
Point- Versus Interval-based Temporal Data Models

M. H. Böhlen R. Busatto C. S. Jensen

Department of Computer Science

Aalborg University

Fredrik Bajers Vej 7E, DK–9220 Aalborg Øst, Denmark

fboehlen , busatto , csj g@cs.auc.dk

Abstract
The association of timestamps with various data items

such as tuples or attribute values is fundamental to the man-
agement of time-varying information. Using intervals in
timestamps, as do most data models, leaves a data model
with a variety of choices for giving a meaning to timestamps.
Specifically, some such data models claim to be point-based
while other data models claim to be interval-based. The
meaning chosen for timestamps is important—it has a per-
vasive effect on most aspects of a data model, including
database design, a variety of query language properties, and
query processing techniques, e.g., the availability of query
optimization opportunities.

This paper precisely defines the notions of point-based
and interval-based temporal data models, thus providing a
new, formal basis for characterizing temporal data mod-
els and obtaining new insights into the properties of their
query languages. Queries in point-based models treat snap-
shot equivalent argument relations identically. This ren-
ders point-based models insensitive to coalescing. In con-
trast, queries in interval-based models give significance to
the actual intervals used in the timestamps, thus generally
treating non-identical, but possibly snapshot equivalent, re-
lations differently. The paper identifies the notion of time-
fragment preservation as the essential defining property of
an interval-based data model.

1 Introduction
Temporal data models include timestamp attributes in

their relation schemas and give special semantics to the val-
ues of these attributes in their query languages. Virtually all
data models intended for practical use employ some form of
intervals for their timestamp values. With a fine-granularity
time domain such as, e.g., the defaultTIMESTAMPdomain
of SQL, it is generally impractical to record individually all
the time points when some database fact was, is, or will be
true.

Intervals may simply be employed for reasons of practi-
cality, i.e., as syntactical shorthands for time points, as has
been done in some data models (e.g., [12], [14, ch. 1]). Thus,

terming a data model interval-based simply if it employs in-
terval timestamps bears little real significance—it says little
about the qualities of the data model. Rather the notions of
point- and interval-based data models must be defined on a
semantic level. The question then is what the real defining
properties of point- and interval-based data models are—this
paper provides an answer to this question.

To get a feel for the range of possible semantics of data
models, related to points versus intervals, it is instructive to
consider a simple example. We assume that the two tuple-
timestamped relationsr1 andr2, below, are given and con-
sider possible definitions of the temporal difference of these
two relations,r1 �Tr2.

r1: A TS
a [1,10]
a [11,20]
a [21,30]

r2: A TS
a [5,15]

The results,R1 throughR4, of four possible definitions
of the difference operator are given next, and are discussed
in turn.

R1: A TS
a [1,4]
a [16,30]

R3: A TS
a [21,25]
a [26,30]

R2: A TS
a [1,10]
a [11,20]
a [21,30]

R4: A TS
a [1,4]
a [16,20]
a [21,30]

The first result contains the times associated with value
a in r1 that are not associated with value a inr2. This re-
sult is consistent with the perception that intervals are ab-
breviations for time points, and nothing more. Thus, the first
definition has a point-based feel to it.

The first result may also be characterized as beingcoa-
lesced. In coalescing, value-equivalent tuples (tuples with
identical non-temporal attribute values) with adjacent or
overlapping intervals are replaced by a single tuple with the

©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

same non-temporal attribute values and an interval that is the
union of the intervals of the original tuples.

In contrast, resultR2 is far from being point-based in na-
ture. This result contains all tuples inr1 not in r2. This
definition of difference simply considers intervals as atomic
values. Thus, it may be said to “respect” the actual intervals
given to the tuples, and it is devoid of any flavor of point-
based-ness. It may even be questioned whether this operator
is temporal at all—it is simply the standard set-theoretical
difference operator. ResultR3 returns tuples fromr1 with
intervals that do not overlap with intervals of tuples inr2;
the intervals of qualifying tuples are nonetheless split into
two. The utility of a temporal difference operator of this
kind appears questionable.

The last result is similar to the first one: it also contains
the times associated with value a inr1 that are not associated
with value a inr2. Put precisely,R1 andR4 are snapshot
equivalent [12]. The difference is that the second tuple inR1

is “represented” by two tuples inR4. In other words,R1 is
the coalesced version ofR4. The idea behind this definition
is to be point-based while also trying to respect the intervals
associated with the tuples in the argument relations.

It is our contention thatR1 andR4 are results of point-
based operations and thatR2 andR4 are results of interval-
based operations. The operation yielding resultR3 is thus
neither point- nor interval-based.

So far, attempting to capture in general the defining prop-
erties of point-based and, in particular, interval-based data
models has proven notoriously difficult and has led to much
confusion. This paper gives meaningful and general defini-
tions of what point- and interval-based data models are and
thus contributes to clearing away the confusion. The defini-
tions provide a foundation for deciding whether a model is
point- or interval-based.

To the knowledge of the authors, no papers have previ-
ously been devoted to the issues addressed here. Rather,
some papers that either define new data models or describe
existing data models have made brief statements concerning
the point- versus interval-based nature of data models.

For example, Snodgrass states that “A temporal query
language should have a canonical model, in which relations
are identical if and only if all of their snapshots are identical”
[12, p. 288]. Chomicki states that “It is important to see that
the data model of TQuel is point-based, not interval-based.
Intervals serve only as a representational device. The truth
values of facts are associated with points, not intervals” [5,
p. 521] and that “. . . a model is point-based if facts are as-
sociated with single time points, interval-based – if they are
associated with intervals (represented as pairs of points)” [6,
p. x+7]. Finally, Toman states that “In this paper we es-
tablish the correspondence between the point- and interval-
based views of temporal databases and the corresponding

first-order temporal languages. This correspondence shows
that all first-order queries can be conveniently asked using
the point-based query language (. . .) and then mechani-
cally translated to an interval-based query language. . . ” [15,
p. 59].

The literature reveals that different researchers perceive
the notions of point-based and interval-based data models
quite differently. In particular, the notion of interval-based
data model remains to be given a formal definition, along-
side a rigorous semantics.

In the next section, we further motivate the topic and ex-
plore the problem space. Section 3 introduces the notions of
temporal data models and time domains, providing the basis
for formally defining the notions of point-based and interval-
based temporal data models in Sections 4 and 5. Section 6
informally discusses some of the aspects of the definitions,
and Section 7 concludes and points to directions for future
research.

2 Motivation and Problem Space
Before giving formal definitions of point- and interval-

based models, this section explores the properties of the two
kinds of models, showing that there are significant differ-
ences between them.
2.1 Semantics and Expressive Power

When asking queries on a temporal database, the results
may vary depending on whether or not argument relations
are coalesced. For example, this is the case for selections
and projections that involve the argument timestamps. To
see this, consider the two relations in Figure 1. The relation
at the top is uncoalesced whereas the one at the bottom is the
corresponding coalesced relation.

Employment
Name Position TS

Lars programmer [92/01/01,94/12/31]
Lars programmer [95/01/01,96/12/31]
Niels accountant [92/01/01,96/12/31]

Employment
Name Position TS

Lars programmer [92/01/01,96/12/31]
Niels accountant [92/01/01,96/12/31]

Figure 1: Uncoalesced and Corresponding Coalesced Rela-
tion Instance

Consider the uncoalesced Employment relation, which mod-
els job contracts in a company with temporary positions
only. The query�Name; START(TS)(Employment) returns
three tuples because three contracts were signed (function
START returns the start time of an interval). If the exact
same query is evaluated over the coalesced instance, only
two tuples are returned.

The example illustrates that there exist queries that can
be asked over the uncoalesced instances, but not over the
coalesced ones. For example, the coalesced instance of the
employment relation does not reveal that Lars signed two
contracts, let alone when he signed the second one.

On the other hand, it is impossible to come up with a
query that can be answered over the coalesced, but not over
the uncoalesced, instance. The reason for this is that it is
possible to derive the coalesced relation instance from an
uncoalesced one, e.g., using a regular SQL statement [4].

These considerations indicate that a model that is able to
tell coalesced and uncoalesced relation instances apart, and
in this sense is interval-based, is in some sense more pow-
erful than a model that cannot tell them apart, i.e., a point-
based model. Next, we explore this difference further.

2.2 Data Modeling
The relative expressiveness of data models that do or do

not differentiate between coalesced and uncoalesced relation
instances may also involve data modeling. It may be argued
that if the database schema is designed appropriately, it is
possible to answer the same queries using a coalesced model
as can be answered by an uncoalesced model.

For example, if individual contracts are important, which
is not unlikely, we can record their unique numbers in the
Employment relation, as shown in Figure 2.

Employment
Name Position ContrId TS

Lars programmer 1091 [92/01/01,94/12/31]
Lars programmer 2154 [95/01/01,96/12/31]
Niels accountant 1095 [92/01/01,96/12/31]

Figure 2: Alternative Modeling of Employment

This way, it may be possible to “compensate” for the lack
on uncoalesced relations in a point-based data model. It may
be argued that it is quite natural that certain queries cannot
be answered if they were not anticipated when the database
was designed—this is true for any database.

Still, introducing additional attributes may sometimes
have subtle drawbacks not experienced if the attributes could
be omitted because the data model allowed uncoalesced rela-
tions. For example, we might introduce dependencies (con-
tract numbers increase over time) or we might not be able to
faithfully represent our mini-world (“new” follow-up con-
tracts with the same contract number).

2.3 Query Processing and Query Optimization
The point- versus interval-basis of a query language also

affectsquery processingand query optimization. For an
interval-based language, care has to be taken that process-
ing and optimization strategies respect the interval-based se-
mantics, which can be quite complex. This severely re-
stricts the possibilities to manipulate and transform intervals.

In contrast, specific timestamps may be modified (as long
as snapshot equivalence is preserved) in a point-based lan-
guage, allowing the database system a choice of timestamps
among several alternatives. This indicates that an interval-
based language leaves less possibilities for query optimiza-
tion and, thus, efficient evaluation strategies.

In favor of an interval-based language, it can be said that
a point-based database systemmustguarantee that the result
of queries do not depend on the specific choice of timestamp
values. This guarantee is met by performing coalescing op-
erations, which can be expensive [4]. While it is possible
to sometimes eliminate coalescing during query optimiza-
tion, there remain situations where coalescing has to be per-
formed [13, ch. 27].

3 Temporal Data Models and Time Domains

A relational data modelM = hD;Ai is composed of a
set of data structures,D, and a setA of algebraic operations
defined on the data structures. Atemporal relational data
modelis a relational data model that hastemporal relations
as the underlying data structure, and whose operators are all
temporal.

Temporal relations include a temporal attribute. The ex-
act denotation of this attribute is not important for the topic
of this paper, but for simplicity we assume that it denotes the
tuple’s valid time, i.e., when the information recorded by the
remaining attributes of a tuple is true in the modeled reality.
Tuples of temporal relations may therefore be put under the
form hx1; : : : ; xnktsi or ashxktsi when the number of at-
tributes is immaterial. We termx1; : : : ; xn thenon-temporal
(or explicit) attribute values, andts is the (tuple) timestamp.
A finite set of such relations may be referred to as thetimes-
tamp representationof a temporal database [1].

An operator istemporalif and only if it generates a tem-
poral relation whenever applied to temporal relations.

When designing a temporal data model, an important and
central aspect is the choice of appropriate timestamps of the
database facts.Time pointsand time intervals, defined be-
low, provide the most common choices. Intervals may be
built from time points [2], [14, ch. 21].

Definition 3.1 (Time-point and Time-interval Domains) Let
T be an infinite set.

1. T p = hT;<i is a time point domainoverT iff < de-
fines a total order onT . Each element ofT corresponds
to a time pointof T p.

2. A time intervalI of T p is any connected subset ofT p,
i.e., (p1 2 I ^ p2 2 I ^ p3 2 T ^ p1 < p3 < p2))
p3 2 I

3. T i = hI;�i is thetime interval domainoverT p iff I
is the set of all time intervals ofT p. Both T p andT i

aretime(or temporal) domainsoverT .

4. A timestampover T p is either a time point or a time
interval ofT p.

A temporal relationr whose tuples are all timestamped with
either time points or time intervals of a time point domain
T p represents atemporal relation overT p. When the times-
tamps are points [intervals],r may be referred to aspoint-
[interval-] timestamped (temporal) relationover T p. If
M = hD;Ai is a temporal data model such thatD is a
set of temporal relations overT p, thenT p is thetime point
domainof M.

In general, since time intervals are sets of time points, it
is not always clear in what sense the usage of intervals as
timestamps differs from the usage of points. To exemplify
this, assume that the integers with the< order is our time
point domain. Then it seems reasonable to claim that the
relationsr1 = fhak2i; hak3i; hak4ig andr2 = fhak[2; 4]ig
have the same information contents, i.e., thathai is valid at
instants2, 3, and4, and nothing more. This assumption,
nonetheless, is incorrect forr2 because intervals in addition
to being points also are uniquely delimited bystart andend
points(which may or may not be part of the interval). Hence,
we would timestamp a tuple such ashai with intervals if
the end points bear some meaning, and use time points as
timestamps if the notion of end points is meaningless.

Predicates and operations for points and intervals are de-
scribed in almost all definitions of temporal data models [14]
[13, ch. 10]. Some interval predicates and operators apply
just to interval data models—their properties would make
them meaningless in a point-based framework; for example,
the operatorsstart andendthat retrieve theinitial andfinal
instants, respectively, of an interval could not be defined for
a point-based database in the same way as described above
(cf. Section 4).

The point timestamp representation of a temporal
database is infeasible from the storage viewpoint for all but
the simplest temporal relations, so intervals are used as an
abbreviation for sets of points for practical reasons. For ex-
ample, relationr1 above may be represented byr2. Whether
an interval is an abbreviation for a set of points or not de-
pends on the operators of the data model. Only if the point
contents of the output of a temporal operator remain invari-
ant for sets of argument relations with the same point con-
tents, it is possible to consider intervals as abbreviations for
sets of points. This property is more formally explored next.

4 Point-based Data Models

It would be easy to decide whether or not a data model is
point- or interval-based if this could always be determined
by inspecting the data type of the timestamps used. How-
ever, syntactic criteria are available only for simple point-

timestamped relations1. The major difficulty concerns rela-
tions involving intervals as timestamps. This section defines
the notion of a point-based data model.

In a point-based data model, two interval-timestamped
relations that correspond to the same point-timestamped re-
lation are considered equivalent, in the sense that they record
the same information. The notion ofsnapshot equivalence
[7, 9] formalizes this.

Definition 4.1 (Snapshot Equivalence) LetT p = hT;<i be
a time point domain.

1. Thetimesliceoperator�p for a time pointp 2 T maps
an interval-timestamped relation overT p to a non-
temporal one, and is defined as

�p(r) = r0 iff
8x(9I(hxkIi 2 r ^ p 2 I) , hxi 2 r0)

2. Two interval-timestamped relations overT p, r1 andr2,
aresnapshot equivalent, i.e.,r1

p

= r2, iff

8p (p 2 T) �p(r1) = �p(r2))

The notion of snapshot equivalence allows us to charac-
terize operators that, when applied to snapshot equivalent
relations, yield results that are also snapshot equivalent [9].
Such operators are faithful to the point-based nature of the
timestamps of their argument relations, and we will use them
to define point-based data models.

Definition 4.2 (Point-based Operator) LetO be an-ary op-
erator on interval-timestamped relations, andfr1; : : : ; rng
andfr0

1; : : : ; r
0

n
g be sets of interval-timestamped relations

that satisfy the preconditions ofO. O is point-basediff it
preserves snapshot equivalence, i.e., iff it satisfies the fol-
lowing property

r1
p

=r0

1 ^ : : : ^ rn
p

=r0

n
) O(r1; : : : ; rn)

p

= O(r0

1; : : : ; r
0

n
)

Example 4.1 The temporal intersection natural join(./t)
is a binary operator. Two argument tuples with identical
explicit join attribute values contribute to the result if their
timestamps overlap. Timestamps of result tuples are the in-
tersections of the timestamps of argument tuples. Thus, if
r1 = fhak[2; 5]i; hak[7; 11]ig and r2 = fhak[3; 9]ig then
r1 ./

t r2 = fhak[3; 5]i; hak[7; 9]ig. It can be shown that this
operator preserves snapshot equivalence, hence it is point-
based.

Example 4.2 Thecoalescing operator(coal) is a unary op-
erator that merges value-equivalent tuples (tuples with mu-
tually identical explicit attribute values) if the union of
their timestamps is an interval. The merged tuple then

1In this sense, temporal logic can be also said to be point-based, as the
temporal domain consists of points [5].

has this union as its new timestamp. Thus, ifr1 =
fhak[2; 5]i; hak[6; 11]ig then coal(r1) = fhak[2; 11]ig.
Like temporal intersection natural join, this operation is
point-based because snapshot equivalent arguments will
yield snapshot equivalent results: for snapshot-equivalent ar-
guments, the result will always be the exact same, which is
a trivial case of snapshot equivalence.

With the definition above, we are in a position to define
point-based data models.

Definition 4.3 (Point-based Temporal Data Model) A tem-
poral data modelM = hD;Ai with time point domainT p

is point-basediff the following conditions are met.

1. D is entirely composed of interval-timestamped rela-
tions overT p, and

2. the operators ofA are all point-based.

Lemma 4.1 A temporal data modelM = hD;Ai is point-
based iff, for every operatorO ofA,

O(r1; : : : ; rn)
p

= O(coal(r1); : : : ; coal(rn))

wherer1; : : : ; rn are relations ofD that satisfy the precon-
ditions ofO.

The lemma illustrates why thestart andendfunctions men-
tioned in Section 3 cannot be defined in a point-based data
model by considering individual intervals in isolation. The
presence of, e.g., the tuplehxk[a; b]i in a point-based rela-
tion does not mean thata is truly a start point forx, since
the relation may contain other value-equivalent tuples that
overlap with this interval. As a result, the computation of the
above functions in a point-based data model requires that the
argument relation first be coalesced. The definition ofstart
could then be expressed as follows.

hxkIi 2 r ^ hxkI 0i 2 coal(r) ^ I � I 0)
start(hxkIi; r) = start(I 0)

Finally, in a point-based data model, it holds true
that intervals are nothing but abbreviations for sets of
points. Hence, it is always possible to translate any
interval-timestamped relationr into a corresponding point-
timestamped relationrp. The following relationship holds
between the two relations.

hxkyi 2 rp iff 9I(y 2 I ^ hxkIi 2 r)

Algorithmically, rp can be generated by simply replacing
each tuplehxkIi in r by a tuplehxkyi for exactly each time
pointy 2 I .

5 Interval-based Data Models

To the best of our knowledge, no good definition of an
interval-based data model exists. Purely syntactical defini-
tions are inappropriate, and defining any data model that is
not point-based as interval-based is also unsatisfactory.

The distinction between point-based and non-point-based
models is orthogonal to what distinguishes interval-based
data models from those that are not interval-based. For ex-
ample, an operator of an interval-based data model needs not
be point-based, but there are operators of such models that
are point-based.

To define the notion of an interval-based data model,
we distinguish between the algebraic operators that
are timestamp-preservingand those that aretimestamp-
transforming. The former operators are unproblematic and
easily qualify for the interval-based status. The latter op-
erators must satisfy additional properties to qualify for the
interval-based status.

Specifically, when intervals are adopted as timestamps,
there will normally be several ways of timestamping result
relations. In such cases, the argument interval timestamps
should be preservedas intactly as possible, i.e., maximally
respected, if an operator is to be regarded as interval-based.
This means that, whenever an operation requires the modi-
fication of an argument interval timestamp, the resulting in-
terval should be the one (or one of the choices) that max-
imally takes the argument interval into consideration. Al-
ternatively, this property could be stated asthe largest pos-
sible fragments of the argument interval timestamps should
be preserved in the result. The objective of the remainder of
this section is to formalize the above notions.

5.1 Interval-based Requirements

The first step is to define the notion ofminimum require-
mentsfor an algebraic temporal operator. Informally, the
minimum requirements define the set of time points that the
timestamps of the result of a temporal operator must include.
Explanations follow the formal definition.

Definition 5.1 (Minimum Requirements) LetM = hD;Ai
be a temporal data model with time point domainT p, where
D is a set of interval-timestamped relations. Theminimum
requirementsfor a n-ary temporal operator is a formula of
the form�(r1; : : : ; rn;x; A) where

1. the timestampA associated with a result tuple that
satisfies the requirements for the argument relations
r1; : : : ; rn 2 D is a (not necessarily connected) set of
time points ofT p, and

2. (�(r1; : : : ; rn;x; A1)^�(r1; : : : ; rn;x; A2))) A1 =
A2.

Clearly,� must also include the preconditions for the spec-
ified operator. From the second condition of the defini-
tion, it follows that, for each sequence of explicit attributes
valuesx of the result, there is one and only one associ-
ated set of instantsA, since the minimum requirements do
not impose any partition on this set of instants (i.e.,� de-
fines a partial, parameterized functionfr1;:::;rn such that
fr1;:::;rn(x) = A). Thus, formula� specifies a family of
operators, in the sense thatA may be (usually) split into a
list of intervals in several distinct ways. We useA to em-
phasize that we are dealing with generic sets of instants, i.e.,
temporal elements, rather than with intervals only.

The next step towards defining interval-based data mod-
els is to characterize the set ofrelevant argument tuplesfor
each particular result tuple, as defined by the minimum re-
quirements� for an operator. A set of argument tuplesS is
relevant for a particular result tuplehx; Ai iff both x andA
can be entirely determined fromS, but not from any proper
subset ofS.

Definition 5.2 (Relevant Argument Tuples) LetM =
hD;Ai be a temporal data model with time point domain
T p, whereD is a set of interval-timestamped relations. Let
� denote the minimum requirements for an-ary temporal
operator,r1; : : : ; rn be temporal relations ofD, A be a set
of time points ofT p, andx be a finite sequence of attribute
values. S is a set ofrelevant argument tuplesw.r.t. � for
the argument relationsr1; : : : ; rn and the result tuplehx; Ai,
i.e., relevant(x; A; S; �; r1; : : : ; rn) iff

�(r1; : : : ; rn;x; A) ^
9r0

1; : : : ; r
0

n
(

r0

1 � r1 ^ : : : ^ r0

n
� rn ^

S =
S

n

i=1r
0

i
^ �(r0

1; : : : ; r
0

n
;x; A) ^

8r00

1 ; : : : ; r
00

n
((r00

1 � r0

1 ^ : : : ^ r00

n
� r0

n
^S

n

i=1 r
00

i
� S)) :�(r00

1 ; : : : ; r
00

n
;x; A)):

Note thatS does not necessarily correspond to a relation,
sincer1; : : : ; rn may not be union compatible. Also, it is
necessary to require that the resulthx; Ai satisfy the mini-
mum requirements for both the original argument relations
and their restricted forms because the one does not imply the
other.

Example 5.1 Assume a temporal difference operator. Let
the integers with the< order be the underlying time
point domain, and�D denote the minimum requirements
for this operator. Assumer1 = fhak[2; 10]ig and
r2 = fhak[1; 4]i; hak[8; 11]i; hak[12; 17]i; hbk[2; 6]ig. If
r00

1 = r0

1 = r1, r0

2 = fhak[1; 4]ig, and r00

2 =
fhak[1; 4]i; hak[8; 11]ig, then

�D(r1; r2; hai; f5; 6; 7g)

�D(r0

1; r
0

2; hai; f5; 6; 7; 8; 9; 10g)

�D(r00

1 ; r
00

2 ; hai; f5; 6; 7g)

The set of relevant argument tuples for the result tuple is
S00 = r00

1 [r
00

2 . No proper subset ofS00 satisfies the minimum
requirements.

The next example illustrates that set of relevant argument
tuples is not uniquely defined.

Example 5.2 The minimum requirements for temporal dif-
ference are given by the formula�,

union compatible(r1; r2)^
8p(9I1(hxkI1i 2 r1 ^ p 2 I1^

8I2(hxkI2i 2 r2) p 62 I2)), p 2 A)

Assumer1 = fhak[4; 8]i; hak[1; 6]i; hak[7; 10]ig andr2 =
fhak[1; 3]i; hak[9; 10]ig. ThenA = f4; 5; 6; 7; 8g satis-
fies the minimum requirements for temporal difference for
the explicit attributehai and the input relationsr1 andr2.
Concerning the relevant argument tuples ofr1 and r2 for
hai, there are two sets that satisfy the definition,S1 =
fhak[4; 8]ig [f g and S2 = fhak[1; 6]i; hak[7; 10]ig [
fhak[1; 3]i; hak[9; 10]ig. Note thatr1 [r2 does not qualify
as a set of relevant argument tuples, since there are subrela-
tions ofr1 andr2 whose union also satisfies�.

A final auxiliary concept concerns the notion ofmaximal
interval partition, which determines the decomposition of
a set of time points into the least possible number of non-
overlapping intervals:

Definition 5.3 (Maximal Interval Partition) LetA be a
(doubly bounded) set of time points. Themaximal inter-
val partition for A is a sequence of intervalsI1; : : : ; In such
that

1. I1 [: : : [In = A,

2. Ii \ Ij = ;, with i 6= j, 1 � i � n; 1 � j � n, and

3. any other interval partitionI 0

1; : : : ; I
0

p
for A satisfying

the above two conditions is such thatp > n.

Using the concepts developed so far, we can now define
the notion ofinterval-based operator.

Definition 5.4 (Interval-based Operator) LetM = hD;Ai
be a temporal data model with time point domainT p, where
D is a set of interval-timestamped relations. Let� denote
the minimum requirements for an-ary temporal operator. A
temporal operatorO 2 A that satisfies� is interval-based
iff for any argument temporal relationsr1; : : : ; rn 2 D, the
following holds.

1. 9I(hxkIi 2 O(r1; : : : ; rn)))
�(r1; : : : ; rn;x;

S
�ts(�expl=x(O(r1; : : : ; rn))))

2. If (a) �(r1; : : : ; rn;x; A), (b) S =
S

p

i=1 Si, where
relevant(x; A; Si; �; r1; : : : ; rn), for all i, 1 � i � p,
(c) hykIi 2 S, (d)A\I 6= ;, and (e)I1; : : : ; Im corre-
spond to the maximal interval partition forA \ I , then
hxkI1i; : : : ; hxkImi 2 O(r1; : : : ; rn).

The first condition of Definition 5.4 ensures that, for each
group of tuples ofO(r1; : : : ; rn) whose explicit attributes
values arex, the union of all timestamps of such tuples is
identical to the set of time points identified by the minimum
requirements for the same argument, i.e., specified and re-
sulting timestamps must be extensionally identical forx.
The second condition ensures the preservation of the rele-
vant input intervals in the result, whenever possible, under
the form of overlapping fragments2.

The preservation of argument timestamp fragments in an
interval-based operator is illustrated in Figure 3. For the rel-
evant argument intervals and the corresponding hypothetical
set of output time pointsA given in Figure 3, two sets of
output intervals are given. The first one is built on top of a
minimal decomposition strategy, where each interval of the
result must be contained in one of the relevant input inter-
vals, but no output intervals may overlap, even when there
is overlapping at the input level. The second solution is the
only one that satisfies all conditions of Definition 5.4: for
each relevant input interval, its intersection withA, repre-
sented under the form of (maximal) intervals, is included in
the output. In particular, note that Definition 5.4 does not
allow the result intervals to be chopped or merged.

Example 5.3 The minimum requirements formula
�(r1; r2;x; A) for temporal unionis

union compatible(r1; r2) ^
8p(9I((hxkIi 2 r1 _ hxkIi 2 r2) ^ p 2 I), p 2 A) :

The setS of relevant argument tuples for a particular result
hx; Ai can be computed from the definition ofS and the
minimum requirements for temporal union; for the above
case, it can be shown thatS is made of the tuples ofr1 and
r2 that are value-equivalent tohx; Ai.

Figure 4 shows several alternative definitions for a tem-
poral union operator that satisfy�. Alternatives 1, 2,
and 3 represent operators that do not preserve argument
fragments, since the relevant argument timestamps are not
properly represented in any of them. Alternative 4 is the
only one that contains all the required (fragments of) inter-
vals. All four alternatives represent satisfactory solutions
with respect to snapshot-equivalence preservation. As a
fragment-preservingoperator, the temporal union operator is
superfluous—it amounts to its standard set-theoretical coun-
terpart.

2The usage oftemporal elements, defined e.g., in [8], would lead to a
single result tuple of the formhxkI1 [: : : [Imi.

Union
Temporal
Possible

Operators

1

output point set
(minimum requirements)

2

3

NFP operators

4 FP operator

relevant input intervals

Figure 4: Alternative Solutions for Temporal Union

Example 5.4 The temporal join operator from Example 4.1
is not only point-based, but also interval-based, because its
intersecting of argument intervals satisfies fragment preser-
vation.

Example 5.5 A selection operator that constrains the times-
tamp and returns a temporal relation is interval-based, but
not point-based. For example, consider�I BEFORE [7;9](r)
with r = fhak[2; 5]i; hak[6; 11]ig. The result isfhak[2; 5]ig.
Usingr0 = fhak[2; 11]ig, which is snapshot equivalent tor,
as the argument would yield an empty result. Since selec-
tion does not preserve snapshot-equivalence, it is not point-
based. On the other hand, it is easy to see that selection is
interval-based. All result intervals are identical to argument
intervals and, therefore, fragments are trivially preserved.

The definition of an interval-based temporal data model
follows.

Definition 5.5 (Interval-based Temporal Data Model) A
temporal data modelM = hD;Ai with time point domain
T p is interval-basediff the following conditions are met.

1. D is entirely composed of interval-timestamped rela-
tions overT p, and

2. the operators ofA are all interval-based.

6 Discussion
In this section, we discuss properties of point- and

interval-based data models. We start by discussing the scope
of our approach. Then we look at mixed data models, i.e.,
models that are neither point- nor interval-based, and finally
we evaluate representative temporal data models.

6.1 Scope of our Approach
The scope of the definitions of point- and interval-based

operators are temporal extensions of relational algebra oper-
ators, i.e., temporal variants of�; �;[; n,�, and their deriva-
tives. These are the basic operators of a temporal algebra,
and they have been investigated in almost all temporal data
models. Our definitions can be used to evaluate and classify

relevant input intervals

output point set A
(minimum requirements)

output intervals (1)

output intervals (2)
(full fragments)

(non-overlapping fragments)

Figure 3: Hypothetical Interval-based Operator

these operators and, thus, models. However, the definitions
are applicable to all possible temporal operators. For ex-
ample, we have illustrated the application to coalescing. To
further illustrate and delimit our definitions, we discuss pos-
sible extensions.

Enlarging the set of interval-based operators. There ex-
ist candidate operators that do not preserve fragments, but
that we still might want to classify as interval-based. Two
such operators are described in Examples 6.1 and 6.2, be-
low.

Example 6.1 Assume aregular time-shift operatororts that
returns all tuples of the argument relation with the times-
tamps being shifted one time unit to the right. Assume
r1 = fhak[2; 5]i; hak[6; 11]ig and r2 = fhak[2; 11]ig.
Then orts(r1) = fhak[3; 6]i; hak[7; 12]ig and orts(r2) =
fhak[3; 12]ig.

Example 6.2 Assume anirregular time-shift operatoroits

that, for any tuple of the argument relation, shifts the start
time by two units to the right and the end time by one unit
to the right. Assumer1 = fhak[2; 5]i; hak[6; 11]ig andr2 =
fhak[2; 11]ig. Thenoits(r1) = fhak[4; 6]i; hak[8; 12]ig and
oits(r2) = fhak[4; 12]ig.

The time-shift operators are faithful to their argument in-
tervals in the sense that they dislocate each single interval
present in the input relation. Therefore, they could be classi-
fied as interval-based. Our definition is stricter in this respect
and classifies both as non-interval-based because argument
interval fragments are not preserved.

Note that the regular time-shift operator is point-based
whereas the irregular one is not. Specifically, a regular time-
shift moves all intervals of tuples in an argument relation.
All basic properties of the argument, e.g., the length and the
relative positions of the tuples’ time intervals, are preserved.
The irregular time-shift operator, on the other hand, changes
some basic properties of the input set. Because start and
end times are shifted differently, it may be that intervals that
meet or overlap in the argument do not meet or overlap in
the result (oits(r1) illustrates this). This clearly leads to vi-
olations of snapshot-equivalence preservation.

Narrowing the set of interval-based operators. It can
make sense to make the definition of interval-based more re-
strictive. Our current definition of interval-based comprises
all operators and models that do not interpret timestamps in
any special way. Examples are relational operators in SQL-
92 [11] (extended with a period data type), relational oper-
ations in IXSQL [10], and non-sequenced operations in AT-
SQL [3]. In all these cases, standard relational operators are
applied to timestamps. Such an approach is trivially faithful
to argument intervals—the operators have no special tem-
poral semantics. One can argue that such operators do not
provide (enhanced) temporal support. This is an argument
in favor of not classifying such operators as interval-based,
or even temporal.

6.2 Mixed Data Models

With point- and interval-based being orthogonal proper-
ties we get four classes of operators. Specifically, coalesc-
ing is point- but not interval-based, temporal selection is
interval- but not point-based, temporal intersection join is
point- and interval-based, and the irregular time-shift opera-
tor is neither point- nor interval-based.

From Definitions 4.3 and 5.5, it follows that there exist
temporal data models that are neither point- nor interval-
based. In practice, we expect many models to have point-
based and interval-based operations. For example, both
IXSQL and ATSQL have a core set of interval-based op-
erations. However, both models also include a point-based
coalescing operation. We term such modelsmixed.

6.3 An Evaluation of Temporal Data Models
In this section we touch upon a few popular temporal data

models and evaluate them according to our criteria. Note
that we only consider proper temporal algebraic operators,
i.e., operators that take temporal relations as arguments and
return a temporal relation (cf. Section 3).

SQL-92 [11] SQL-92 (extended with an interval data
type) is based on the relational algebra and treats intervals
as atomic values without any special temporal semantics.
This means that all operators are time-fragment preserving.
Therefore, SQL-92 is an interval-based data model. It also
follows that SQL-92 is not point-based.

IXSQL [10] IXSQL operators are timestamp-preserving
because they inherit the standard SQL-92 semantics. In ad-
dition, IXSQL provides normalize and unnormalize opera-
tions in order to convert between time points and intervals.
These special operations are point-based, but not interval-
based: snapshot equivalence is preserved, but interval frag-
ments are not. Thus, IXSQL is a mixed data model.
TSQL2 [13] Unlike the two previous models, TSQL2 em-
ploys a temporal algebra that gives a special meaning to
timestamps. It was one of the design goals of TSQL2 to
make the format of timestamps irrelevant. This is achieved
by enforcing a canonical representation based on temporal
elements. Thus, TSQL2 is clearly not interval-based. On
the other hand, all operators preserve snapshot equivalence
because they are defined over the canonical representation
of a database. This makes TSQL2 a point-based data model.
ATSQL [3] ATSQL introduces sequenced and nonse-
quenced statements together with corresponding algebras.
Nonsequenced statements provide the power of regular
SQL-92 statements and are, like SQL-92 and IXSQL state-
ments, interval-based. Sequenced statements are also
interval-based. In addition, most sequenced statements are
point-based. Coalescing is available to enforce a canoni-
cal representation of snapshot-equivalent relations. Thus,
while clearly interval-based in nature ATSQL has also a
non-interval-based operation (coalescing) which makes it a
mixed data model.

7 Conclusions and Research Directions

We have provided definitions for point- and interval-
based operators and data models. Point-based operators are
defined by employing the notion of snapshot equivalence.
The notion of an interval-based operator is much more elu-
sive. The essence is to define what it means for an operator
to maximally preserve, or respect, the timestamps of argu-
ment tuples when timestamping result tuples. Based on the
notion of fragment preservation, we have provided a def-
inition of interval-based operators. Throughout the paper,
we have explored the properties of point-based and interval-
based data models.

Several promising directions for further research may be
identified. First, the mapping of instances in one temporal
data model to instances in another has already been explored
in a point-based framework [9], but this mapping has not
been explored in the context of interval-based data models.

Next, we have argued that interval-based data models are
in some sense more expressive than point-based data mod-
els. The added expressiveness comes at the cost of more
complicated operators that are harder to define and, more
importantly, understand and use. A continued exploration
of the relative merits of the two kinds of models is in or-
der, as are studies of possible refinements of the definition
of interval-based data models.

Finally, we have illustrated that interval-based operators
can be quite different in nature. In particular, some of them
are timestamp preserving while others are timestamp trans-
forming. It would be interesting to exploit these two notions
to obtain a more detailed classification of data models.

Acknowledgements
This research was supported in part by the Danish Tech-

nical Research Council through grant 9700780 and by the
CHOROCHRONOS project, funded by the European Com-
mission DG XII Science, Research and Development, as
a Networks Activity of the Training and Mobility of Re-
searchers Programme, contract no. FMRX-CT96-0056.

References
[1] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal Con-

nectives Versus Explicit Timestamps in Temporal Query Lan-
guages.Recent Advances in Temporal Databases, pages 43–57.
Springer-Verlag, 1995.

[2] J. van Benthem.The Logic of Time – A Model-Theoretic Inves-
tigation into the Varieties of Temporal Ontology and Temporal
Discourse. Kluwer, 1991.

[3] M. H. Böhlen and C. S. Jensen. Seamless Integration of Time
into SQL. TR R-96-2049, Aalborg University, Department of
Computer, Fredrik Bajers Vej 7, DK-9220 Aalborg, Dec 1996.

[4] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing
in Temporal Databases.Proc. of the 22nd VLDB Conf., pages
180–191. Morgan Kaufmann, Sep 1996.

[5] J. Chomicki. Temporal Query Languages: a Survey.Proc. of
the First Intern. Conf. on Temporal Logic, pages 506–534, 1994.

[6] J. Chomicki. Temporal Query Languages: a Survey.
1995. Submitted to IEEE TKDE (available via URL
http://www.cis.ksu.edu/˜chomicki).

[7] S. K. Gadia. Weak Temporal Relations.Proc. of the 5th PODS
Symposium, 1986.

[8] S. K. Gadia. A Homogeneous Relational Model and Query
Languages for Temporal Databases.ACM TODS, 13 (4):418–
448, 1988.

[9] C. Jensen, M. Soo, and R. T. Snodgrass. Unifying Tem-
poral Models via a Conceptual Model.Information Systems,
19(7):513–547, 1994.

[10] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for
Interval Data.IEEE TKDE, 9(3):480–499, May 1997.

[11] J. Melton and A. R. Simon.Understanding the new SQL: A
Complete Guide. Morgan Kaufmann, 1993.

[12] R. T. Snodgrass. The Temporal Query Language TQuel.ACM
TODS, 12(2):247–298, Jun 1987.

[13] R. T. Snodgrass. The TSQL2 Temporal Query Language.
Kluwer Academic, 1995.

[14] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. T. Snodgrass.Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, 1993.

[15] D. Toman. Point-based vs Interval-based Temporal Query
Languages.Proc. of the 15th ACM PODS Symposium, pages
58–67, Jun 1996.

