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Point-wise evaluation of the growth driving direction for arbitrarily

shaped delamination fronts using cohesive elements

L. Carrerasa,∗, B.L.V. Bakb, A. Turona, J. Renarta, E. Lindgaardb

aAMADE, Polytechnic School, University of Girona, Campus Montilivi s/n, E-17003 Girona, Spain
bDept. of Materials and Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg East, Denmark

Abstract

The identification of the delamination propagation direction in three-dimensional structures with

arbitrarily shaped fronts is needed in many applications. In the cohesive element framework, the

propagation direction may be computed as the normal direction to a numerical damage isoline. The

damage isoline tracking requires to exchange information between neighboring elements, thus post-

processing global data, which is computationally expensive. This work presents a novel approach for

the evaluation of the growth driving direction, only using local element information. The method can

be directly implemented in a user-defined element subroutine and be evaluated at the execution time of

the analysis. The presented formulation and its implementation in the commercial Finite Element code

Abaqus is validated by comparison to the damage isoline shape rendering using global information.

Keywords:

Delamination growth, Cohesive zone model, Finite element analysis

1. Introduction1

Long fiber-reinforced polymers are layered materials produced by stacking plies which contain2

continuous fibers in different orientations. Fibers supply stiffness and strength to the material in the3

laminate plane. Although laminated composite structures are designed so that the highest stresses are4

in the fiber directions, out-of-plane stresses may also occur at many types of geometric discontinuities5

∗Corresponding author. Tel.: +34 972 418 817
Email addresses: laura.carreras@udg.edu (L. Carreras), brianbak@mp.aau.dk (B.L.V. Bak),
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such as ply drops, skin-stiffener terminations, intersections, sandwich panels, free edges, holes, cut-6

outs, flanges, bonded and bolted joints or impacted zones. These load cases may damage the interface7

between plies, causing the failure mechanism called delamination. Delamination is considered the most8

detrimental failure mechanism in laminated composite structures because it occurs at relatively low9

load levels but still entails significant reduction of the structure’s load carrying capacity. To address10

this problem without recoursing to impractical safe-life designs, damage-tolerant approaches are used.11

In that event, Finite Element (FE) analysis is an indispensable tool to predict delamination growth in12

complex laminated structures subjected to both static and fatigue loading.13

The virtual crack closure technique (VCCT) is one of the most widely used FE techniques [1].14

However, its application to realistic three-dimensional geometries with arbitrarily shaped crack front15

requires a continuous adaptive meshing technique in order to get a smooth front that fits with the16

instantaneous crack front curvature [2–4]. Alternative methods, that allow the use of stationary meshes,17

consist of tracing a smooth virtual front around the stepped front [5–7]. These techniques require the18

use of algorithms to determine the normal direction to the virtual delamination front using global19

information (or 18-noded elements as in [5]). This direction is used to compute the virtually closed20

area and to define a local coordinate system that enables to calculate the energy release rate components21

according to it.22

An alternative to VCCT, is the cohesive zone model (CZM), firstly developed by Dugdale [8] and23

Barrenblatt [9]. In contrast with the VCCT approach, the application of the CZM is not limited to24

Linear Elastic Fracture Mechanics (LEFM). Indeed, it accounts for a large fracture process zone ahead25

of the crack tip where the material undergoes stiffness degradation until complete decohesion. This26

nonlinear material behavior is lumped into a surface, the cohesive zone, modeled by cohesive elements.27

Under static loading conditions, no crack tip tracking algorithm is required as long as the assumptions28

of identical fracture toughnesses for shear mode openings and independence of fracture toughness29

with propagation direction with respect to fiber orientation are made [10–17]. However, some of the30

existing methods for the simulation of fatigue-driven delamination using the CZM approach do require31

2
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the identification of the propagation direction for its three-dimensional implementation [18–22], even32

making the same assumptions as in the static formulation. To the authors knowledge, the existing33

formulations to estimate the direction of crack propagation using CZM are nonlocal and, thus, require34

additional post-processing. In practice, these algorithms are computationally inefficient for the analysis35

of large structures.36

Another and more recent approach presented by Van der Meer et al. [23] uses the level set method37

to describe the crack front location. Like the VCCT, it is a fracture mechanics approach. Furthermore,38

its variant for large process zone simulation [24] makes use of a stiffness degrading damage variable39

that allows a band of damaged material with predefined width. Conversely to most of the existing40

CZM formulations, the damage variable is not a function of the local properties but it is defined by41

the distance to the crack front, where the crack front is defined as the line that separates the damage42

process zone and the completely damaged interface.43

In this work, a local algorithm to determine the growth driving direction in CZM is presented. It44

can be evaluated at any point within the cohesive zone at the same time the damage state is being45

computed. Therefore, it can be used to enhance the cohesive element formulation under static loading,46

preserving the local nature of the formulation. Moreover, it is an efficient alternative to the existing47

nonlocal propagation direction algorithms used in the methods for fatigue simulation.48

The concept of growth driving direction applied to cohesive elements is presented in 2.1. Three49

different criteria for the growth driving direction identification are defined in Section 2.2. The formu-50

lation according to the first criterion is developed in Section 2.3. The formulation for the other two51

criteria is given in Appendix B. The three growth driving direction criteria are implemented for the52

particular case of the CZM presented in [15, 17], which is summarized in Appendix A. However, it53

is worth to mention that the same criteria could be applied to any other CZM formulation. Sections54

3 and 4 present the results from the application of the formulation to three one-element case studies55

under different loading conditions and a real three-dimensional composite structure, respectively. The56

work closes by discussing the obtained results and with the conclusions.57

3
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2. Determination of the growth driving direction58

In the framework of LEFM, the propagation direction is assumed to be the normal direction to59

the crack front, where the crack front is the line separating the uncracked and cracked parts (see60

Figure 1.a). In contrast to LEFM, the CZM technique accounts for a band of damaged interface of61

variable length, called the fracture process zone, FPZ (light grey band in Figure 1.b). Therefore, the62

propagation direction, understood as the normal to the crack front line, can not be defined in the63

CZM framework. In this work, the concept of “growth driving direction”is introduced for CZM as the64

analogous to the propagation direction. It is assumed to be normal to a given damage isoline and can65

be calculated at any point within the FPZ. This definition follows naturally from the LEFM definition66

and provides the exact same result in the limiting case where the length of the fracture process zone67

goes to zero.68
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Figure 1: a) The propagation direction is assumed to be the normal direction to the crack front in the LEFM
framework. b) The growth driving direction is assumed to be the normal direction to a damage isoline in the
CZM framework. The energy-based damage variable, De, is defined in Appendix A.

2.1. Growth driving direction using cohesive elements69

Consider a laminated structure undergoing a delamination crack restricted to propagate in the70

interface between two adjacent plies. The degradation process of the material ahead of the crack tip71

is modeled in this work using the bilinear CZM formulation developed by Turon et al. in [15, 17].72

As detailed in Appendix A, the process of the degradation of the interface properties is governed by73

an energy-based damage variable, De, defined in Equation (A.16) as the ratio between the specific74

dissipated energy, ωd, and the fracture toughness, Gc. Thus, De is a scalar quantity that measures the75

4
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degree of crack development: when De equals 0, the degradation process is yet to start, while, when76

De equals 1, the crack is completely developed. The total specific work, ωtot, corresponding to a given77

state of damage is the sum of the specific dissipated energy, ωd, and the specific elastic energy, ωe.78

To ensure the proper energy dissipation under mixed-mode conditions, a one-dimensional cohesive79

law relates the equivalent mixed-mode traction, µ, to the equivalent mixed-mode displacement jump,80

λ. Such constitutive law is formed by an initial elastic region, before damage initiation, and a softening81

region. When the area under the one-dimensional traction-displacement jump curve is equal to the82

fracture toughness, Gc, a new crack surface is formed. The Benzeggagh-Kenane criterion [25] is used83

to define the mixed-mode displacement jumps at which the onset of damage, λo, and propagation, λc,84

occur. A sketch of the equivalent one dimensional bilinear law is represented in Figure 2 for a given85

mode-mixity, B.86
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Figure 2: Equivalent one-dimensional cohesive law for a given mode-mixity, B. The shadowed area in a)
represents the fracture toughness, Gc, in b), the specific dissipated energy, ωd, and the specific elastic energy,
ωe, and in c), the total specific work, ωtot, for a given state of damage.

Complying with the cohesive element definition, the interfacial tractions and displacement jumps87

are evaluated at the interfacial deformed midsurface, S, and determined by its local orientation. Thus,88

the normal and tangential traction components, acting on a unit deformed interfacial midsurface area,89

are conjugated to the normal and tangential displacement jumps across the material discontinuity. For90

the analysis of delamination propagation in three-dimensional structures, the interfacial midsurface91

is defined by the Cartesian coordinates xi, with i = 1, 2, 3. The local Cartesian coordinate system92

located on the deformed midsurface is defined by two tangential unit vectors, ê1 and ê2, and a normal93

unit vector, ê3. Assuming that the crack propagation is confined to the interface, the vector defining94

5
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the growth driving direction must belong to the plane spanned by the tangential vectors ê1 and ê2 at95

the point pi where the direction is evaluated. Thus, the three-dimensional problem, can be solved in a96

two-dimensional space defined by the local Cartesian coordinates (e1, e2), where el, with l = 1, 2, are97

the coordinates spanned by the unit vectors êl.98

Then, for any given distribution of De (e1, e2), the growth driving direction at any point on the99

midsurface is assumed normal to the damage isolines, following the discussion related to Figure 1, i.e.100

is given by the negative of the gradient vector:101

−∇De (e1, e2) (1)

2.2. Growth driving direction criteria102

The growth driving direction at any point pi, contained in S, is defined in this work as the one that103

provides the largest rate of decrease of De. This is the direction of the negative gradient of De, defined104

in the local Cartesian coordinate system (e1, e2) with origin at pi (see Equation (1)). However, polar105

coordinates are most appropriate when looking for a direction from a pole (See Figure 3). Thus, the106

growth driving direction can be found by identifying the angle ϕ that minimizes the slope of De with107

respect to the radial coordinate, ρ:108

min
ϕ

∂De

∂ρ
(2)

Considering the energy-based damage, De, dependent on both the mode mixity, B, and the mixed-109

mode displacement jump, λ, and by application of the chain rule, the angle ϕ that minimizes Equation110

(2) can be found by solving:111

∂

∂ϕ

∂De (B, λ)

∂ρ
=

∂

∂ϕ

(

∂De

∂B

∂B

∂ρ
+

∂De

∂λ

∂λ

∂ρ

)

= 0 (3)

and by checking its convexity:112

6
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ρ 

Figure 3: The growth driving direction evaluated at point pi is embedded in the tangential plane spanned by
the local Cartesian coordinates e1 and e2.

∂2

∂ϕ2

∂De (B, λ)

∂ρ
=

∂2

∂ϕ2

(

∂De

∂B

∂B

∂ρ
+

∂De

∂λ

∂λ

∂ρ

)

> 0 (4)

However, equations (3) and (4) are equal to zero in the elastic regime (λ ∈ [0, λo]), since the energy113

based damage variable, De, is also equal to zero (see Equation (A.16). In order to compute the growth114

driving direction before the initiation of the degradation process, another criterion, based on the ratio115

between the total specific work, ωtot and the fracture toughness, Gc, can be formulated such that the116

growth driving direction can be found by solving:117

min
ϕ

∂
(

ωtot

Gc
(B, λ)

)

∂ρ
(5)

Note that, similarly to the energy-based damage, De, the ratio between the total specific work118

and the fracture toughness, ωtot

Gc
, is dependent on both the mode mixity, B, and the mixed-mode119

displacement jump, λ.120

Finally, for the sake of simplicity, a third criterion, which is also active before damage initiation,121

7
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can be formulated only taking into account the mixed-mode displacement jump field, λ:122

min
ϕ

∂λ

∂ρ
(6)

The general expressions to solve for each of the criteria are listed in Table B.5.123

In summary, three different criteria are presented depending on the quantity being analyzed: the124

energy-based damage, De, (Criterion 1), the total specific work over the fracture toughness, ωtot

Gc
(Cri-125

terion 2), and the mixed-mode displacement jump, λ, (Criterion 3). The evolution of these quantities126

along the growth driving direction are sketched in Figure 4 for an interface opened under pure mode127

I conditions. The three criteria are listed in Table 1 and presented in the following.128
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Figure 4: Quantities being minimized in each criterion for a pure mode I opened interface.

Criterion 1. The growth driving direction is defined by the negative gradient of the energy-based129

damage variable, De. This is equivalent to computing the negative gradient of the ratio between the130

specific dissipated energy, ωd (see Figure 2.b), and the fracture toughness, Gc. Since Criterion 1 is131

based on the energy-based damage distribution, De, it is only active once the degradation process is132

8
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Criterion ID Function to solve Nomenclature Approach Limitations

1 −∇De De: Energy-based damage Energy-based
Not active
in elastic regime

2 −∇ωtot

Gc

ωtot:total specific work
Energy-based

May depend on the specific
Gc: fracture toughness elastic energy in CZM

3 −∇λ
λ: mixed-mode opening

Geometrical
Independent of

displacement interface properties

Table 1: Summary of the criteria to determine the growth driving direction.

already initiated. Moreover, Criterion 1 is an energy-based approach that depends on the kinematics133

and the constitutive law of the cohesive element. Since the cohesive law is usually mode-dependent,134

an uneven distribution of mode-mixity, B, can affect the gradient vector.135

Criterion 2. The growth driving direction is defined by the negative gradient of the ratio between136

the total specific work, ωtot (see Figure 2.c), and the fracture toughness, Gc. Thus, both the specific137

dissipated energy, ωd and the specific elastic energy, ωe, are included in the computation of Criterion 2.138

Since, as soon as two initially coinciding points separate from each other some elastic energy is stored,139

Criterion 2 is active before any energy dissipation due to fracture takes place. Moreover, this approach140

depends on both the kinematics and the constitutive law of the cohesive element and, therefore, can141

be affected by the variation in mode-mixity, B, with the direction.142

It is worth to mention that, with the constitutive model used in this work, presented in Appendix143

A.2, criteria 1 and 2 lead to the same growth driving direction results. However, since both the144

conservative and non-conservative work are computed in Criterion 2, in contrast to Criterion 1, in145

which only the non-conservative work is quantified, both criteria might provide different results when146

using other CZ formulations that allow the definition of mode-dependent penalty stiffness, K [26].147

Criterion 3. The growth driving direction is defined by the negative gradient of the mixed-mode148

displacement jump, λ. This is a pure geometrical approach, since the only governing parameter is the149

mixed-mode displacement jump. Thus, the solution only depends on the kinematics of the cohesive150

element. Indeed, changes in the cohesive law due to variation in mode-mixity, B, with direction are151

9
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not affecting Criterion 3.152

2.3. Formulation of Criterion 1 for the identification of the growth driving direction153

A complete description of the derivation of Criterion 1 is presented in this section. Moreover,154

the formulation for the evaluation of the growth driving direction using criteria 2 and 3 is given in155

Appendix B.156

It can be seen, from equations (3) and (4), that, in order to find the growth driving direction using157

Criterion 1, the radial slope of the energy-based damage,∂D
e

∂ρ , must be minimized as a function of the158

angle ϕ. Each of the terms in equations (3) and (4) are derived in the following.159

The derivative of the energy-based damage with respect to the mode mixity, ∂De

∂B , and the derivative160

of the energy-based damage with respect to the mixed-mode displacement jump, ∂De

∂λ , are scalar factors161

that depend on the parameters defining the CZM. The expression for ∂De

∂B obtained after the particular162

application to the CZM from [15, 17] is:163

∂De

∂B
=

η (GIIc − GIc)B
(η−1)λ

Kλcλo (λo − λc)
= FB (7)

and the expression for ∂De

∂λ reads:164

∂De

∂λ
=

1

λc − λo
= Fλ (8)

Furthermore, the radial slope of the mixed-mode displacement jump, ∂λ
∂ρ , in equations (3) and (4)165

is addressed in the following. Taking into account the dependency of the mixed-mode displacement166

jump, λ (Equation (A.7)), on the normal and tangential displacement jumps, arranged in vector δi,167

and by application of the chain rule, the following expression is obtained:168

∂λ

∂ρ
=

∂λ

∂δj

∂δj

∂ρ
(9)

The first term in the right hand side of Equation (9) reads:169
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∂λ

∂δj
=

{

δ1

λ
,
δ2

λ
,
〈δ3〉
λ

}T

= Aj (10)

and the second term in the right hand side of Equation (9) is the derivative of the displacement jumps,170

δj , with respect to the radial coordinate, ρ, which is obtained as follows:171

∂δj

∂ρ
=

∂Θji

∂ρ
MimQm +Θji

∂Mim

∂ρ
Qm (11)

where Θji is the rotation matrix that relates the global to the local Cartesian coordinate system and172

Mim is the transformation matrix that relates the global displacement jump with the nodal global173

displacement, Qm (see Appendix A).174

The derivative of the rotation matrix, Θji, with respect to the radial coordinate, ρ, can be approx-175

imated to zero, by assuming that the curvature of the interface within the element domain is small.176

Moreover, its derivation leads to a complex expression that would increase the difficulty of the formu-177

lation and its further implementation into FE without a substantial improvement in the accuracy of178

the solution. For the sake of simplicity, in the following it is assumed that
∂Θji

∂ρ = 0. Therefore, only179

the second summand in the right hand side of Equation (11) is addressed.180

The derivative of the transformation matrix, Mim, with respect to the local polar coordinate, ρ, is181

obtained by successive application of the chain rule:182

∂Mim

∂ρ
=

∂Mim

∂ηα

∂ηα

∂el

∂el

∂ρ
(12)

The first partial derivative in the right hand side of Equation (12) is the variation of the transfor-183

mation matrix, Mim, with the isoparametric coordinates of the cohesive element formulation, ηα (see184

Appendix A):185

∂Mim

∂ηα
=

[

−∂Nik

∂ηα
,
∂Nik

∂ηα

]

= Eimα (13)
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where Nik is the shape function matrix and the subscript k runs from 1 to the number of degrees of186

freedom of each of top and bottom surface of the cohesive element. In case of an eight-noded element,187

k = 1...12.188

The derivative ∂ηα

∂el
is the inverse matrix of the two vectors tangential to the deformed midsurface,189

described in Equation (A.2) and expressed in local tangential coordinates, these being:190

∂el

∂ηα
= Θli

1

2

∂Nik

∂ηα

(

C+
k + C−

k +Q+
k +Q−

k

)

= ΘliJiα (14)

where Jiα is the Jacobian matrix defined in Equation (A.26). Thus, let matrix Gαl be defined as:191

Gαl = (ΘliJiα)
−1

=









∂η1

∂e1

∂η2

∂e1

∂η1

∂e2

∂η2

∂e2









(15)

Using the following transformation relation:192









e1

e2









=









ρ cos(ϕ)

ρ sin(ϕ)









(16)

the derivative of the local Cartesian coordinates, el, with respect to the radial coordinate, ρ, reads:193

∂el

∂ρ
=









cos(ϕ)

sin(ϕ)









(17)

Then, the slope of the mixed-mode displacement jump, λ, with respect to the radial coordinate, ρ,194

is obtained using equations (10)-(17) in Equation (9):195

∂λ

∂ρ
= AjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (18)

The same procedure can be applied to find the radial slope of the mode mixity, ∂B
∂ρ , in equations196

(3) and (4). Taking into account the dependency of the mode mixity, B, defined in Equation (A.10),197
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on the displacement jumps, δj , the radial slope ∂B
∂ρ is obtained by applying the chain rule as:198

∂B

∂ρ
=

∂B

∂δj

∂δj

∂ρ
(19)

where the derivative of the mode mixity, B, with respect to the displacement jumps, δj , reads:199

∂B

∂δj
=

{

2δ1〈δ3〉2
λ4

,
2δ2〈δ3〉2

λ4
, −2δ2s〈δ3〉

λ4

}T

= Oj (20)

and
∂δj
∂ρ is developed through equations (11)-(17). Hence, the radial slope ∂B

∂ρ is given by:200

∂B

∂ρ
= OjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (21)

Finally, let matrix Vα be:201

Vα = FBOjΘjiEimαQm (22)

and matrix Wα be:202

Wα = FλAjΘjiEimαQm (23)

then, the growth driving direction according to Criterion 1 is found using equations (18) and (21)-(23)203

in Equation (3), solving for the angular coordinate, ϕ:204

ϕ = atan

(

− (V1 +W1)G11 + (V2 +W2)G21

(V1 +W1)G12 + (V2 +W2)G22

)

(24)

and fulfilling the condition for convexity (Equation (4)):205

(Vα +Wα) (Gα1 (− cosϕ) +Gα2 (− sinϕ)) > 0 (25)

Once ϕ is identified, the transformation of the global Cartesian coordinates, Xi, into the local206
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Cartesian coordinates that are located on the midsurface and oriented according to the growth driving207

direction is done by means of the following rotation matrix:208

Rri = TrjΘji (26)

where Trj is:209

Trj =

















cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

















(27)

As shown, all the information necessary to evaluate Criterion 1 (and also criteria 2 and 3, as210

demonstrated in Appendix B) are the global nodal coordinates, Cm and displacements Qm. Using the211

cohesive element formulation in [15, 17], this information is available at the element level and, thus,212

the presented growth driving direction algorithms can be implemented into a user-defined element213

subroutine and evaluated at any point in the cohesive zone without any additional post-processing or214

non-local information.215

3. One-element validation examples216

The following one-element studies serve to validate the formulation of the growth driving direction217

criteria presented in Section 2. The proposed method has been implemented in a MATLAB program.218

The eight-noded cohesive element used is illustrated in Figure 5. The kinematics and constitutive law219

associated to the element are detailed in Appendix A. Newton-Cotes integration scheme is used, with220

2x2 integration points located at the midsurface vertexes. The undeformed element is 0.1 mm wide,221

0.1 mm long and has zero thickness. The cohesive properties are listed in Table 2. Three different222

loading cases (A, B and C) have been analyzed. The applied nodal displacement is listed in Table 3 for223

each case. The growth driving direction is calculated at a point p (η1, η2) located on the midsurface,224

with natural coordinates (−0.5,−0.5). The results of the angle ϕ obtained in each case are listed in225
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Interface properties
GIc 0.3 N/mm
GIIc 0.7 N/mm
τIc 50 MPa
τIIc 76.4 MPa
η 2 -
K 1E5 N/mm3

Table 2: Cohesive law properties used in the one-element case studies.

Case ID Loading conditions Nodal displacements ϕ at point p (deg)
(mm) Criterion 1 Criterion 2 Criterion 3

A

u5
3 = 0.005

270.0 270.0 270.0
Pure mode I u6

3 = 0.005
B constant u7

3 = 0.01
u8
3 = 0.01

B

u5
1 = u5

2 = u5
3 = 0.001

225.3 225.3 225.3
Mixed mode I-shear u6

1 = u6
2 = u6

3 = 0.002
B constant u7

1 = u7
2 = u7

3 = 0.003
u8
1 = u8

2 = u8
3 = 0.002

C

u5
1 =

√
2 · 0.008

225.0 225.0 45.0
Mixed mode I-shear u6

1 = u6
3 = 0.008

same λ at nodes u7
3 =

√
2 · 0.008

u8
1 = u8

3 = 0.008

Table 3: Loading conditions and growth driving direction results at point p from the one-element case studies

Table 3 for the three criteria.226

K

(B)c

KK(1 - D )

λλ (B)D
μ

ωtot

λλ (B)cλ (B)o λ (B)D

μ
μ (B)o 

μ
ωd

λλ (B)D

a) b)

c)

X1

X2X3steel block

Teflon insert
Unidirectional 
CFRP 
reinforcements

u = prescribed 3

displacement
u =u =01 2

u =u =02 3

Unidirectional
CFRP plate

140

40

30

31.
5

85

12
.5

Part of the midsurface represented

sliding 
fixture

X1

X2X3

X  symm2

a)

b)

u = prescribed 3

displacement

u =u =0
1

3

u =02

1
2

3

4
5

8 0 thickness

X1X2

X3
6

7

1*
2*

3*
4*

Figure 5: Sketch of the undeformed cohesive element. The nodes are represented as black dots and numbered
from 1 to 8 and the integration points are represented as asterisks and numbered from 1* to 4*.

Case A is a pure mode I-opened element. The distribution of the mixed-mode displacement jump,227

λ, along the element midsurface is projected on the deformed element midsurface in Figure 6, where228

the point p is highlighted in white. Integation points 1 and 2 have the lowest λ value, while points229

3 and 4 are the most opened. As illustrated, the growth driving direction according to Criterion 3230

15
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is determined by the greatest rate of decrease of λ. The other quantities being analyzed in criteria 1231

and 2, De and ωtot

Gc
respectively, are represented in Figure 7, as well as the mode-mixity, B. Like the232

B-distribution along the element midsurface is constant, the growth driving direction is only defined233

by the direction that minimizes the slope of the mixed-mode displacement jump. Therefore, in Case234

A only, the kinematics of the element governs the growth driving direction, independently of which235

criteria is used.236

0
0.05

0.1

0

0.05

0.1
0

0.005

0.01

X1 (mm)

Midsurface, S

X2 (mm)

X
3
(m

m
)

0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

λ (mm)

X1 (mm)

X
2
(m

m
)

0.4

0.5

0.6

0.7

0.8

Growth driving direction

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

Figure 6: Mixed-mode displacement jump distribution at the element midsurface for Case A loading conditions.
The growth driving direction is analyzed at point p, indicated with a white circle, and the result is listed in
Table 3.

On the other hand, in Case B, the element is opened under constant mixed mode I-shear opening237

conditions (See Figure 8). In this case, λ linearly increases along the midsurface diagonal direction,238

from integration point 1 to integration point 3. However, B is constant and, thus, also the constitutive239

law associated to it. Again, in Case B, the growth driving direction is only defined by the direction240

that minimizes the slope of the mixed-mode displacement jump, λ. Therefore, it is governed by the241

kinematics of the cohesive element and there is agreement between the three criteria.242

Finally, in Case C, all the integration points have the same λ-value, although the mode-mixity, B,243

changes from 0 to 1 along the midsurface diagonal direction (See Figure 9). At integration point 1, only244

shear sliding displacement is applied, while at the opposite corner, at integration point 3, there is only245

mode I opening. At the integration points 2 and 4, there is 50% mixed-mode opening. On the other246
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hand, λ is lower at the center part of the element midsurface than at the corners and its distribution247

is determined by the interpolation functions. Criterion 3 is only affected by the λ-interpolation and248

results in the direction that points to the center of the element. Furthermore, due to the uneven B-249

distribution, the constitutive law is not constant. With the cohesive properties used in these studies,250

the direction of steepest negative slopes of De and ωtot

Gc
coincides with the direction that maximizes251

the rate of increase of B. Note that, when evaluated at point p, this is the direction of largest slope252

of λ. Therefore, Criterion 3 and criteria 1 and 2 point to opposite directions.253

In addition, the slopes ∆D
e

∆ρ , ∆(ωtot/Gc)
∆ρ and ∆λ

∆ρ have been numerically evaluated using a central254

difference at every 1 degree at point p under Case C loading conditions using a perturbation size for255

the radius of 0.001 mm. Thus, the slope of any quantity f has been calculated as:256

∆f

∆ρ
=

f(0.001, ϕ)− f(−0.001, ϕ)

2 · 0.001
(28)

The resulting slopes are represented in Figure 10. The disagreement between Criterion 3 and257

criteria 1 and 2 can be observed. For Criterion 3, the angle ϕ that minimizes ∆λ
∆ρ is 45 degrees, while258

for criteria 1 and 2, the angle that minimizes ∆D
e

∆ρ and ∆(ωtot/Gc)
∆ρ , respectively, amounts 225 degrees.259

Note that these results are in agreement with the results obtained by implementing the formulation260

developed in Section 2.261
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Figure 7: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case A loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.

18



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

0

0.05

0.1

0

0.05

0.1

0

1

2

3

x 10
−3

X1 (mm)X2 (mm)

a) λ(mm)

X
3
(m

m
)

2

2.5

3

3.5

4

4.5

5

x 10
−3

0

0.05

0.1

0

0.05

0.1

0

1

2

3

x 10
−3

X1 (mm)X2 (mm)

b)

X
3
(m

m
)

B

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0

0.05

0.1

0

1

2

3

x 10
−3

X1 (mm)X2 (mm)

d)

X
3
(m

m
)

ωtot

Gc

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0

0.05

0.1

0

1

2

3

x 10
−3

X1 (mm)X2 (mm)

c)

X
3
(m

m
)

De

0

0.2

0.4

0.6

0.8

1

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

Figure 8: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case B loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.
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Figure 9: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case C loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.
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Figure 10: Slopes in the radial direction, ρ, of the energy-based damage, De, the total specific work over the
fracture toughness, ωtot

Gc
, and the mixed-mode displacement jump, λ, as a function of the angle ϕ evaluated

at point p for Case C loading conditions. The slopes have been calculated using a central difference with a
perturbation for the radius of 0.001 mm. The values ∆D

e

∆ρ
, ∆(ωtot/Gc)

∆ρ
and ∆λ

∆ρ
have been normalized by their

maximum value.
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4. Three-Dimensional application262

To exemplify the applicability of the presented formulation, a three-dimensional model with a non-263

straight crack front is used. The test configuration is a End-Loaded Split (ELS) test on a symmetric264

run-out specimen with a midplane initial defect. A Teflon insert acts as an initial straight delami-265

nation (see Figure 11). Moreover, the middle width of the specimen is stiffened by bonding CFRP266

reinforcements on the upper and lower faces. During propagation the crack front shape changes when267

it approaches the reinforced region. The formulation presented in Section 2 can be used to evaluate the268

growth driving criteria at any given loading state during the quasi-static simulation. To this end, the269

method in [15, 17] has been enhanced with the growth driving direction calculation and implemented in270

Abaqus [27] as a UEL subroutine. The user-defined cohesive elements that model the middle interface271

are 0.2 mm x 0.5 mm. The laminate and interface properties used in the simulation are listed in Table272

4.273
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Figure 11: a) Sketch of the partially reinforced ELS specimen. The grey-shadowed area represents the Teflon
insert. The blue-shadowed area is the area represented in figures 12.b, 13 and 18. b) Simplified model for FE
simulation and dimensions (units in mm).

The historical evolution of the 0.5-valued damage isoline is plotted in Figure 12.a. The energy-274
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Laminate properties Interface properties
E11: Longitudinal Young’s modulus 154 GPa GIc 0.3 N/mm
E22 = E33: Transversal Young’s modulus 8.5 GPa GIIc 3 N/mm
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa τIc 10 MPa
G23: Shear modulus in the transversal plane 3.036 GPa τIIc 31.62 MPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 - η 2 -
µ23: Poison’s coefficient in the transversal plane 0.4 - K 1E5 N/mm3

Table 4: Laminate and interface properties used in the simulation study of Section 4. The nomenclature of
the interface properties is defined in Appendix A.

based damage, De, distribution is projected on the deformed midsurface, in Figure 12.c, for a prescribed275

displacement of 32.55 mm. Only the blue-shadowed area in Figure 11 is represented. The crack growth276

direction is evaluated at each integration point within the FPZ using criteria 1, 2 and 3, and represented277

in Figure 13. Note that criteria 1 (Figure 13.a) and 2 (Figure 13.b) are coincident except from at the278

elastic region, where no results from Criterion 1 can be obtained. By comparison of figures 13.b and279

13.c, it can be observed that Criterion 3 only differs from criteria 1 and 2 at a region located at the280

upper left part of the cohesive zone (X1 < 85 mm and X2 > 10 mm). Indeed, the mode-mixity, B, is281

constant and equal to 1 in the entire cohesive zone, except for this region, where it locally decreases to282

0.6 (see Figure 13.d). As demonstrated in Section 3, under constant B conditions, the growth driving283

direction is only governed by the kinematics of the cohesive elements. Therefore, evaluating any of the284

three criteria results in the same growth driving direction solution. On the other hand, only criteria 1285

and 2 are affected by changes in the mode-dependent constitutive law, leading to different results, if286

compared to Criterion 3, at the region where the mode-mixity, B, varies.287

In addition, four damage isolines have been traced. The damage isolines are constructed by con-288

necting integration points with the same damage value. The first damage isoline, represented in Figure289

14.a, is the line connecting the completely damaged integration points adjacent to the damage process290

zone. At each point on the damage isoline, the geometrical normal direction has been approximated291

by the normal to the slope of a second degree polynomial expression fitted to five consecutive points292

represented in white in Figure 14.a): the current point and the two preceding and the two succeeding293

points. Therefore, the approximated normal direction is computed by post-processing global informa-294
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Figure 12: a) Historical evolution of the 0.5-valued damage isoline. b) Reaction force vs prescribed displacement
curve with the current loading state highlighted in red. c) Energy-based damage projected on the deformed
midsurface.

tion and it is heavily affected by the discretization and the choice of the fitting function. The results295

are compared to the local growth driving direction criteria developed in Section 2 in Figure 14.b. The296

same analysis is done with a 0.5-valued damage isoline (Figure 15), a 0.1-valued damage isoline (Figure297

16) and the line connecting the undamaged integration points adjacent to the damage process zone298

(Figure 17). Note that, although for comparison purposes the growth driving direction is evaluated in299

a discrete manner at the same points where the approximated normal direction is computed, it is a300

continuous field that can be evaluated at any point, as shown in Figure 13.301

Finally, three different FE models with element sizes 0.5 x 0.2 mm, 1 x 1.25 mm and 2.5 x 2.5302

mm (see Figure 18) are used to compare the element size effect on both the approximated normal303

direction to the 1-valued damage isoline, evaluated by using global information, and the predicted304

growth driving direction using Criterion 1, evaluated point-wise at the element level. The results are305
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obtained using the information of the points on the 1-valued damage isoline traced in Figure 19 for306

the three meshes. The direction obtained along the damage isoline using both methods is plotted in307

Figure 20.308
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Figure 13: a) Growth driving direction resulting from the evaluation of Criterion 1. b) Growth driving direction
resulting from the evaluation of Criterion 2. c) Growth driving direction resulting from the evaluation of
Criterion 3. b) Mode mixity, B. The black line marks the reinforcements.
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Figure 14: a) Energy-based damage, D
e, distribution along the cohesive zone. The points forming the 1-

valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 1-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1 and 2 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 15: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 0.5-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 0.5-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1 and 2 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 16: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 0.1-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 0.1-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1, 2 and 3 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 17: a) Energy-based damage, D
e, distribution along the cohesive zone. The points forming the 0-

valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border. b)
Comparison of the angle ϕ obtained at the 0-valued damage front by computing the normal direction using
global information and by locally evaluating the growth driving direction criteria. Criteria 1, 2 and 3 are
represented by the same marker because they lead to identical growth driving direction results.
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(a) Element size: 0.5 x 0.2 mmm
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(b) Element size: 1 x 1.25 mmm
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(c) Element size: 2.5 x 2.5 mmm
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Figure 18: Growth driving direction resulting from the evaluation of Criterion 1 using three different element
sizes.
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Figure 19: 1-valued damage fronts using different element sizes: a) 0.2 x 0.5 mm. b) 1 x 1.25 mm. c) 2.5 x 2.5
mm.
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by a) computing the normal direction to the crack front using global information and b) evaluating Criterion
1.
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5. Discussion309

Three different growth driving direction criteria have been proposed as element-level algorithms,310

that can be evaluated at any point within the cohesive zone. Criteria 1 and 2 are energetically-based311

formulations that account for both the kinematics and the constitutive law of the interface element.312

On the other hand, Criterion 3 is a geometrical approach, which only accounts for the kinematics of313

the interface element. Therefore, when the mode-mixity, B, is not constant, criteria 1 and 2 are the314

most appropriate. Moreover, Criterion 2 computes the rate of decrease of both the specific elastic315

energy, ωe, and the dissipated energy, ωd, normalized to the fracture toughness, Gc. On the contrary,316

Criterion 1 only computes the rate of decrease of the dissipated energy, ωd, normalized to the fracture317

toughness, Gc, which is equivalent to computing the rate of decrease of the energy-based damage, De.318

On this basis, Criterion 1 is not active before damage initiation, while Criterion 2 can be computed319

as soon as some separation between two initially coinciding points at the interface occurs. The three320

criteria have been presented for completeness, since they can be developed for other CZM formulations321

following the methodology described in Section 2.3. With the CZM used in this work, criteria 1 and 2322

lead to the same growth driving direction solution at the damaged region. However, different results323

may be obtained if a mode-dependent penalty-stiffness is used, which could render the specific elastic324

energy of Crietion 2 dependent on growth driving direction.325

The implementation of the formulation for the proposed growth driving direction criteria has been326

validated with one-element case studies in Section 3. The distribution of the quantities being ana-327

lyzed have been projected on the element midsurface for visual verification (see figures 7-9 for different328

loading cases). In addition, the slopes of such quantities have been numerically evaluated at different329

orientations around a given evaluation point under Case C loading conditions (Figure 10). The orien-330

tation that results in lowest slopes coincides with the angle of growth driving direction predicted by331

each criteria, respectively.332

Finally, the capabilities of the presented formulation are demonstrated in Section 4 using a three-333

dimensional run-out specimen loaded under ELS test conditions (Figure 11). The crack front propa-334
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gates with non-straight shape due to the reinforcements bonded at the middle width of the specimen335

Figure 12. The growth driving direction criteria are evaluated at all the integration points within336

the cohesive zone for a given loading state with large deformations (Figure 13). The results from337

the three criteria differ only at those regions where the mode-mixity, B, is not constant, as already338

demonstrated in Section 3. Moreover, the resulting crack growth driving direction is compared with339

the geometrical normal direction of four different damage isolines computed by post-processing global340

information (figures 14-17). Both results are in good agreement, although the agreement is higher341

between the geometrical normal direction to the damage isolines derived from global information and342

the results from criteria 1 and 2, than from Criterion 3, specially at the non-constant mode-mixity,343

B, region. It is noteworthy that the global description of the damage isoline is highly dependent on344

the methodology used to compute it, mainly the number of points taken into account and its fitting.345

Therefore, in a FE framework, the computation of the approximated normal direction to the damage346

isoline using global information may, in some cases, misrepresent the actual normal direction. Indeed,347

the local computation of the negative gradient of the energy-based damage, De, by means of Criterion348

1 is the exact normal to the damage isolines. The fitting of the points forming the damage isoline,349

that leads to an approximate global description of it, is only used to validate the implementation of350

the formulation presented. To close, the effect of the mesh size on the determination of the normal351

direction to the 1-valued damage isoline is analyzed using both methods (Figure 20): the approximated352

normal direction using global information and the growth driving direction obtained by evaluating Cri-353

terion 1. The results show that the growth driving direction, evaluated locally, shows less sensitivity354

to the element size. Indeed, the growth driving direction is a continuum field which does not explicitly355

depend on the mesh size, but it implicitly does, due to discretization of the displacement field in the356

FEM [28].357
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6. Conclusions358

A novel method has been proposed for the determination of the growth driving direction for cohesive359

zone models. The presented formulation is evaluated point-wise. Therefore, it can be implemented as360

a part of a user-defined cohesive element subroutine and evaluated during simulation without the need361

of any extra loop, post-processing or global information.362

The growth driving direction is defined as the negative gradient of the energy-based damage vari-363

able. However, other quantities can be used for the sake of simplicity. In this work, three different364

criteria are proposed. The implementation of the formulation for the proposed criteria applied to a365

particular CZM [15, 17] is derived and validated by using one-element analysis under different loading366

conditions.367

Finally, the usefulness of the method has been demonstrated via the analysis of delamination368

propagation in a three-dimensional structure with a complex shaped crack front. The results using the369

proposed point-wise formulation for the evaluation of the growth driving direction are in agreement370

with the results from a global approximation of the normal direction to different damage isolines. Apart371

from being a low computational time-consuming task, the proposed formulation has the advantage that372

it can be evaluated at any point within the cohesive zone.373
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Appendix A. The cohesive element formulation451

The cohesive zone model from the original work of Turon et al. [15, 17] and its finite element452

implementation are outlined in the following.453

Appendix A.1. Kinematics454

Let the delamination be understood as a strong discontinuous singular surface, S, that crosses a455

volume of material, Ω, and divides it into two subdomains, Ω+ and Ω−, as shown in Figure A.21.456

There are two surfaces that bound into S: the upper surface, S+, associated with Ω+, and the lower457

surface, S−, associated with Ω−. These two surfaces, which are initially coincident with the reference458

surface, S0, in the undeformed configuration, represent the crack faces. They independently translate,459

rotate and stretch, though their motion is constrained by the constitutive law used to describe the460

interface.461

The reference surface, S0, is defined in a the three-dimensional space, as shown in Figure A.22,462

by the global Cartesian coordinates Xi, where i = 1, 2, 3. Conveniently, the internal deformed middle463

surface, S, can be defined, through the history of deformations, as the average distance between two464

initially coinciding points,465

xi = Xi +
1

2

(

u+
i + u−

i

)

(A.1)

where u±
i are the displacements of the two material points on S± that are related to the point Xi,466

contained in S0. Hence, defining a local Cartesian coordinate system (ê1, ê2, ê3) on S, the normal and467

tangential components of the displacement jump across the material discontinuity can be expressed468

according to the local orientation of the midsurface.469

Let η1 and η2 be curvilinear coordinates located on S, as represented in Figure A.22 (Note that the470

isoparametric representation of the physical space is reduced to the interfacial element midsurface).471

Then, two vectors tangential to the deformed midsurface are established as:472
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+Ω
-Ω

+S

 -S

Ω

S

Figure A.21: Interfacial surface, S, traversing a body, Ω, and diving it into Ω+ and Ω− subdomains. The
exploded view shows the upper S+ and lower S− surfaces that bound into S.

e′
1
=

∂xi

∂η1
e′
2
=

∂xi

∂η2
(A.2)

+S

 -S

 S
e1

e2e3

η1

η2

 S o

 X 1

 X 2

 X 3

+u

-u

 X i

-x i

+x i

Figure A.22: Description of the deformed element midsurface, S.

The direction cosines of the local Cartesian coordinate system, are the normal, ê3, and tangential,473

ê1 and ê2, unit vectors to S, and can be derived from the Equation (A.2) as follows:474

ê1 =
e′
1

|e′
1
| ê3 =

e′
1
× e′

2

|e′
1
× e′

2
| ê2 = ê3 × ê1 (A.3)

Finally, the displacement jump in local coordinates can be expressed in terms of the displacement475

field:476
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δj = Θji

(

u+
i − u−

i

)

, i, j = 1, 2, 3 (A.4)

where
(

u+
i − u−

i

)

is the separation of two initially coinciding points at the interface in the global477

Cartesian coordinate system, and Θji is the transformation tensor that relates the global to the local478

coordinate system,479

Θ = [ê1, ê2, ê3]
T

(A.5)

Appendix A.2. Constitutive model480

The constitutive relation between the displacement jumps, δj , and the tractions between crack481

faces, τj , is defined as482

τj =
(

1−DK
)

Kδj for j = 1, 2

τ3 =
(

1−DK
)

Kδ3 −DKK〈−δ3〉
(A.6)

where DK ∈ [0, 1] is a scalar damage parameter reducing the initial constitutive tangent stiffness, K483

and 〈 〉 are the Macaulay brackets defined as 〈x〉 = (x + |x|). Note that, as interpenetration of crack484

faces is physically prevented by contact, negative normal opening values are avoided.485

The evolution of the stiffness degrading damage variable, DK is governed by an equivalent one-486

dimensional cohesive law and a damage criterion. For the formulation of this equivalent one-dimensional487

cohesive law, and so that different stages of the degrading process can be compared under changing488

mixed-mode loading conditions, a non-negative scalar displacement jump is defined:489

λ =

√

(δI)
2
+ (δs)

2
(A.7)

where δI is the mode I opening, associated to the displacement jump in the normal direction to the490
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midsurface, and δs is the shear sliding resulting of the displacement jumps in the tangential directions491

to the midsurface.492

δI = 〈δ3〉, δs =

√

(δ1)
2
+ (δ2)

2
(A.8)

Note that the two tangential (orthogonal among each other) displacement jumps, δ1 and δ2, are493

reduced to an equivalent shear displacement jump, δs. It is worth to mention that this is due to the494

incapability of the original formulation [15, 17] to distinguish into modes II and III, mainly attributed495

to the hitherto lack of computationally-efficient crack front tracking algorithms, and not supported by496

any physical evidence. In any event, shear opening mode is, conservatively, treated as mode II in the497

present constitutive model.498

The equivalent one-dimensional interface traction is related to the equivalent one-dimensional dis-499

placement jump with500

µ =
(

1−DK
)

Kλ (A.9)

With increasing displacement jump, the traction increases to a peak value, µo, corresponding to501

the interfacial strength, and then decreases until complete decohesion. To ensure the correct energy502

dissipation during the process of fracture, the total area under the traction-displacement jump curve503

is set equal to the fracture toughness, Gc. Both the interfacial strength and the fracture toughness are504

material parameters that depend on the opening mode-mixity, and, together with the penalty stiffness,505

K, define the shape of the constitutive law.506

The local mode-mixity, B, is defined in terms of the displacement jump as:507

B =
δ2s

δ2I + δ2s
(A.10)

and it is equivalent to the amount of total specific work related to shear mode over the entire total508
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specific work (the reader is referred to Figure 2 for an schematic representation of the total specific509

work of the interface).510

The critical energy release rate, Gc, for a given mode-mixity is determined using the expression511

proposed in [25],512

Gc = GIc + (GIIc − GIc)B
η (A.11)

where subscripts I and II denote the pure modes I and II values, respectively, and η is an experi-513

mentally determined mode interaction parameter. Similarly, the interfacial strength, µo, for a given514

mode-mixity is defined as515

µo =

√

(τIo)
2
+ [(τIIo − τIo)]Bη (A.12)

In terms of the displacement jump, the onset, λo, and propagation, λc, of delamination are related516

to the parameters of the cohesive law:517

λo =
µo

K
, λc =

2Gc

µo
(A.13)

The damage criterion is formulated ensuring damage irreversibility, such that the damage variable518

at the current time tc determined as519

DK = min

(

max

(

0,
λt
c (λ

t − λt
o)

λt (λt
c − λt

o)

)

, 1

)

∀ t ∈ [0, tc] (A.14)

Thus, the mixed-mode displacement jump associated to the current damage state is520

λD =
λoλc

λc −DK (λc − λo)
(A.15)

The stiffness degrading damage variable, DK , is strongly nonlinear in terms of λD. This might521

hinder the performance of the numerical method [21]. Conversely, an energy-based damage variable,522
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which exhibits linear dependency with λD, is defined in [17] and [21] as the specific dissipated energy523

due to fracture over the fracture toughness during degradation (λo < λD < λc):524



































De = 0 for λD ≤ λo

De =
ωd

Gc
for λo ≤ λD ≤ λc

De = 1 for λD ≥ λc

(A.16)

where ωd is, in terms of the displacement jump is given as:525

ωd = max

{

0,
1

2
Kλoλc

λo − λD

λo − λc

}

(A.17)

Finally, the total specific work associated to the current damage state can also be determined in526

terms of the displacement jump:527

ωtot =
1

2
Kλo

(

λc −
(λc − λD)

2

λc − λo

)

(A.18)

Note that, during crack propagation, the µ-λ relation follows the equivalent one-dimensional cohe-528

sive law, i.e.:529

λD = λ (A.19)

and that before damage initiation, the no energy is dissipated yet and the total specific work corre-530

sponds to the specific elastic energy:531

ωtot =
1

2
Kλ2 (A.20)

Appendix A.3. Finite element implementation532

The three dimensional crack propagation problem is discretized here using the FE method. The533

cohesive interface is implemented into an eight-noded zero-thickness element. This interface element534

44



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

is compatible with three dimensional continuum elements that may form the upper and lower part of535

the body containing the singularity.536

The nodal coordinates of the undeformed interface element are arranged in vector C in such a way537

that:538

C =
{

C−,C+
}

(A.21)

being C−

k =
{

X1
1 , X

1
2 , X

1
3 , ..., X

4
1 , X

4
2 , X

4
3

}T
and C+

k =
{

X5
1 , X

5
2 , X

5
3 , ..., X

8
1 , X

8
2 , X

8
3

}T
the global co-539

ordinates of the nodes at the lower and upper interfaces, respectively, where Xn
i is the i-th coordinate540

of the n-th node.541

The nodal displacements, relative to the global coordinates, are arranged in vectorQ similarly to the542

nodal coordinates, i.e. the nodal displacements of the lower interface, Q−

k =
{

u1
1, u

1
2, u

1
3, ..., u

4
1, u

4
2, u

4
3

}T
,543

are numbered first, and the nodal displacements of the upper interface, Q+
k =

{

u5
1, u

5
2, u

5
3, ..., u

8
1, u

8
2, u

8
3

}T
,544

are numbered second,545

Q =
{

Q−,Q+
}

(A.22)

The material coordinates and the displacement field are interpolated within the domain of the546

surface element using isoparametric bilinear shape functions,547

L1 =
1

2
(1− η1) (1− η2) ; L2 =

1

2
(1 + η1) (1− η2)

L3 =
1

2
(1 + η1) (1 + η2) ; L4 =

1

2
(1− η1) (1 + η2)

(A.23)

organized in matrix the shape function matrix, Nik, as follows:548
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Nik =

















L1 0 0 L2 0 0 L3 0 0 L4 0 0

0 L1 0 0 L2 0 0 L3 0 0 L4 0

0 0 L1 0 0 L2 0 0 L3 0 0 L4

















(A.24)

According to Equation (A.1) and making use of equations (A.21)-(A.24), the coordinates of the549

interfacial deformed midsurface are:550

xi =
1

2
Nik

(

C+
k + C−

k +Q+
k +Q−

k

)

(A.25)

The tangential vectors to the interfacial midsurface at (η1, η2), defined in Equation (A.2), are now551

arranged in the Jacobian matrix,552

J = [e′1, e
′
2] where Jiα =

1

2

∂Nik

∂ηα

(

C+
k + C−

k +Q+
k +Q−

k

)

(A.26)

where the subscript α = 1, 2.553

Hence, the unit vectors, ê1, ê2, ê3, corresponding to the direction cosines of the local Cartesian554

coordinate system, can be derived from Jiα following equation (A.3).555

Finally, the transformation matrix, Mim, computes the displacement jump in global coordinates of556

two initially coinciding points from the nodal global displacement vector:557

u+
i − u−

i = MimQm (A.27)

where subscript m runs form 1 to the number of degrees of freedom of the element (m = 1...24) and558

Mim is defined as:559

Mim = [−Nik Nik] (A.28)

Thus, from Equation (A.4), the displacement jump in local coordinates reads:560

46



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

δj = ΘjiMimQm (A.29)

For the sake of simplicity, only the derivation of the displacement jump field is depicted above,561

as the only field needed for the resolution of the criteria presented in section 2.2. See [15] for the562

derivation of the interface element tangent stiffness matrix, K, and internal force vector, intf required563

in the nonlinear solution procedure.564

Appendix B. Development of the criteria to determine the growth driving direction565

The formulation of the three proposed criteria in section 2.2 to determine the growth driving566

direction is synthesized in Table B.5. The equations to solve for Criterion 1 are found by introducing567

equations (B.2) and (B.3) in equations (B.1) and (B.4) and computing the radial slopes of the mixed-568

mode displacement jump, ∂λ
∂ρ , and mode-mixity, ∂B

∂ρ . On the ohter hand, the equations for Criterion569

2 are found by introducing equations (B.6) and (B.7) in equations (B.5) and (B.8). Also the radial570

slopes of the mixed-mode displacement jump, ∂λ
∂ρ , and mode-mixity, ∂B

∂ρ , are required. Finally, for the571

evaluation of Criterion 3 only the slope of the mixed-mode displacement jump in the radial direction,572

∂λ
∂ρ , is needed (see equations (B.9) and (B.10)).573

Moreover, in this work, the criteria are applied to the CZM presented in [15, 17] to exemplify their574

capabilities. In this particular case, the factors FB and Fλ are reduced to equations (B.11) and (B.12),575

for Criterion 1, and reduced to equations (B.13) and (B.14), for Criterion 2. Equations (B.11) and576

(B.12) are obtained by introducing equations (B.15)-(B.24) into equations (B.2) and (B.3). Equations577

(B.13) and (B.14) are obtained by introducing equations (B.15)-(B.19) and (B.25)-(B.29) into equations578

(B.6) and (B.7). Also, the derivation of the radial slopes of the mixed-mode displacement jump and579

mode-mixity, ∂λ
∂ρ and ∂B

∂ρ , after the particular application to the CZM from [15, 17] is detailed in section580

2.3.581
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Criterion ID FB Fλ

1
η (GIIc − GIc)B

(η−1)λ

Kλcλo (λo − λc)
(B.11) 1

λc − λo

(B.12)

2
2η (GIIc − GIc)B

(η−1)λ (λc − λ)

Kλ2
cλo (λo − λc)

(B.13) 2 (λc − λ)

λc (λc − λo)
(B.14)

Table B.6: Expressions for the factors FB and Fλ after application of the CZM formulation presented in [15, 17].
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Dependencies Partial derivatives

λo (µo) ∂λo

∂µo
=

1

K
(B.15)

λc (µo,Gc)

∂λc

∂µo
= −2Gc

µ2
o

(B.16)

∂λc

∂Gc
=

2

µo
(B.17)

µo (B) ∂µo

∂B
=

η
(

τ2IIo − τ2Io
)

Bη−1

2µo
(B.18)

Gc (B) ∂Gc

∂B
= η (GIIc − GIc)B

η−1 (B.19)

ωd (λo, λc, λ)

∂ωd

∂λo
=

1

2
Kλc

λ2
o − 2λcλo + λcλ

(λo − λc)
2 (B.20)

∂ωd

∂λc
=

1

2
Kλ2

o

λo − λ

(λo − λc)
2 (B.21)

∂ωd

∂λ
=

1

2
Kλoλc

1

(λc − λo)
(B.22)

De (ωd,Gc)

∂
(

ωd

Gc

)

∂ωd
=

1

Gc
(B.23)

∂
(

ωd

Gc

)

∂Gc
=

−ωd

G2
c

(B.24)

ωtot (λo, λc, λ)

∂ωtot

∂λo
=

1

2
Kλc (λo − λ)

λ− 2λc + λo

(λo − λc)
2 (B.25)

∂ωtot

∂λc
=

1

2
Kλo

(λo − λ)
2

(λo − λc)
2 (B.26)

∂ωtot

∂λ
= Kλo

λc − λ

λc − λo
(B.27)

ωtot

Gc
(ωtot,Gc)

∂
(

ωtot

Gc

)

∂ωtot
=

1

Gc
(B.28)

∂
(

ωtot

Gc

)

∂Gc
=

−ωtot

G2
c

(B.29)

Table B.7: Dependencies and partial derivatives of the variables in the system using the CZM presented in
[15, 17].
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Highlights: 

 

- The concept of growth driving direction for cohesive zone models is introduced. 

- The growth driving direction is normal to the damage isolines.  

- A point-wise criterion to predict the growth driving direction is formulated. 

- Three different alternatives of the criterion are presented and discussed. 

- The developed criteria can be applied to general 3D structures.  


