly blurred. On the left are the defocus PSFs for

three distances. (b) A captured image with defocus blur.

by the aperture pattern and its scale is related to object depth. We therefore use the proposed

criterion to optimize aperture patterns for defocus deblurring.

• While defocus causes a loss in image detail, it also encodes depth information of the scene.

We propose a comprehensive framework of evaluating PSFs for depth recovery, and use it to

solve for an optimized pair of coded apertures.

• While aperture coding optimizes the PSF and helps to improve the precision of depth recov-

ery, the sensitivity of depth estimation is rigidly limited by aperture size ([144]). To transcend

this fundamental limit, we propose using an optical diffuser to modulate the PSFs and this

leads to a novel depth recovery technique – referred to as depth from diffusion (DFDiff).

• The finite depth of field (DOF) of a lens camera leads to defocus blur, but this also produces

artistic visual experience. It is an effective tool to draw user attention selectively to a specific

part of the scene. In this thesis, we propose capturing a stack of images in a duration when the

focus sweeps over a large depth range in the scene – referred to as space-time focal stack. We

then design a novel image refocusing algorithm using the space-time focal stack. This allows

users to experience the artistic narrow DOF appearance of the scene while simultaneously

making available the image detail for the entire image.
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1.2 Related work

In this thesis, we study PSF optimization for both recovering image and depth of scenes, and have

applied the derived PSF evaluation criteria for lens aperture optimization. We have also proposed

using a novel optical device to overcome the limit of DFD, and have designed a focal sweep camera

to capture more information for space-time image refocusing. In the past decades, a large number

of related work has been done for similar applications in scene recovery.

1.2.1 On image recovery

In the 1960s, coded aperture techniques were introduced in the field of high-energy astronomy as

a novel way of PSF engineering. These techniques have been used for improving signal-to-noise

ratio for lensless imaging of x-ray and γ-ray sources [1][26]. In subsequent decades, many differ-

ent aperture patterns were proposed, including the popular multiplexed uniformly redundant array

(MURA) [56]. Unfortunately, the coded apertures designed for lensless imaging are not optimal to

use within lenses for defocus deblurring, as observed in [166].

Also in the 1960s, researchers in the field of optics began developing unconventional apertures

to capture high frequencies with less attenuation. Binary aperture patterns [169] [165] as well as

continuous ones [101] [122] were proposed and analyzed in detail. The patterns proposed in the

optics community were chosen in an ad-hoc fashion (based on intuitions) and then analyzed in

details in terms of their optical transfer functions.

It is only in the last few years that the design of apertures for defocus deblurring has been posed

as an optimization problem. In particular, Veeraraghavan et al. [166] performed gradient descent

search to improve the MURA pattern [56] and then binarized the resulting pattern. Due to the large

search space associated with the optimization, they restricted themselves to binary patterns with

7 × 7 cells. The criterion used in [166] maximizes the minimum of the power spectrum of the

aperture pattern. In our work, we show that apertures with higher performance can be achieved by

taking image noise and image statistics into consideration.

In addition to coded aperture, there are other competing PSF engineering techniques. Wave-

front coding method modulates the aperture by using a 3D phase plate. This technique was first

introduced by Dowski and Cathey [41] to extended the depth of field. They show analytically that a
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camera with a cubic phase plate produces a PSF that is approximately depth invariant and therefore

one can recover a focus image by a single deconvolution. Besides, several different designs of phase

plates are given in [27] [48] also for extended depth of field. Diffusion coding [36] and focal sweep

[70] [106] are other two PSF engineering techniques that can be used to preserve more image detail.

Our derived evaluation criterion can also be applied to optimize parameters in focal sweep and cubic

phase plate cameras.

1.2.2 On depth recovery

While defocus results in image blur, it also encodes depth information in 2D images. Depth from

defocus (DFD) technique has been studied extensively by assuming circular apertures in the past

decades (a few samples are [124] [156] [116] [129] [167] [159] [43]). These work either assume

the PSFs of an imaging system are pillbox (or cylindrical) functions, or assume they are Gaussian.

Partly owing to the good mathematical properties of pillbox or Gaussian functions, people have

been able to develop a variety of effective DFD algorithms.

Also, a lot of analysis and optimization on these DFD algorithms and camera settings were

conducted based on the assumption of pillbox or Gaussian PSFs. Subbarao and Tyan [157] study

how the image noise affects the performance of a spatial-domain DFD approach proposed in [159].

Schechner and Kiryati [143] analyze the effect of focus setting on the DFD method implemented

by axially moving the sensor, and reveal the change in focus setting should better be less than twice

the depth of field. Rajagopalan and Chaudhuri [129] discuss the effect of degree of relative blurring

on the accuracy of the depth estimation and proposed a criterion for optimal selection of camera

parameters. Especially, they show that for a Gaussian aperture pair, the optimal radius ratio is 1.73,

which is very close to the optimization result in this thesis.

To improve depth estimation, Levin et al. [88] proposed using an aperture pattern with a more

distinguishable pattern of zero-crossings in the Fourier domain than that of the conventional circular

apertures. Similarly, Dowski [40] designed a phase plate that has responses at only a few frequen-

cies, which makes their system more sensitive to depth variations. These methods specifically target

depth estimation from a single image, and rely heavily on specific frequencies and image priors. A

consequence of this strong dependence is that they become sensitive to image noise and cannot

distinguish between a defocused image of a sharp texture and a focused image of smoothly vary-
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ing texture. Moreover, these methods compromise frequency content during image capture, which

degrades the quality of image deblurring.

A basic limitation of using a single coded aperture is that aperture patterns with a broadband

frequency response are needed for optimal defocus deblurring but are less effective for depth esti-

mation [88], while patterns with zero-crossings in the Fourier domain yield better depth estimation

but exhibit a loss of information for deblurring. Since high-precision depth estimation and high-

quality defocus deblurring generally cannot be achieved together with a single image, we propose

in this thesis addressing this problem by taking two images with different coded apertures optimized

to jointly obtain a high-quality depth map and an all-focused image.

Multiple images with different coded apertures were used for DFD in [42] [72]. In [42], two

images are taken with two different aperture patterns, one being Gaussian and the other being

the derivative of a Gaussian. These patterns are such designed so that depth estimation involves

only simple arithmetic operations, making it suitable for real-time implementation. Hiura and Mat-

suyama [72] aims for more robust DFD by using a pair of pinhole apertures within a multi-focus

camera. The use of pinhole pairs facilitates depth measurement. However, this aperture coding is far

from optimal. Furthermore, small apertures significantly restrict light flow to the sensor, resulting

in considerable image noise that reduces depth accuracy. Long exposures can be used to increase

light flow but will result in other problems such as motion blur.

Greengard et al. [58] exploits 3D diffraction effects to make spatially rotating PSFs by using

a 3D optical phase plate. The PSF rotates as the depth changes and is used for depth estimation.

Hasinoff and Kutulakos [67] propose to capture a large set of images of a scene with predetermined

focii and apertures of the lens. From these images, one can reconstruct the scene with high geometric

complexity and fine-scale texture.

1.2.3 On image refocusing

Per user click, image refocusing displays a narrow DOF image, in which the clicked pixel appears

focused. A typical approach is to capture the entire light field and use the light field to render a

stack of narrow DOF images.

The concept of light field has been used for a long history. In the early 20th century, Ives

[76], Lippmann [95] have proposed plenotic camera designs to capture light fields. The idea of light
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field resurfaced in the community of computer vision and graphic in the late 1990s when Levoy and

Hanrahan [91] and Gortler et al. [54] described the 4D parameterization of light fields and show

how new views can be rendered by using light field data. A stack of images with different focus can

also be rendered from a light field, and then be used for image refocusing.

A number of light field cameras have been designed and made in recent years. Levoy et al. [92]

used a plenoptic camera to capture the light field of specimens and propose algorithms to compute a

focal stack from a single light field image, which can be processed as in deconvolution microscopy

to produce a 3D sharp volume. Ng et al. [119] and Ng [118] use the same plenoptic camera design

and emphasizes its application in image refocusing. Georgeiv et al. [49] and Georgiev and Intwala

[50] show a number of variants of light field camera designs for different trade-off between spatial

and angular resolution. Light field cameras can also be built using camera arrays [170] or coded

aperture techniques [93].

Rendering a focal stack from a light field image requires sacrificing spatial resolution signifi-

cantly. This is because of the dimensionality gap the captured information (light field) is 4D, while

the required information (focal stack) is only 3D. A lot of redundant information is captured by light

field cameras.

There are other approaches that use an all-in-focus image and a depth map to render a focal

stack for image refocusing [88]. These approaches usually involve complicated processes of image

rendering. More importantly, they usually assume that scenes are Lambertian and have no occlu-

sion. As a result, their rendered narrow DOF images often suffer severely from image artifacts and

look unnatural for scenes with non-Lambertian surface and occlusions. An inaccurate depth map

will also lead to errors in image refocusing. In this thesis, we propose a focal sweep camera that

captures focal stack directly for image refocusing. By avoiding the dimension gap in capturing and

complicated image rendering in processing, this design provides users high-quality full-resolution

images at every focus with minimal computation cost.

1.3 Thesis organization

In Chapter 2, I introduce related technical background in point spread function (PSF) and depth of

field (DOF), and briefly review the work in the research area of computational camera. Chapter 3
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addresses the PSF optimization problem for image deblurring and I use the proposed PSF evaluation

criterion to optimize aperture pattern for defocus deblurring. Chapter 4 discusses PSF optimization

problem for depth from defocus (DFD). In Chapter 5, I use optical diffuser to module PSFs for high-

precision depth recovery. In Chapter 6, I present a focal sweep imaging system that can capture

space-time focal stacks for image refocusing. Chapter 7 concludes the thesis.
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Chapter 2

Background and overview

2.1 Point spread function and depth of field

2.1.1 Point spread function

Point spread function (PSF) is the response of an imaging system to a point source in a scene. The

amount of the spreading is often used as a measure for the quality of an imaging system. In practice,

a PSF is often a combination of multiple optical effects, including diffraction, aberration, defocus,

veiling glare, and etc.

Figure 2.1 illustrates four of the most typical optical effects and their corresponding PSFs.

Diffraction occurs because light as a wave will bend around obstacles and spread past them (a).

In a typical lens camera, the spreading of the diffraction PSF is proportional to the wavelength and

the lens f-number, which is the ratio of the focal length to the aperture diameter. The shape of

diffraction PSF of a circular aperture is often referred to as airy disk, as shown on the right of in

Figure 2.1(a).

Optical aberration is a departure in the performance of an optical system from the predictions

of paraxial optics [59]. Typical optical aberration includes spherical aberration, coma, astigmatism,

chromatic aberration, field of curvature, distortion and other effects. Figure 2.1 illustrates the ge-

ometry of spherical aberration (b) and coma (c), and their corresponding PSFs using spot diagrams.

To compensate for aberrations, modern lens design applies lenses of different shapes and materi-

als ([77] [149] [47]). Defocus (d) is one particular type of optical aberrations, which occurs when
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Figure 2.1: Illustrate four of the typical optical phenomena and their resulting PSFs. (a) An illus-

tration of diffraction and its PSF. (b) Geometry of spherical aberration and its PSF (shown as spot

diagram). (c) Geometry of coma aberration and its PSF (shown as spot diagram). (d) Geometry of

defocus and its PSF (shown as spot diagram). All spot diagrams are simulated by Zemax [47] via

ray tracing.

objects are out of focus and is an effect familiar to almost every camera user.

In Fourier optics of incoherent light, the relation between a wave function and its resulting PSF

can be simply described by a Fresnel transform [20] [53]:

f(x) = |F(W (x) ·Qd(x))|
2, (2.1)

where f(x) is the PSF function, F(·) is the Fourier transform, W (x) is the wave function at the

aperture plane, and Qd(x) is a quadratic phase term determined by focus distance d. Equation 2.1

holds as long as the f-number is not extremely small and the field angle is not too large [53], and

applies to most cameras used in the computer vision and graphics fields. For coherent light, the

PSF will simply be F(W (x) · Qd(x)). While Fourier optics allows an understanding of the wave

physics, most discussions in this thesis are in the realm of geometrical optics.

In geometrical optics, light propagation is described in terms of rays and all optical systems

therefore become linear. PSF describes how the linear imaging system responds to a point light
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source in the scene. In cases in which the PSF is invariant to translation (or location of light source),

the imaging system becomes linear and translation-invariant. Therefore, according to the convolu-

tion theory, the captured image i(x) can be formulated by a convolution of the latent focused image

i0(x) and the PSF f(x):

i(x) = i0(x)⊗ f(x).

In practice, the PSFs of diffraction, defocus, and various lens aberration are not perfectly invariant

to translation over the entire depth range and field of view. For example, defocus PSF changes with

depth, and lens aberration changes with field angle. However, since they are approximately invariant

in local regions, it is still proper to formulate the captured images using convolution. PSF(s) still

stand as a concise way to model an optical system.

The convolution theorem states that F [f ⊗ g] = F [f ] · F [g], where F [f ] denotes the Fourier

transform of f . Therefore, a captured image i(x) = i0(x)⊗ f(x) can be written as

I(ξ) = I0(ξ) · F (ξ)

in the Fourier domain. Here we use the upper case letter I , I0 and F to denote the Fourier transforms

of images i, i0, and f .

The power spectrum of PSF |F (ξ)| is often referred to as Modulation Transfer Function (MTF)

and is frequently used to measure the optical quality of imaging systems in optical design.

2.1.2 Depth of field

In a conventional camera, for an image detector at any location, there is one focal plane that is

perfectly focused according to the Thin Lens Law. The depth of eld (DOF) is the range between the

nearest and farthest objects in a scene that appear acceptably sharp in an image. A lens of circular

aperture produces circular PSFs and so the sharpness of an image can be measured by the size of

the PSF. The acceptable size (or often referred to as circle of confusion) is influenced by viewing

condition, presenting format, and other factors. For digital imaging, a popularly accepted size is

the pixel size, or twice the pixel size, if a Bayer color filter array [14] is used with image sensor to

produce RGB color images. The letter c denotes the circle of confusion in this thesis.

The DOF of a conventional camera is determined by the focal length f , f-Number N (the ratio

of focal length to aperture diameter), and the focus position z. When the focus position z is large in
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comparison to f , it can be derived [84] [147]:

DOF ≈
2Ncf2z2

f4 −N2c2z2
(2.2)

from the Thin Lens Law. In particular, when z >= f2

Nc , the DOF will cover the infinity, and

therefore f2

Nc is therefore often called hyperfocal distance. It is obvious that DOF is inversely related

to the aperture size.

Given a conventional lens camera, there is a fundamental trade-off between DOF and image

signal-to-noise ratio (SNR). DOF can be increased by stopping down the aperture. However, this

reduces the amount of light received by the sensor, resulting in lower SNR. This trade-off leads to

images of lower quality as spatial resolution increases in recent years (or when there is a decrease

in the circle of confusion). This is because a smaller circle of confusion c yields a smaller DOF

(according to Equation 2.2). At the same time, a smaller pixel collects less light. This trade-off

between DOF and SNR is one of the fundamental and long-standing limitations of imaging.

2.2 Computational camera: concept and taxonomy

A computational camera uses a combination of novel optics and computation to produce a final

image. Although the images captured by computational cameras are optically coded and may not

be visually meaningful in their raw form, the information can be recovered by using computation.

This combination of novel optics and computation hence can produce new types of images that are

potentially beneficial to a vision system. The coding methods used in today’s computational cameras

can be broadly classified into six approaches: object side coding, pupil plane coding, illumination

coding, camera clusters or arrays, and unconventional coding [109] [183].

2.2.1 Object side coding

Object side coding (Figure 2.2 (a)) attaches external devices to the camera and is probably the most

convenient way to implement computational cameras. For the distance between the optical element

and the lens, the cones of light rays from objects at different field angles will intersect with the

element in different areas. As a result, if the surface profile is not homogeneous, object side coding

will yield spatially varying modulation. This property has been widely used to encode more useful

visual information and can be found in various applications.
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lens
detector

(a) Object Side Coding

lens
detector

(b) Pupil Plane Coding

lens
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(c) Sensor Plane Coding

lens
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(d) Illumina�on Coding

flash
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Figure 2.2: Optical coding approaches used in computational cameras. (a) Object side coding,

where an optical element is attached externally to a conventional lens. (b) Pupil plane coding, where

an optical element is placed at, or close to, the aperture of the lens. (c) Sensor side coding, where

an optical element is behind the lens. (d) Imaging systems that make use of coded illumination. (e)

Imaging systems that are made up of a cluster or array of traditional camera modules. (f) Imaging

systems using unconventional camera architectures or non-optical devices.
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Lee et al. [85] proposed using a bi-prism in front of lens for stereo vision with a single camera.

Light rays from any single point will be split into two by the bi-prism and produce two image points

on the sensor as if viewed from two viewpoints. This yields an effect of stereo. Georgeiv et al. [49]

propose using an array of lens-prism pairs in front of the main lens to capture light fields (shown

in Figure 2.3 (a)). The information captured by the sensor can be used to reconstruct the 4D light

field. In [49] and [50], the authors also mentioned other possible object side configurations for light

field acquisition by arranging prisms and lenses in different ways.

Catadioptric techniques combine lenses and mirrors in camera design and are often used to

increase camera FOV [19] [23] [29] [32] [73] [176] [81] [79]. These techniques have significant

impact on a variety of real-world applications, including surveillance, autonomous navigation, vir-

tual reality, and video conferencing [21] [171] [31].

Another type of object side coding, although less common, has been proposed by using homo-

geneous filters. For example, Umeyama and Godin [163] and Nayar et al. [113] propose capturing

images with differing polarization directions in order to remove specular reflections. Rouf et al.

[138] use a star filter mounted in front of a cameras to encode the visual information for saturated

areas and then use computation to recover high dynamic range images.

2.2.2 Pupil plane coding

Pupil plane coding (Figure 2.2 (b)) places optical elements (or an optical element) at or close to

the pupil plane of a traditional lens. Since any rays from objects ideally pass through the same

pupil plane, pupil plane coding can be used to provide spatially invariant light modulation and to

manipulate the system PSF.

Pupil plane coding using intensity modulators is often referred to as coded aperture techniques

or sometimes also apodizer techniques in optics. When diffraction and optical aberration are negli-

gible, the shape of the PSF is simply determined by the aperture pattern, and the scale is determined

by the amount of defocus. Previous optics research has proposed using coded apertures (e.g., [169]

[122]) to preserve more high frequency information in the case of defocus. In astronomy, optimized

patterns such as Modified Uniformly Redundant Array (MURA) are often used for lensless imaging

[44] [56] in order to improve the signal-to-noise ratio of the captured images.

Pupil plane coding using phase modulators is often referred to as wavefront coding. A phase
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(c) A camera array design
for flexible scene collage

(a) A light field camera
with a lens-prism array

SensorLensAperture

Lens-prism

(b) Diffusion coding for 
extended depth of field

Diffusion angle

DiffuserLens Sensor Camera arrayarray

Figure 2.3: Examples of computational cameras. (a) Object side coding: a light field camera using

an array of lens-prism pairs. On the top is the camera geometry; and on the bottom is the lens-prism

array. (b) Pupil plane coding: a diffusion coding camera for extended depth of field. On the top

is the camera geometry; and on the bottom is a sample of the coded diffuser that is attached to the

lens. (c) A camera array designs for flexible scene collage. On the top is the geometry of the design;

and on the bottom shows the camera array.
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modulator is usually a plate of glass of certain 3D profile. A phase plate will distort the input light

field in the angular dimension, and the resulting PSF will simply be the histogram of the derivation

of the wavefront function. In wave optics, this relation can be formulated using Equation 2.1.

Wavefront coding techniques have been studied for decades in optics for a variety of applications.

Dowski [40] designed a phase plate that has responses at only a few frequencies, which makes

the imaging system more sensitive to depth variations. Cathey and Dowski [28] and Dowski and

Cathey [41] propose a cubic phase plate design which yields a PSF that is broad-band spectrum

and is relatively depth-invariant. Cossairt et al. [36] use a coded diffuser, which is a special type of

phase plate, as shown in Figure 2.3 (c) for extended depth of field.

2.2.3 Sensor side coding

Sensor side coding (Figure 2.2 (c)) places additional optical elements on the sensor side of the lens.

The element can be either placed in the space between the sensor and the lens, or placed on or close

to the sensor, but in each case the functionality will be differ. According to the Gaussian lens law,

optical devices after the lens are dual to devices in front of the lens, and therefore sensor side coding

can provide similar functionalities as object side coding. One important advantage of using sensor

side coding instead of object side coding is that it can be compactly built into a camera and hence

is non-intrusive to the scene.

As in object side coding [49], lens arrays can also be used on the sensor side to capture light

fields. The idea of the plenoptic camera has a long history that dates back to the early twentieth

century [95] [76]. Since the 1990s, a variety of plenoptic cameras have been proposed and imple-

mented in vision and graphics. Adelson and Bergen [3] proposed using a lenslet array in front of

the sensor for light field acquisition. To achieve different amount of trade-offs between spatial and

angular resolution, Lumsdaine and Georgiev [97] and Bishop et al. [18] proposed several different

strategies of positioning lenslets and sensors.

Coding on the sensor plane provides pixel-wise modulations. Color filter arrays, such as the

Bayer mode array, are widely used in these instances to encode color information in a monochro-

matic sensor [38] [14]. Other color filter patterns have also been proposed [96] [2], and various

demosaicing algorithms have also been used to obtain a high quality color images [61] [65]. Nayar

and Narasimhan [111] generalize the color filter array to assorted filter arrays in order to capture



CHAPTER 2. BACKGROUND AND OVERVIEW 18

extra multi-spectral and high dynamic range information.

2.2.4 Illumination coding

Illumination coding (Figure 2.2 (d)) alters captured images by using a spatially and/or temporally

controllable camera flash. This approach enables image coding in ways that are not possible by only

modifying the imaging optics. The basic function of the camera flash has remained the same since

it first became commercially available in the 1930s. It is used to brightly illuminate scenes inside

the camera FOV during the exposure time of the image detector. With significant advances made

with respect to digital projectors, the flash now plays a more sophisticated role in capturing images.

It enables the camera to project arbitrarily complex illumination patterns onto the scene, capture the

corresponding images, and extract scene information that is not possible to obtain with a traditional

flash.

Illumination coding has a long history in the field of computer vision. For example, virtually

any structured light method (see [140] [141] for surveys) or a variant of photometric stereo [173] is

based on the notion of illumination coding. Many other illumination coding techniques for depth

estimation or 3D reconstruction have been proposed in recent years. Zhang and Nayar [180] and

Gupta et al. [62] recover depth from defocused projections; and Kirmani et al. [78] measure the

depths of points outside the camera’s field of view by using echoes of pulsed illumination; Raskar

et al. [130] use multiple flashes for depth edge measurement; Kinect depth sensor, a Microsoft

gaming product released in 2010, combines an infrared projector with a monochrome CMOS sensor

for 3D reconstruction [Microsoft].

Structured illumination techniques based on a phenomenon known as the Moiré effect have

been used to overcome the resolution limits of microscopy [63] [64] and other imaging systems

[24] [45] (see [148] for a survey of the Moiré technique). Structured illumination using diffuse

optical tomography has been used for volume density estimation [74] [86].

2.2.5 Camera clusters or arrays

The capability of a single camera is virtually constrained by optical size, which physically deter-

mines the field of light to be captured. One way to transcend this limit is by using larger lenses.

However, it is often too expensive and difficult to built large imaging systems of high quality. In
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recent years, techniques have been proposed to use a number of low cost small cameras to capture

more visual information. Camera clusters or arrays (Figure 2.2 (e)) provide a more flexible and

economical way to transcend the limits of individual cameras by combining multiple cameras.

Camera arrays have been used for stereo vision over an extended history. Multi-view stereo

helps to solve the ambiguity problem in stereo matching and hence increases the precision of depth

estimation [66] [123] [11] [8] [52]. The high performance of camera arrays in HDR, FOV, synthetic

aperture, and light field acquisition has been studied in [170] (shown in Figure 2.3 (d) left). A

flexible array of cameras with divergent FOV is designed for scene collage [120] (see Figure 2.3

(d) right). Ding et al. [39] use a 3x3 camera array to track distorted feature points beneath a fluid

surface in order to dynamically recover fluid surfaces. In [151], an array of video cameras are used

to stabilize video when the camera jitters.

2.2.6 Unconventional Imaging Systems

Unconventional coding (Figure 2.2 (f)) includes computational camera designs using unconven-

tional architectures or non-optical devices that cannot fit well into the above five categories. Work

has been done to simplify camera architectures by using computation instead of extending the func-

tionalities of the camera. Stork and Robinson [155] and Robinson and Stork [136] discuss several

mathematical and conceptual foundations for digital-optical joint optimization, and propose a sin-

glet lens design and a triplet lens design with improved image quality after computation. Robinson

and Stork [137] exploit the idea of digital and optical joint optimization for super-resolution.

It is also possible to change the overall architecture of cameras. For example, Zomet and Nayar

[186] propose lensless cameras with one or multiple layers of controllable apertures for imaging. An

XSlit camera by Zomet et al. [187] collects all rays that pass through two non-coplanar lines. Yu and

McMillan [178] present a General Linear Camera (GLC) model that unifies many multiperspective

cameras and reveal three new and previously unexplored multiperspective linear cameras by using

the GLC model.

Among the six coding approaches, object side coding, pupil plane coding, and sensor side cod-

ing are modifications made to a traditional camera. Figure 2.4 gives an overview of the computa-

tional camera designs in these three categories. In the horizontal axis, we have object side coding,

pupil plane coding, and sensor side coding. In the vertical axis, we have phase modulators (includ-
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Figure 2.4: An overview of computational camera designs using object side coding, pupil plane

coding, and sensor side coding. In the vertical direction are the optical devices that are often used

in designing computational cameras. In each cell, we group the techniques according to the type of

visual information to be captured, including light field, depth, image (i.e. spatial resolution), EDOF,

HDR, Color, FOV, and motion (i.e. temporal resolution). Each group is differently colored. This

table, although not exhaustive, provides an overview of existing computational camera designs and

may inspire new ideas in this area.
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ing lenses, lens arrays, prisms, prism arrays, plate, phaseplates (and diffusers), intensity modulators

(including masks, color filters, and polarizers), and others (including mirrors and motions). Each

cell groups the techniques according to the type of visual information being sought, including light

field, depth, image (i.e. the spatial resolution), EDOF, HDR, color, FOV, and motion (i.e. the tempo-

ral resolution). This table, although not exhaustive, provides an overview of existing computational

camera designs and may inspire new ideas in this exciting research area.
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Chapter 3

PSFs for image deblurring

3.1 Introduction

Texture detail of a scene is often lost in a captured image due to defocus, lens aberration, or diffrac-

tion. As stated in the previous chapter, a blurry image can be often formulated as a convolution of

the latent sharp image f0 and a PSF k, plus noise η:

f = f0 ⊗ k + η, , (3.1)

or in the Fourier domain,

F = F0 ·K + ζ, (3.2)

where F0,K and ζ are the discrete Fourier transforms of f0, k, and η, respectively. The only way

to recover scene details in blurry areas is by using deconvolution techniques, which is to estimate

F0 from F and K. The main problem with image deconvolution is that the higher frequencies of

the signal are attenuated during image formation and consequently deconvolution amplifies image

noise. For any given frequency in Fourier domain, the lower the power the blur kernel has, the

greater the amplification of image noise.

Defocus is the most commonly seen image blur in photographs. For a traditional camera, an

object will appear in-focus when it is on the focus plane and will appear blurry as it deviates from the

focus plane. The shape of defocus PSF is determined by the aperture pattern and its scale is related

to object depth. A traditional lens camera uses circular apertures and produces circular defocus PSFs

that not only severely attenuate high frequencies but also have zero-crossings in frequency domain.
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c

(a) Focused Image
     (Ground Truth)

(b) Defocused Image 
    (circular aperture)

(c) Deblurred Image

Figure 3.1: Defocus blurred image with a circular aperture and its deblurring result. (a) A focused

image. (b) A defocused image captured using a circular (conventional) aperture. (c) The result of

the deblurring. Ringing artifacts and the loss of image details can be easily observed (also see the

zoomed inset images).

This has two adverse effects in the context of defocus deblurring - some frequencies simply cannot

be recovered and image noise is greatly exaggerated. Figure 3.1 (b) shows a severely defocused

image by a circular aperture and the result of deblurring. Ringing artifacts and the loss of image

details can be easily observed.

Intuitively, a good defocus PSF should be broad-band in the frequency domain. Based on this

intuition, people have proposed a variety of coded apertures for better defocus deblurring over

the past 50 years (e.g. [169][101][165][122][26]). These works have evaluated and optimized

aperture patterns based on intuitive criteria related to the shape of their power spectra. Although

such intuitions have helped to find better aperture patterns, they are usually not quantitative and also

do not explicitly account for the effects of image noise and image structure in the context of defocus

deblurring. The exact connection between the defocus function and the final deblurring quality is

absent in the literature.

In this thesis, we propose a criterion to evaluate the “goodness” of PSFs according to the ex-

pected quality of deblurring. In the criterion, the PSF spectrum is assessed together with the level of

image noise and the expected spectrum of an image. Image prior such as the 1/f law [? ][154][168]

is also taken into account. This criterion is concise and in a close form, so that it can be easily used

for camera optimization.

Since the shape of defocus PSF is determined by the pattern of lens aperture, we use the pro-
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posed criterion to optimize aperture patterns for defocus deblurring. The optimized aperture patterns

are shown to significantly outperform the circular aperture and other coded apertures in an extensive

simulation. To experimentally verify the optimized patterns, we printed several aperture patterns as

high resolution photomasks and inserted them into Canon EF 50mm, f/1.8 lenses. These lenses

were attached to a Canon EOS 20D camera and used to capture images of a wide variety of scenes.

3.2 Criterion for PSF quality: defocus deblurring

3.2.1 Formulating defocus deblurring

Given a defocused image F and known PSFK, the problem of defocus deblurring is to estimate the

focused image F0 by solving a maximum a posteriori (MAP) problem:

F̂0 = argmaxP (F0|F,K) = argmaxP (F |F̂0,K) · P (F̂0). (3.3)

By assuming a Gaussian model and then taking its logarithmic energy function, the above MAP

problem can be solved as the minimization of

E(F̂0|F,K) = ‖F̂0 ·K − F‖2 +H(F̂0). (3.4)

The regularization term H(F̂0) can be formulated using a variety of image priors. To simplify our

analysis, we constrain H(F̂0) to be ‖C · F̂0‖
2, where C is a matrix. Then, minimizing E(F̂0|F,K)

gives us the well-known Wiener deconvolution [10]:

F̂0 =
F · K̄

|K|2 + |C|2
, (3.5)

where K̄ is the complex conjugate ofK, |K|2 = K ·K̄, and |C|2 = C ·C̄. Furthermore, the optimal

|C|2 is known to be the matrix of noise-to-signal ratios (NSR), |σ/F0|
2.

We generally do not have access to the exact NSR matrix since F0 is unknown. The traditional

approach is to replace |C|2 with a single scalar parameter λ or a simplified matrix like λ · (|Gx|
2 +

|Gy|
2), where Gx and Gy are the Fourier transforms of the spatial derivative filters in the x-axis and

y-axis, respectively. These simplifications cause deconvolution to not be optimal. More importantly,

the parameter λ needs to be tuned, which is difficult as it is inherently scene dependent.
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3.2.2 Optimizing parameter C using an image prior

Since we would like our aperture pattern evaluation/optimization to be automatic, we seek a decon-

volution method that is free of parameter selection. Given a blur pattern K and a defocused image

F , the focused image can be estimated as F̂0 by using Equation (3.5). Since noise ζ is a random

matrix, we evaluate the quality of recovery using the expectation of the L2 distance between F̂0 and

the ground truth F0 with respect to ζ:

R(K,F0, C) = E
ζ
[‖F̂0 − F0‖

2] = E
ζ

∥

∥

∥

∥

ζ · K̄ − F0 · |C|
2

|K|2 + |C|2

∥

∥

∥

∥

2

, (3.6)

where E denotes expectation. When ζ is assumed to be Gaussian white noise N(0, σ2), we have

R(K,F0, C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

F0 · |C|
2

|K|2 + |C|2

∥

∥

∥

∥

2

. (3.7)

Since F0 is sampled from the space of all images and has a certain distribution, we look for a C

that minimizes the expectation of R with respect to F0:

R(K,C) = E
F0

[R(K,F0, C)] =

∫

F0

R(K,F0, C)dµ(F0), (3.8)

where µ(F0) is the measure of the sample F0 in the image space. According to the 1/f law of

natural images [104][154][168], we know that the expectation of |F0|
2,

A(ξ) =

∫

F0

|F0(ξ)|
2dµ(F0), (3.9)

exists (ξ is the frequency). Therefore, we can obtain

R(K,C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

A1/2 · |C|2

|K|2 + |C|2

∥

∥

∥

∥

∥

2

. (3.10)

For a given K, minimizing R(C|K) gives us

|C|2 = σ2/A. (3.11)

Therefore, by substituting |C|2 = σ2/A into Equation 3.5, we have

F̂0 =
F · K̄

|K|2 + σ2/A
. (3.12)

In practice, A can be estimated by simply averaging the power spectra of several natural images.

Since the noise level σ is determined by the camera model and its ISO (or gain) setting, this variant

of Wiener deconvolution algorithm is parameter-free.
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This is a variant of Wiener deconvolution augmented by using 1/f law of natural images. Al-

though some people have already been using this algorithm in practice [133], we note that the

significance of this algorithm is often overlooked and many people are still using the conventional

Wiener deconvolution algorithm, in which C is set to be a scalar number.

3.2.3 Criterion of PSF evaluation for deblurring

A typical way to measure the quality of the recovered image F̂0 is to use its L2 reconstruction error:

R = ‖F0 − F̂0‖
2. (3.13)

From Equations 3.2 and 3.12, we can see that F̂0 is a function of F , K, and σ, and F depends on

F0, K, and ζ. Therefore, R is actually a function of F0, K, and ζ, where ζ is the Fourier transform

of Gaussian white noise G(0, σ2) and F0 follows the 1/f law of natural images. Then, for a given

PSF K, we can compute the expectation of R as:

R(K,σ) = EF0,ζ(‖F0 − F̂0‖
2) (3.14)

R(K,σ) = Σ
ξ

σ2

|Kξ|2 + σ2/Aξ
, (3.15)

where ξ is the frequency. (See Appendix A for a detailed derivation.) R(K,σ) predicts the deblur-

ring quality if the aperture pattern K is used at a noise level σ and can be used as a criterion to

evaluate aperture patterns.

For each frequency ξ, the reconstruction error σ2

|Kξ|2+σ2/Aξ
is approximately proportional to

1/|Kξ|
2. This gives a clear explanation of why zero-crossings in the PSF spectrum will introduce

large deblurring artifacts. In addition, ‖Kξ‖
2 falls off quickly as the frequency increases for most

aperture patterns and σ2/Aξ increases relatively slowly. This explains why the high frequency

part of images are more vulnerable to image noise than the low frequency part. While some other

criteria such as Σ‖Kξ‖
2 could be correct conceptually, our derived criterion is much more precise

in predicting the deblurring quality.

The effect of image noise on the deblurring quality, which is almost completely overlooked

by all previously introduced criteria, is now well described in Equation 3.15. We will show with

more analyses that image noise plays a key role in defocus deblurring and should not be ignored in

aperture evaluation and selection.
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Table 3.1: Genetic Algorithm for Coded Aperture Optimization

1) Initial: g = 0; randomly generate S binary sequences of length L.

2) Repeat until g = G

a) Selection: For each sequence b, the corresponding blur function K is computed and

then evaluated by using Equation 3.15. Only the best M out of S sequences are

selected.

b) Repeat until the population (the number of sequences) increases from M to S.

— Crossover: Duplicate two randomly chosen sequences from theM sequences

of Step 2.a, align them, and exchange each pair of corresponding bits with a

probability of c1, to obtain two new sequences.

— Mutation: for each newly generated sequence, flip each bit with a probability

c2.

c) g = g + 1.

3) Evaluate all the remaining sequences using Equation 3.15 and output the best one.

*
In our implementation, L = 169, S = 4000, M = 400, c1 = 0.2, c2 = 0.05 and G = 80.

3.3 PSF optimization for deblurring

3.3.1 Genetic algorithm for aperture optimization

We first use the derived criterion to solve for the optimal pattern for deblurring. However, even with

our concise evaluation criterion in Equation (3.15), finding the optimal aperture pattern remains

a challenging problem. While the aperture pattern is evaluated in the frequency domain, it must

satisfy several physical constraints in spatial domain. For example, all its transmittance values must

lie between 0 and 1; and the whole pattern should fit within the largest clear aperture of the camera.

Deriving a closed-form optimal solution that satisfies all these constraints is difficult. We therefore

resort to a numerical search approach.

For a binary pattern of resolution N × N , the number of possible solutions is 2N×N , making

exhaustive search impractical even for small values of N . To solve this optimization problem, we

develop a genetic algorithm [153]. Each aperture pattern k of size N × N is encoded as a binary

sequential pattern b of length N2. An aperture with significant discontinuities will produce strong
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(c) The Optimized Patterns at different noise levels

Figure 3.2: Optimizing Coded Aperture Patterns Using Genetic Algorithm. (a) Compare the con-

vergence rates of optimization for σ = 0.002 between our proposed genetic algorithm (red) and a

randomized linear search algorithm (blue). Each algorithm is repeated 10 times. (b) Compare the

convergence rates for σ = 0.005. We see that our genetic algorithm converges quickly to a low

value for aperture criterion metric. In addition, the results of different runs of the genetic algorithm

are quite similar, indicating that they are all likely close to the optimum aperture. (c) shows the

eight optimized patterns for noise levels from 0.0001 to 0.03. The patterns become more structured

as the noise level increases.
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diffraction effects. To this end, we limit the spatial resolution to be relatively low, i.e., N = 13.

To solve this optimization problem, we develop a genetic algorithm [153]. The process of this

optimization algorithm is described in detail in Table 3.1. In our implementation, the population size

in the first generation is set to S = 4000; at each generation, M = 400 sequences are selected for

evolution; for crossover, each pair of corresponding bits in the parent sequences are switched with

a probability of c1 = 0.2; mutation defined as bit flipping, happens at each bit with a probability

of c2 = 0.05; and the evolution stops at the maximum number of generations, G = 80. The

best sample (which gives the lowest value of the criterion in Equation 3.15, in the last generation

corresponds to the optimal aperture pattern. For a 13 × 13 pattern, a total of S × G = 320, 000

samples are evaluated, which takes about 20 minutes on a 4GHz PC with our implementation.

Figure 3.2 compares the convergence rates for the genetic algorithm and a randomized linear

search. We can see that for the genetic algorithm R drops quickly to a small number. To test if our

optimization has converged to a ”bad” local minimum, we repeated the optimization 10 times with

different initial populations. While randomized linear searches always arrived at fairly different

patterns, our genetic algorithm always converged to patterns with similar appearance. Although it

is hard to prove, we believe this implies that our algorithm yields near-optimal solutions.

As stated earlier, the optimal aperture pattern varies with the level of image noise. We performed

our optimization using eight levels of noise; σ = 0.0001, 0.001, 0.002, 0.005, 0.008, 0.01, 0.02, to

0.03. The resulting apertures are shown in the bottom row of Figure 3.2. It is interesting to note that

the optimized aperture patterns become more structured with increase in noise.

3.3.2 Discussion

Optimized Patterns in Frequency Domain In Figure 3.3, we compare the Fourier spectrum of

one of our optimized apertures (σ = 0.001) with that of the circular pattern, and Veeraraghavan et

al.’s pattern in (a), and also compare it with other two optimized patterns (σ = 0.005 and 0.01) in

(b). Though the figure only shows us a 1D slice of the 2D Fourier spectrum, it can give us a better

intuition of how these apertures may work in out-of-focus deblurring. Figure 3.3 (a) shows that the

circular pattern has many zero-crossings and greatly attenuates high frequencies, and thus may not

be suitable patterns for deblurring; and (b) shows that the optimized pattern for small noise level

tends to cover more high frequency parts, while the one optimized for large noise level has larger
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Figure 3.3: 1D slices of Fourier transforms of different patterns. (a) Circular pattern (black), Levin

et. al.’s pattern (green), Veeraraghavan et. al.’s pattern (blue), and the optimized pattern for σ =

0.001 (red). (b) The optimized patterns for σ = 0.001 (red), σ = 0.005 (green), and σ = 0.01

(blue).

responses at low frequencies. Larger noise level means much less recoverable information in the

high frequency part, hence the filter is optimized to put more emphasis in the low frequency part.

3.4 Experiments with real apertures

As shown in Figure 3.4(a), we printed our optimized aperture patterns as well as several other pat-

terns as a single high resolution (1 micron) photomask sheet. To experiment with a specific aperture

pattern, we cut it out of the photomask sheet and inserted it into a Canon EF 50mm f/1.8 lens. In

Figure 3.4(b), we show 4 lenses with different apertures (image pattern, Levin et al., Veeraraghavan

et al, and one of our optimized patterns) inserted in them, and one unmodified (circular aperture)

lens. Images of real scenes were captured by attaching these lenses to a Canon EOS 20D camera.

As previously mentioned, we choose the pattern that is optimized for σ = 0.001. This pattern

exhibits high performance over a wide range of noise levels in the simulation. In addition, this

Canon EF lens was found to produce some severe optical aberrations when operating with a fully

open aperture (f/1.8). We therefore conducted our experiments with the lenses stopped down to

f/2.2.

To calibrate the true PSF of each of the 5 apertures, the camera focus was set to 1.0m; an

array of point light sources was moved from 1.0m to 2.0m with 10cm increments; and an image
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Figure 3.4: (a) Photomask sheet with many different aperture patterns. (b) One unmodified lens and

four lenses with patterns inserted. (c) Top row shows calibrated PSFs for a depth of 120cm from

the lens, and bottom row shows calibrated PSFs for a depth of 150cm. These PSFs, from left to

right, correspond to circular pattern, image pattern, Levin et al., Veeraraghavan et al., and one of

our optimized patterns.

was captured for each position. Each defocused image of a point source was deconvolved using a

calibrated focused image of the source. This gave us PSF estimates for each depth (source plane

position) and several locations in the image. Since our lenses do not perfectly obey the thin lens

model, the PSF was found to vary slightly over the image. In Figure 3.4(c-g), two calibrated PSFs

(for depths of 120cm and 150cm) are shown for each pattern. These PSFs correspond to the center

of the image.

In our experiment, we placed a CZP resolution chart at the distance of 150cm from the lens, and

capture images using the five different apertures. To be fair, the same exposure time was used for all

the acquisitions. The five captured images and their corresponding deblurred results are shown in

Figures 3.5. Notice that the captured images have different brightness levels as the apertures obstruct

different amounts of light. The resulting brightness drop (compared to the circular aperture) for the

image pattern, Levin et al., Veeraraghavan et al., and our optimized pattern are 52%, 48%, 35%, and

57%, respectively.

Note that our optimized pattern gives the sharpest deblurred image with least artifacts and image

noise. We have conducted a quantitative analysis to compare the performances of the five apertures.

We carefully aligned all the deblurred images to the focused image with sub-pixel accuracy, and

computed their residual errors. The residual errors are then analyzed in frequency domain. In



CHAPTER 3. PSFS FOR IMAGE DEBLURRING 32

Normalized Frequency

Circular

I m age Pat tern

Levin

Veeraraghavan

Opt im ized

0 0 .2 5 0 .5 0 .7 5 1

Cumulative Energy 
of Residual Error

4 
   

   
  8

   
   

   
12

   
   

   
16

(g) Cumulative Residual Energy

(a) Ground Truth (c) The optimized coded aperture

(d) Image Pattern

(e) Levin’s Pattern
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Figure 3.5: Comparison between deblurring of a CZP resolution chart using different apertures. (a)

A focused image. (b) The captured and deblurred images using a conventional circular aperture.

(c-f) The left shows captured (defocused) images and the right shows the deblurred images, for

four different aperture patterns, including one of our optimized patterns, an image pattern, Levin’s

pattern, and Veeraraghavan’s pattern. Both the captured images were taken under the same focus

setting and the same exposure time. The deblurred image in (c) is clearly of higher quality than

the ones in (b, d-f). (g) For each aperture, the cumulative energy of the residual error between the

ground truth and deblurred images is plotted as a function of frequency.
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Figure 3.5(d), we plot the cumulative energy of the residual error from low to high frequency. The

image pattern, Levin et al., and especially Veeraraghavan et al., show large improvements over the

circular aperture. Our optimized aperture is seen to produce the lowest residual error with about

30% improvement over Veeraraghavan et al. (which performs the best among the rest).

3.4.1 Deblurring Results for Complex Scenes

We have used the lens with our optimized aperture pattern to capture several complex real scenes

with severely defocused regions (see Figure 3.6). We then applied deblurring to the defocused

regions. Deblurring of a region requires prior knowledge of its depth. In all our examples, the user

interactively selected the depth that produced the most appealing deblurring results. This is made

possible by the fact that the deblurring algorithm described in Section 3.2.1 is very fast and requires

no parameter selection. For a 1024× 768 image, our Matlab implementation of the algorithm takes

only 30 seconds to test 20 depths. In contrast, other deblurring algorithms that use sparse image

priors can take 30 mins for a single depth, not to mention the time needed to adjust parameters.

Figures 3.6(a) and (b) show captured images (left) for which the camera was focused on the fore-

ground object, making the background (poster in (a), and building and pedestrians in (b)) severely

defocused. To deblur the background, we first segmented out the foreground region, filled the result-

ing hole using inpainting, and then applied deblurring using 40 different depths. The best deblurred

result is chosen and merged with the foreground. Figure 3.6(c) shows a traffic scene where all the

objects are out of focus. In this case, the final result was obtained using four depth layers. Although

some ringing artifacts can be seen in our deblurred images, a remarkable amount of details are re-

covered in all cases. Please note the defocus in our experiments is much more severe than that in

most other related works. For example, the recovered telephone number and taxi number in Figure

3.6(c) are virtually invisible in the captured image.

3.4.2 Coded aperture implementation with LCoS

One important observation of our analysis is that the optimal aperture varies with the level of image

noise. It will be ideal to have a camera with a programmable aperture, which will allow us change

aperture pattern dynamically according to the variation of scene and application.

One programmable aperture implementation that is often used in the literature is to use a liquid
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(a) Indoor Scene

(c) Traffic Scene

(b) Pedestrian Scene

Captured Recovered

Captured Recovered

Captured Recovered

Figure 3.6: Deblurring results for three complex scenes. Left: Captured images with close-ups

of several regions which are severely defocused; Right: Deblurring results with close-ups of the

corresponding regions.
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Figure 3.7: Programmable aperture camera using an LCoS device. (a) A prototype LCoS pro-

grammable aperture camera. In the left-top corner is the Nikon F/1.4 25mm C-mount lens that is

used in our experiments. You can see the aperture pattern inside the lens. On the right is an LCoS

device. (b) The optical diagram of the proposed LCoS programmable aperture camera.

crystal display as aperture [186] [93]. However, this LCD implementation has many drawbacks.

The liquid crystal occludes more than 75% of light; the electronic element in each pixel of LCD

leads to complicated and strong defocus and diffraction artifacts; the liquid crystal display cannot

provide high brightness contrast. Furthermore, it is often difficult to open the lens and insert an

LCD into the aperture plane. These drawbacks are so strong that it may completely eliminate the

benefits of aperture coding.

We therefore have worked with colleagues in Osaka University in building a programmable

aperture camera using a Liquid Crystal on Silicon (LCoS) device [? ]. LCoS is a reflective liquid

crystal device that has a much higher fill factor (92%) than the transmissive ones, such as LCD.

Compared with LCD, an LCoS device usually suffers much less from light loss and diffraction.

Figure 3.7 shows the structure of our proposed programmable aperture camera. The use of LCoS

device in our prototype camera enables us to dynamically change aperture patterns as needed at a

high resolution (1280 × 1024 pixels), a video frame rate (25 fps), and a high brightness contrast

(221:1). By using the relay optics, we can mount any C-Mount or Nikkon F-Mount lens to our

programmable aperture camera.

In our experiment, we select the pattern shown in Figure 3.8 from our optimized patterns (Figure
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Figure 3.8: Defocus deblurring with coded apertures by using a programmable aperture camera.

We select the pattern shown in Column (d) from our optimized patterns (Figure 3.2 (c)) according

to the image noise level. We compare the selected pattern with the traditional circular aperture (a),

the pattern designed by Levin et al. [88] (b), and the pattern designed by Veeraraghavan et al. [166]

(c). The top row are the captured defocused images with the aperture pattern shown in the right-top

corner; the second row are the deblurred images; and in the third raw we show close-ups of the

deblurring results.

3.2 (c)) according to the image noise level. We compare the selected pattern with the traditional

circular aperture (a), the pattern designed by Levin et al. [88] (b), and the pattern designed by

Veeraraghavan et al. [166] (c). We capture a set of defocused images of an IEEE resolution chart

and do image deblurring. The top row are the captured defocused images with the aperture pattern

shown in the right-top corner; the second row are the deblurred images; and in the third raw we

show close-ups of the deblurring results. We can see that the deblurring result in Column (d) is the

best, which is consistent with the prediction.

It should be noted that the prototype camera is built to verify the concept of programmable
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aperture camera and is still far from being ideal. For example, we used two doublet lenses to relay

lights in this prototype camera and this causes significant image distortion and field curvature. Many

of the optical imperfections can be solved by using better optical designs.

3.5 Summary

In this chapter, we answer the question of “What are good PSFs for defocus deblurring?”, by pre-

senting a comprehensive framework for PSF evaluation. Our derived evaluation criterion predicts

the expected reconstruction error of the deblurred images, accounting for the effects of image noise

as well as the statistics of natural images. We define the deblurring quality as the L2 reconstruc-

tion error and constrain our discussion to linear deconvolution algorithms in order to make many

analytical derivations possible. We have used the 1/f law as a prior for natural images. This prior,

although not as strong as some other sparsity priors, is quite robust for a variety of natural images.
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Chapter 4

PSFs for depth from defocus

4.1 Introduction

While defocus causes a loss in image details, it also encodes depth information of the scene. Depth

from defocus (DFD) is a typical approach to recovering 3D scene geometry from defocus that has

received renewed attention in recent years. For a given camera setting, scene points at greater

distances away from this focal plane will appear increasingly blurred due to defocus, i.e. the scale

of PSF increases with the distance from the focal plane, as illustrated Figure 1.2. By capturing two

images at camera settings with different defocus characteristics, one can infer the depth of each

point in the scene from their relative defocus. Relative to other image-based shape reconstruction

approaches such as multi-view stereo, structure from motion, range sensing and structured lighting,

depth from defocus is more robust to occlusion and correspondence problems [144].

Since defocus information was first used for depth estimation in the early 1980’s [124][156],

various techniques for DFD have been proposed based on changes in camera settings. Most com-

monly, DFD is computed from two images acquired from a fixed viewpoint with different aperture

sizes (e.g., [116] [129] [167] [43]). Since the lens and sensor are fixed, the focal plane remains

the same for both images. The image with a larger aperture will exhibit greater degrees of defocus

with respect to given distances from the focal plane, and this difference in defocus is exploited to

estimate depth.

Though most DFD methods employ conventional lenses whose apertures are circular, other

aperture structures can significantly enhance the estimation of relative defocus and hence improve
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depth estimation. In this thesis, we propose a comprehensive framework of evaluating aperture pairs

for DFD, and use it to solve for an optimized pair of apertures. First, we formulate DFD as finding

a depth d that minimizes a cost function E(d), whose form depends upon the aperture patterns of

the pair. Based on this formulation, we then solve for the aperture pair that yields a function E(d)

with a more clearly defined minimum at the ground truth depth d∗, which leads to higher precision

and stability of depth estimation. Note that there exist various other factors that influence the depth

estimation function E(d), including scene content, camera focus settings, and even image noise

level. Our proposed evaluation criterion takes all these factors into account to find an aperture pair

that provides improved DFD performance.
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Figure 4.1: Depth estimation curves and pattern spectra. (a) Curves ofE(d) for the optimized coded

aperture pair (red) and the conventional large/small circular aperture pair (black). The sign of the

x-axis indicates if a scene point is farther or closer than the focus plane. (b) Top: Log of combined

power spectra of the optimized coded aperture pair (red), as well as the power spectra of each single

coded aperture (green and blue). Bottom: Phases of the Fourier spectra of the two coded apertures.

Solving for an optimized aperture pattern is a challenging problem as stated in the previous

chapter. To make this problem more tractable, existing methods [182][166][88] have limited the

pattern resolution to 13× 13 or lower. However, solutions at lower resolutions are less optimal due

to limited flexibility. To address the aperture resolution issue, we propose a novel recursive pattern

optimization strategy that incorporates a genetic algorithm [182] with gradient descent search. This

algorithm yields optimized solutions with resolutions of 33 × 33 or higher within a reasonable

computation time. Although higher resolutions usually mean greater diffraction effects, in this
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particular case, we find that a high-resolution pattern of 33 × 33 suffers less from diffractions than

other lower resolution patterns do.

Figure 4.1(a) displays profiles of the depth estimation function E(d) for the optimized pair and

for a pair of conventional circular apertures. The optimized pair exhibits a profile with a more

pronounced minimum, which leads to depth estimation that has lower sensitivity to image noise and

greater robustness to scenes with subtle texture. In addition, our optimized apertures are found to

have complementary power spectra in the frequency domain, with zero-crossings located at different

frequencies for each of the two apertures, as shown in Figure 4.1(b). Owning to this property, the

two apertures thus jointly provide broadband coverage of the frequency domain. This enables us to

also compute a high quality all-focused image from the two captured defocused images.

We demonstrate via simulations and experiments the benefits of using an optimized aperture

pair over other aperture pairs, including circular ones. Our aperture pair is able to not only produce

depth maps of significantly greater accuracy and robustness, but also produces high-quality all-

focused images (see Figure 4.2 for an example.)

4.2 Criterion for PSF quality: depth from defocus

4.2.1 Formulation of depth from defocus

As shown in Equation 3.1, for a simple fronto-planar object, its out-of-focus image can be expressed

as the convolution of in-focus image and PSF, plus noise. A single defocused image is generally

insufficient for inferring scene depth without additional information. For example, one cannot dis-

tinguish between a defocused image of sharp texture and a focused image of smoothly varying

texture. To resolve this ambiguity, two (or more) images of a scene are conventionally used, with

different defocus characteristics or PSFs for each image:

Fi = F0 ·K
d∗

i + ζi, (4.1)

where Kd∗
i denotes the Fourier transform of the ith PSF with the actual blur size d∗. Our objective

is to find the size d̂ and deblurred image F̂0 that minimize the following energy function:

E(d̂, F̂0|F1, F2) =
∑

i=1,2

‖F̂0 ·K
d̂
i − Fi‖

2 + ‖C · F̂0‖
2, (4.2)
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Figure 4.2: Depth from defocus and out-of-focus deblurring using coded aperture pairs. (a-b) Two

captured images using the optimized coded aperture pair. The corresponding aperture pattern is

shown at the top-left corner of each image. (c) The recovered all-focused image. (d) The estimated

depth map. (e) Close-ups of four regions in the first captured image and the corresponding regions

in the recovered image. Note that the bee and flower within the picture frame (light blue box) are

out of focus in the actual scene and this blur is preserved in the computed all-focused image. For all

the other regions (red, blue, and green boxes) the blur due to image defocus is removed.
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Figure 4.3: Performance trade-offs with single apertures. (a) DFD energy function profiles of three

patterns: circular aperture (red), coded aperture of [88] (green), and coded aperture of [182] (blue).

(b) Log of power spectra of these three aperture patterns. The method of [88] provides the best

DFD, because of its distinguishable zero-crossings and its clearly defined minimum in the DFD

energy function. On the other hand, the aperture of [182] is best for defocus deblurring because

of its broadband power spectrum, but is least effective for DFD due to its less pronounced energy

minimum, which makes it more sensitive to noise and weak scene textures.

in which the first term represents error in the solution with respect to the input images, and the

second regularization term penalizes deviation of the deblurred image from an image prior. As

shown in Chapter 1, C is the matrix of noise-to-signal ratios σ/A
1
2 , where A is defined over the

power distribution of natural images according to the 1/f law [168]: A(ξ) =
∫

F0
|F0(ξ)|

2µ(F0).

Here, ξ is the frequency and µ(F0) is the possibility measure of the sample F0 in the image space.

For a given d̂, solving ∂E/∂F̂0 = 0 yields

F̂0 =
F1 · K̄

d̂
1 + F2 · K̄

d̂
2

|K d̂
1 |

2 + |K d̂
2 |

2 + |C|2
, (4.3)

where K̄ is the complex conjugate of K and |X|2 = X · X̄ . Equation (4.3) can be regarded as a

generalized Wiener deconvolution which takes two input defocused images, each with a different

PSF, and outputs one deblurred image. This algorithm yields much better deblurring results than

only deconvolving one input image [156] [88]. Note that a similar deconvolution algorithm was

derived using a simple Tikhonov regularization in [126].

Substituting Equation (4.3) into Equation (4.2), we obtain the objective functionE(d̂|K1,K2, σ, F1, F2).
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Then, depth is estimated as the d̂ that minimizes E(d̂):

d̂ = argmin
d
E(d|K1,K2, σ, F1, F2). (4.4)

4.2.2 Selection criterion

Based on the above formulation of DFD, we seek a criterion for selecting an aperture pair that yields

precise and reliable depth estimates. For this, we first derive E(d|Kd∗
1 ,Kd∗

2 , σ, F0) by substituting

Equations (4.1) and (4.3) into Equation (4.2). Note that the estimate d is related to the unknown F0

and the noise level σ. We can integrate out F0 by using the 1/f law of natural images as done in

the previous chapter:

E(d|Kd∗

1 ,Kd∗

2 , σ) =

∫

F0

E(d|Kd∗

1 ,Kd∗

2 , σ, F0)µ(F0).

This equation can be rearranged and simplified to get

E(d|Kd∗
1 ,Kd∗

2 , σ) =
∑

ξ
A·|Kd

1 ·K
d∗

2 −Kd
2 ·K

d∗

1 |2
∑

i |K
d
i |

2+C

+
∑

ξ
σ2·(

∑

i |K
d∗

i |2+C)
∑

i |K
d
i |

2+C
+ n · σ2, (4.5)

which is the energy corresponding to a hypothesized depth estimate given the aperture pair, focal

plane and noise level (see Appendix B for detailed derivations.)

The first term of Equation (4.5) measures inconsistency between the two defocused images

when the estimated depth d deviates from the ground truth d∗. This term will be zero ifK1 = K2 or

d = d∗. The second term relates to exaggeration of image noise due to inaccurate depth estimation,

and is minimized when d = d∗.

Depth can be estimated with greater precision and reliability if E(d|Kd∗
1 ,Kd∗

2 , σ) increases

significantly when d deviates from the ground truth depth d∗. To ensure this, we evaluate the

aperture pair (K1,K2) at depth d∗ and noise level σ using

R(K1,K2|d
∗, σ)

= min
d∈D/d∗

E(d|Kd∗

1 ,Kd∗

2 , σ)− E(d∗|Kd∗

1 ,Kd∗

2 , σ)

= min
d∈D/d∗

∑

ξ

A
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2
∑

i |K
d
i |

2+C
+ σ2

∑

i |K
d∗

i |2−
∑

i |K
d
i |

2

∑

i |K
d
i |

2+C
, (4.6)

where D={c1d
∗, c2d

∗, . . . , cld
∗} is a set of depth samples. In our implementation, {ci} is set to

{0.1, 0.15, . . . , 1.5}.
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According to the derivations, this criterion for evaluating aperture pairs is dependent on depth d∗

and noise level σ. However, this dependence is actually weak. Empirically, we have found Equation

(4.5) is dominated by the first term, and C to be negligible in comparison to the other factors. As a

result, Equation (4.5) is relatively insensitive to the noise level, such that the dependence on σ can

be disregarded in the aperture pair evaluation (σ is taken to be 0.005 throughout this chapter).

We then standardize Equation 4.6 and get

R ≈ min
d∈D/d∗

[

1
n

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2+|Kd
2 |

2+C2

]1/2

, (4.7)

where n is the pixel number of the PSF. Let

M(K1,K2, d, d
∗) =

[

1
n

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2+|Kd
2 |

2+C2

]1/2

, (4.8)

then we have

R = min
d∈D/d∗

M(K1,K2, d, d
∗). (4.9)

A larger R value indicates the energy function for DFD is steeper and therefore the estimation will

be more robust to weak texture and image noise.

4.2.2.1 Analysis

When the ratio c = d/d∗ approaches to 1, we have

M(K1,K2, d, d
∗)

=

[

1
n

∑

ξ

A ·
(|c−1|d∗)2|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

=|c− 1|d∗ ·

[

1
n

∑

ξ

A ·
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

, (4.10)

where K
′d∗
i is the derivative of Kd∗

i with respect to the blur size. See Appendix C for the detailed

derivation. It indicates that the M curve is linear to c when |c| → 1. For a specific d∗ and frequency

ξ, the slope is determined by
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2
. Figure 4.4 (a) shows M curves of a circular

aperture pair at three different depths. We can see that the M curves are linear when d→ d∗.
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Figure 4.4: M curves. (a) Three M curves of a circular aperture pair at d∗ = 33, 15, and 7 pixels,

plotted as red, green, and blue lines, respectively. When d → d∗, the M curves are linear to d. (b)

Three standardized M curves. Note the normalization factor s0.7 does not rely on specific aperture

patterns (Equation 4.11). The three standardized M curves are quite consisitent. It indicates the

proposed evaluation criterion works equally well for different scene depths. Once an aperture pair

is optimized for a specific blur size d∗ (i.e. a specific object depth), it will also be optimal for other

depths.
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For optimal DFD performance with an aperture pair, intuitively, the pair must maximize the rel-

ative defocus between the two images. Equation 4.10 reveals that defocus depends on differences in

amplitude and phase in the spectra of the two apertures. DFD is most accurate when the two Fourier

spectra are complementary in both magnitude and phase, such that their phases are orthogonal and

a zero-crossing for one aperture corresponds to a large response at the same frequency for the other

aperture. For example, if K1 = 0 at a specific frequency ξ, the slope

|K
′d∗
1 Kd∗

2 −K
′d∗
2 Kd∗

1 |2

|Kd∗
1 |2 + |Kd∗

2 |2 + C2
= |K

′d∗

1 |2 ·
|Kd∗

2 |2

|Kd∗
2 |2 + C2

.

Then, a larger derivative of K1 and a larger |K2| are preferred at this frequency to maximize the

slope. As a result, although our main objective is to compute optimal apertures for DFD, the com-

plementary power spectra yielded by our approach also enables the capture of a broad range of

scene frequencies and hence is effective for defocus deblurring.

Differences in d∗ correspond to variations in the size of ground truth PSF, which is in turn

determined by the depth. To assess how the depth variation affects the aperture pair evaluation,

consider two PSF scales d∗1 and d∗2 with a ratio s = d∗2/d
∗
1. By assumping that the ratio c = d/d∗

approaches to 1 as we derive Equation 4.10, we are able to get

M(K1,K2, c · d
∗
2, d

∗
2) ≈M(K1,K2, c · d

∗
1, d

∗
1) · s

α/2, (4.11)

where α is a constant number that is related to the power order in the 1/f law [164]. See Appendix

D for the detailed derivation. Note the factor sα/2 is dependent of the choice of aperture patterns.

Figure 4.4 (b) shows three standardized M curves of the circular aperture pair by factors sα/2. In

our implementation, α is found to be 1.4. We can see the threeM curves are quite consitent after the

standardization. This indicates our evaluation criterion works equally well for all scene depths. This

property ensures that once an aperture pair is optimized for a specific blur size d∗ (i.e. a specific

object depth), it will also be optimal for other depths.

In these analysis, the proposed criterion (Equation 4.9) is simplified by assuming d/d∗ → 1.

While this helps us better understand the criterion in an intuitive way, it is not accurate when d is

significantly different from d∗. For example, as shown in Figure 4.1, M is not longer linear to c

when |c| deviates far away from 1. Because of this, we will still use Equation 4.9 as the criterion for

aperture pair evaluation.
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4.2.3 Circular aperture pair

We first use our derived evaluation criterion to determine the optimal radius ratio of circular aperture

pairs for DFD. In Figure 4.5 (a), we show curves of the M energy function from Equation (4.8) for

four different ratios. These plots highlight the well-known ambiguity with circular aperture pairs of

whether a scene point lies in front of or behind the focal plane. This problem exists for any point-

symmetric apertures (e.g. the one optimized in [88]). Figure 4.5 (b) shows a plot of our evaluation

measure R with respect to the radius ratio. R is maximized at the ratio 1.5, which indicates 1.5 is

the optimal radius ratio for DFD.

4.3 PSF optimization for DFD
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Figure 4.5: Using M and R to determine optimal radius ratio for DFD in the case of the conventional

circular aperture. (a) M curves of the circular aperture pairs with four different radius ratios. (b) R

values of circular aperture pairs with respect to radius ratio. R value is maximized at a radius ratio

of 1.5.

A related analysis specifically for Gaussian aperture patterns has been previously performed in

[129] and an optimal ratio of 1.73 was derived based on information theory. For Gaussian PSFs,

our numerical optimization yields a similar ratio of 1.70. This shows the consistency between the

theoretical approach and our numerical approach. While this theoretical approach requires Gaussian

PSFs, our method can be applied to optimize arbitrary patterns.
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4.3.1 Coded aperture pair

We then use the evaluation criterion to solve for optimal coded aperture patterns. Pattern optimiza-

tion is known to be a challenging problem as stated in the previous chapter. For N × N binary

patterns, the number of possible solutions is huge, 2N×N . If we use gray-level patterns, the space

will be even larger. Our problem is made harder since we are attempting to solve for a pair of

apertures rather than a single aperture. To solve this problem, we propose a two-step optimization

strategy.

11 x 11 13 x 13 25 x 2517 x 1715 x 15 33 x 33

Figure 4.6: Increasing the resolution of an optimized aperture pair by up-sampling and gradient

search.

In the first step, we employ the genetic algorithm proposed in the previous chapter to find the

optimized binary aperture at a low resolution of 11×11 according to Equation (4.9). The optimized

aperture pair at 11 × 11 is shown in the first column of Figure 4.6. Despite the high efficiency of

this genetic algorithm, we found it to have difficulties in converging at higher resolutions.

As discussed in Section 4.2.2.1, the optimality of an aperture pair is invariant to scale. There-

fore, scaling up the optimized pattern pair yields an approximation to the optimal pattern pair at

a higher resolution. This approximation provides a reasonable starting point for gradient descent

search. Therefore, in the second step, we scale up the 11×11 solution to 13×13 and then refine the

solution using gradient descent optimization. This scale-and-refine process is repeated until reach-

ing a resolution of 33×33. Figure 4.6 shows the evolution of this pattern optimization from 11×11

to 33 × 33, from left to right. The far right aperture pair is our final optimized coded aperture pair

for DFD.
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Figure 4.7: Pattern spectra of three different aperture pairs, including the optimized large/small

circular aperture pair (Row 1), a pair of circular apertures with shifted centers (Row 2), and our

optimized coded aperture pair (Row 3). The log of power spectra of each single pattern in the

aperture pairs is illustrated in (a) and (b); and the log of joint power spectra of the aperture pairs

is illustrated in (c). For a clearer illustration, one 1-D slice of each 2D power spectra is plotted in

(d). In addition, one 1-D slice of phase of each single pattern is also plotted in (d). We can see the

two patterns in the optimized coded aperture pair compensate each other in both power spectra and

phase.
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4.3.2 Discussion

4.3.2.1 On depth from defocus

The optimal radius ratio of a large/small aperture pair is shown to be 1.5 in Section 4.2.3. For an

intuitive visualization of this ratio’s optimality, we illustrate the large/small aperture pair with radius

ratio 1.5 in the Fourier domain (Figure 4.7 (a, b), Row 1). One slice of the log of power spectrum of

the large circular pattern (log(|K1|
2)) is plotted as a dashed blue line in the first row of Figure 4.7

(d); the corresponding slice of the small circular pattern (log(|K2|
2)) is plotted as a dashed green

line. We can see that, due to the optimized ratio 1.5, these two power spectra compensate each other

with respect to the zero-crossing frequencies. This compensation intuitively increases the relative

defocus between the two PSFs and benefits the depth estimation.

One can also increase the relative defocus by designing a pair of patterns whose spectra com-

pensate each other in phase. One example is a pair of small circular patterns with shifted centers (a

stereo-like aperture pair) as shown in Figure 4.7, Row 2. These two patterns share the same power

spectra, but compensate each other in phase (Figure 4.7 (d), Row 2). This compensation in phase

yields a stereo-like effect in the captured images and increases the performance of DFD.

Remarkably, our optimized coded aperture pairs exhibit significant compensations in both power

spectra and phase as shown in Figure 4.7 (d), Row 3. Intuitively, this compensation maximizes the

score defined in Equation 4.9, greatly enhances the relative defocus, and improves the performance

of DFD.

Figure 4.8 (a) shows the depth estimation curves M(d, d∗,K1, K2) for the optimized circular

aperture pair (green), a pair of shifted circular apertures (blue), and our optimized coded aperture

pair (red). We can see the optimized coded aperture pair exhibits a more pronounced minimum in

the profile of M than the other two pairs. This leads to depth estimation that is more precise and

more robust to noise and scene variations.

Levin [87] further brought the idea of coded aperture pairs to a coded aperture set for depth es-

timation. In particular, their analysis gave an upper bound on the best possible depth discrimination

from coded apertures, and verified that our optimized coded aperture pairs are near-optimal.
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Figure 4.8: (a) Comparison of M curves among the optimized coded aperture pair, optimized cir-

cular aperture pair and the stereo-like aperture pair. (b) The in-focus diffraction patterns of four

apertures, including a large circular aperture, a small circular aperture, one of our optimized coded

apertures at high resolution, and one of our optimized coded aperture at low resolution. (c) Com-

parison of the joint power spectra of the optimized coded aperture pair with those of the other two

aperture pairs. (d) Comparison of the joint power spectra of the optimized coded aperture pair with

the power spectra of several single aperture patterns, including a conventional circular aperture and

one coded aperture optimized for defocus deblurring in the previous chapter.
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4.3.2.2 On defocus deblurring

Equation 4.3 implies broadband joint power spectra will bring great improvements in the quality

of defocus deblurring. Although the aperture pairs are optimized for best DFD, the resulting com-

plementary power spectra enable us to also compute a high quality all-focused image from the two

captured defocused images. This is because, with zero-crossings located at different frequencies for

each of the two apertures, the two apertures jointly provide broadband coverage of the frequency

domain. Log of the joint power spectra of the aperture pairs log(|K1|
2/2 + |K1|

2/2) are shown in

Figure 4.7 (c). For the optimized circular aperture pair and the optimized coded aperture pair, the

joint pattern pairs are much more broadband than the individual patterns. 1-D Slices of the power

spectra of three single aperture patterns are shown in Figure 4.7 (d) for a clearer illustration.

Two defocused images with different blur kernels can be much better than each single image.

This is an important implication of Equation 4.3. Rav-Acha and Peleg discussed a similar idea in

the context of motion-blur deblurring [132], but do not provide detailed reasoning or a closed-form

deblurring algorithm.

For the stereo-like pair with shifted circular patterns, its power spectra does not have any com-

pensation one another. Its joint power spectra thus contains many zero-crossings as shown in Figure

4.7 (b), Row 2, and the aperture pair is therefore not ideal for defocus deblurring. The joint power

spectra of the three aperture pairs are compared in Figure 4.8 (c).

4.3.2.3 On diffraction

The final optimized aperture pair of resolution 33×33 is not only superior to the solution at 11×11 in

terms of the evaluation criterion defined in Equation (4.9), but also produces less diffraction because

of greater smoothness in the pattern. In Figure 4.8 (c), the in-focus diffraction pattern of one of our

optimized apertures is compared to three other aperture patterns, including a large circular aperture,

a small circular aperture, and an optimized pattern at a lower resolution (the first pattern in Figure

4.6). We can see that the diffraction pattern of the optimized pattern at a high resolution is more

compact than the small circular aperture and the optimized pattern at a low resolution.
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4.4 Recovery of depth and all-focused Image

With the optimized aperture pair, we use a straightforward algorithm to estimate the depth map U

and recover the latent all-focused image I . For each sampled depth value d ∈ D, we compute F̂0
(d)

according to Equation (4.3) and then reconstruct two defocused images. At each pixel, the residual

W (d) between the reconstructed images and the observed images gives a measure of how close d is

to the actual depth d∗:

W (d) =
∑

i=1,2 |IFFT (F̂0
(d)

∗K d̂
i − Fi)|, (4.12)

where IFFT is the 2D inverse Fourier transform. With our optimized aperture pairs, the value of

W (d)(x, y) reaches an obvious minimum for pixel (x, y) if d is equal to the real depth. Then, we

can obtain the depth map U as

U(x, y) = argmin
d∈D

W (d)(x, y), (4.13)

and then recover the all-focused image I as

I(x, y) = F̂0
(Ux,y)

(x, y). (4.14)

The most computationally expensive operation in this algorithm is the inverse Fourier trans-

form. Since it is O(N log(N)), the overall computational complexity of recovering U and I is

O(l · Nlog(N)), where l is the number of sampled depth values and N is the number of image

pixels. With this complexity, real-time performance is possible. In our Matlab implementation, this

algorithm takes 15 seconds for a defocused image pair of size 1024×768 and 30 sampled depth val-

ues. Greater efficiency can be gained by simultaneously processing different portions of the image

pair in multiple threads.

From the sparsely sampled depth values, we increase the depth resolution at a location (x, y)

by fitting the sequence of residuals {W
(d−2)
xy , W

(d−1)
xy , W

(d)
xy , W

(d+1)
xy , W

(d+2)
xy } with a 3rd-order

polynomial curve: v = a1d
3 + a2d

2 + a3d+ a4. With this interpolating polynomial, a continuous-

valued depth estimate d′ can be obtained from the curve’s minimum (δv/δd = 0).

4.4.1 Performance analysis

To quantitatively evaluate the optimized coded aperture pair, we conducted experiments on a syn-

thetic staircase scene with two textures, one with strong and dense patterns, and another of natural
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Figure 4.9: Comparison of depth from defocus and defocus deblurring using a synthetic scene.

(a) 3-D structure of synthesized stairs and the groundtruth of texture map. (b) Groundtruth of the

depth map. (c) Estimated depth maps using three different methods. From left to right: small/large

circular aperture pair, two focal planes, and the proposed coded aperture pair. (d) Close-ups of four

regions in the ground truth texture and the images recovered using the four different methods. (e)

Left: The depth residuals of the four depth estimation methods on the strong texture; right: the

depth residuals on the wood texture.
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wood with weak texture. The virtual camera (focal length = 50mm, pixel size = 10 µ m) is posi-

tioned with respect to the stairs as shown in Figure 4.9 (a). The corresponding ground truth texture

and depth map are shown in (b) and (c), respectively. Comparisons are presented with two other

typical aperture configurations: a small/large circular aperture pair, and a circular aperture with two

sensor locations (shift of focus plane rather than change in aperture radius).

For the DFD algorithm using our optimized aperture pair, the focal plane is set near the average

scene depth (1.2m) so that the maximum blur size at the nearest/farthest points is about 15 pixels.

For the conventional method using a small/large circular aperture pair, the focal plane is set at the

nearest scene point to avoid front/behind ambiguity with respect to the focal plane and yet capture

the same depth range. This leads to a maximum blur size of about 30 pixels at the farthest point.

The radius ratio of the two circular apertures is set to 1.5, the optimal value.

For the DFD method with two sensor positions, [143] reveals that moving the sensor in a DOF

interval is optimal with respect to estimation robustness, and the depth estimation can be unstable if

the interval is larger than the DOF by a factor of 2 or higher. However, in many scenes, including this

simulated one, the depth range is often far larger than the DOF and therefore the optimal interval

is practically not achievable. In this simulation, the two defocused images are synthesized with

focal planes set at the nearest point (0.8m) and the farthest point (1.8m). Identical Gaussian noise

(σ = 0.005) is added to all the synthesized images.

Figure 4.9 (d) shows results of the three DFD methods. Note that no post-processing is applied

in this estimation. By comparing to (c), we can see that the depth precision of our proposed method

is closest to the ground truth. For a clearer comparison, depth residuals are plotted in (f) for vertical

slices of the computed depth maps, with the strong texture in the top plot and the wood texture at the

bottom. At the same time, our proposed method generates an all-focused image of higher quality

than the other two methods, as illustrated in (e).

A quantitative comparison among these dual-image DFD methods is given in Table 1. Using

the optimized coded aperture pair leads to considerably lower root-mean-squared errors (RMSE) for

both depth estimation and defocus deblurring in comparison to the conventional circular aperture

pair and the two focal planes methods. The difference in performance is particularly large for the

natural wood with weaker texture, which indicates greater robustness of the optimized pair.
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Table 1. Quantitative evaluation of depth and deblurring error
Strong Texture (RMSE)         Wood Texture (RMSE)

Circular apertures               27.28           0.028            464.04        0.060

Depth (mm)     Grayscale        Depth (mm)      Color

Two focal planes                  6.32            0.027            124.21        0.045
Proposed coded apertures  4.03            0.016             18.82         0.036

4.5 Experiments with real apertures

(a) A disassembled Canon EF  50mm f/2.8 lens (b) Two lenses with the op�mized pa�erns inserted

Figure 4.10: Implementation of aperture pair. (a) Lenses are opened. (b) Photomasks with the

optimized aperture patterns are inserted.

We printed our optimized pair of aperture patterns on high resolution (1 micron) photomasks,

and inserted them into two Canon EF 50mm f/1.8 lenses (See Figure (4.10)). These two lenses

are mounted to a Canon EOS 20D camera in sequence to take a pair of images of each scene. The

camera is firmly attached to a tripod and no camera parameter is changed during the capturing.

Switching the lenses often introduces a displacement of around 5 pixels between the two captured

images. We correct for this with an affine transformation.

Figure 4.11 shows a scene with large depth variation, ranging from 3 meters to about 15 meters.

We intentionally set the focus to the nearest scene point so that the conventional DFD method, which

uses a circular aperture, can be applied and compared against. For the conventional method, the f-

Number was set to f/2.8 and f/4.5, respectively, such that the radius ratio is close to the optimal
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value determined in Section 4. For a fair comparison, all of the four input images were captured

with the same exposure time.

The results are similar to those from our simulation. We can see clearly from Figure 4.11(b) that

depth estimation using the conventional circular apertures only works well in regions with strong

texture or sharp edges. On the contrary, depth estimation with the optimized coded apertures is

robust to scenes with subtle texture. Note that the same depth estimation algorithm as described in

Section 5 is used here for both settings, and no post-processing of the depth map has been applied.

Figure 4.12 shows a scene inside a bookstore. The depth range is about 2-5 m. Two images

(a,b) were taken using the optimized coded aperture pair with the focus set to 3m. The computed

all-focused image and depth map are shown in (c) and (d). The ground truth images (e) were

captured with a tiny aperture (f/16) and long exposure time. We can see that the computed all-

focused image exhibits accurate deblurring over a large depth of field and appears very similar to

the ground truth image.

Figure 4.13 (a) shows a scene ranging in depth from 3 to 8 meters. The focus is set to the middle

of the depth of field. The scene shown in Figure 4.13 (b) has a depth range of 2 to 6 meters, with

focus set to 2 meters. The computed depth maps and all-focused images of these two scenes are

illustrated in the figure as well. Close-ups of four regions in these two scenes are shown in the

bottom. Although the texture of most regions in these two scenes are quite weak, we can see that

the estimated depth maps are still smooth and accurate. Note that we used a straightforward depth

estimation algorithm as described in Section ?? and do not impose any smoothness constraint.

4.6 Summary

In this chapter, we answer the question ’What are good PSFs for depth from defocus’ by presenting

a comprehensive criterion for evaluating aperture patterns for the purpose of DFD. This criterion

is used to solve for an optimized pair of apertures that complement each other both for estimating

relative defocus and for preserving frequency content. This optimized aperture pair enables more

robust depth estimation in the presence of image noise and weak texture. This improved depth

map is then used to deconvolve the two captured images, in which frequency content has been well

preserved, and yields a high-quality all-focused image.
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Figure 4.11: Campus view. (a) Conventional DFD method using circular apertures of different size.

The two input images are captured with f/2.8 and f/4.5, respectively. (b) DFD method using the

optimized coded aperture pair. All the images are captured with focus set to the nearest point. Note

that the only difference between (a) and (b) is the choice of the aperture patterns.
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(a) Captured Image 1 (b) Captured Image 2 (c) Recovered Image (e) Ground Truth

(d) Es�mated Depth Map

Figure 4.12: Inside a book store. (a-b) Captured Images using the coded aperture pair with close-

ups of several regions. The focus is set at the middle of depth of field. (c) The recovered image with

close-ups of the corresponding regions. (d) The estimated depth map without post-processing. (e)

Close-ups of the regions in the ground truth image which was captured by using a small aperture

f/16 and a long exposure time.
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Figure 4.13: France cabinets and Egyptian statues. (a) France cabinets: captured image pairs using

the coded aperture pair with focus set to the middle of the depth of field. (b) Egyptian statues:

captured image pairs using the coded aperture pair with focus set to the nearest point. The blur size

of objects with no texture are automatically set to 0.
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Chapter 5

Depth from diffusion

5.1 Introduction

In DFD, depth information of the scene is encoded in the PSF scale. While aperture coding opti-

mizes the PSF and helps to improve the precision of DFD, the depth sensitivity is rigidly limited by

aperture size. Schechner and Kiryati [144] shows that DFD can be regarded as a triangulation-based

method. The aperture size in DFD plays the same role as the baseline B in stereo vision. We can

thus apply the depth sensitivity analysis used in stereo vision to a DFD system as follows:

S ≈ m ·B/U = D ·m/U, (5.1)

where D is the aperture diameter. For any given magnification m, the sensitivity is proportional

to the aperture size D and inversely proportional to the distance U . To transcend this fundamental

limit, we propose a novel depth recovery technique using an optical diffuser – referred to as depth

from diffusion (DFDiff).

In optics, a diffuser is a device that diffuses (or scatters) light and is widely used to soften or

shape light in illumination or display[102][98]. Optical diffusers are also commonly used in com-

mercial photography. Photographers place diffusers in front of the flash to get rid of harsh light, in

front of the lens to soften the image, or at the focal plane to preview the image. Most commercially

available diffusers are implemented as a refractive element with a random surface profile. These

surfaces can be created using random physical processes such as sandblasting and holographic ex-

posure, or programmatically using a lithographic or direct writing method [15][152][57][30]. Figure
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Figure 5.1: (a) A laser beam is diffused by a holographic diffuser. (b) The geometry of the optical

diffusion. (c) An optical diffuser is placed in front of the camera and close to the object (a crinkled

magazine). (d) A close-up of the captured image. We can see that the blur of the text is spatially

varying as a function of depth.

5.1(a) shows an off-the-shelf diffuser scattering a beam of light.

A diffuser converts an incident ray into a cluster of scattered rays. This behavior is fundamen-

tally different from most conventional optical devices used in imaging, such as mirrors and lenses.

Figure 5.2(b) illustrates the geometry of light scattering in Figure 5.1(a). The scattering properties

of a diffuser can be generally characterized by its diffusion function D(θi, ψi, θo, ψo), where [θi, ψi]

is the incident direction and [θe, ψe] is the exitance direction. Since diffusers have usually been de-

signed so that scatter is invariant to incident direction, the diffusion function can be simply written

as D(θ, ψ), where θ and ψ are the angular coordinates of the exiting ray relative to the incident

direction. For most commercial diffusers (e.g., the one shown in Figure 5.1), the diffusion functions

are radially symmetric and can be further simplified to D(θ).

We analyze how optical diffusers affect image formation when they are present in an imaging

system. When a diffuser is placed in front of the objects, we capture diffused (or blurred) images

which have similar appearance as defocused images. By assuming locally constant diffusion, a

small diffused image can be formulated as the convolution of the clear image and the diffusion

kernel, whose shape is decided by the diffusion pattern of the diffuser and whose size relies on the

distance from the object to the diffuser. This is mathematically identical to the well-known lens

defocus, which is often formulated as the convolution of an in-focus image and the defocus kernel.

This analogy enables us to reuse the previously proposed PSF evaluation criterion for DFDiff. The

main benefit of DFDiff is that while DFD requires very large apertures to improve depth sensitivity,
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DFDiff only requires an increase in the diffusion angle – a much less expensive proposition.

To implement our depth from diffusion (DFDiff) technique, we place an optical diffuser between

the scene and the camera as shown in Figure 5.1(c). Our analysis shows that the diffusion blur size

is proportional to the object-to-diffuser distance (see Figure 5.1(d)). We can therefore infer depth

by estimating the diffusion blur size at all points in the image. Since the depth estimation problem

for DFDiff is similar to conventional DFD, many existing algorithms can be used to find a solution.

While DFDiff is similar in principle to DFD, it offers three significant advantages:

• High-precision depth estimation with a small lens. For DFDiff, the precision of depth

estimation depends only on the mean scattering angle of the diffuser and is independent of

lens size. Note that while it is often difficult to make lenses with large apertures, it is relatively

easy to make diffusers with large diffusion angles.

• Depth estimation for distant objects. By choosing the proper diffuser, DFDiff can achieve

high precision depth estimation even for objects at very large distances from the camera. For

DFD, depth sensitivity is inversely proportional to the square of object distance [37][13]. In

many scenarios, it is necessary to place objects far from the camera in order to achieve a

reasonable field of view.

• Less sensitive to lens aberrations. Lens aberrations cause the shape of the defocus point

spread function (PSF) to vary with field position. This effect is strong, particularly in the case

of inexpensive lenses, and degrades the precision of depth estimation. In contrast, as we show

in Section 6, diffusion PSFs are more invariant to field position.

DFDiff does, however, require the flexibility to place a diffuser in the scene, which is impractical or

impossible in some situations.

5.2 Image formation with a diffuser

5.2.1 Geometry of diffusion

When an optical diffuser is placed between the scene and the camera, the captured image will be

diffused, or blurred. The diffusion varies with camera, scene, and diffuser settings. We first show
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Figure 5.2: Geometry of diffusion in a pinhole camera. An optical diffuser with a pillbox diffusion

function of degree θ is placed in front of a scene point P and perpendicular to the optical axis. From

the viewpoint of pinhole, a diffused pattern AB appears on the diffuser plane.

in Figure 5.2 the geometry of diffusion in a simple pinhole imaging system. Placed between the

pinhole O and the scene point P is a diffuser with a pillbox diffusion function ⊓θ(x):

⊓θ(x) =







1
π·θ2

x < θ

0 otherwise,

where θ is the diffusion angle of the diffuser.

As shown in Figure 5.2, the light from an arbitrary scene point P is scattered by the diffuser.

Due to the limit of the diffusion angle θ, only the light scattered from a specific region AB can

reach the pinhole O. From the viewpoint of the pinhole, a line AB (or pillbox in 2D) appears on

the diffuser plane instead of the actual point P .

Proposition 5.2.1 When an optical diffuser is placed parallel to the sensor plane (see Figure 5.2)

and the diffusion angle θ is small (sin θ ≈ θ), we get

2 tan θ

cos2 α
·

1

AB
=

1

U
+

1

Z
, (5.2)

where α is the field angle and AB is the diffusion size. The perspective projection of P on the

diffuser plane C can be approximated with high precision as the center of AB when α is not too

large. (see Appendix E for the proof.)

This equation shows that for any given U , the diffusion size AB is uniquely determined by the
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distance Z and the diffusion angle θ. In addition, the perspective projection C and the center of the

diffusion patternAB are the same. Therefore, the diffuser blur does not cause geometric distortions.

Then, the radius r of the PSF can be obtained using Equation 5.2:

r =
V

U
·
AB

2
= m ·

Z

cos2 α
· tan θ, (5.3)

where m = V/(Z + U) is the image magnification.

In this chapter we assume the diffuser is parallel to the sensor plane. The equations governing

DFDiff can easily be extended to include tilted planes. Please see Appendix in the supplementary

material for details.

5.2.2 Equi-diffusion surfaces and image formation

From Equation 5.3, we can see that the diffusion size r is related to the field angle α. Given r, we

can derive a surface using Equation 5.3:

Z =
r · U · cos2 α

tan θ · V − r · cos2 α
, (5.4)

referred to as an equi-diffusion surface. All scene points on an equi-diffusion surface will be equally

blurred by diffusion. Under the paraxial approximation (sinα = α), the surface is planar, since the

term cos2 α approaches 1. For a large field of view, the equi-diffusion surface is no longer planar.

A set of equi-diffusion surfaces in 1D space are shown in Figure 5.3.

For any equi-diffusion surface with r = r0, the diffused image F can be written as the con-

volution of the latent clear pinhole image F0 and the pillbox PSF ⊓r0 : F = F0 ⊗ ⊓r0 . Similarly,

when a diffuser with Gaussian diffusion function is used, we will have F = F0 ⊗ gr0 , where gr0 is

a Gaussian function with standard deviation σ = r0. More generally, for a diffuser with an arbitrary

diffusion function D, the image formation can be written as the convolution of the image F0 and the

diffusion function D of size r0:

F = F0 ⊗Dr0 . (5.5)

5.2.3 Diffusion + Defocus

It is well known that for a lens camera without a diffuser, the defocused image of a fronto-planar

object can be formulated as F = F0 ⊗ L, where F0 is the latent focused image (pinhole image)
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Figure 5.4: Diffusion in a lens camera. An optical diffuser with a pillbox diffusion function of

degree θ is placed in front of a pinhole camera and perpendicular to the optical axis.
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and L is the defocus PSF. On the other hand, we know from Section 5.2.2 that for a pinhole camera

augmented by a diffuser, the image of an equi-diffusion surface can be written as F = F0 ⊗ D,

where D is the diffusion PSF. But how will the lens blur interact with the diffuser blur when a

diffuser is used in a lens camera?

Proposition 5.2.2 Suppose a lens camera is focused at an arbitrary distance, and an optical dif-

fuser, which is parallel to the lens, is placed between the lens and a scene point P . When the

distance from P to the lens plane is much larger than the aperture size, we have

K = L ⊗D, (5.6)

where K is the image of P (the PSF), L is the image of P that would be captured if the diffuser

were removed (the defocus PSF), and D is the image of P that would be captured if a pinhole were

used instead of the lens (the diffusion PSF).

Proof: As shown in Figure 5.4, suppose the lens is focused at Plane Σ and the diffuser is placed at a

distance U , perpendicular to the optical axis, and a scene point P is located behind the diffuser at a

distance Z. From Section 5.2.1 we know that from the perspective of O, a scene point P appears as

AB in the diffuser plane, or as DE on the focus plane Σ. The image of DE on the sensor is D, the

diffusion PSF of P if a pinhole camera were used. Similarly, for an arbitrary point O′, P appears as

A′B′ on the diffuser plane andD′E′ on the focus plane. Since U +Z ≫ O′O, the view angles of P

with respect to O and O′ can be regarded as equal, thus AB = A′B′ and DE = D′E′. Therefore,

the image of D′E on the sensor is a shifted version of D.

For an arbitrary O′, the center of the virtual image F ′ is the projection of P on the focus plane.

Note that this effect is independent of the diffuser properties. When all the points on the aperture are

considered, each point forms a virtual image of P on the focus plane, whose image on the sensor is

the lens defocus pattern L. Hence, the image of P on the sensor K is the sum of a set of shifted D’s

whose centers are given by L. That is K = L ⊗D.

Now, suppose we have two images of a scene captured using a normal lens, one without a

diffuser and one with a diffuser placed in front of the object, as illustrated in Figure 5.4. Consider

arbitrary corresponding small patches P1 and P2 in the two images. By assuming that the diffusion

and defocus are locally constant, we have P2 = P1⊗D, since P2 = P0⊗(L⊗D) and P1 = P0⊗L,

where P0 is the latent focused patch. According to Equation 5.2, D is determined by the diffusion
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profile of the diffuser and the distance from the patch to the diffuser plane. Note that according to

Proposition 5.2.2, this relation holds regardless of the lens focus.

5.3 Depth from diffusion algorithm

The basic idea of depth from diffusion (DFDiff) is straightforward. As shown in Figure ??(a), an

optical diffuser is placed between the scene and the camera, and a blurred image is captured (shown

in Figure ??(b)). The diffusion size is uniquely determined by the distance between objects and the

diffuser. By estimating the diffusion size in the image, we can infer the scene depth relative to the

diffuser plane.

To estimate the diffusion size, we can take two images F1 and F2 with and without a diffuser,

respectively. According to Section 5.2.2, for an arbitrary small patch pair P1 and P2 in these images,

we have P2 = P1⊗Ds0 , where s0 is the diffusion size. To estimate depth, we must infer the diffusion

size s0 from the two captured patches P2 and P1. Note that this is exactly the same formulation as

conventional DFD, which computes depth from two input images, one defocused and one focused.

Therefore, most existing DFD algorithms can be applied to estimate the diffusion size s0. For

complicated scene surfaces, different diffusion sizes have to be computed for different pixels. The

same problem also exists in DFD and many strategies have been proposed to estimate maps of blur

size.

In our implementation, we adapt a straightforward algorithm, similar to those in the previous

chapter on DFD, to recover the map of diffusion size, S(x, y). For every sampled diffusion size s, a

residual map Rs is computed as

Rs(x, y) = |F1(x, y)⊗Ds(x, y)− F2|. (5.7)

Then, for each pixel (x, y), its diffusion size S(x, y) is selected to minimize the corresponding

residual:

S(x, y) = argmin
s
Rs(x, y). (5.8)

Based on the estimated diffusion map S(x, y), we can then compute the depth map Z(x, y) accord-

ing to Equation 5.2. Note that the field angle α can be computed directly from the pixel position

(x, y) and camera parameters, so that it is straightforward to convert between S(x, y) and Z(x, y).
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5.3.1 Reflections from diffuser surface

Although the light transmission efficiency of diffusers can be quite high (92% for the Luminit holo-

graphic diffusers, which will be used in our experiments), some light is still directly reflected by

the diffuser surface to the camera. Thanks to its extremely rough surface, light reflected from the

diffuser is usually quite uniform. Therefore, its contribution to the captured image can be approxi-

mately modeled as F = a ∗ F ′ + b, where F is the actual diffused image captured with reflections,

F ′ is the ideal diffused image captured without any reflection, and a and b are two constants mainly

determined by the light transmission efficiency of the diffuser.

Obviously, for the mean brightness F̄ and F̄ ′, F̄ = a ∗ F̄ ′ + b still holds. F̄ ′ can be estimated

using the mean brightness B of the image captured without a diffuser. In addition, note that for a

captured RGB image, [a, b] is consistent over the three color channels. Therefore, given one image

captured with a diffuser and one image captured without a diffuser, we can easily compute a and

b by solving a simple linear equation. Then, the effects of reflectance can be removed by applying

F ′ = (F − b)/a.

5.3.2 Illumination changes due to the diffuser

When a diffuser is placed over the object, the illumination will be first diffused by the diffuser before

reaching the object. Illumination is usually low-frequency and the diffusion makes it even more

uniform. Furthermore, non-specular surfaces are known to low-pass filter incident illumination.

Therefore, illumination changes due to the diffuser will only affect low-frequencies in the captured

images. To account for this effect, we apply a high-pass filter to Equation 5.7 and get

Rs(x, y) = |H[F1(x, y)⊗Ds(x, y)− F2]| , (5.9)

where H is a high-pass filter. We use a Derivative of Gaussians (DOG) filter in our implementation.

Note that the depth estimation mainly relies on the high-frequency information, so that applying a

high-pass filter has little effect on depth estimation performance.



CHAPTER 5. DEPTH FROM DIFFUSION 70

C

B

A P

U Z

Diffuser

O

Pinhole

θ

θ

Sensor

C

B

A P

U Z

Focal Plane

O

Sensor Lens

V
irt

ua
l  A

pe
rtu

re

A‘

B‘

(a) Diffusion (b) Defocus

Figure 5.5: Equivalence between diffusion and lens defocus. The diffusion (a) caused by a diffuser

in a pinhole camera is equivalent to the defocus (b) in a regular lens camera which has a large lens

of size A′B′ and is focused at the diffuser plane.

5.4 Analysis

5.4.1 Diffusion vs. lens defocus

Diffusion caused by a diffuser can be shown to be geometrically equivalent to lens defocus. Figure

5.5(a) shows a pinhole camera with a diffuser placed in front of the scene point P , perpendicular to

the optical axis. From the perspective of P , the pinhole O appears like a large aperture A′B′ which

collects a cone A′PB′ of light from P . It should be noted that if we replace the pinhole with a lens

of sizeA′B′, set the focus at the diffuser plane, and remove the diffuser as shown in (b), P will have

the same projection AB on the focus plane, mapping to the same PSF on the sensor plane.

From Figure 5.5(a), we can see the size of the virtual aperture A′B′ = U+Z
Z · AB. We can

compute AB from Equation 5.5, giving

A′B′ = 2 tan θ · U/ cos2 α. (5.10)

When α is small, A′B′ = 2 tan θ · U . For instance, a DFDiff system which consists of a pinhole

camera and a 5◦ pillbox diffuser placed 1m away is equivalent to a DFD system whose lens has a

huge aperture (diameter= 17.5cm) and is focused at 1m.

While it is often expensive or even impossible to manufacture large lenses, it is relatively easy to

make large diffusers with large diffusion angles. Several companies now supply off-the-shelf optical
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diffusers with diffusion angles ranging from 0.2◦ to 80◦. Because a diffuser effectively increases

the lens aperture without physically increasing lens size, DFDiff provides an economical alternative

for applications that require high precision in depth estimation.

5.4.2 Depth sensitivity

In depth from stereo, the disparity r is used to compute the depth Z [13][37][9]. The derivative

of r with respect to Z, is often referred to as depth sensitivity S = ∂r/∂Z. Usually, we have

S ≈ B · V /U2 = m·B/U , whereB is the baseline, U is the distance to the object, V is the distance

from the lens to the sensor, andm is the image magnification. The higher the depth sensitivity is, the

more precise is the depth estimation. As mentioned earlier, the depth sensitivity of a DFD system

can be computed as S ≈ m ·B/U = m ·D/U (Equation 5.1).

A DFDiff system is equivalent to a DFD system with aperture size D ≈ 2U · tan θ (Equation

5.10) when α is small. Therefore, we have S ≈ m · 2 tan θ, where θ is the diffusion angle of the

diffuser. For any given magnification m, the sensitivity only relies on θ.

To increase the depth sensitivity with DFD, one has to either increase the aperture size of the

lens, which may be prohibitively expensive, or move the camera closer to the object, which reduces

the field of view (FOV). However, for DFDiff, it is easy to achieve high depth precision at a large

distance, even with a low-end lens.

5.4.3 Sensitivity, distance, and field of view

Suppose we have a Canon EOS 20D D-SLR camera, whose sensor has a dimension of 22.5mm ×

15mm 8 microns pixel size, and we have a target object of size 225mm×150mm. Table 5.1 shows

the required F# or Aperture diameter, D, in DFD, and the required diffusion angle θ in DFDiff

for different depth precision requirements (10 pixel/mm, 1 pixel/mm, 0.1 pixel/mm) and object

distances (500mm, 1000mm, 5000mm). To ensure that the field of view (FOV) covers the whole

object, the effective focal length (EFL) is increased with object distance. For example, the first row

shows that if a depth precision of 10 pixel/mm is required, for an object placed 500mm from the

camera, then DFD requires a lens with EFL = 50mm and F# = 0.125 (D = 400mm). DFDiff,

on the other hand, can estimate depth with the same precision using any lens when a 21.80◦ diffuser

is used.
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FOV U S EFL DFD DFDiff

mm×mm mm pixel/mm mm F# D (mm) θ

225×150 500 10 50 0.125 400 21.80◦

225×150 500 1 50 1.25 40 2.29◦

225×150 500 0.1 50 12.5 4 0.23◦

225×150 1000 10 100 0.125 800 21.80◦

225×150 1000 1 100 1.25 80 2.29◦

225×150 1000 0.1 100 12.5 8 0.23◦

225×150 5000 10 500 0.125 4000 21.80◦

225×150 5000 1 500 1.25 400 2.29◦

225×150 5000 0.1 500 12.5 40 0.23◦

Table 5.1: Comparison of DFD and DFDiff for different depth precision requirements and object

distances. On the left are FOV, object distance, and depth sensitivity that we want to achieve; on the

right are the required EFL, F# or aperture size D in DFD and diffusion angle θ in DFDiff. In bold

are lenses required by DFD which are too complicated to manufacture (e.g. a 500mm focal length

lens with 4m diameter aperture).

We can see that for high precision and large object distance requirements, DFD demands lenses

with unreasonably large apertures (e.g. a 500mm focal length lens with 4m diameter aperture).

These lenses are shown in bold. DFDiff, on the other hand, can estimate high-precision depth maps

using lenses with small apertures.

5.5 Experiments

Today, several companies sell off-the-shelf diffusers reproduced onto glass or plastic sheets up to

36” wide. In our experiments, we use holographic diffusers with Gaussian diffusion functions from

Luminit Optics. These diffusers have different diffusion angles, ranging from 0.5◦ to 20◦, and

different sizes, ranging from 2′′ × 2′′ to 10′′ × 8′′. In each experiment, the proper diffuser was

chosen according to the scene and precision requirements.
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Figure 5.6: Model Verification. (a) Captured and computed diffusion PSFs of a center point source

in a pinhole camera. (b) Captured and computed diffusion PSFs of a corner point source (α = 10◦)

in a pinhole camera. (c) Captured and computed diffusion defocus+diffusion PSFs of a corner point

source (α = 10◦). We can see that in all these three cases, the PSFs computed using our derived

diffuser model (dashed curves) are fairly consistent with the captured ones (solid curves). Note that

the defocus pattern in (c) is asymmetric because of lens aberrations.

5.5.1 Model verification

5.5.1.1 Pinhole camera

We first conducted experiments to verify the image formation model derived in Section 5.2. An

array of point light sources was placed 1m in front of a Canon EOS T1i D-SLR camera with a

Canon EF 50mm F/1.8 lens, perpendicular to the optical axis. First, to emulate a pinhole camera,

we stopped down the aperture size to F/22. We mounted a 10◦ Luminit diffuser to a high-precision

positioning stage, placing it just in front of the point light source array. We then captured a set of

images while slowly moving the diffuser away from the light source array (Z = 2mm− 10mm).

Figure 5.6(a) left shows a focused image of the center point light source captured without a
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diffuser. On the right we show three images captured with a diffuser placed at different positions

(2mm, 4mm, and 5mm). These three blurred images should be a convolution between the focused

image and the three corresponding diffusion PSFs. Cross sections of the blurred images are plotted

in solid curves on the right of Figure 5.6(a). Since the diffusion function of the diffuser and the dis-

tances Z are known, we can compute the diffusion PSFs according to our proposed imaging model.

We then compute three diffused images by convolving these computed PSFs with the focused im-

age. These three computed images are plotted in dashed curves. Figure 5.6(b) shows the captured

images of a point light at the corner field (α = 10◦), as well as a comparison with the computed

images.

We can see from both Figure 5.6 (a) and (b) that the computed images are quite consistent with

the captured ones. This indicates the real diffusion PSFs not only fit the designed patterns well, but

also are spatially invariant.

5.5.1.2 Lens camera

To verify the proposed imaging model in the presence of defocus, we open up the aperture of the

lens to F/1.8, focus the camera at a distance of 1.9m, and repeat the same experiment as in Section

5.5.1. Figure 5.6(c) left shows the defocused image of a corner point source (α = 10◦) captured

without a diffuser. On the right we show three diffused and defocused images that were captured

with the diffuser placed at different depths. We computed the diffusion PSFs from our diffusion

model and convolved them with the defocused image captured without a diffuser. The computed

diffused and defocused images are plotted in Figure 5.6(c) (dashed curves).

In Figure 5.6(b), note that although the aperture pattern of this Canon lens is circular, the cap-

tured defocus pattern is not circular at the periphery of the FOV, due to lens aberrations. The defocus

PSF variation with field position will degrade the estimation precision of DFD. Meanwhile, we can

see the plots of computed PSFs in Figure 5.6 are fairly consistent with the captured PSFs (solid

curves). This verifies our derived Proposition 5.2.2 and confirms that the proposed DFDiff does not

rely on the shape of defocus PSFs (Equation 5.9). This property relaxes requirements on the camera

lens and enables high precision depth estimation with small, low-end lenses .
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(a) Scene (b) Clear Image (c) Diffused Image (d) Computed Depth Map

Figure 5.7: Recovered depth map of five playing cards, each of which is 0.29mm thick. (a) An

overview of the scene. (b) A captured image without a diffuser. (c) A captured image with a 20◦

Gaussian diffuser. (d) The recovered depth map which has a precision ≤ 0.1mm

5.5.2 Depth from diffusion: D-SLR Camera

Figure 5.7 shows an example where we use the proposed DFDiff method to estimate the depth map

of an artificial scene. Five playing cards are arranged as shown in Figure 5.7(a). Each card is only

0.29mm thick. To estimate depths, we captured an image using a Canon EOS 20D D-SLR camera

with a Canon EF 50mm F/1.8 lens. The distance was set to be 500mm, which approaches the

minimal working range of this camera. The camera was focused at the plane of cards. Note that

for this setting, the depth of field is about 6mm, far larger than the scene depth, and therefore all

the cards are in focus. A clear image taken without a diffuser is shown in (b). Then, we placed a

20◦ Luminit Gaussian diffuser just in front of the first card and captured a diffused image, as shown

in Figure 5.7(c). From these two captured images, DFDiff recovers a high-precision depth map, as

shown in (d).

According to Equation 5.10, by using the diffuser, we have effectively created a huge virtual

lens with F# = 0.12, 15 times larger than the F# of the actual lens. Note that for a regular 50mm

F/1.8 lens, the depth of field is 6mm, much larger than the required depth precision. Therefore,

DFD cannot be used effectively in this setting.

5.5.3 Depth from diffusion: consumer-level camera

DFDiff imposes fewer restrictions on the camera lens, so that a low-end consumer camera can be

used to estimate a high-precision depth map. Figure 5.8 shows a small sculpture of about 4mm

thickness. For this experiment, we used a Canon G5 camera with a 28.8mm F/4.5 lens and a
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diffusion of 5◦ angle. The camera was set up 300mm away from the object. The captured focused

and diffused images are shown in (b) and (c), respectively. From these two images, we compute the

3D structure of the sculpture of precision ≤ 0.25mm, as illustrated in (d) and (e). To achieve the

same precision in the same scene setting, DFD requires a much larger lens (F# ≈ 0.5).

(a) Object

(e) 3D View of Depth Map

(c) Diffused Image(b) Clear Image

(d) Computed Depth Map
0

0.5

1

1.5

2

2.5

Figure 5.8: DFDiff results for a thin sculpture captured using a Canon G5 camera. (a) Wide view

of the sculpture. (b) A clear image without a diffuser. (c) An image captured using a 5◦ Gaussian

diffuser. (d) The computed depth map which has a precision ≤ 0.25mm. (e) A 3D view of the

computed depth map.

5.6 Summary

In this chapter, we have demonstrated that optical diffusers can be used to perform high-precision

depth estimation. In contrast to conventional DFD, which either requires a prohibitively large aper-
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ture lens or small lens-to-object distances which restricts the FOV, DFDiff relaxes requirements

on the camera lens and requires only larger diffusion angles, which are much cheaper to manufac-

ture. Even a low-end consumer camera, when coupled with the proper diffuser, can be used for

high-precision depth estimation.

One of the beneficial properties of the DFDiff technique is that depth estimation is measured

relative to a proxy object instead of a camera lens, which introduces more flexibility in the acquisi-

tion process. However, this same property is also a major drawback since it requires a diffuser to be

placed near objects being photographed, which is not possible in many situations.

In our implementation, we have chosen diffusers with Gaussian diffusion functions for sim-

plicity. Diffusers with a variety of diffusion functions are currently commercially available. An

interesting question that warrants further investigation is: “What is the optimal diffusion function

for depth estimation?”. For simplicity, we have used a typical DFD algorithm, which requires two

input images. Another interesting topic for further research is how to design diffusers and algo-

rithms that enable depth estimation using only a single image.
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Chapter 6

Focal sweep photography for space-time

refocusing

6.1 Introduction

Finite DOF of a lens camera leads to defocus blur and often also produces artistic visual experience.

It is an effective tool to draw user attention selectively to a specific part of the scene. As a result,

it is critical for a photographer to focus at the right depth when images are taken. Many of current

displays are interactive in nature. This opens up the possibility for a novel visual representation that

allow the users to refocus an image to different depths after capture, so that they can experience

the artistic narrow DOF appearance of the scene while simultaneously making available the image

detail for the entire image. For this purpose, an image stack of varying focus settings has to be

captured or rendered to enable this capacity of interactive image refocusing.

One way to produce focal stack is to capture the entire light field [91] [54]. For example, a

plenoptic camera [95] [119] modulates light using lens array in such a way that a 4D light field

can be captured by a single 2D image. The captured 4D light field can then be used to render

focal stack for image refocusing. But this requires sacrificing the spatial resolution significantly.

This is because of the dimensionality gap the captured information (light field) is 4D, while the

required information (focal stack) is only 3D. A lot of redundant information is captured by light

field cameras.

Our goal is to capture focal stacks directly, with the goal of providing refocusing abilities. We
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(a) Space-time focal Volume
(b) A 2-D slice of space-time focal volume

(c) Integration of the Slice over T
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Figure 6.1: Space-time focus volume. (a) A space-time focus volume of a synthetic scene of color

balls with motion. Objects move as the focus changes with time in the T dimension. (b) A 2D XT

slice of the 3D volume, in which each small ball appears as double-cones. The double-cones of

moving balls are tilted. (c) Integrating the volume along the T dimension produces an EDOF image

as captured by a typical focal sweep technique. Each object appears sharp in the EDOF image

regardless of the depth.
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capture a sequence of images during the period of focal sweep. Concatenating all the captured

images in the temporal dimension forms a 3Dimensional space-time (XYT) volume. Unlike the

traditional static focus volume, the space-time focus volume captures object motions as well. Since

we are considering dynamic scenes, two effects happen along the third dimension - scene motion,

and change of focus. Figure 6.1 (a) shows an XYT 3D space-time focus volume of a synthetic

scene of colored balls in motion. To peek into the 3D structure, Figure 6.1 (b) shows one 2D XT

slice of the 3D volume, in which balls appear as double-cones. The apex of a double-cone shows

the time when a ball is focused. (The same phenomenon has been observed and well studied in

deconvolution microscopy [100]). For objects that are in motion in x direction, these double-cones

appear tilted like the cyan cone shown in Figure 6.1 (b). By finding the apexes in the 3D volume

(shown as the yellow band in Figure 6.1 (b)), we can obtain a space-time in-focus image. The shape

of the band reveals the 3D structure of scene.

Most existing refocusing techniques (e.g., plenoptic cameras [95, 119], camera array [170],

depth from defocus [88]) capture images in one moment. The proposed focal sweep camera differ-

entiates itself from these techniques by capturing a space-time focus stack in a longer period when

objects can be moving. While capturing an instant of time can be favorable in some situations,

capturing a duration of time yields a unique and appealing user experience – the focus transition is

so intertwined with object motion that users will see objects move into (or out of) focus when they

click to refocus. In addition, our image refocusing is done at sensor resolution without any trade-off

in image quality.

Due to object motion and finite capture time, in practice we can only capture or sample a limited

number of images from the 3D space-time volume. For this reason, one must decide how many

images should be captured, and where the sensor should be positioned at for each capture in order

that every object in the depth range will appear focused in at least one of the captured images. In this

thesis, we show a capturing and focal sweep strategy that yields an efficient and complete sampling

of 3D focus volumes.

Image refocusing displays the right layer from focal stack per user click, where the clicked pixel

appears sharp. A major challenge in designing algorithm was to compute an in-focus index map (or

depth map) that enables a seamless refocusing experience. First, since users expect that each click

will bring them to the image layer where the region boundary is well focused, even in texture-less
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regions, there cannot be any holes in the index map. Second, the index precision must be high

enough (especially for textured region or region boundary) so that the refocused layer will appear

perfectly focused. As we will show in Section 6.6, our algorithm design meets the needs of both

these challenges.

We design and build prototypes of focal sweep cameras, whose focus can be swept at a proper

speed with synchronization to image capturing. A collection of focal sweep photographs has been

captured by using our prototypes, and users can refocus these images interactively on www.focalsweep.com.

6.2 Related work: Focal sweep and focal stack

A conventional lens camera has a finite depth of field. A variety of EDOF techniques have been

proposed to extend depth of field in the past several decades [27, 36, 41, 48, 60, 75, 103, 106, 127].

Focal sweep is one of the typical EDOF techniques. A focal sweep EDOF camera captures a single

image when its focus is quickly swept over a large range of depth. Hausler [70] extended DOF of

microscope by sweeping the specimen along optical axis during exposure. Nagahara et al. [106]

extended DOF for consumer photography by sweeping the image sensor. Nagahara et al. [106] also

show that the point-spread-function (PSF) of a focal sweep camera is depth invariant, allowing one

to deconvolve a captured image with a single PSF to recover a sharp image without knowing the 3D

structure of the scenes. We build a similar imaging system as in [106], but use it to capture image

stacks.

Several techniques have been proposed to capture a stack of images instead of a single EDOF

image for extended depth of field and 3D reconstruction. In deconvolution microscopy, for example,

a stack of images of specimens are captured at different focus settings to form a 3D image [100,

150]. 3D point-spread-functions in the 3D images are shown to be depth invariant double-cones. By

deconvolving with the 3D PSF, a sharp 3D image can be recovered. We observe a similar double-

cone structure in image stacks captured using our imaging system. To produce an all-in-focus

image from a focal stack, Kuthirummal et al. [82] first average all images in a focal stack to produce

a single EDOF image as captured by an EDOF focal sweep camera and then recover an all-in-focus

images by deconvolution. Guichard et al. [60] and Cossairt and Nayar [35] make use of chromatic

aberration to capture images of different foci in the three color channels with a single shot, and then
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by combining the sharpness from all color channels to produce an all-in-focus images. Agarwala

et al. [5] propose using a global maximum contrast image objective to merge a focal stack into a

single all-in-focus images.

Hasinoff et al. [69] compare the optimality of various capture strategies for reducing optical

blur in a comprehensive framework where both sensor noise model and deblurring error are taken

into account. Their analysis and future analysis in [83] show that focal stack photography has two

performance advantages in extending depth of field over one-shot photography: 1) it allows one to

capture a given DOF faster; 2) it achieves higher signal-to-noise ratio (SNR) in a given exposure

time.

Hasinoff and Kutulakos [68] consider the problem of minimizing the time to capture a scene

with a given DOF and a given exposure level. This is highly related to the optimization problem

in our technique and similar analysis on camera DOF can be seen in both papers. While Hasinoff

and Kutulakos [68] emphasize on the lens f-number and the number of images for capturing focal

stack, we optimize the speed of focal sweep in synchronization with image exposure, for a given

lens f-number.

Kutulakos and Hasinoff [83] use a similar algorithm as in [5] to synthesize EDOF images from

focal stacks by assuming that scenes are static. While their algorithms are optimized to produce

artifact-free images with minimal blur, our algorithm is proposed to yield a seamless space-time

refocusing experience.

Computing the focus measure is a critical technique for all depth from focus approaches. There

are several difficulties associated with it. The space-scale effect [125] presents a major difficulty

since it can lead to depth ambiguities at different scales. In addition, image patches at depth discon-

tinuities may cross multiple depth layers and make focus measure inaccurate. Furthermore, since

focus measure does not reveal anything about depth in non-textured regions, techniques such as

plane fitting [162], graph-cut [22], and belief prorogation [177]) have been employed to fill the

resulting holes in the depth map.
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6.3 Space-time focus volume, focus sampling, and refocusing

Consider concatenating all the images captured during focal sweep along the temporal dimension.

This forms a 3D space-time volume that encodes more visual information about scenes than a single

image. Figure 6.1 (a) shows a space-time focus volume of a synthetic scene of colored balls in

motion and (b) shows one 2D XT slice of the 3D volume, in which balls appear as double-cones. As

mentioned in the introduction, the double-cones appear tilted for objects in motion in both x and y

directions; by finding the apexes in the 3D volume (shown as a yellow band in Figure 6.1 (b)), we

can obtain a space-time in-focus image; and the shape of the band reveals the 3D structure of the

scene.

6.3.1 Space-time focal stack and focus sampling

Within a given time budget, one can only capture a finite number of images during focal sweep. This

is because of the limited framerate of the sensor, and also SNR considerations. The photographer

must decide how many images to capture and where the sensor should be positioned at for each

capture point so that every object appears focused in at least one of the captured images. This is, in

essence, a sampling problem of the 3D focus volume. We argue that an ideal capture should satisfy

two conditions:

• Completeness: the DOFs of all captured images should sum up to cover the entire desired

depth range. If the desired depth range is DOF ∗, we have

DOF1
⋃

DOF2
⋃

DOF3...
⋃

DOFn⊃DOF ∗, (6.1)

where
⋃

denotes a union operation.

• Efficiency: No two DOFs should overlap, so only a minimal number of images are required.

DOF1
⋂

DOF2
⋂

DOF3...
⋂

DOFn=∅, (6.2)

where
⋂

denotes intersection.

Hasinoff and Kutulakos [68] refer to an image sequence as Sequence with Sequential DOFs,

if the end-point of one image’s DOF is the start-point of the next image’s DOF. The ideal capture
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Figure 6.2: Efficient and complete focus sampling. (a) Left: A geometrical illustration of depth

of field. Objects in the range [Z1, Z2] will appear focused when u and z satisfy the Thin Lens

Law. Right: The Thin Lens Law is shown as an orange line in the reciprocal domain. Z1 and Z2

can be easily located in the reciprocal domain (or in diopter) by |Ẑi − Ẑ| = 2ûc/A. (b) In order

to have an efficient and complete focus sampling, the DOFs of consecutive sensor positions (e.g.,

v̂i−1, v̂i, v̂i+1) must have no gap or overlap.
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sequence described above is a sequence with sequential DOFs that covers the entire desired depth

range.

We start our DOF analysis from the Thin Lens Law, 1/f = 1/u + 1/z, where f is the focal

length of the lens, u is the sensor-lens distance, and z is the object distance. As is a common

practice, we transform the equation to the reciprocal domain f̂ = û + ẑ, where x̂ = 1/x. In the

reciprocal form, the Thin Lens Law is a linear equation. The reciprocal of object distance, ẑ, is often

expressed in the unit of diopter (1/m). Depth of field, [z1, z2], is the depth range where the blur

radius is less than the circle of confusion, c. In this thesis, we used the pixel size as the diameter of

the circle of confusion (common practice in imaging). For a given sensor-lens distance û, the DOF

in the reciprocal domain, ẑ1 and ẑ2, can be derived as:

ẑ1 = ẑ + û · c/A (6.3)

ẑ2 = ẑ − û · c/A (6.4)

where A is the aperture diameter of the lens. Both the position and range of DOF changes with the

sensor position. Figure 6.2 (a) shows the geometry of DOF for sensor positions u on the left and

illustrates the DOF in the reciprocal domain on the right. The yellow line in the figure represents

the Thin Lens Law. According to Eqn 6.3, for an arbitrary sensor position û, the size of DOF in the

reciprocal domain is ∆ = 2 · û · c/A.

For an efficient and complete focus sampling, we require that each pair of consecutive DOFs

have no overlap and no gap as shown in Figure 6.2 (b). From Eqn 6.3, we derive:

|ûi − ûi+1| = |(f̂ − ẑi)− (f̂ − ẑi+1)| (6.5)

|ûi − ûi+1| = |ẑi − ẑi+1| (6.6)

|ûi − ûi+1| = (ûi + ûi+1) · c/A, (6.7)

where ûi and ûi+1 are the focus centers of two consecutive DOFs.

In consumer photography, we have z ≫ u and so ûi ≈ f̂ . By approximating Eqn 6.7 we have:

ûi · ûi+1 · |ûi − ûi+1| =ûi · ûi+1 · (ûi + ûi+1) · c/A (6.8)

|ui+1 − ui| =(ui + ui+1) · c/A (6.9)

δu ≈2 · f · c/A (6.10)

δu ≈2 · c ·N, (6.11)
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where N = f/A is the f-number of the lens. Equation 6.11 shows that to achieve an efficient and

complete focus sample, we need to move the sensor by a constant amount between successive image

captures. The step size is determined by the pixel size and f-number. Notice that this is a constant

step in the normal domain. In the reciprocal domain, the step is not constant as shown in Figure 6.2

(b). For a fixed framerate P , this indicates that a sensor should be swept at a constant speed:

s =
δu

δt
= 2 · c ·N · P (6.12)

.

If the time-budget is too small (or the sensor is moving too slowly) to perform a complete focus

sweep, deblurring must be done to recover the sharpness of objects in DOF gaps. Hasinoff et al. [69]

proposed a comprehensive framework for optimizing focus sampling in this case by considering the

noise model, capturing overhead, and the effect of deblurring. In this chapter, we concentrate on

the problem of how to sample the focal volume in an efficient and complete manner for space-time

image refocusing. By avoiding aggressive deblurring in the process, we can save a large amount of

computation and produce higher quality refocusing results that are more natural and artifact-free.

6.3.2 Space-time in-focus index map and refocusing

In a system where the speed of focal sweep is much faster than the speed of an object’s motion along

the optical axis (z), the object appears in focus only once in the focus volume (or, equivalently, in

only one image of the focal stack). Let F1, F2, . . . , Fk be k images in the focal stack. For each

pixel, we find the index of the frame where the pixel is best focused. We call this the in-focus index

of the pixel. The space-time in-focus index map is then defined as the in-focus indices for all the

pixels.

In a dynamic scene, both the focus and objects themselves are free to move, which leads to

ambiguities in the definition of the space-time in-focus index map. Hence, there are different ways

of defining the space-time in-focus index map. Here we list three of the possible definitions:

1. For each pixel (x, y), look into a small tube at (x, y) in the 3D XYT focal stack and find the

layer T that appears the sharpest. Then, T (x, y) is the in-focus index map for the focal sweep.

2. Explicitly consider object motion. At an arbitrary layer (or time) t, for any object at a spatial

location (x, y), we could track this object and find that the object is best focused at the layer
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(a) A side view of Prototype 1 (b) CAD rendering of Prototype 2 (c) A side view of Prototype 2

Figure 6.3: Two focal sweep camera prototypes. (a) Prototype 1 drives sensor sweep using a voice

coil; (b) Prototype 2 drives lens sweep using a linear actuator.

(or time) t′ and spatial location (x′, y′). In this case, the in-focus index map is t′ = T1(x, y, t),

which is a 3D index map.

3. Since multiple objects can be observed at a location (x, y), one can track all these objects

to the layers where they are best focused. Then, among all the final layers, pick the layer

closest to the present layer. In this case, we have the space-time in-focus index map as t′ =

T2(x, y, t) = argmint |T1(x, y, t)− t0|.

In this thesis, we choose the first definition for simplicity. A refocusing viewer takes a user

click (x, y) as input, finds the next frame t by T (x, y), and smoothly transitions the image from the

current frame to the next frame. The other two choices of definition can yield different refocusing

behaviors and user experiences. Ideally, the choice should be made based on user intention or

preference when they click on a pixel in the viewer. We leave the study of the other two (or more)

definitions and their impacts on user experience to future work.

With this definition, a space-time in-focus index map T (x, y) is a mapping from a spatial lo-

cation (x, y) to a temporal point t = T (x, y). But notice that since the focal volume is captured

in a duaration, objects can be moving as the focus plane sweeps. As a result, users will be able to

observe objects move with refocus variation.
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6.4 Focal sweep camera

6.4.1 Prototypes

Focal sweep can be implemented in multiple ways. One way is to directly sweep the image sensor.

A variety of actuators such as voice coil motors, piezoelectic motors, ultrasonic transducers, and

DC motors could be used to translate the sensor in a designed manner during capture duration.

Another way is to sweep camera lens. With the auto-focus mechanism that is commonly built in

many commercial lenses, it may also be programmed to perform focal sweep photography. Liquid

lenses Ren and Wu [134], Ren et al. [135] are yet another way of performing focal sweep, and they

are power efficient. Liquid lenses focus at different distances when different voltages are applied to

them.

We built two prototype focal sweep cameras as shown in Figure 6.3. Prototype 1, as shown

in Figure 6.3 (a), uses a Fujinon HF9HA-1B, 9mm, F/1.4, c-Mount lens, and a Pointgrey Flea 3

camera with a max resolution of 1328 × 1048. Its sensor is driven by a voice coil actuator (BEI

LA15-16-024). This setting is similar to the one used in [106] for capturing extended depth of field.

The sensor is tethered to a laptop via a USB 3.0 cable and synced with the motor start/stop signal.

The voice coil motor and the motor controller are able to translate the sensor at the speed of 1.47

mm/s. In almost all scenes that we have experimented, the sensor motion is less than 0.3mm, which

can be completely in 0.21 second. The major advantage of this implementation is that all of the

parts are off-the-shelf components. This first prototype demonstrates that a focal sweep camera can

be built with minimal effort. A collection of focal sweep photographs captured by this prototype

are shown on the website www.focalsweep.com.

Prototype 2, as shown in Figure 6.3 (b), is a more compact design, in which a sensor secured

on a structure and the lens can be translated during the sensor’s integration time. In this prototype

we use a compact linear actuator instead of a voice coil motor, allowing us to reduce the camera’s

overall size. The same lens and camera as in Prototype 1 are used. During the integration time, the

sensor is translated from the near focus position to the far focus position. With this prototype, we are

able to translate the sensor at a top speed of 0.9mm/s. The major advantage of this implementation

is its compactness and its close resemblance to existing camera architectures.
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6.4.2 Camera settings

As in conventional photography, users first determine the frame rate P and f-numberN according to

the speed of object motion, the lighting condition, and the desired amount of defocus in the captured

images for each scene. Then, the ideal speed of sensor sweep s can be computed using Equation

6.12. Note that s is independent of camera focus and distance range of scenes. This independence

makes configuration friendly to users.
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Figure 6.4: For a given pixel size, frame rate, and f-number, the overall capture time and total image

count are highly related to focal length and scene distance range. (a) shows the f − T plot of the

overall capture time T with respect to focal length f to cover a wide depth range from 0.4m to

infinity. (b) shows the f − k plot of the total image number k with respect to focal length f to cover

a wide depth range from 0.4m to infinity. (c) and (d) show the plots of overall time T and total

image number k with respect to the depth range (in both diopter and meter), respectively (f = 9mm).

In each plot, the red spot indicates the most typical setting in our implementation.
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(a) A Space-time focal stack (b) 2D slice of the stack

T

X

(c) The first frame (d) The last frame

Figure 6.5: A sample space-time focal stack captured using our focal sweep camera prototype 1.

(a) A space-time focal stack of 25 images; (b) A 2D slice of the 3D stack; (c) The first frame of the

stack where the foreground is in focus; (d) The last frame of the stack where the background is in

focus. The capturing frame rate is 120fps. It took the focal sweep camera about 0.2sec to capture

the whole sequence.

Although the sweep speed is independent of camera focus and scene depth range, the number

of images, k, and the overall time to capture the image stack, T , are highly related to the camera

focus setting and the scene depth range. Consider a depth range from 0.4m to infinity, Figure 6.4 (a)

shows how the overall capture time T varies with camera focal length f in a camera whereN = 1.4,

c = 2.2µm, and P = 120 fps. T increases proportionally to the square of f . Figure 6.4 (b) plots

the total number of captured images, k, with respect to focal length f for the same camera. Again,

k is linearly proportional to f2.

In the most common scenarios, the desired scene ranges from a certain distance, Zmin, to in-

finity. Figure 6.4 (c) and (d) plot the capture time T and total image count k with respect to Ẑmin,

which is the inverse of distance (or dioper). We can see that both are linear. The closer the fore-

ground is to the camera the longer the capture time. The x-axis is labeled in the unit of both dioper

(1/m) and distance (m) for easy reference.

It can be noted from the figure that the required capture time and image counts have a huge

range at different settings. The red dot in each plot indicates a typical setting in our implementation.

We use a 9mm lens and our scenes’ depths range from 0.4m to infinity, so it takes us 0.2sec to

capture 20 images. Our prototypes are also able to capture scenes with smaller Zmin, but it takes

a long time to capture the sweep as shown in Figure 6.4 (c). Figure 6.5 illustrates an sample of

space-time focal stack that was captured using our first prototype camera.
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2. Image Stabiliza�on

camera parameters

image stack, {F0
i}

image stack, {Fi} in-focus image, I0

image stack pyramid, {F(i)
i}

in-focus image pyramid, Ij

multi-scale index maps, D(i)

an initial index map, D0

8. Index interpola�on

in-focus index map, D

segment map, L

1. Capture a space-�me
     focal stack

4. Build a pyramid of image
    stack and in-focus image

5. Compute space-�me index
    maps at mul�-scales

6. Merge mul�-scle maps into 
    a reliable sparse map.

9. User interac�ve refocus

3. Compute space-�me
    in-focus image

7. Image over-segmenta�on

Figure 6.6: A diagram illustrating the process from capturing a space-time focal stack, to generating

an in-focus index map, and to interactive image refocusing.

6.5 Algorithm

Figure 6.6 shows an overview of the newly proposed algorithm. After a stack of images, {F 0
i },

are captured, we first apply a typical multi-scale optical flow algorithm to estimate frame-to-frame

global transformations to account for hand-shake, then stabilize the image stacks. The stabilized

image stack {Fi} is then used to compute a space-time in-focus image (Section 6.5.1) and index

maps at various scales (Section 6.5.2). In Section 6.5.3, we describe a new approach to merging

multi-scale index maps into one high-quality index map.

There are two key ideas in the algorithm. First, we use a pyramid strategy to handle non-textured

regions. For each pixel, we estimate its index (the frame it is best focused) at multiple scales. Due

to the space-scale effect [125], the index may not be consistent at different scales, especially in
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(a)  Mean image (b)  Mean image a�er deblurring (c)  Weighted average image Patch in frame 1

Patch in frame 5

Patch in frame 25

Figure 6.7: Space-time in-focus images computed using different approaches and their close-ups.

(a) The mean of all images in the stack; (b) The mean image deconvolved using an integral PSF;

(c) Weighted average of all images in the stack; (d) The best focused patches in the captured focal

stack.

regions with weak textures, depth discontinuities, or object motions. This inconsistency is one of

the fundamental difficulties in the algorithm’s design, and we show a simple yet effective solution.

Second, at any given scale, we propose a novel approach to computing the index map. In

literature, it is common to first estimate an index map (or depth map) using focus measure, and

then use the index map to produce an all-in-focus image [5, 68]. In this thesis, however, we take a

different strategy. We first compute an all-in-focus image without knowing the index map, and then

use the all-in-focus image to estimate the index map. We will show the advantage of using this new

strategy.

6.5.1 Space-time in-focus image

Given a focal stack, we first compute a space-time in-focus image without the index map. The idea

is inspired by the EDOF technique using focal sweep. Kuthirummal et al. [82] show that the mean

of a focal stack preserves image details, and deconvolve the averaged image with a (1/x)-shape

integral point-spread-function (IPSF) to recover an all-in-focus EDOF image without knowing the

depth map. This approach is further shown to be robust in regions of depth edges, occlusions, and

even object motion. In Figure 6.7, we show the mean image of a space-time focal stack (a) and the

EDOF image after deconvolution (b).
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Although both (a) and (b) preserve most high frequency information, the average image yields a

low contrast (especially when the number of images increases), and the deconvolved EDOF image

(b) is prone to image artifacts. In addition, deconvolution is computationally expensive, especially

for mobile devices. In this thesis, we compute a space-time in-focus image as a weighted sum of all

images:

I(x) =
ΣiWi(x) · Fi(x)

ΣiWi(x) + ǫ
, (6.13)

where the weights Wi(x) are defined as the variance of the Laplacian patch △(Pi(x, d)):

Wi(x) = V(△Pi(x, d)). (6.14)

Pi(x, d) here represents a patch of size d centered at x in the ith frame. With this strategy, severely

blurred patches will carry much less weight than sharper patches do, reducing the hazy effects that

one can see in the average image from Figure 6.7(a). As shown in (c), the weighted sum is sharp

and has high contrast even without deconvolution. Although the weighted sum (c) is sometimes not

as sharp as the deblurred image (b), it avoids the risk of deconvolution artifacts and reduces the halo

effects introduced by object motion. It is important to note that our final goal is not to produce an

all-in-focus image, but using an all-in-focus image to compute the in-focus index map. A decent

all-in-focus image free of high-frequency artifacts is essential for this purpose.

6.5.2 Space-time in-focus index maps at various scales

We use the computed all-in-focus image I(x, y) to help estimate in-focus index map. For each pixel

(x, y), we look for the frame where its surrounding patch is most similar in high frequencies to that

in I(x, y). Then, the in-focus index map M(x) is estimated as:

M(x, y) = argmin
i
S(Fi(x, y), I(x, y)), (6.15)

where S measures the high frequency similarity between Fi and I at each pixel and is defined as

S(P,Q) = | △ (P−Q)| ⊗ ⊓(r), (6.16)

where P and Q denote the patches at P and Q, respectively, ⊗ is convolution, and ⊓(r) is a pillbox

function of radius r. The key idea here is to measure the similarity in high frequencies. The

weighted mean image preserves good high frequencies as in the best focused layer even at depth
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(a) A pyramid of space-�me in-focus images

(b) A pyramid of space-�me index maps

(c) Reliable index map

(d) Image segmenta�on

(e) Final index map

(f) Index map (comparison)

Figure 6.8: (a) A pyramid of space-time in-focus images; (b) A pyramid of space-time index

maps; (c) A reliable index map that is computed from (b) using index consistence; (d) An over-

segmentation of the full-resolution in-focus image; (e) Our final depth map computed from (c) and

(d) by hole-filling; (f) An index map computed using a traditional algorithm which uses difference-

of-Gaussians as focus measure.
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discontinuities and for moving objects. By convolving with ⊓(r), we consider a neighborhood in

processing each pixel.

6.5.3 Merging and interpolating index maps

Due to the space-scale effects and depth discontinuity, the index map computed at different scales

(or different neighborhood size r) can be significantly different. Figure 6.8 (b) shows the index map

pyramid M (i), i = 1, 2, . . . , k, where k is the total level of the pyramid. At each level, the focal

stack reduces the spatial resolution by 2× 2 from its upper level. The index maps at different scales

are significantly different, especially at depth boundaries. It is a challenging problem to pick a right

scale for each pixel.

We propose a novel multi-scale technique to solve this problem. First, we construct a reliable

but sparse index map D0 by only accepting indices that are consistent in all levels:

D0(x)=











































Mi(x), ifmax[Mi(x)]−min[Mi(x)] < τ

∅, otherwise

(6.17)

τ is set as a small number to enforce consistence. One sample is shown in Figure 6.8 (c). (We

use d = 7, k = 7, r = 5 in our implementation.) The pixels with no index assigned are shown in

black. The observation is that the index map is dense in textured region, and sparse in non-textured

regions and depth boundaries. Second, we over-segment the in-focus image I(x, y). Third, in each

segment, we fill the holes in D0 by interpolation according to two simple rules:

• If the segment has at least m valid (and reliable) indices, do interpolation by fitting a plane to

the valid indices.

• If the number of valid indices is less than m, do nearest neighbor interpolation.

This gives us the final index map D(x, y). Our observation is that segments in a textured region

have many reliable indices in D0, which yield a reliable plane fitting; segments in a texture-less

region or depth discontinuities have few indices and so the hole-filling process proprogates index

information from the region boundary.
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By doing nearest neighbor interpolation, we avoid smoothing out the index map in these regions.

It is important to note that a smoothed index map at depth boundary must be avoided, because

it would lead focus to a middle point where neither foreground nor background is well focused.

Nearest neighbor interpolation may not be able to produce an accurate spatial boundary between

foreground and background, but fortunately, users are much more tolerant to this spatial inaccuracy.

This is because the precision of user input itself (e.g., finger tapping on a touch screen) is usually

much lower than image resolution.

Figure 6.8 (d) shows a result of image over-segmentation using Graph-cut (d), and Figure 6.8 (e)

shows the index map after interpolation. We can see that the index map is sharp at depth boundary,

and smooth in non-textured regions.

With the estimated index map D(x, y), we can do image refocusing. In the refocusing viewer,

for any pixel (x, y) that a user clicks, we transition the displayed image from the present image to

the image indexed byD(x, y). The transition is made smooth by sequentially displaying the images

between the present index to D(x, y). We have made our refocusing viewer available online at

www.focalsweep.com.

6.6 Experiments

In all the experiments shown in this chapter, we set m = 10, τ = 1, d = 7, r = 5. We compare

index maps computed using the proposed technique with that using a traditional depth estimation

algorithm, which maximize a simple focus measure. There are various definitions of focus measures

[115, 116, 157, 175]. We adopted the one used in the photomontage method [5], which defines focus

measure as a simple local contrast according to the Difference-of-Gaussians filter, and we further

polished the results using Graph-cut [22]. Graph-cut as a global optimization technique helps to

fill up the holes and smooth the index map, shown in Figure 6.8 (f). Our results (e) show better

results in non-textured or specular regions and depth discontinuities, which are important for image

refocusing.

Figure 6.9 shows more space-time focal stacks that we captured using Prototype 1, as well as the

computed in-focus images and index maps. In the index maps that the proposed algorithm computes,

there are no obvious holes or artifacts, even in textureless regions. The index map is also sharper
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       (a) First frame 
(focus on foreground)

        (b) Last frame
(focus on background)

Figure 6.9: More experimental results. Each row corresponds to a scene. From left to right, (a) and

(b) are the first and last frames captured with focal sweep, (c) are the computed space-time in-focus

images, and (d) are the estimated space-time in-focus index maps. The resulting index maps are

used for image refocusing, as demonstrated on our website www.focalsweep.com.
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at depth boundaries. In this chapter, we only show the computed index maps and the all-in-focus

images. For interactive viewing of the focal stacks, please visit the website www.focalsweep.com.

6.7 Summary

We present a focal sweep imaging system to capture space-time focal stacks for image refocusing.

The proposed camera sweeps focus at a sufficiently high speed so that the summed DOF of the

captured focal stack efficiently covers the entire desired depth range. The major benefit of this

design lies in the fact that the camera directly captures all the images that are required for image

refocusing. By avoiding the dimension gap in capturing and image synthesis in image processing

(which are common in many other competing designs), this design provides users high-quality full-

resolution images at every focus with minimal computation cost.

Due to object motion, each pixel that a user clicks on might correspond to different objects at

different focus layers (or time points). For example, a defocused object in motion often appears

blended with its background object, and there would be cases when it is preferred to estimate object

motion and do image refocusing along the estimated motion trajectory. Solving the ambiguity often

requires a deeper understanding to user intentions. In this thesis, however, we choose to stay simple

by not explicitly considering object motion in the algorithm design. There are other possible refo-

cusing choices as discussed in Section 6.3.2, which deal with the ambiguities in different manners.

We decide to leave them as future work.

A more compact and promising implementation could be made by making use of the auto-

focus mechanism, which commonly exists in many commercial lenses. To do so, one will need the

capability to control and synchronize focus with image capturing.
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Chapter 7

Conclusions

A computational camera combines novel optics and computation to encode more useful visual infor-

mation in the captured images. The design space for the optics of computational cameras is so large

and the formulation of image formation becomes so complicated that the design and optimization

of computational cameras remains part science and part art.

Despite the complexity of computational camera designs, point spread function (PSF) yields

an efficient and simple way to characterize these imaging systems. I therefore propose optimizing

computational camera designs for scene recovery through point spread function (PSF) engineering.

To make this case, I first addressed two keys questions in this thesis:

• What are good PSFs for image recovery? In answering this question, I derived a close-form

PSF evaluation criterion for image deblurring. This criterion is comprehensive and accounts

for the effects of image deblurring and image noise as well as natural image statistics. In line

with this criterion, I have been able to optimize the pattern of lens aperture for defocus de-

blurring. Experiments show that we can recover more texture details from defocused images

by using the optimized coded apertures.

• What are good PSFs for depth recovery? In answering this question, I derived a close-form

PSF evaluation criterion for depth from defocus (DFD). I then use this criterion to solve for

an optimized pair of coded apertures for DFD. Via simulations and experiments I demonstrate

that a camera with an optimized coded aperture pair is able to not only produce depth maps

of significantly greater accuracy and robustness, but it also produces high-quality all-focused
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images.

Through the PSF optimization, I have significantly improved the performance of defocus de-

blurring and depth from defocus. I then further proposed using an optical diffuser to modulate the

PSFs to overcome a fundamental limit of DFD in depth precision. This led to a novel depth re-

covery technique – referred to as depth from diffusion (DFDiff). Compared to the traditional DFD,

DFDiff is able to recover the depth at a high precision without a large lens, and is insensitive to lens

aberration. One drawback of DFDiff is that it requires the flexibility to place a diffuser in the scene.

The finite depth of field (DOF) of a lens camera leads to defocus blur, but this effect also

produces an artistic visual experience. In this thesis, I proposed a focal sweep camera design for

space-time image refocusing. This technique allows users to experience the artistic narrow DOF ap-

pearance of the scene while simultaneously making available the image detail for the entire image.
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Appendix A

A Proof of Evaluation Criterion for

Defocus Deblurring (Equation 3.15)

Since ζ is a matrix of Gaussian white noise, we evaluate the quality of recovery using the expectation

of the L2 reconstruction error with respect to the random matrix ζ:

R(K,F0, C) = E
ζ
[‖F̂0 − F0‖

2], (A.1)

where E denotes expectation. Substitute F̂0 using Equation ??, we obtain

R(K,F0, C) = E
ζ

[

∥

∥

∥

∥

ζ · K̄ − F0 · |C|
2

|K|2 + |C|2

∥

∥

∥

∥

2
]

, (A.2)

When ζ is assumed to be a Gaussian white noise N(0, σ2), we have

R(K,F0, C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

F0 · |C|
2

|K|2 + |C|2

∥

∥

∥

∥

2

. (A.3)

Since F0 is sampled from the image space, we are actually looking for a C to minimize the

expectation of R with respect to the image distribution:

R(K,C) = E
F0

[R(K,F0, C)] =

∫

F0

R(K,F0, C)dµ(F0), (A.4)

where µ(F0) is the measure of the sample F0 in the image space. According to the 1/f law of

natural images [139][154], we know that the expectation of |F0|
2, A(ξ) =

∫

|F0(ξ)|
2dµ(F0) exists

we have

R(K,C) =

∥

∥

∥

∥

σ · K̄

|K|2 + |C|2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

A1/2 · |C|2

|K|2 + |C|2

∥

∥

∥

∥

2

. (A.5)
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Substitute |C|2 by σ2/A and rearrange the equation, we will get

Rξ(K,σ) = Σξ
σ2

|Kξ|2 + σ2/Aξ
, (A.6)

where ξ is the frequency.
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Appendix B

A Proof of Aperture Evaluation

Criterion for Depth from Defocus

(Equation 4.5)

Given a coded aperture pair (K1,K2), a ground truth blur size d∗, and a noise level σ, the energy E

corresponding to a hypothesized blur estimate d is as follows:

E(d|Kd∗

1 ,Kd∗

2 , σ)

=
∑

ξ

A · |Kd
1 ·Kd∗

2 −Kd
2 ·Kd∗

1 |2
∑

i |K
d
i |

2 + C

+
∑

ξ

σ2 · (
∑

i |K
d∗
i |2 + C)

∑

i |K
d
i |

2 + C
+ n · σ2.

Proof:

E(d|Kd∗

1 ,Kd∗

2 , σ) (B.1)

= E
F0

E(d|Kd∗

1 ,Kd∗

2 , σ, F0) (B.2)

= E
F0,F1,F2

E(d|Kd∗

1 ,Kd∗

2 , F1, F2, F0) (B.3)

= E
F0,F1,F2





∑

i=1,2

‖F̂0 ·Ki − Fi‖
2 + ‖C · F̂0‖

2



, (B.4)



APPENDIX B. A PROOF OF APERTURE EVALUATION CRITERION FOR DEPTH FROM

DEFOCUS (EQUATION 4.5) 104

where E(x) is the expectation of x, and Fi is the ith captured image. Substituting F̂0 with Equation

(4), we get:

E(d|Kd∗

1 ,Kd∗

2 , σ)

= E
F0,F1,F2





∑

i=1,2

‖
F1 · K̄

d
1 + F2 · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
·Ki − Fi‖

2

+ ‖C ·
F1 · K̄

d
1 + F2 · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
‖2
]

. (B.5)

Then, by substituting Fi with Equation (2), we have:

E(d|Kd∗

1 ,Kd∗

2 , σ)

= E
F0,ζ1,ζ2





∑

i=1,2

‖(F0 ·K
d∗

i + ζi)−

(F0 ·K
d∗
1 + ζ1) · K̄

d
1 + (F0 ·K

d∗
2 + ζ2) · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
·Ki‖

2+

‖C ·
(F0 ·K

d∗
1 + ζ1) · K̄

d
1 + (F0 ·K

d∗
2 + ζ2) · K̄

d
2

|Kd
1 |

2 + |Kd
2 |

2 + |C|2
‖2
]

. (B.6)

Since ζ1 and ζ2 are independent Gaussian white noise N(0, σ), we have E ζ2i = σ2, E ζi = 0,

and E ζ1ζ2 = 0. Let B = K2
1 +K2

2 + C. Then, Equation B.6 can be rearranged to be:

E(d|Kd∗

1 ,Kd∗

2 , σ)

= E
F0,ζ1,ζ2

∑

i=1,2

[

‖
F0[(K

d∗
1 K̄1 +Kd∗

2 K̄d
2 ) ·K

d
i −Kd∗

i B]

B
‖2

+‖
(ζ1K̄d

1 + ζ2K̄d
2 )K

d
i

B
− ζi‖

2

]

+ ‖C ·
F0 · (K

d∗
1 K̄d

1 +Kd∗
2 K̄d

2 )

B
+
ζ1 · K̄d

1 + ζ2 · K̄d
2

B
‖2

= E
F0

∑

i=1,2

‖
F0[(K

d∗
1 K̄d

1 +Kd∗
2 K̄d

2 ) ·K
d
i −Kd∗

i B]

B
‖2
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+ σ2 · (‖
Kd

i
2
+ C

B
‖2 + ‖

Kd
1K

d
2

B
‖2 + ‖C ·

Kd
i

B
‖2)

+ ‖C ·
F0 · (K

d∗
1 K̄d

1 +K∗
2K̄

d
2 )

B
‖2. (B.7)

According to the 1/f law, we define the expectation of the power spectrum of F0 as A, where

A(ξ) =
∫

F0
|F0(ξ)|

2 µ(F0). In addition, it is known that C = σ2/A. Then, Equation B.7 can be

further re-arranged and simplified as:

E(d|Kd∗

1 ,Kd∗

2 , σ)

=
∑

ξ

A · |Kd
1 ·Kd∗

2 −Kd
2 ·Kd∗

1 |2
∑

i |K
d
i |

2 + C

+
∑

ξ

σ2 · (
∑

i |K
d∗
i |2 + C)

∑

i |K
d
i |

2 + C
+ n · σ2. (B.8)
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Appendix C

A Proof of Equation 4.10

When the ratio c = d/d∗ approaches to 1, we have

M(K1,K2, d, d
∗)

=





1

n

∑

ξ

A ·
(|c− 1|d∗)2|K

′d∗
1 Kd∗

2 −K
′d∗
2 Kd∗

1 |2

|Kd∗
1 |2 + |Kd∗

2 |2 + C2





1/2

=|c− 1|d∗ ·





1

n

∑

ξ

A ·
|K

′d∗
1 Kd∗

2 −K
′d∗
2 Kd∗

1 |2

|Kd∗
1 |2 + |Kd∗

2 |2 + C2





1/2

,

where K
′d∗
i is the derivative of Kd∗

i with respect to the blur size.

Proof: A kernel K can be regarded as a function of both the frequency ξ and the scale d∗. Assume

the derivative ofK with respect to d∗ exists and is denoted byK
′d∗ , we haveKd = Kd∗ +δd ·K

′d∗
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when δd = d− d∗ = (c− 1)d∗ approaches to zero. Then, we get

M(K1,K2, d, d
∗) (C.1)

=

[

1
n

∑

ξ

A ·
|Kd

1K
d∗

2 −Kd
2K

d∗

1 |2

|Kd
1 |

2+|Kd
2 |

2+C2

]1/2

=

[

1
n

∑

ξ

A ·
|(K

′d∗

1 +δd·K
′d∗

1 )Kd∗

2 −(Kd∗

2 +δd·K
′d∗

2 )Kd∗

1 |2

|Kd∗
1 +δd·K

′d∗
1 |2+|(Kd∗

2 +δdKd′∗
2 )|2+C2

]1/2

=|δ|d∗ ·

[

1
n

∑

ξ

A ·
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

.

=|c− 1|d∗ ·

[

1
n

∑

ξ

A ·
|K

′d∗

1 Kd∗

2 −K
′d∗

2 Kd∗

1 |2

|Kd∗
1 |2+|Kd∗

2 |2+C2

]1/2

.
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Appendix D

A Proof of Equation 4.11

Consider two scales d∗1 and d∗2 with a ratio s = d∗2/d
∗
1, when c = d/d∗ approaches to 1, we have

M(K1,K2, c · d
∗
2, d

∗
2) ≈M(K1,K2, c · d

∗
1, d

∗
1) · s

α/2, (D.1)

where α is a constant number that is related to the power order in the 1/f law [164].

Proof: According to Equation 4.10, we have

M(K1,K2, c · d
∗
2, d

∗
2)

=|c− 1|d∗2 ·

[

1
n

∑

ξ

A ·
|K

′d∗2
1 K

d∗2
2 −K

′d∗2
2 K

d∗2
1 |2

|K
d∗2
1 |2+|K

d∗2
2 |2+C2

]1/2

.

Since K∗
2 is a scaled K∗

1 of factor s, K∗
2 (ξ) = K∗

1 (sξ). Therefore,

M(K1,K2, c · d
∗
2, d

∗
2)

=s·|c−1|d∗1·





1
n

n
∑

ξ=1
A(ξ)·

|K
′d∗1
1 (sξ)K

d∗1
2 (sξ)−K

′d∗1
2 (sξ)K

d∗1
1 (sξ)|2

|K
d∗1
1 (sξ)|2+|K

d∗1
2 (sξ)|2+C2





1/2

.

=s·|c−1|d∗1·





1
n

sn
∑

η=s
A(η/s)·

|K
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1 (η)K
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2 (η)−K

′d∗1
2 (η)K

d∗1
1 (η)|2

|K
d∗1
1 (η)|2+|K

d∗1
2 (η)|2+C2





1/2

=s·|c−1|d∗1·





1
n·s2

n
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A(η/s)·
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1 (η)K
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2 (η)−K
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2 (η)K
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1 (η)|2
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1 (η)|2+|K
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1
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2 (η)−K
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1 (η)|2

|K
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



1/2

,

(D.2)
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where η = sξ.

According to the 1/f law [164], the prior power spectra of natural image A(ξ) statistically

takes a form of D exp 1/ξ2, where the power order may vary slightly around 2 with scenes and

D is a normalization factor. This spectra function can be roughly approximated as A(ξ) = D 1
ξα

with a proper α, especially when this prior function is applied to finite-resolution images. Then,

A(η/s) ≈ A(η) · sα. Therefore, we have

M(K1,K2, c · d
∗
2, d

∗
2)

≈|c−1|d∗1·





1
n

n
∑

η=1
A(η)·sα·

|K
′d∗1
1 (η)K

d∗1
2 (η)−K

′d∗1
2 (η)K

d∗1
1 (η)|2

|K
d∗1
1 (η)|2+|K

d∗1
2 (η)|2+C2





1/2

,

=M(K1,K2, c · d
∗
1, d

∗
1) · s

α/2.
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Appendix E

A Proof of Proposition 5.2.1

Theorem E.0.1 Proposition5.2.1 When an optical diffuser is placed parallel to the sensor plane

(see Figure E.1) and the diffusion angle θ is small (sin θ ≈ θ), we get

2 tan θ

cos2 α
·

1

AB
=

1

U
+

1

Z
, (E.1)

where α is the field angle and AB is the diffusion size. The perspective projection of P on the

diffuser plane C can be approximated with high precision as the center of AB when α is not too

large.

Proof: In the following proof, we first use a first order Taylor expansion (the paraxial approx-

imation) to show the DFDiff imaging equation is similar to the Gaussian lens law, and then use a

higher order expansion to formulate the image formation more accurately, which proves the propo-

sition.

In Figure E.1, consider the boundary points A and B of the diffusion pattern, we have











































θ1 − θ = θ2

θ3 + θ = θ4

U · tan θ1 + Z · tan θ2 = (U + Z) · tanα

U · tan θ3 + Z · tan θ4 = (U + Z) · tanα

(E.2)

I. If θ1, θ2, θ3, and θ4 are very small, the paraxial approximation (tanx ≈ x) can be made. With

this approximation, we have tan(x+y) = tanx+tan y. Thus, tan θ2 = tan θ1−tan θ and tan θ4 =
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C
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Figure E.1: Geometry of diffusion in a pinhole camera. An optical diffuser with a pillbox diffusion

function of degree θ is placed in front of a scene point P and perpendicular to the optical axis. From

the viewpoint of pinhole, a diffused pattern AB appears on the diffuser plane.

tan θ3 + tan θ. The equation group E.2 becomes linear with respect to tan θ1, tan θ2, tan θ3 and

tan θ4. Then, from this equation group, we get:

| tan θ1 − tan θ3| = 2 tan θ · Z/(U + Z) (E.3)

and

(tan θ1 + tan θ3)/2 = tanα. (E.4)

Therefore, we have

AB = |AE −BE|

= U · | tan θ1 − tan θ3|

= 2 tan θ · UZ/(U + Z), (E.5)

which can also be written as:

2 tan θ ·
1

AB
=

1

U
+

1

Z
. (E.6)

In addition, the center of AB is

(AE +BE)/2 = U · (tan θ1 + tan θ3)/2.

According to Equation E.4, it is consistent to the perspective projection of P on the diffuser plane,

C = U · tanα.
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II. Then, instead of using the paraxial approximation (Taylor expansion of degree one), we

made a more precise approximation using Taylor expansion of degree three in order to allow larger

field angle α and diffusion angle θ. This gives:

tan(x+ y) ≈ tanx+ tan y + tanx tan2 y + tan2 x tan y. (E.7)

With this approximation, we can get:

| tan θ1 − tan θ3| =
2 tan θ

cos2 α
·

Z

U + Z
, (E.8)

which yields Equation E.1 in Proposition 3.1:

2 tan θ

cos2 α
·

1

AB
=

1

U
+

1

Z
. (E.9)

Also with the approximation, we have:

|(tan θ1 + tan θ3)/2− tanα| < 0.25 tanα tan2 θ, (E.10)

which proves the perspective projection of P on the diffuser plane can be approximated with high

precision as the center of AB when α and θ are not too large. �
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Appendix F

A Proof of Proposition 5.2.1’

Theorem F.0.2 Proposition5.2.1’(extended to include tilted diffuser)

When an optical diffuser is placed parallel to the sensor plane (see Figure E.1) and the diffusion

angle θ is small, the size r of the blur pattern on the sensor (radius of the PSF) has:

r = V ·
CP

OP
·
tan θ

cos2 α
, (F.1)

where C is the perspective projection of P on the diffuser.

Remarkably, tilting the diffuser by a small angle will not change the blur size r, as long as

the projection C is not changed.

Proof: From Figure E.1, it is easy to see U = OC · cosα and U + Z = OP · cosα. Simply

Diffuser

α

P

Sensor

β

A

C

B

O
2r V

Figure F.1: Geometry of diffusion in a pinhole camera. The diffuser is tilted by a small angle β.



APPENDIX F. A PROOF OF PROPOSITION 5.2.1’ 114

substitute these into Equation E.1, we get:

2 tan θ

cosα
·

1

AB
=

1

OC
+

1

CP
, (F.2)

Then, let the diffuser be tilted by a small angle β as shown in Figure F.1. In this case, assume

there were a sensor parallel to the diffuser. Then, the conclusions in Proposition 3.1 can still be

applied here to compute the size of the diffusion patternAB on the diffuser. Note that AB indicates

the region where the diffused light can reach the pinhole O, and this is obviously independent of

the actual placement of the sensor which is behind the pinhole. Since the field position of P with

respect to this new sensor plane is α− β, we have:

2 tan θ

cos(α− β)
·

1

AB
=

1

OC
+

1

CP
, (F.3)

Therefore,

AB =
2 tan θ

cos(α− β)
·
OC · CP ·

OP
(F.4)

Since AB ≪ OC when the diffuser is placed far away from the pinhole, the line AO can be

regarded as parallel toBO. With this approximation, the blur size r on the real sensor can be derived

as:

r =
AB

2
·

V

OC · cosα
·
cos(α− β)

cosα
(F.5)

Substitute AB using Equation F.4, we get:

r = V ·
CP

OP
·
tan θ

cos2 α
, (F.6)

which is independent of the tilting angle β. This proves Proposition 5.2.1’. �
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