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ABSTRACT

In this work, we present Point Transformer, a deep neural network that operates directly on unordered and

unstructured point sets. We design Point Transformer to extract local and global features and relate both

representations by introducing the local-global attention mechanism, which aims to capture spatial point

relations and shape information. For that purpose, we propose SortNet, as part of the Point Transformer,

which induces input permutation invariance by selecting points based on a learned score. The output of Point

Transformer is a sorted and permutation invariant feature list that can directly be incorporated into common

computer vision applications. We evaluate our approach on standard classification and part segmentation

benchmarks to demonstrate competitive results compared to the prior work.

INDEX TERMS 3D point processing, Artificial neural networks, Computer vision, Feedforward neural

networks, Transformer

I. INTRODUCTION

Processing 3D point sets using deep neural networks has be-

come very popular the past few years. The three-dimensional

information has a wide range of applications in autonomous

driving [1]–[6] and computer vision [7], [8]. However, train-

ing neural networks on point sets is not trivial. First, point

sets are unordered, thus require the neural network to be

permutation invariant. Second, the number of points in the

set is usually dynamic and unstructured. Finally, the network

needs to be robust against rotation and translation to operate

in the metric space, and since the points describe objects, the

network needs to capture the spatial relations between the

points.

Standard neural architectures, such as convolutional neural

networks (CNN), have shown promising results for struc-

tured data. For that reason, several point set processing

approaches attempt to transform the points into regular rep-

resentations such as voxel grids [9], [10] or rendered views

of the point clouds [11], [12]. However, transforming the

point sets leads to loss of shape information as geometric

relations between points are removed. Furthermore, these

methods suffer from high computational complexity due to

the sparsity of the 3D points.

To address these limitations, there is another family of

approaches that act directly on the point set. The main

idea is to process each point individually with a multi-layer

perceptron (MLP) and then fuse the representation to a vector

of fixed size with a set pooling operation over a latent feature

space [7], [13]. Set pooling is a symmetric function that is

permutation invariant. Additionally, under certain conditions,

set pooling acts as a universal set function approximator [14].

Nevertheless, Wagstaff et al. [15] argue that reducing the

latent representation to a vector of fixed length can be im-

practical since the cardinality of the input set is usually not

considered. Thus, the capacity of the vector may not be

sufficient enough to capture the spatial relations of the point

set which may reduce the overall performance. Therefore, the

set pooling mechanism can become a bottleneck for point

processing networks.

Our goal and motivation stems from removing the set

pooling method and overcoming the aforementioned bot-

tleneck, while still achieving a permutation invariant rep-

resentation that models the point set relations in terms of

object shape and geometric dependencies. Therefore, it is

necessary to introduce a symmetric set function that replaces

traditional set pooling operations. For that, we adapt the

attention mechanism [16], which was originally introduced

for natural language processing, that is used to weight and

score sequences (words) based on learned importance. To

our understanding, we face a similar problem in 3D point

processing, given that we need to relate representations of

the input points to capture and describe the object’s shape.

Additionally, attention itself does not depend on the input

ordering, i.e. it is permutation-invariant, as it is comprised

of matrix multiplication and summation only, which makes it
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FIGURE 1. Overview of the Point Transformer Pipeline. A point cloud serves as input to our network from which local and global features are extracted. We sort

local features using SortNet, a module that focuses on important points based on a learned score. We then employ local-global attention to relate global and local

features. We aim to capture geometric relations and shape information. The resulting feature representation is permutation invariant and can be used for common

computer vision tasks.

well-suited for our problem. However, the output is still un-

ordered, thus, directly processing the output of attention for

standard computer vision tasks is not possible. Consequently,

our goals can be outlined as follows:

• Avoid the bottleneck that can occur while employing set

pooling operations [15].

• Present a novel permutation invariant network archi-

tecture that adapts the popular and prevalent attention

mechanism for 3D point processing.

• Demonstrate superior performance compared to tradi-

tional set pooling methods to justify the use of attention

and reinforce the claims made by Wagstaff et al.

To address these problems, we propose SortNet, a permu-

tation invariant network module, that learns ordered subsets

of the input with latent features of local geometric and

spatial relations. For that, we learn important key points,

which we call top-k selections, that replace the set pooling

operation. Since current state-of-the-art methods have shown

that aggregating local and global information increases the

network’s capabilities of capturing context information [7],

[17], [18], we employ SortNet to generate local features of

the point cloud. Moreover, global features of the entire point

cloud are related to the sorted local features using local-

global attention. Local-global attention attends both feature

representations to capture the underlying shape. Since the

local features are ordered, the output of local-global attention

is ordered and permutation invariant; and thus it can be

used for a variety of visual tasks such as shape classifi-

cation and part segmentation. An overview of our network

is outlined in Fig. 1. Since we aim to process 3D point

sets using the ideas proposed by the Transformer network

architecture [19], we took inspiration from [20], and name

our network Point Transformer.

Overall, our contributions can be summarized as follows:

• We propose Point Transformer, a neural network that

uses the multi-head attention mechanism and operates

directly on unordered and unstructured point sets.

• We present SortNet, a key component of Point Trans-

former, that induces permutation invariance by selecting

points based on a learned score.

• We evaluate Point Transformer on two standard bench-

marks and show that it delivers competitive results.

II. RELATED WORK

Below, we discuss approaches that process 3D points and are

related to our work.

A. POINT SET PROCESSING

Point clouds are irregular and unordered sets of points with a

variable amount of elements, thus applying standard neural

networks on 3D points is not possible. For that reason,

previous approaches rely on transforming the point sets into

an ordered representation, such as voxel grids. The met-

ric space is discretized into small regions (voxels), which

are labeled as occupied if a point lies inside the voxel.

Then, 3D convolutional networks (CNN) can be easily ap-

plied to the voxel-based representation [9], [10], [21]. This

pre-processing, however, reduces the resolution as multiple

points are combined into a single voxel and thus damages

important spatial relations of the metric space. Furthermore,

voxelization increases the memory requirements and com-

putational complexity due to the sparsity of the 3D points.

To address these limitations, multiple extensions have been

proposed that try to leverage the sparsity of 3D data [22]–

[24], but still fail to process large amounts of input points.

View-based methods: In contrast to building voxel grids,

a lot of research has been conducted on rendering point

clouds into 2D images, i.e. structured representation of the

underlying 3D shape. Then, working with traditional CNNs

is possible [12], [25]. Since shape information can be oc-

cluded by rendering point clouds from a specific viewpoint,

multi-view approaches have been proposed that render mul-

tiple images from different angles [11], [12], [26], [27]. Even

though images are rendered from different views, the model

still fails to capture all geometric and spatial relations. To

this day, multi-view approaches achieve impressive results

on standard 3D benchmarks. However, the transformation

from sparse 3D points into images increases computational

complexity as well as required memory.

Shape-based methods: PointNet [13] is a pioneering net-

work architecture that operates directly on 3D point sets,

and it is invariant to input point permutations. Therefore, a

transformation into a structured representation is no longer

necessary. PointNet uses a multi-layer perceptron (MLP)

with shared weights that encodes spatial features to each
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input point separately. Then, a symmetric function, e.g. max

pooling, is applied to the latent features to induce permu-

tation invariance and create a global feature representation

of the input. PointNet established the de facto standard for

point processing that many state-of-the-art approaches still

rely on [1], [28]. However, it is not able to encode and capture

local information, since the max pooling operation induces

permutation invariance, but also destroys local structures and

relations of the points in metric space. To address this issue,

Qi et al. proposed the improved PointNet++ [7] architecture,

a hierarchical model that abstracts the input points with every

layer to produce sets with fewer elements. First, centroids

of local regions are sampled using hand-crafted algorithms,

then local features are encoded to the centroids by explor-

ing the local neighborhood. Thus, allowing the network to

capture fine-grained patterns and improving the performance

on current datasets. A general approach related to unordered

sets was introduced by Zaheer et al. [14] demonstrating the

capabilities of pooling operations to induce permutation in-

variance. Importantly, they prove that the set pooling method

is a universal approximator for any set function. In general,

problems arise with set pooling when the reduced feature

vector lacks the capacity to capture important geometric

relations. Our work addresses this limitation with a network

topology that encodes the entire point cloud by relating local

information with the global shape structure.

Convolutions on Point Clouds: Classic convolutional

neural networks require the input data to be ordered, such as

images or voxel grids. Since points are unstructured, an active

research area is the definition of convolution operations that

can operate on irregular 3D point sets such as KPConv [29],

SpiderCNN [30] or PointCNN [31]. These methods achieve

state-of-the-art performance on a variety of tasks. However,

due to the irregularities of the shape and point density, point

convolutions are usually hard to design and the kernel needs

to be adapted for different input data [32].

B. ATTENTION

Attention itself has its origin in natural language process-

ing [16], [33]. Traditionally, encoder-decoder recurrent neu-

ral networks (RNN) were used for machine translation ap-

plications, where the last hidden state is used as the context

vector for the decoder to sequentially produce the output.

The problem is that dependencies between distant inputs are

difficult to model using sequential processing. Bahdanau et

al. [16] introduced the attention mechanism that takes the

whole input sequence into account by taking the weighted

sum of all hidden states and additionally, models the relative

importance between words. Vaswani et al. [19] improved the

attention mechanism by introducing multi-head attention and

proposing an encoder-decoder structure that solely relies on

attention instead of RNNs or convolutions. Therefore, they

reduce the computational complexity. In this work, multi-

head attention is the basis for Point Transformer.

Attention with point cloud processing: Neural networks

that rely on attention achieved impressive results in machine

translation, and were adopted to function on point clouds by

utilizing the points as sequences. Vinyals et al. [34] proposed

a network that processes unordered sets using attention. They

show that the network is able to sort numbers. However,

they only focus on generic sets. In contrast, we present an

approach that is applied to different point cloud related tasks

for capturing shape and geometry information. Recently,

Lee et al. [20] proposed Set Transformer, a method that is

related to our approach. They adapt the original Transformer

network to process unordered sets by using induced points,

i.e. trainable parameters of the network, that are attended to

the input. Set Transformer focuses on general sets as input.

Furthermore, Lee et al. demonstrate that it is applicable to

point sets. In our work, Point Transformer is specifically

designed to process point clouds and leverage important

characteristics of points in metric space such as shape and

geometric relations.

Xie et al. [35] propose ShapeContextNet, where they

hierarchically apply the shape context approach that acts as

a convolutional building block. To overcome the difficulties

of manually tuning the shape context parameters, Xie et al.

employ self-attention to combine the selection and feature

aggregation process into one trainable operation. However,

similar to point cloud convolutions, shape context relies on

a manual selection of the shape context kernels which is

sensitive to the irregularities of point cloud data.

The Point2Sequence model [17] uses an attention-based

sequence-to-sequence network. The approach first extracts

local regions and produces local features using an LSTM-

based attention module. Using a set pooling method, a

global feature vector is generated following the ideas of [14]

and [13]. However, it relies on a sequence-to-sequence ar-

chitecture that tends to be more computational complex than

multi-head attention [19]. Furthermore, in contrast to our

method, Point2Sequence uses a max-pooling operation to

make the network permutation invariant. Yang et al. [36]

introduce a network architecture that replaces traditional sub-

sampling methods like furthest point sampling (FPS) with an

attention-based selection process using the gumbel-softmax

function, which is similar to the proposed SortNet module.

Recently, Tao et. al [37] proposed a multi-head attentional

point cloud processing network that uses a rotation invariant

representation of point clouds as input. For that, they employ

a multi-head attentional convolution layer (MACL) with at-

tention coding. However, their work focuses on designing a

rotation invariant network that relies on global max pooling

operations, whereas Point Transformer together with SortNet

leverages the strengths and advantages of the attention oper-

ation to select useful local point structures and relates them

to the global shape to induce permutation invariance.

III. FUNDAMENTALS

Attention has been first proposed for natural language pro-

cessing, where the goal is to focus on a subset of im-

portant words [16]. Here, we frame the problem in the

context of point sets. We consider the unordered point set
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P = {pi ∈ R
D, i = 1, . . . , N}. Our goal is to map P to the

output space R
O with the set function f : P → R

O. Further-

more, we assume that f is invariant to input permutations.

Since the input point set represents some object, e.g. from

laser scans, the points are not independent of each other. We

aim to make use of the attention mechanism to capture the

relations between the points, as well as shape information for

performing visual tasks such as object classification or seg-

mentation. Next, we shortly present attention and introduce

the Transformer architecture in the context of point sets.

A. ATTENTION

The idea of the attention mechanism is to set an importance-

based focus on different parts of an input sequence. Con-

sequently, relations between inputs are highlighted that can

be used to capture context and higher-order dependencies.

The attention function A(·) describes a mapping of N
queries Q ∈ R

N×dk and Nk key-value pairs K ∈ R
Nk×dk ,

V ∈ R
Nk×dv to an output RN×dk [19]. Using the pairwise

dot product QKT ∈ R
N×Nk , a score is calculated indicating

which part of the input sequence to focus on

score(Q,K) = σ(QKT ), (1)

where score(·) : RN×dq ,RNk×dk → R
N×Nk . Furthermore,

we set the activation function σ(·) = softmax(·) and scale

QKT by 1/
√
dk to increase stability [19]. To capture the

relations between the input points, the values V are weighted

by the scores from Equation (1). Therefore, we have

A(Q,K, V ) = score(Q,K)V, (2)

with A(Q,K, V ) : R
N×dk ,RNk×dk ,RNk×dv → R

N×dk .

It is apparent, that the attention function (2) is a weighted

sum of V , where a value gets more weight if the dot

product between the keys and values yields a higher score.

If not specified otherwise, we set the model dimension to

dk = dq = dm.

B. TRANSFORMER

The Transformer network [19] is an extension of the attention

mechanism from Equation (2) that consists of an encoder-

decoder structure and introduces multi-head attention. In the

following, we explain multi-head attention in detail, as our

Point Transformer architecture relies on it.

Instead of employing a single attention function, multi-

head attention first linearly projects the queries, keys and

values Q,K, V h times to dk, dk and dv dimensions, re-

spectively, using separate feed-forward networks to learn

relations from different subspaces. Then, attention is applied

to each projection in parallel. The output is then concatenated

and projected again using a feed-forward network. Thus,

multi-head attention can be defined as follows:

Multihead(Q,K, V ) = (head1 ⊕ ...⊕ headh)W
O, (3)

where headi = A(QWQ
i ,KWK

i , V WV
i ) with learnable pa-

rameters WQ
i ∈ R

dm×dk , WK
i ∈ R

dm×dk and WV
i ∈ R

dm×dv .

The ⊕ operation denotes matrix concatenation and WO ∈
R

hdv×dm is a learnable parameter matrix [19]. To achieve

similar computational complexity as traditional attention,

the dimensions of each head dk, dv are reduced such that

dk = dv = dm/h. For the transformer architecture, Vaswani

et al. [19] define encoder and decoder stacks of identical

layers that are comprised of multi-head attention and a point-

wise fully connected layer, each with a residual connection

followed by layer normalization [38]. We call this layer

multi-head attention and define it as follows:

AMH(X,Y ) = LayerNorm(S + rFF(S)), (4)

where AMH : R
N×dm ,RNk×dm → R

N×dm . The sublayer

S is defined as S = LayerNorm(X + Multihead(X,Y, Y ))
and rFF is a row-wise feed-forward network that is applied

to each input independently. In practice, multiple multi-

head attention layers can be deployed in sequence to further

capture higher-order dependencies. Note that the output of

AMH depends on the ordering of X , thus it is not permutation

invariant. However, the values of the corresponding outputs

for each input point are always the same regardless of the

input order, since AMH only consists of matrix multiplication

and summation.

For the task of point processing, we take the unordered

point set P and generate a latent feature representation platent
i

with dimension dm for every pi ∈ P using a rFF and

concatenate them to form P = [platent
1

, . . . , platent
N ] ∈ R

N×dm .

Based on P we now define the self multi-head attention as:

Aself(P ) := AMH(P, P ), (5)

which performs multi-head attention between all elements

of P , thus resulting in a matrix of same size as P .

To attend elements of different sets, we additionally in-

troduce a second matrix representation Q of another set

Q = {qj ∈ R
D, j = 1, . . . , Nk} that has been projected to

latent feature dimension dm, thus Q ∈ R
Nk×dm . We can now

define cross multi-head attention as:

Across(P,Q) := AMH(P,Q), (6)

that outputs a matrix of dimension N × dm which order

depends on the ordering of P . Since the output is not permu-

tation invariant but follows the ordering of the input, Trans-

former and multi-head attention can not be used directly for

point data without further processing. To solve this problem,

we introduce our novel Point Transformer architecture that

handles unordered point sets.

IV. POINT TRANSFORMER

This section presents Point Transformer, a neural network

that operates on point set data and it is based on the multi-

head attention mechanism. The network is permutation in-

variant due to a new module that we name SortNet. Our goal

is to explore shape information of the point set by relating

local and global features of the input. This is done using cross

multi-head attention. To introduce our method, we first give
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an overview of the complete Point Transformer architecture,

which is shown in Fig. 2. Our approach is divided into three

parts:

1) SortNet that extracts ordered local feature sets from

different subspaces.

2) Global feature generation of the whole point set.

3) Local-Global attention, which relates local and global

features.

As introduced in Sec. III, we consider the point set

P = {pi ∈ R
D, i = 1, . . . , N} as input to our network. In

most cases, the point dimension is given by D = 3 when

xyz coordinates are considered. Moreover, it is possible to

append additional point features, for example lidar intensity

values (D = 4) or point normal vectors (D = 6). Point

Transformer consists of two independent branches: a local

feature generation module, i.e. SortNet, and a global feature

extraction network. For the local feature branch, the input P
is projected to latent space with dimension dm using a row-

wise feed-forward network. Then, we employ self multi-head

attention on the latent features to relate the points to each

other. Finally, SortNet outputs a sorted set of fixed length.

This module is comparable to a kernel in convolutional neural

networks, where the activation of a kernel depends on regions

of the input space, i.e. the receptive field. SortNet works in

a similar fashion: It focuses on points of interest according

to the learnable score derived from the latent feature repre-

sentation. For the extraction of global features, we employ

set abstraction with multi-scale grouping introduced by [7].

After obtaining features from both branches, we employ our

proposed local-global attention to combine and aggregate

local and global features of the input point cloud. Since we

use local-global attention such that the ordering of the output

depends on the local features, the output of Point Transformer

is permutation invariant and ordered as well and can directly

be incorporated into computer vision applications such as

shape classification and part segmentation.

A. SORTNET

The local feature generation module, i.e. SortNet, is

one of our key contributions. It produces local fea-

tures from different subspaces that are permutation in-

variant by relying on a learnable score. We show the

architecture in Fig. 3. SortNet receives the original

point cloud P ∈ R
N×D and the projected latent fea-

ture representationP = [platent
1

, . . . , platent
N ] ∈ R

N×dm from

the row-wise feed forward network. We employ an additional

self multi-head attention layer on the latent features to cap-

ture spatial and higher-order relations between each pi ∈ P .

Subsequently, a row-wise feed forward (rFF) network is

used to reduce the feature dimension to one, thus creating

a learnable scalar score si ∈ R for each input point pi,
which incorporates spatial relations due to the self multi-

head attention layer. We now define the pair which assigns

the corresponding score to every input point 〈pi, si〉
N
i=1

. Let

(Q,≥) be a totally ordered set. We select from the original

input point list K ≤ N points with the highest score value

and sort them accordingly such that:

Q = {qj , j = 1, . . . ,K}, (7)

where qj = 〈pji , s
j
i 〉

K
j=1

, pji ∈ P such that s1i ≥ . . . ≥ sKi .

In other words, we employ the top-k operation to search

for the K highest scores si and select the associated input

points pi. After selecting K points using the learnable score,

we now capture localities by grouping all points from P
that are within the euclidean distance r of each selected

points, i.e. we perform a ball query search similar to [7].

The grouped points are then used to encode local features,

denoted by gj ∈ R
dm−1−D, j = 1, . . . ,K. We choose the

feature dimension of the grouped points gj such that the

resulting dimension of the local feature vector corresponds

to the model dimension dm. The scores sji , as well as the

local features gj from the grouping layer, are concatenated

to the corresponding input points pji to include the score

calculation into our optimization problem and encode local
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characteristics to the selected point. Thus, we obtain our local

feature vector

f j
i = pji ⊕ sji ⊕ gj , f j

i ∈ R
dm . (8)

Consequently, the output of SortNet constitutes one local

feature set

FL
m = {f j

i , j = 1, . . . ,K}. (9)

Since Q is an ordered set, it follows that FL
m is ordered as

well. To capture dependencies and local features from differ-

ent subspaces, we employ M separate SortNets. Finally, the

M feature sets are concatenated to obtain an ordered local

feature set of fixed size

FL = FL
1
∪ . . . ∪ FL

M , FL ∈ R
K·M×dm . (10)

B. GLOBAL FEATURE GENERATION

The second branch of Point Transformer is responsible for

extracting global features from the input point cloud. To

reduce the total number of points to save computational

time and memory, we employ the set abstraction multi-

scale grouping (MSG) layer introduced by Qi et al. [7]. We

subsample the entire point cloud to N ′ < N points using the

furthest point sampling algorithm (FPS) and find neighboring

points to aggregate features of dimension dm resulting in

a global representation of dimension N ′ × dm. Note that

the global feature representation is still unordered since no

sorting or set pooling operation was performed.

C. LOCAL-GLOBAL ATTENTION

The goal of Point Transformer is to relate local and global

feature sets, FL and FG respectively, to capture shape and

context information of the point cloud. After obtaining both

feature lists, we employ self multi-head attention Aself on the

local features FL as well as the global features FG. Then,

cross multi-head attention layer Across from Equation (6) is

applied such that every global feature is scored against every

local feature, thus relating local context with the underlying

shape. We call this operation local-global attention ALG (see

Fig. 2) and define it as follows:

ALG := Across(Aself(FL),Aself(FG)), (11)

where FL and FG are the matrix representations of

FL and FG, respectively. The last row-wise feed for-

ward layer in the multi-head attention mechanism of ALG

reduces the feature dimension to d′m < dm in or-

der to decrease computational complexity, thus we have

ALG : RK·M×dm ,RN ′×dm → R
K·M×d′

m . In other words,

we take every local feature from SortNet and score the

global features against it. At this point, it is important to

note that we relate the local features, i.e. a subset of the

input FL ⊆ P , with the global structure. Thus, we avoid

reducing the shape representation using set pooling; instead,

the output of local-global attention includes information of

the entire point cloud, i.e. the underlying shape, as well

as local characteristics. As with multi-head attention, for

local-global attention, we employ multiple cross and self

multi-head attention layers in sequence to learn higher-order

dependencies [19]. Since the ordering of the local features

FL defines the order of the output of local-global attention,

we obtain a permutation invariant latent representation of

fixed size of the aggregated features, that can directly be

incorporated into computer vision tasks.

D. COMPLETE MODEL

To recap, Point Transformer functions as follows: Our archi-

tecture is comprised of two independent branches, SortNet

for the extraction of local features and a global feature gener-

ation module. SortNet constitutes a novel architecture that se-

lects a number of input points based on a learned score from

latent features, resulting in M · K ordered feature vectors

with dimension dm. In the global feature branch, we employ

multi-scale grouping to reduce the total number of points to

N ′ while aggregating spatial information. Then, local-global

attention is used to relate both spatial signatures, producing

a permutation invariant and ordered representation of length

K · M with reduced dimension d′m (see Fig. 2), which can

be used for different tasks such as shape classification or part

segmentation. Additionally, we demonstrate the processing

chain of our model as a flowchart in Fig. 4.

Shape Classification assigns the point cloud to one of C
object classes. For this, we flatten the sorted output of local-

global attention to a vector of fixed size RM ·K·d′

m and reduce

the dimensions using a row-wise feed-forward network to

R
C . Thus, each output represents one class. Using a final

softmax layer, class probabilities are produced. The shape

classification head is shown in Fig. 2 a).
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TABLE 1. Here, we compare Point Transformer to related approaches that

use either set pooling or attention. We evaluate on popular Benchmarks for

object classification (ModelNet) and part segmentation (ShapeNet).

Method ModelNet ShapeNet

PointNet [13] 89.2 83.7
PointNet++ [7] 91.9 85.1
ShapeContextNet [35] 89.8 84.6
Deep Sets [14] 90.3 -
Point2Sequence [17] 92.6 85.2
Set Transformer [20] 90.4 -
PAT [36] 91.7 -
Tao et. al [37] 87.5 75.2
Point Transformer 92.8 85.9

KPConv [29] 92.9 86.2
PointCNN [31] 92.2 86.1
SpiderCNN [30] 90.5 85.3

Part Segmentation assigns a label to each point of the

input set. State-of-the-art methods [7], [17] upsample a

global feature vector obtained from a set pooling operation

using interpolation. We, however, employ an additional cross

multi-head attention layer to attend the output of ALG, i.e.

the aggregated shape and context information, to each point

of the input set P . It is important to note that we project

the points in the global feature generation branch to d′′m
dimensions and apply self multi-head attention. The features

are additionally used for the set abstraction layer. Later,

we attend the projected features with the output of Point

Transformer. Thus, we can relate each point to the entire

point cloud. The result is a matrix of dimension R
N×d′

m .

Then, a row-wise feed-forward layer reduces the dimension

of each point to the C possible classes RN×C . Again, using a

final softmax layer, per-point class probabilities are produced

as shown in Fig. 2 b).

V. EXPERIMENTS

In this section, we perform two standard evaluations on Point

Transformer. We compare our results with approaches that

operate directly on 3D point sets [7], [13], [14], attention-

based approaches [17], [20], [35] and methods that use point

cloud convolutions [29]–[31], [39]. Moreover, we provide

a thoughtful analysis and visualizations of the components

of our approach. We implement our network in Pytorch [40]

where we rely on the RAdam optimizer [41] for all ex-

periments. The weights of each layer are initialized using

the popular Kaiming normal initialization method [42]. Our

implementation will be made publicly available.

A. POINT CLOUD CLASSIFICATION

We evaluate Point Transformer on the ModelNet40

dataset [10] and use the modified version by Qi et al. [7]

that provides 10.000 points sampled from the mesh of the

CAD model, as well as the normal vectors for each point. The

dataset consists of 40 categories and it is composed of 9843
training samples and 2468 test samples. During the training

for classification, we augment the input by randomly scaling

the shape in the range of [0.8, 1.25] and randomly translating

TABLE 2. Results of Network Design Analysis. We evaluate different SortNet

architectures to highlight that the learnable score increases the networks

performance. Additionally, we compare different sampling methods for the

global feature generation branch.

a) Ablation Study SortNet Accuracy (%)

SortNet with learnable score 83.4
SortNet with FPS 74.8
SortNet with random points 60.1

b) Ablation Study Global
Feature Generation Accuracy (%)

No sampling 91.9
FPS (N ′ = 128) 92.3
Set Abstraction (MSG) (N ′ = 128) 92.8

in the range of [−0.1, 0.1]. Additionally, we apply random

dropout of the input points as proposed in [7], [13]. For the

experiments, we set N = 1024, D = 6 (xyz and normals),

dm = 512, d′m = 64, M = 4 and K = 64. The results of the

shape classification are shown in Table 1. Point Transformer

outperforms attention-based methods (top part of Table 1)

and achieves on par accuracy when compared to state-of-

the art methods (bottom part of Table 1) with a classification

accuracy of 92.8%.

B. POINT CLOUD PART SEGMENTATION

Here, we evaluate Point Transformer on the challenging

task of point cloud part segmentation on the ShapeNet

dataset [43], which contains 13.998 train samples and 2874
test samples. The dataset is composed of objects from 16
categories with a total of 50 part labels. The goal is to predict

the class category of every point. To address this task, the

network has to learn a deep understanding of the underlying

shape. For the part segmentation, we set M = 10 and

K = 16. Again, we use xyz coordinates with normal vectors

(D = 6) and N = 1024 input points. For this experiment,

we follow the setup of [13] where a one-hot encoding of the

category is concatenated to the input points as an additional

feature. We report the mean IoU (Intersection-over-Union) in

Table 1. Finally, we visualize exemplary results of the part

segmentation task in Fig. 5.

C. NETWORK COMPLEXITY

We examine the network complexity of Point Transformer

and perform a comparison to related approaches. The results

of this experiment are shown in Table 3. We performed all

experiments on a Nvidia GeForce 1080Ti. Point Transformer

has about 13.5 million learnable parameters (51 MB), which

is less when compared to KPConv (15 million learnable

parameters). However, our model is about 6 times bigger

than PointNet++ and Point2Seq. This is mainly due to the

fact that the Transformer model itself has a lot of learnable

parameters. For example, one SortNet only has about 10.000
learnable parameters which shows that SortNet can be incor-

porated into any existing network architecture without much

space requirements and computational overhead, as it only
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TABLE 3. Model complexity study. Here, we compare the network size and

the inference time against related approaches.

Method # of params Network size Inference time

Point Transformer 13.5 M 51 MB 110 ms
SortNet 10 k 0.04 MB 1.25 ms

PAT [36] - 5.8 MB 88 ms
KPConv [29] 15 M - 210 ms
PointNet++ [7] 2.1 M 24 MB 160 ms
Point2Seq [17] 2 M - -

adds about 1.2 ms of inference time. In many cases, the

forward pass of multiple SortNets can additionally be per-

formed in parallel. Even though, Point Transformer has more

learnable parameters than, e.g, PointNet++, it still has a faster

inference time because multi-head attention blocks are highly

optimized and computation is also performed in parallel by

employing multiple attention heads. For the computational

complexity of the network, an upper bound can be estimated

from the most expensive operation, which in our case is the

multi-head attention mechanism. The complexity is given by

O(N2 · dm), thus it scales quadratic with respect to the total

number of input points.

D. HYPERPARAMETER STUDY

Here, we analyze the effects of different numbers of SortNets

in our Point Transformer architecture as well as the amount

of Top-K selections on the ModelNet40 dataset [10]. The

results are shown in Tab. 4. Furthermore, we present the

hyperparameters that were used for the reported results for

the classification and the part segmentation task in Tab. 5.

The parameters follow the notation introduced in Fig. 2 and

Fig. 3. The values were found by performing a hyperpa-

rameter grid search experiment for the classification and the

part segmentation, similar to Tab. 4. We report the set of

parameters that achieved the best overall performance. Note,

that for the rFF, each value in the parenthesis denotes one

layer, where the value represents the feature dimension for

that layer.

E. POINT TRANSFORMER DESIGN ANALYSIS

We conduct an ablation study to show the influence of

each Point Transformer module. Afterward, we qualitatively

examine our classification results by visualizing the learned

point set regions that contribute to the classification output.

Ablation study of SortNet: We first evaluate Point Trans-

former using only the SortNet module from Fig. 3 with the

classification head from Fig. 2 a). Our aim is to show that

the learned scores are based on the importance of points for

the classification task. In addition, we want to verify that

SortNet selects points that help to understand the underlying

shape. Since we cannot explicitly define which are the most

important points, we rely on the accuracy score. In detail,

we train SortNet based on three different experiments and

deliberately set M = 10 and K = 12, selecting only a subset

of the entire point cloud (M · K = 120, N = 1024). In

the first experiment, we train SortNet as it is implemented

in the Point Transformer pipeline. In the second experiment,

we replace the Top-K selection process with the furthest

point sampling. Finally, we randomly select K points from

the input set instead of the learned Top-K selection. It is

important to note, that the last two experiments remove the

permutation invariance property. However, we want to show

that SortNet performs better than a random selection of points

and handcrafted sampling methods. Thus, we rely on random

sampling and FPS as baselines. The results are shown in

Table 2 a). With randomly sampled points, SortNet achieves

60.1% classification accuracy. When we apply the FPS to

cover most of the underlying shape, the accuracy increases to

74.8%, indicating spatial information preservation. Finally,

when we use learned Top-K selection, we achieve the highest

classification accuracy of 83.4%. This empirically shows that

SortNet learns to focus on important shape regions.

Ablation study Global Feature Generation: In this ab-

lation study, we compare different sampling methods for the

extraction of global features. We rely on the complete Point

Transformer pipeline as shown in Fig. 2 and replace the

set abstraction (MSG) with different sampling approaches.

Again, we evaluate the accuracy of the classification task.

The results are presented in Table 2 b). In the first exper-

iment, we use the complete input point cloud. Then, we

sample N ′ = 128 points using the furthest point sampling,

which slightly improves our result by 0.4%. When we ad-

ditionally aggregate features from local regions around the

sampled points, i.e. set abstraction with multiscale grouping

(MSG) [7], the accuracy can be further increased to 92.8%.

This indicates that scoring the local features against every

input point makes it harder to find important relations. Addi-

tionally, by uniformly selecting fewer points and aggregating

local features the network can concentrate on meaningful

parts of the underlying shape.

Rotation robustness of SortNet: In this section we eval-

uate the robustness of SortNet against rotations of the input

cloud. For this, we first evaluate Point Transformer on the

ModelNet40 test set and randomly rotate the input point

cloud. Even though we did not train the network with ro-

tations, we still achieve a classification accuracy of 92.3%
compared to 92.8% without rotations. We applied the same

input point rotation to PointNet++ and classification accuracy

dropped from 91.9% to 88.6%. To qualitatively support this

claim, we visualize the learned Top-K selections of one

SortNet for different rotations in Fig. 6, which shows that

SortNet still focuses on the similar local regions even when

the input point cloud is rotated.

Visualizations of learned local regions: Here, we show

that SortNet focuses on local regions similar to the receptive

field of a CNN. For this, we visualize the learned Top-K

selections of multiple trained SortNet modules on different

models of the same object class in Fig. 7 and Fig. 8. It is

apparent, that each SortNet tries to select similar regions

even when the shape of the model is slightly different.

This, together with the results from the rotational robustness,
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TABLE 4. Hyperparameter Study Results on ModelNet40 for different combinations of the hyperparameters M (number of SortNets) and K (Top-K selections).

M 4 4 4 4 8 8 8 8 8 16 16 16 16 32 32 32
K 16 32 64 96 8 16 32 64 96 8 16 32 64 8 16 32

Accuracy 91.7 92.3 92.8 91.7 90.2 90.5 91.9 92.4 92.0 91.2 91.6 92.0 91.7 90.8 91.3 91.1

TABLE 5. Hyperparameters of Point Transformer for the classification and the

part segmentation task.

Parameter Explanation Classification Part Segmentation

General Hyperparameters

B Batch size 11 8
N Number of input points 1024 1024
D Input dimension 6 6
lr Learning rate 0.001 0.005
wd Weight decay 1× 10−6 0.0001
dm Latent feature dimension 512 512
- Weight initializer Kaiming Normal [42]

Local Feature Generation

- rFF feature dimension (64, 128, 512) (64, 128, 512)
- Dropout 0.4 0.3
nhead Number of local attention heads 8 8
nlayers Number of local attention layers 1 1

SortNet

M Number of SortNets 4 10
K Number of top-k selections 64 16
- rFF feature dimension (128, 256, 512) (64, 128, 512)
- Dropout 0.4 0.3

Global Feature Generation

N ′ Reduced point set 128 64
- Segmentation rFF - (64, 128, 256)

d
′′

m Segmentation feature dimension - 256
nhead Number of local attention heads 8 8
nlayers Number of local attention layers 1 1
- Dropout 0.4 0.3

Local-Global Attention

d
′

m Reduced feature dimension 64 256
nhead Number of local attention heads 8 8
nlayers Number of local attention layers 4 4

Classification Head

C Number of classes 40
- Fully connected dimension (4096, 1024, 512, 128, 40)
- Dropout 0.4

Segmentation Head

C Number of classes 50
- Output rFF (256, 128, 50)
nhead Number of local attention heads 8 8
nlayers Number of local attention layers 1 1

suggests that SortNet is aware of the underlying shape.

All Top-K selections: As an additional evaluation, we

show all selected points of M = 8 SortNet modules in

Fig. 9 for the classification task. We visualize points that

were selected from the same SortNet with the same color. It

is apparent, that different SortNet modules focus on different

parts of the object and in combination, still retain as much as

possible of the underlying shape.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed Point Transformer, a permutation

invariant neural network that relies on the multi-head atten-

tion mechanism and operates on irregular point clouds. The

core of Point Transformer is a novel module that receives

a latent feature representation of the input point cloud and

selects points based on a learned score. We relate local fea-

tures to the global structure of the point cloud, thus exploiting

context and inducing shape-awareness. The output of Point

Transformer is a sorted and permutation invariant feature

list that is used for shape classification and part segmenta-

tion. Finally, we show that our point selection mechanism

is based on importance for the specified task. As future

work, we want to focus on improving the efficiency of the

Transformer architecture by implementing recent advances

for self-attention, such as [44], [45].
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FIGURE 4. Overview of the processing chain of Point Transformer. Data is shown as rectangles with the respective dimensions. Networks modules, for example

row-wise feed forward networks (rFF), are denoted by rectangles with rounded corners and additional process steps are shown as parallelograms. Here, it is

important to note that individual rFF’s with separate weights are deployed in each of the M SortNet modules.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116304, IEEE Access

N. Engel et al.: Point Transformer

Point Transformer Prediction

Ground-Truth

Point Transformer Prediction

Ground-Truth

Point Transformer Prediction

Ground-Truth

FIGURE 5. Additional results of the part segmentation task for different object categories. We show the prediction of Point Transformer (top) in comparison with the

ground-truth (bottom).
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FIGURE 6. Influence of input point rotations on the Top-K selection process. • Top-K selection, • Input points. When the input point cloud is rotated, SortNet still

focuses on similar local regions of the underlying shape.
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FIGURE 7. Top-K selections for different chair models. • Top-K selection (dark points), • Input points (light points). SortNet selects points from similar local regions

when applied to objects of the same category, suggesting that it is aware of the underlying shape.
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FIGURE 8. Top-K selections for different table models. • Top-K selection, • Input points. SortNet selects points from similar local regions when applied to objects of

the same category, suggesting that it is aware of the underlying shape.
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FIGURE 9. Here all selected points from the local feature generation branch (right) are shown in comparison with the complete input point cloud (left). The selected

points of each SortNet are shown in the same color. It is clear that every SortNet focuses on different local regions of the object. When the selected points are

visualized together, the input point cloud is still recognizable, suggesting that in combination, all SortNets try to retain as much as possible of the underlying shape.
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