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Abstract. The numerical simulation of physical problems modeled by systems of conservation
laws is difficult due to the presence of discontinuities in the solution. High-order shock capturing
schemes combine sharp numerical profiles at discontinuities with a highly accurate approximation in
smooth regions, but usually their computational cost is quite large.

Following the idea of A. Harten [Comm. Pure Appl. Math., 48 (1995), pp. 1305–1342] and Bihari
and Harten [SIAM J. Sci. Comput., 18 (1997), pp. 315–354], we present in this paper a method to
reduce the execution time of such simulations. It is based on a point value multiresolution transform
that is used to detect regions with singularities. In these regions, an expensive high-resolution shock
capturing scheme is applied to compute the numerical flux at cell interfaces. In smooth regions a
cheap polynomial interpolation is used to deduce the value of the numerical divergence from values
previously obtained on lower resolution scales.

This method is applied to solve the two-dimensional compressible Euler equations for two classical
configurations. The results are analyzed in terms of quality and efficiency.
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1. Introduction. The computation of solutions to hyperbolic systems of conser-
vation laws has been a very active field of research for the last 20 to 30 years and, as a
result, there are now a variety of methods that are able to compute accurate numerical
approximations to the physically relevant solution. The latest addition to the pool of
numerical methods for hyperbolic conservation laws are the modern high-resolution
shock capturing (HRSC) schemes. These schemes succeed in computing highly ac-
curate numerical solutions, typically second- or third-order in smooth regions, while
maintaining sharp, oscillation-free numerical profiles at discontinuities.

State-of-the-art shock capturing schemes usually perform a “delicate art-craft” on
the computation of the numerical flux functions. A typical computation involves at
least one eigenvalue-eigenvector decomposition of the Jacobian matrix of the system,
as well as the approximation of the values of the numerical solution at both sides of
each cell interface, obtained via some appropriately chosen approximating functions.
The numerical result is very often spectacular in terms of resolution power, but the
computational effort also tends to be quite spectacular.

Without doubt, the computational speed of the latest personal computers and
workstations has made it possible for an increasing number of researchers to become
interested in HRSC methods and, as a result, HRSC methods are now being tested
in a variety of physical scenarios that involve hyperbolic systems of conservation laws
(see, e.g., [7, 10, 19] and references therein).

When the underlying grid is uniform, the implementation of most of these shock
capturing schemes is quite straightforward and numerical simulations on uniform grids
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are routinely used to investigate the behavior of the different HRSC schemes in use,
and also their limitations. It is known that some HRSC schemes can produce an
anomalous behavior in certain situations; a catalog of numerical pathologies encoun-
tered in gas dynamics simulations can be found in [20], where it is observed that some
of these pathologies appear only when very fine meshes are used.

When using very fine uniform grids, in which the basic code structure of an HRSC
scheme is relatively simple, we find that the computational time becomes the main
drawback in the numerical simulation. For some HRSC schemes, fine mesh simulations
in two dimensions are out of reach simply because they cost too much. The numerical
flux evaluations are too expensive, and the computational time is measured by days or
months on a personal computer. As an example we notice that a typical computation
of a two-dimensional (2D) jet configuration in [19] is 10 to 50 days on an HP710 or 1
to 5 days on an Origin 2000 with 64 processors.

It is well known, however, that the heavy-duty flux computations are needed only
because nonsmooth structures may develop spontaneously in the solution of a hy-
perbolic system of conservation laws and evolve in time, and this basic observation
has lead researchers to the development of a number of techniques that aim at re-
ducing the computational effort associated to these simulations. Among these, shock
tracking and adaptive mesh refinement (AMR) techniques (often combined with one
another) are very effective at obtaining high-resolution numerical approximations, but
the computational effort is transferred to the programming and the data structure of
the code.

Starting with the pioneering work of Harten [14], a different multilevel strategy
aiming to reduce the computational effort associated to high-cost HRSC methods
entered the scene. The key observation is that the information contained in a mul-
tiscale decomposition of the numerical approximation can be used to determine its
local regularity (smoothness). At discontinuities or steep gradients, it is imperative
to use a numerical flux function that models correctly the physics of the problem, but
in smoothness regions the costly exact value of an HRSC numerical flux can be re-
placed by an equally accurate approximation obtained by much less expensive means.
The multiscale decomposition of the numerical solution can then be used as a tool
to decide in which regions a sophisticated evaluation of the numerical flux function is
truly needed. In smoothness regions, Harten proposes [14] to evaluate the numerical
flux function of the HRSC scheme only on a coarse grid and then use these values to
compute the fluxes on the finest grid using an inexpensive polynomial interpolation
process in a multilevel fashion.

Harten’s approach can be viewed, in a way, as an AMR procedure, in which grids
of different resolutions are considered in the numerical simulation, but in reality it is
far from being an AMR technique. The different grids are used only to analyze the
smoothness of the numerical solution. The numerical values on the highest-resolution
grid need to be always available, because the computation of the numerical fluxes with
the HRSC scheme, when needed, use directly the finest-grid values. This is clearly a
disadvantage with respect to the memory savings that an AMR technique can offer
in certain situations. On the other hand, using the values of the numerical solution in
the direct computation has some nice features. First, it avoids the use of complicated
data structures, which is very useful when one is trying to incorporate the algorithm
into an existing code. Second, the availability of the numerical solution on the finest
grid guarantees that the “delicate art-craft” involved in the direct evaluation of the
numerical fluxes (via a sophisticated HRSC scheme) is performed adequately.



MULTISCALE ALGORITHMS FOR COMPRESSIBLE FLOWS 807

When memory requirements do not impose a severe restriction (as it often hap-
pens in many 2D, as well as in some three-dimensional (3D), computations), the
techniques proposed in [14, 5, 22, 1] and in this paper can help to reduce the large
running times associated to numerical simulations with HRSC schemes. We view
Harten’s approach as an acceleration tool, which can be incorporated in a straight-
forward manner into an existing code.

The novelty of our approach with respect to the multilevel strategies described in
[14, 5, 22, 1] lies in the multiresolution transform used to analyze the smoothness of
the numerical solution. We use the interpolatory framework, while in the references
mentioned above the cell-average framework is used. In addition, our implementation
incorporates several features that improve the efficiency of the algorithm (see section
3.3), while maintaining the quality of the numerical approximation.

The rest of the paper is organized as follows: In section 2, we briefly describe
the essential features of the HRSC schemes we shall employ in our simulations. In
section 3 we describe the interpolatory framework for multiresolution and its role in
our multilevel strategy, as well as some implementation details. Section 4 examines
the accumulation of error in the multilevel simulation. In section 5 we perform a series
of numerical experiments and analyze the results in terms of quality, i.e., closeness to
the reference simulation, and efficiency, i.e., time savings of the multilevel simulations
with respect to the reference simulation. Finally, some conclusions are drawn in
section 6.

2. Shock capturing schemes for 2D systems of conservation laws. Let
us consider a 2D system of hyperbolic conservation laws:

∂t"U + "f("U)x + "g("U)y = "0,(2.1)

where "U is the vector of conserved quantities. We shall consider discretizations of
this system on a Cartesian grid G0 = {(xi = iδx, yj = jδy), i = 0, . . . , Nx j =
0, . . . , Ny} that follow a semidiscrete formulation,

d"Uij

dt
+ D("U)ij = 0,(2.2)

with the numerical divergence D("U)ij in conservation form, i.e.,

D("U)ij =
"Fi+1/2,j − "Fi−1/2,j

δx
+

"Gi,j+1/2 − "Gi,j−1/2

δy
.(2.3)

One typically has "Fi+1/2,j = "F ("Ui−k,j , . . . , "Ui+m,j), "Gi,j+1/2 = "G("Ui,j−k, . . . , "Ui,j+m),

where "F ("w1, . . . , "wk+m) and "G("w1, . . . , "wk+m) are consistent numerical flux functions,
which are the trademark of the scheme.

In this paper we shall use two numerical flux formulae, which are significantly
different in terms of computational effort:

– The essentially nonoscillatory (ENO) method of order 3 (ENO-3 henceforth)
from [21], which uses the nonlinear piecewise parabolic ENO reconstruction
procedure to achieve high accuracy in space.

– Marquina’s scheme from [8] together with the piecewise hyperbolic method
(PHM) [18] to obtain high accuracy in space (M-PHM henceforth).

In both cases, the reconstruction procedure (piecewise parabolic ENO or piecewise
hyperbolic) is applied directly on the fluxes, as specified by Shu and Osher in [21].
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The ENO-3 scheme uses Roe’s linearization and involves one Jacobian evaluation
per cell interface, while M-PHM uses a flux-splitting technique in the flux computation
that requires two Jacobian evaluations per cell interface. Although M-PHM is more
expensive than ENO-3, it has been shown in [8, 12, 9] that it is a pretty robust scheme
that, in addition, avoids (or reduces) certain numerical pathologies associated to the
Roe solver.

In both cases, a third-order fully discrete scheme is obtained by applying a TVD
Runge–Kutta method for the time evolution as proposed in [21].

3. The multilevel algorithm. As explained in the introduction, the goal of the
multilevel method is to decrease the cpu time associated to the underlying scheme by
reducing the number of expensive flux evaluations. To understand the basic mecha-
nism by which this goal is achieved, let us consider, for the sake of simplicity, Euler’s
method applied to (2.2), i.e.,

"Un+1
ij = "Un

ij − δt D("U)nij .(3.1)

If both Un and Un+1 are smooth around (xi, yj) at time tn, then (3.1) implies that
the numerical divergence is also smooth at that location; thus we can, in principle,
avoid using the numerical flux functions of the HRSC scheme in its computation. On
the other hand, if a discontinuity appears during the time evolution (or when a steep
gradient makes it imminent), the Riemann solver of the HRSC scheme has to be called
necessarily to compute the numerical divergence if the high-resolution properties of
the underlying scheme are to be maintained.

Consequently, the most important steps in the multilevel algorithm concern the
smoothness analysis of Un and Un+1 (observe that the latter is unknown at time n)

and how this information is used in the computation of D("U).

3.1. Interpolatory multiresolution. Finite volume schemes for (2.1) produce
numerical values that can be naturally interpreted as approximations to the mean
values of the solution in each computational cell (the cell averages). Because of this,
all applications of Harten’s idea known to us [14, 5, 22, 6, 1, 2, 17] have invariably
used the cell-average multiresolution framework (see [14] for definitions and details)
to analyze the smoothness of the numerical approximation.

In Shu and Osher’s framework, the numerical values can be interpreted as ap-
proximations to the point values of the solution. In a point value framework for
multiresolution, the numerical data to be analyzed are interpreted as the values of
a function on an underlying grid; consequently, in our multilevel strategy the point

value multiresolution framework is used to analyze the smoothness properties of the
numerical approximation.

Multiscale decompositions within the point value framework were initially intro-
duced by Harten [13] (and also independently developed by Sweldens [23]) and have
been extensively analyzed in a series of papers [15, 3]. Here we present only a brief
summary to clarify the notation in the remainder of the paper.

One first defines a set of nested grids {Gl, l = 1, . . . , L} by

(xi, yj) ∈ Gl ⇐⇒ (x2li, y2lj) ∈ G0.(3.2)

The values of a function v on G0 (which is considered the finest resolution level),
(v0

ij)i,j , are the input data. Due to the embedding of the grids, the representation of

the function on the coarser grid Gl, its point values on Gl, is

vlij = v0
2li 2lj , i = 0, . . . , Nx/2l, j = 0, . . . , Ny/2l.(3.3)
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To recover the representation of v on Gl−1 from the representation on Gl (the next
coarser grid), the following procedure is used:

– A set of predicted values is first computed:

ṽl−1
ij = vli/2 j/2 if (xi, yj) ∈ Gl,

ṽl−1
ij = I[(xi, yj); v

l] if (xi, yj) ∈ Gl−1\ Gl,(3.4)

where I(.; .) denotes an rth-order polynomial interpolation.
– The difference between the exact values (3.3), vl−1

ij , and ṽl−1
ij is then repre-

sented by the details, or wavelet coefficients:

dlij = vl−1
ij − ṽl−1

ij , (xi, yj) ∈ Gl−1.(3.5)

Observe that dl2p,2q = 0 because of the interpolation property. Thus even-even
detail coefficients are never computed (or stored).

– Relations (3.4) and (3.5) lead immediately to

vl−1
ij = vli/2 j/2 if (xi, yj) ∈ Gl,

vl−1
ij = I[(xi, yj); v

l] + dlij if (xi, yj) ∈ Gl−1\ Gl.(3.6)

Applying this procedure from l = 1 to L gives an equivalence between the discrete set
v0 and its multiresolution representation: Mv0 = (vL, dL, . . . , d1).

Remark 3.1. In our numerical experiments we use a tensor-product interpolation
procedure of order 4 (r = 4). The corresponding formulae come from standard 2D
polynomial interpolation; explicit details can be found, for example, in [5, section 3].

The point value framework for multiresolution is probably the simplest one, be-
cause the detail coefficients are simply interpolation errors. When the grid is uniform
and the interpolation technique is constructed using a tensor product approach, it is
very simple to analyze the smoothness information contained in the interpolation er-
rors, which can then be used directly as “regularity sensors” to localize the nonsmooth
structures of the solution (compare with the derivation of the regularity sensors in [5]
in the 2D cell-average framework for multiresolution).

3.2. The basic strategy. As observed in [5], the original idea of a multilevel
computation of the numerical flux function (in one dimension) described by Harten
in [14] cannot be used in a robust and general manner in two dimensions. The key
point is then to observe that it is the numerical divergence the quantity that should
be adapted to the multilevel computations. For the sake of simplicity, let us consider
again the simplest ODE solver: Euler’s method. When applying it to the semidiscrete
formulation (2.2), we get

"Un+1
ij − "Un

ij = −δt D("U)nij ,(3.7)

and this relation shows that a multilevel computation of the numerical divergence
must be carried out within the same framework as the sets "Un,n+1

ij . The idea to use
the numerical divergence instead of the flux for the multilevel computation was a key
step in the development of multilevel strategies in multidimensions in [5, 1]. Once
this fact is recognized, the choice of the particular framework used to analyze the
smoothness information contained in the numerical approximation is not crucial. We
propose to use the point value framework because of its simplicity.

As in [5], the computation of the numerical divergence D("Un) on the finest grid
is carried out in a sequence of steps. First the numerical divergence is evaluated at
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all points on the coarsest grid GL using the numerical flux function of the prescribed
HRSC scheme. Then, for the finer grids, D is evaluated recursively, either by the
same procedure or with a cheap interpolation procedure using the values obtained on
the coarser grids. The choice depends on the regularity analysis of the approximate
solution, made with the help of its multiresolution representation.

Thus, the main ingredients of the algorithm are the following:
– The multiresolution transform described in section 3.1 to obtain the wavelet

coefficients of "Un.
– A thresholding algorithm which associates to each wavelet coefficient a boolean

flag, blij , whose value (0 or 1) will determine the choice of the procedure to
evaluate D(U). The goal is to use this flag to mark out the nonsmooth regions

of both "Un and "Un+1. This is done as follows:
For a given tolerance parameter ε, the tolerance at level l is defined as
εl = ε/2l. Starting from a zero value for all blij , one applies for each de-
tail coefficient the following two tests:

if |dlij | ≥ εl =⇒ bli−k j−m = 1, k,m = −2, . . . , 2,

if |dlij | ≥ 2r+1εl and l > 1 =⇒ bl−1

2i−k 2j−m = 1, k,m = −1, 0, 1.

The first test takes into account the propagation of information (recall that
the propagation of “real” information is limited by the CFL condition). The
second one aims at detecting shock formation. In a smooth region the local
rate of decay of the detail coefficients is determined by the accuracy of the
interpolation and the local regularity of the function. The second test mea-
sures whether the decay rate is that of a smooth function; if this is not the
case, compression leading to shock formation might be taking place and the
location is also flagged (see [5] for specific details on both tests).

– The multilevel evaluation of the numerical divergence.
For all points (xi, yj) ∈ GL, DL("U)ij is computed with the prescribed HRSC

scheme. Once the divergence is known on Gl, its value on Gl−1, Dl−1("U) is
evaluated using the boolean flag:

If blij = 1, compute Dl−1("U)ij directly (with the HRSC method).

If blij = 0, Dl−1("U)ij = I[(xi, yj);D
l("U)].

Letting l go from L to 1 gives us the values of D("Un) on the finest grid G0.

Remark 3.2. Recall that Dl−1("U)ij = D0("U)2l−1i,2l−1j , and thus the direct evalu-

ation of Dl−1("U)ij is performed by computing the numerical flux functions using the

values of "U on G0: "F ("U2l−1i−k,j , . . . , "U2l−1i+m,j) and "G("Ui,2l−1j−k, . . . , "Ui,2l−1j+m).
As a consequence, the finest grid, G0, is always needed and no memory savings is
obtained in comparison to the direct method (without multiresolution).

3.3. Some implementation details. In the original work of Harten [14], the
flag coefficients are obtained using a multiresolution transform for each component
of the vector "U . The thresholding algorithm is then applied to the largest resulting
wavelet coefficient, i.e., d̃lij = max(|dij(ρ)|, |dij(mx)|, |dij(my)|, |dij(E)|).

For the Euler equations of gas dynamics, the density retains all the possible
nonsmooth structures of the flow (shocks, contact discontinuities, and corners of rar-
efaction waves); thus it seems appropriate to derive the flag only from the multireso-
lution representation of the density, a modification that has also been implemented by
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Table 3.1

Cpu time in seconds for the overhead steps of the multilevel algorithm. First column for all the
components of !U , second one only for the density.

!U multiresolution ρ multiresolution
MR transform 0.09 0.024
Maximum 0.014 –
Thresholding 0.026 0.027
Total 0.13 0.051

Sjögreen [22]. In our experiments, no significant differences are noted in the quality
of the numerical results obtained by computing the flag from the density only; thus
in the numerical tests we report, the boolean flag is computed using only the multi-
scale information of the density. This option saves time in the overhead associated to
the multiscale algorithm. In Table 3.1, we present the cpu time measured for both
methods for an initial grid G0 of 512× 128 points and 5 levels for the multiresolution
transform.

We observe a reduction of the computational time by a factor of 2 in that case.
In [22], Sjögreen presents numerical simulations for 2D systems of conservation

laws using a “dimension-by-dimension” cell-average multilevel algorithm and uniform
meshes. This means that for the fluxes in the x-direction, "Fi+1/2,j , a one-dimensional
(1D) multilevel algorithm is applied to each grid line j = j0. Then, the same procedure
is applied to each line i = i0 to compute the y-fluxes. The major advantage of
Sjögreen’s implementation lies in its simplicity: only 1D procedures are used for the
multiresolution transform, the thresholding algorithm, and the interpolation process.

We have also implemented Sjögreen’s version in the point value context and have
compared it with our algorithm, in which a fully bidimensional multiresolution trans-
form is used. Qualitatively speaking, the results are very similar and the percentage
of fluxes computed by the solver is the same in both cases. Nevertheless, Sjögreen’s
version turns out to be less efficient than the 2D one and, in our implementation, a
factor of 1.6 is observed between the corresponding cpu times. The difference could
be explained by the fact that each point of the domain is visited two times by the
multiresolution transform and thresholding algorithm (for the x- and y-flux compu-
tations) and that this algorithm requires more memory access.

A Runge–Kutta ODE solver is applied to the semidiscrete scheme (2.2)–(2.3)
to obtain a fully discrete scheme. In [5, 1, 22], a flag vector is computed at the
beginning of each Runge–Kutta step between tn and tn+1, but it is possible to avoid
this computation for the last step. The third-order TVD Runge–Kutta method of
[21] is defined as follows:

"U∗ = "Un − δt D("Un),
"U∗∗ = (3"Un + "U∗ − δt D("U∗))/4,

"Un+1 = ("Un + 2"U∗∗ − 2δt D("U∗∗))/3,(3.8)

and the intermediate steps can be represented on the time axis as in Figure 3.1.
Clearly, "U∗ is an order-1 approximation of "Un+1; thus it contains similar nonsmooth
structures at the same places, and the flag coefficients obtained from its multiresolu-
tion transform could be used to compute "Un+1 from "U∗∗, instead of deriving them
from the "U∗∗ multiresolution transform. This modification reduces the computational
cost of the multilevel algorithm while keeping the same quality in the numerical re-
sults.
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!

"Un

tn

"U∗∗

tn + δt/2

"U∗, "Un+1

tn+1
t

Fig. 3.1. Representation on the time axis of the intermediate steps of the third-order Runge–
Kutta method.

Remark 3.3. The implementation of the multilevel strategy into an existing code
would then amount to the following:

– Define two additional matrices, one to store the scale coefficients of the mul-
tiresolution representation of the density, the other to store the flag coeffi-
cients.

– Include the multiresolution transform routine. Apply it to the density values
according to the guidelines in this section.

– Use the flag to modify the computation of the numerical divergence. Use the
numerical flux function of the scheme only when the flag value is 1.

4. Error analysis. In [14] Harten performs a study of the accumulation of the
error in the multilevel strategy. When the underlying shock capturing scheme is
monotone, Harten shows that the global accumulation error, i.e., the difference be-
tween the true solution and the numerical approximation obtained with the multilevel
algorithm, can be bounded in terms of the thresholding parameters and the local trun-
cation error of the underlying shock capturing scheme. In addition, if the tolerance for
thresholding is of the order of the local truncation error of the scheme, then the mul-
tilevel scheme is of the same order as the underlying shock capturing scheme (see [14]
for details). The main ingredients in his proof are the stability of the multiresolution
transform and the monotonicity of the shock capturing scheme.

The schemes we consider in this paper are not monotone, and an estimate on the
global error cannot be obtained. Keeping in mind that we view the multilevel scheme
as an acceleration tool, and that our target is to lower the cost that is needed to obtain
the numerical solution on the finest grid, we seek only to control the global error
between the multilevel and the reference solution. The nonlinearity of the schemes
we are considering prevents us from carrying out a rigorous analysis similar to that
of [14]; we conjecture that this error can be controlled due to the stability of the
multiresolution transform. In section 5.2, we perform several numerical experiments
that seem to indicate that

||vref − vmult||1 ≤ Cεα(4.1)

for some real number α > 1.

5. Numerical experiments. This section is devoted to the presentation and
analysis of the results obtained with our multilevel algorithm. We focus on two
classical configurations for numerical simulations involving the Euler equations in two
dimensions. A detailed description of the flow structure, for both test cases, can be
found in [24].

Test A: Double mach reflection of a strong shock. The problem involves a Mach
10 shock in air (γ = 1.4) which makes a 60o angle with a reflecting wall. The com-
putational domain is a tunnel 4 units long and 1 unit high, starting at x = 0, y = 0.
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Fig. 5.1. Density reference solution for Test A at time t = 0.2, obtained with 512 × 128 points
and M-PHM scheme without multiresolution.

Fig. 5.2. Density reference solution for Test B at time t = 4, obtained with 256 × 80 points
and M-PHM scheme without multiresolution.

Initially the shock extends from the point x = 1

4
at the bottom of the computational

domain to the top boundary. The reflecting wall begins at x = 1

4
on this bottom

wall. Postshock conditions, "Uleft = (8., 57.1597,−33.0012, 563.544), are assigned at
the boundaries located to the left of the shock; the air ahead of the shock is left
undisturbed and has density 1.4 and pressure 1. Outflow conditions are applied at
the right end of the domain, and the values on the top boundary to the right of the
shock are those of undisturbed air.

The finest resolution grid, G0, that we shall consider for this test problem has
512 × 128 points. The density obtained at time t = 0.2 using M-PHM on G0 is
displayed in Figure 5.1. We see that all the features of the flow are appropriately rep-
resented, including the jet-like structure near the reflecting wall. This is our reference

simulation. We shall apply the multilevel algorithm to this test case with L = 5 and
ε = 5 × 10−3.

Test B: Mach 3 wind tunnel with a step. The problem begins with a uniform
Mach 3 flow in a tunnel containing a step. The tunnel is 3 units long and 1 unit
wide, and the step is located 0.6 units from the left-hand end of the tunnel and is
0.2 units high. Inflow boundary conditions are applied at the left of the domain and
outflow conditions occur at the right end. Along all the walls of the tunnel, reflecting
boundary conditions are applied. Initially the tunnel is filled with a gamma-law gas
with γ = 1.4, which has density 1.4, pressure 1.0, and velocity 3.

At time t = 4, the flow has a rich and interesting structure that can be accurately
described using M-PHM on a grid with 256 × 80 points, which is then considered as
our finest grid, G0, for this test case. In Figure 5.2, we display the density distribution
at time t = 4 obtained with M-PHM on G0. This is our reference simulation. We
shall apply the multilevel algorithm to this test case with L = 4 and ε = 5 × 10−3.



814 GUILLAUME CHIAVASSA AND ROSA DONAT

Fig. 5.3. Density field of the multilevel solution and adaptive grids for Test A at time t = 0.1
(top) and t = 0.2 (bottom). Initial grid G0 contains 512×128 points, L = 5 levels, and ε = 5×10−3.

5.1. Test results: Marquina’s scheme. In this first set of experiments we
apply the multilevel algorithm to the M-PHM scheme in order to compute the solution
to the previous test problems.

In Figures 5.3 (Test A), 5.4, and 5.5 (Test B) we display the level curves of the
numerical solution obtained with the multilevel algorithm at different times of the
flow evolution. For each simulation, we also present a second plot displaying only
the points of G0 where the numerical divergence is computed directly with the HRSC
scheme. The graphical display is arranged so that it looks like a structure of adaptive

grids, similar to those used in numerical simulations involving AMR techniques. The
plots of the adaptive grids give a very good indication of the amount of work saved
by the strategy. It must be pointed out that these plots do not represent, as in AMR,
the various grids involved in the computation. We must remember that the multilevel
strategy uses the data on the finest grid for the direct flux evaluations. There is
only one CFL number, dictated by the finest grid, and the memory requirements
correspond to those of the finest grid (in fact they are slightly larger, since we need
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Fig. 5.4. Density field of multilevel solution and adaptive grids for Test B at time t = 0.5 (top)
and t = 1.5 (bottom). Initial grid G0 contains 256 × 80 points, L = 4 levels, and ε = 5 × 10−3.

two more matrices).
In looking at the plots of level curves, we readily observe that the numerical

simulation is of the same “quality” as the reference simulation. The plots of the
adaptive grids show that the smoothness analysis performed on the wavelet coefficients
is able to localize correctly the nonsmooth structures of the flow. A direct evaluation
of the numerical fluxes is being performed in the neighborhood of all singularities, as
well as in the shock formation process, and, as a result, the numerical solution presents
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Fig. 5.5. Same as Figure 5.4 for the time t = 4.

the sharp shock profiles that are typical of a third-order scheme such as M-PHM.

The plots of the adaptive grids give additional information also. As observed
in [24], the numerical results for Test A are marred by small errors that are due
to the description of the initial data and to the fact that the boundary conditions
on the top boundary are set to describe the exact motion of the initial Mach 10
shock. These errors are identified as nonsmooth behavior by the multiresolution-based
smoothness analysis and, as a consequence, there is some unnecessary refinement in
smooth regions, since no shock formation or evolution is taking place there. It is
important to notice that this phenomenon occurs for both the reference and multilevel
simulations. Through the plots of the adaptive grid structure, the occurrence and
relative importance of these errors can be clearly appreciated.

Notice also the refinement appearing at reflecting walls in both tests. The problem
of dealing with reflecting boundary conditions in high-resolution simulations has been
addressed by various authors in recent papers (see, e.g., [11] and references therein),
and here the multilevel algorithm can also help to detect which areas of the com-
putational domain are displaying a numerical behavior susceptible to improvement.
In addition, it is clear that any improvement with respect to lowering the level of
numerical noise close to boundaries will produce in turn an increase in the efficiency
of the multilevel algorithm, since the unnecessary refinement will be eliminated.

5.2. Quality and efficiency. As discussed in section 4, the question of quality
will be analyzed by measuring the difference between the multilevel solution "Un and
the reference one, "Un

ref . Our objective is to examine the relation between the tolerance

parameter ε and the difference ||"Un − Un
ref ||, measured in some appropriate norm,

which in our case we choose to be the (discrete) l1-norm. To examine the relation

between the tolerance ε and the difference ||"Un −Un
ref ||1, we consider the density, for
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Fig. 5.6. Error e1, for the density (∗) and the pressure (o), between the multilevel algorithm
and the reference one versus the tolerance ε. The dotted line represents the curve of equation: ε1.6.

example, as a representative variable and compute

eρ1 =
1

Np

Nx∑

i=0

Ny∑

j=0

|ρnij − ρnrefij |/‖ρ
n
ref‖l1 ,(5.1)

where Np = (Nx + 1) × (Ny + 1) is the total number of points on the finest grid G0.
We apply the multilevel algorithm to Test A with Np = 128 × 32 and L = 3

for different values of the tolerance ε. The error is measured, for the density ρ and
pressure p, at time t = 0.2; results are presented on Figure 5.6. It is readily observed
that both eρ1 and eP1 decrease with ε according to (4.1), with α = 1.6. Numerical
experimentation indicates that this exponent is solution-dependent, but the behavior
is similar in all test cases we have considered (i.e., α > 1).

The results of Figure 5.6 imply that the quality of the numerical solution obtained
with the multilevel scheme, i.e., the closeness to the reference simulation, can be
controlled by adjusting the tolerance suitably.

The goal of the multilevel algorithm is to save time in the evaluation of costly
numerical flux functions; thus an important quantity is the percentage of numerical
divergences computed directly per time step, %f . Table 5.1 (for Test A) and Table 5.2
(for Test B) show the maximum and minimum values for %f in the simulation. Ob-
serve that, for a given test, the finer the grid, the smaller the percentage of direct
flux evaluations, since the direct evaluation of the numerical divergence is carried out
in a neighborhood of the nonsmooth structures of the flow, and the percentage of
computational grid cells involved in these regions decreases when increasing the grid
resolution.

A more concrete measure of the efficiency of the multilevel algorithm with respect
to the reference simulation is given by θiter, the cpu gain for a given iteration, and
θ, the gain for the global simulation. Introducing titerref and titermr as the cpu times at
iteration iter for the reference and the multilevel algorithm, respectively, θiter and θ

are defined as

θiter =
titerref

titermr

and θ =

∑
titerref∑
titermr

.(5.2)
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Table 5.1

Percentage of resolved flux and cpu gain for Test A at time t = 0.2.

Grid size G0 %fmin − %fmax cpu gain θ

128 × 32 17.6 – 52.7 1.7
256 × 64 8.9 – 33.2 2.45
512 × 128 4.5 – 23.2 3.8

Table 5.2

Same as Table 5.1 for Test B at time t = 4.

Grid size G0 %fmin − %fmax cpu gain θ

128 × 40 7 – 69.5 0.9
256 × 80 2.8 – 45 1.4

Table 5.1 (for Test A) and Table 5.2 (for Test B) show the global gain for each
simulation. It is obvious that the global gain, θ, is problem dependent. In Figure
5.7, we represent θ(t). In the early stages of the computation, when there are very
few nonsmooth structures in the flow, the gain is quite large; as expected, θ(t) is
a decreasing function, and the gain is larger when we compute on finer grids. The
bottom part of Figure 5.7 displays %f(t) for these simulations. It can be observed
that the behavior of θ is roughly inversely proportional to that of %f .

There is an overhead associated to the multilevel computation. In Table 5.3 we
show the cpu time for one step of the multilevel algorithm and one stage of the Runge–
Kutta method. These results have been obtained with Test A and 512 × 128 points
in G0 when %f has its maximum value, 23%. It is worth noting that the overhead
caused by the multiresolution transform and the threshold represents only a small
part of the total cpu time, ≈ 2%, and that most of the time is spent in the numerical
divergence evaluation, ≈ 96%.

To end this section, we apply the multilevel method, with the same underlying
HRSC scheme, to Test A with a very fine grid of 2560 × 640 points. We set L =
7 and ε = 3.10−4. In Figure 5.8 we show a zoom of the double-Mach reflection
region displaying the level curves of the computed density. The small mesh-size of
the underlying grid G0 used for the simulation reduces the numerical viscosity of the
shock capturing scheme and, as a result, we can observe the development of Kelvin–
Helmholtz-type instabilities at the contact discontinuities. Such phenomena are not
observable for lower-resolution grids, but in fact they correspond to physical effects
that have been reported in numerical tests in [16], where a fifth-order shock capturing
scheme is being used, and also observed in real experiments [4].

In this case, the percentage of numerical divergences computed directly with M-
PHM grows from %f = 1% to %f = 10%, which leads to an estimated global gain θ =
7.5. From the practical point of view, it is important to notice that the estimated com-
puting time for the reference simulation, i.e., full M-PHM, on this fine grid is approxi-
mately one month, while the actual time for the multilevel computation was 3–4 days.1

5.3. Test results: ENO schemes. As observed by Sjögreen in [22], a multilevel
strategy like the one described in this paper should lead to a considerable gain in
efficiency with respect to the reference simulation under the following conditions:

1. Large number of grid points.
2. Computationally expensive underlying shock capturing scheme.

1All simulations were done with a 350-MHz PC.
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Fig. 5.7. Time evolution of θ (top) and %f (bottom) for Test A (left) and Test B (right) and
for different initial grid G0. (a) 512 × 128, (b) 256 × 64, (c) 128 × 32, (d) 256 × 80, (e) 128 × 40.

Table 5.3

Cpu time in seconds for the different steps of the multilevel and reference algorithms for one
Runge–Kutta stage. These values are obtained with Test A and the largest grid 512 × 128 and with
%f = 23.

Multilevel algorithm Reference algorithm
Transform 0.06 –
Thresholding 0.08 –
Divergence
Evaluation

6.9 13.8

Other 0.15 0.15
Total 7.2 13.95

We have seen this to be the case in the previous section. In this section we would
like to compare the computational gain of the multilevel strategy when applied to the
M-PHM scheme and to the ENO-3 scheme.

Remark 5.1. It should be mentioned that some entropy corrections, as proposed
in [11], are needed near the reflecting wall when using the ENO-3 scheme to avoid the
occurrence of a carbuncle phenomenon in the case of the finest grid for Test A; these
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Fig. 5.8. Zoom of the double Mach reflection region for Test A at t = 0.2 obtained with
2560 × 640 grid points.

Table 5.4

Percentage of resolved fluxes and cpu gain for Test A with ENO-3 fluxes at time t = 0.2.

Grid size G0 %fmin − %fmax cpu gain θ

128 × 32 17.6 – 54.2 1.54
256 × 64 8.9 – 38.4 2.2
512 × 128 4.5 – 25.7 2.9

corrections are unnecessary for Marquina’s scheme. For Test B, a Roe-matrix-related
numerical instability develops for grids of size 256 × 64 or larger, which leads to a
crash of the code [9]. These instabilities can be avoided by using appropriate entropy
corrections on the bottom wall of the wind tunnel as specified in [11], but we will not
pursue this here.

Table 5.4 reports the minimum and maximum percentage of ENO-computed nu-
merical divergences and the global gain θ for the simulation with Test A. Comparing
with the results of Table 5.1, we observe that the gain is not as large as in the case of
the M-PHM-based multilevel scheme but remains significant. This fact is consistent
with Sjögreen’s observations, since the cost of a direct evaluation of the numerical
divergence by the M-PHM scheme is higher than that of the ENO-3 scheme (by a
factor of 2 in our implementation).

It is interesting to display also the gain per iteration θiter as a function of %f .
In Figure 5.9 we represent θiter(%f) for the M-PHM-based and ENO-3-based mul-
tilevel strategies. Notice that this representation is more or less independent of the
considered test case since the time evolution is not taken into account.

We observe that the gain is much more important for the M-PHM multilevel
scheme and small values of %f . Observe also that the difference is reduced when this
percentage increases, a fact that could be easily understood considering the following
(crude) estimate of θiter:

θiter =
Nptf

tmr + tthres + Nf tf + (Np −Nf )tI
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Fig. 5.9. Gain per iteration θiter versus the percentage of resolved fluxes %f for Marquina (∗)
and ENO (o) schemes.

=
tf

1

Np
(tmr + tthres) + λtf + (1 − λ)tI

,(5.3)

where tf is the cpu time to compute one value of the numerical divergence with the
HRSC scheme, tI is the cpu time for one interpolation, and tmr and tthres denote,
respectively, the multiresolution transform and thresholding cpu times (which are
essentially negligible, as shown in Table 5.3). Np is the total number of grid points, Nf

represents the number of points where the numerical divergence is evaluated directly,
and λ = Nf/Np.

Considering the same percentage of resolved fluxes for both schemes, i.e., %fM =
%fE(= 100 ∗ λ), we can write

θMiter
θEiter

=
tMf
tEf

1

Np
(ttrans + tthres) + λtEf + (1 − λ)tI

1

Np
(ttrans + tthres) + λtMf + (1 − λ)tI

∼ 2
λ + (1 − λ) tI

tE
f

2λ + (1 − λ) tI
tE
f

,(5.4)

since in our implementation tMf /tEf ∼ 2.
The function

g(λ) = 2
λ + (1 − λ)β

2λ + (1 − λ)β
(5.5)

is monotonically decreasing and approaches 1 when λ tends to 1. Moreover, the
smaller the ratio β, the faster the convergence to the limit value. In our computations,
the ratio β := tI/tf is approximately 1/56, which leads to g(.4) = 1.01 and explains
the behavior observed on Figure 5.9. When %f ≥ 60% the multilevel algorithm is no
longer computationally competitive with respect to the reference simulation (see also
the first entry in Table 5.2).

6. Conclusions. We have presented a multilevel algorithm designed to reduce
the high computational cost associated to HRSC schemes for hyperbolic systems of
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conservation laws, and we have investigated the application of this multilevel strategy
to state-of-the-art HRSC schemes using standard tests for the 2D Euler equations.

The numerical results presented in this paper point out that there is a significant
reduction of the computational time when using the multilevel algorithm and confirm
Sjögreen’s observations in [22]: the more expensive the flux computation, the better
the efficiency of the multilevel computation with respect to the reference simulation.

Our multilevel strategy follows the basic design principle of Bihari and Harten
in [5], but it is built upon the interpolatory multiresolution framework, instead of
the cell-average framework, as in [1, 2, 5, 6, 22, 17]. Through a series of numerical
experiments, we show that the strategy we propose offers the possibility of obtain-
ing a high-resolution numerical solution on a very fine grid at the cost of the user’s
own numerical technique on a much coarser mesh. Its potential users might be re-
searchers performing computational tests with state-of-the-art HRSC methods and
using uniform grids.

As in [1, 2, 5, 22], our technique works on the discrete values at the highest
resolution level, which need to be always available. There are no memory savings
with respect to the reference simulation. In [6, 17], the authors concentrate on solving
the evolution equations associated to the (cell-average) scale coefficients. While this
option opens the door to what might be an alternative to AMR, a fully adaptive
algorithm with selective refinement and real memory savings, it also suffers, in our
opinion, from some of the drawbacks of AMR: the need of a special data structure
which invariably leads to a very complicated coding structure.

On the other hand, our approach (due in part to the use of the interpolatory
framework) is pretty transparent, even to the nonexpert in multiscale analysis, and
its incorporation into an existing hydrodynamical code is, in principle, much easier.
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