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Abstract: The Berkeley Drosophila Transcription Network Project (BDTNP) has de-
veloped a suite of methods that support quantitative, computational analysis of three-
dimensional (3D) gene expression patterns with cellular resolution in early Drosophila
embryos, aiming at a more in-depth understanding of gene regulatory networks. We
describe a new tool, called PointCloudXplore (PCX), that supports effective 3D gene
expression data exploration.

PCX is a visualization tool that uses the established visualization techniques of
multiple views, brushing, and linking to support the analysis of high-dimensional
datasets that describe many genes’ expression. Each of the views in PointCloudXplore
shows a different gene expression data property. Brushing is used to select and em-
phasize data associated with defined subsets of embryo cells within a view. Linking is
used to show in additional views the expression data for a group of cells that have first
been highlighted as a brush in a single view, allowing further data subset properties to
be determined. In PCX, physical views of the data are linked to abstract data displays
such as parallel coordinates. Physical views show the spatial relationships between
different genes’ expression patterns within an embryo. Abstract gene expression data
displays on the other hand allow for an analysis of relationships between different
genes directly in the gene expression space. We discuss on parallel coordinates as one
example abstract data view currently available in PCX. We have developed several ex-
tensions to standard parallel coordinates to facilitate brushing and the visualization of
3D gene expression data.
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1 Introduction

Animal embryos comprise dynamic 3D arrays of cells that express gene products in in-

tricate spatial and temporal patterns that determine the shape of the developing animal.

Biologists have typically analyzed gene expression and morphology by visual inspection

of photomicrographic images. Yet, to understand animal development, we need good

methods to computationally describe gene expression data. To address this challenge,

the BDTNP has developed image analysis methods to extract information about gene ex-

pression from imaging data, using early Drosophila melanogaster embryos as a model.

Confocal image stacks of blastoderm stage Drosophila embryos are converted into matri-

ces specifying the position of nuclei and the expression levels of select genes around each

nucleus, (see Section 3). The resulting new datasets, called PointClouds, promise to be

an invaluable resource for studying development. Since available visualization tools are

insufficient for comparing and analyzing 3D PointCloud data, we have developed Point-

CloudXplore as a tool to help biologists explore these datasets.

During embryogenesis complex regulatory networks are built up as transcription factors

cross-regulate the expression of other transcription factors as well as enzymes, structural

proteins, etc., guiding the development of animals [WKS+03, Law92, SL05]. Since spatial

regulation of gene expression directs animal morphogenesis, a major goal of the BDTNP

is to decipher how spatial patterns of target gene expression are directed by the expression

patterns of the transcription factors that regulate them. Because gene regulation depends

on combinatorial inputs from many transcription factors, simultaneous analysis of many

expression patterns is required. Therefore, PCX includes multiple visualization methods

to allow specific relationships to be seen within highly complex expression data for many

genes.

2 Previous Work

Generally, data can be displayed in multiple formats, or views, that each allow different

relationships between the data components to be observed. The linking of multiple views is

a well-established visualization method [BMMS91]. For example, it has been shown that

linking abstract data displays, such as scatter plots, with physical data views, such as a 3D

model of a catalytic converter, can improve data analysis significantly and provide insight

into complex physical phenomena [KSH04, PKH04, DGH03]. Hauser et al. [HLD02]

proposed integrating parallel coordinates with physical views for a better understanding of

high-dimensional phenomena. Gresh et al. [GRW+00] used parallel coordinates linked

to physical views for visualizing biological data sets describing cardiac measurement and

simulation experiments.

Parallel coordinates were proposed contemporaneously by Inselberg [Ins84] and Weg-

man [Weg90] and are a common information visualization technique for high-dimensional

data sets. In a parallel coordinate view, a data set consists of a set of samples, which in

our case are the cells in a Drosophila embryo. Each sample (cell) has a set of associated

108



quantities, which in our case are the relative expression levels for multiple genes. Expres-

sion data for each gene corresponds to a dimension in the data set, with data for each gene

being represented by one of a series of parallel vertical axes. Each sample (cell) defines a

data line, i.e., a zig-zag line connecting adjacent parallel axes. The intersection point of

the data line with each vertical axis corresponds to the value of the sample for the corre-

sponding dimension (i.e., the relative expression level for the corresponding gene in that

cell).

Many extensions to standard parallel coordinates have been developed to make them more

useful for practical applications. Fua et al. [FWR99] proposed hierarchical parallel co-

ordinates, including several techniques for visualization of selected subsets of the data.

Distortion operations, such as dimensional zooming, for example, support a more detailed

analysis of data subspaces. Color is widely used for improving parallel-coordinate views

since dedicated line coloring eases following the course of data lines. Fua et al. [FWR99]

and Novotny [Nov04] proposed the use of color bands for visualization of brushes in paral-

lel coordinate views. Wegman and Luor [WL97] proposed the application of transparency

and “over-plotting” translucent data points/lines. This method highlights dense areas while

sparse areas fade away, thus revealing inherent data characteristics.

3 Gene Expression Data and Visualization Pipeline

A single PointCloud file contains the x,y,z location of each nucleus in one embryo and

the relative concentration of gene products (mRNA or protein) associated to each nu-

cleus [FLHK+05]. These files are created in the following manner (see Figure 1). Em-

bryos are fixed, stained, and mounted, then imaged using a confocal microscope (Figure 1,

IA). The obtained images are processed to detect all nuclei and measure the associated

gene expression levels (Figure 1, IS). Embryos are typically labeled with one fluorophore

to detect the nuclei, and with two others to detect two gene products. It is not practical

to obtain the expression of more than a few genes in a single embryo, due to the limited

number of different fluorophores that can be distinguished by the microscope, as well as

the difficulty in adding these labels to the embryos. Since it is critical to compare the

relationships between transcription factors and many of their target genes in a common

co-ordinate framework, a set of PointClouds using both morphology and a common refer-

ence gene to determine correspondences (Figure 1, ER) are registered into Virtual Point-

Clouds [FLHK+05]. The resulting Virtual PointCloud contains averaged expression levels

for many genes mapped on the nuclei of one of the embryos in the set. PCX, see Figure 1,

can be used for visualization of both single-embryo PointClouds and Virtual PointClouds.

4 Physical Views

We have developed several physical views (models) of the embryo to support analysis of

spatial gene expression patterns. In all these Embryo Views, each cell is represented by
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Figure 1: Gene Expression Data and Visualization Pipeline: PCX is used to visualize data from
single embryo PointClouds and Virtual PointClouds.

one 3D graphical object, positioned in space according to the physical position of the cell

it represents. Gene expression values are visualized using color and also by height, in the

case of views using gene Expression Surfaces (Section 4.3), . During the developmental

stage that the BDTNP is currently investigating — the blastoderm — all cells studied by

the BDTNP are located on a surface in shape very similar to an ellipsoid. Orthographic

projection is used to display views from fixed angles that display expression and morphol-

ogy along the three coordinate axes (Section 4.2). In another view, a cylindrical projection

is used to map cells onto a plane to gain a global overview of the entire embryo (Sec-

tion 4.2). Cells of interest can be selected in any of these views to create a so called brush,

just by drawing on the surface of the embryo. The selected cells that comprise the brush

are highlighted using color. The user can interact with all embryo views via interactive

zooming, panning, and rotation.

4.1 3D Physical View

In all our Embryo Views, each cell is represented by a polygon on the embryo surface,

using the Eigencrust method [KSO04] for constructing an approximation of the Delauny

triangulation of the surface of a PointCloud. The dual mesh of the triangulation is a tes-

selation similar to a Voronoi diagram, defined on the embryo surface [dBvKOS00]. Each

cell is represented by a Voronoi polygon with exactly one original data point in its cen-

ter. The polygon sizes depend on the cells’ distribution in the embryo, whereas the shape

of the polygons has no direct meaning. This results in a 3D model of the embryo which

provides an intuitive way to look at the data (see Figure 2).

Each polygon is colored according to expression values measured in the cell it represents.

The color mapping is based on the HSV color model [FDFH95]. The basic color hue, H,
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Figure 2: 2D Orthographic View (left); Unrolled View (right).

of each gene is defined by the user. Gene expression values are mapped linearly to color

brightness V. Saturation of color is always one, unless specified differently. For each gene,

a minimum and maximum value can be defined independently by the user. All expression

values below the minimum are mapped to black, and all values above the maximum are

mapped to full intensity.

4.2 2D Physical Views

To allow one to obtain a much quick overview of all cells several 2D visualizations of

the embryo have been developed. As shown in Figure 2 (left), by centering the main

coordinate system within the 3D embryo model, orthographic projection can be used to

create three 2D views of the embryo showing the dorsal/ventral, anterior/posterior, and

the left/right sides of the embryo. These Orthographic Views provide an overview of all

cells while preserving the shape of the embryo as a frame of reference for a biologist.

The curvature of the embryo leads to high densities of cells on the projection borders, but

provides an impression of depth and shape. A general overview of all cells in an embryo

can be obtained by switching between the three different Orthographic Views.

For a scientist who wants an instant overview of the whole blastoderm expression pattern,

the Unrolled View uses a cylindrical projection to map all surface cells of the embryo

onto a rectangular plane (see Figure 2 (right)). All cells are first projected onto a cylinder,

which is unrolled in a plane. In this view, a complete overview of all cells is provided

while the relative positions of cells on the anterior/posterior axis and around the embryo

are preserved. Due to of the ellipsoid like shape of the embryo, cells in the anterior and

posterior of the embryo are distorted by the projection in order to fill the rectangule. Shape

and size of cells in the middle part of the embryo are less affected by distortion effects.
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All 2D physical views are projections of the original 3D embryo model. To visualize gene

expression values and brushes the same color mapping is used as in the 3D physical view

(see Section 4.1).

4.3 Expression Surfaces

To support a more quantitative analysis of gene expression data, Expression Surfaces can

be defined above either the Orthographic or the Unrolled Views. Each Expression Surface

displays data for one gene. The xy positions of Expression Surface points are determined

by the positions of cells in the underlying views, whereas the height of an Expression

Surface is determined by the expression values measured for the gene it represents. Spa-

tial relationships between several genes’ expression patterns can be viewed at once using

multiple Expression Surfaces. For example, Figure 3 shows the quantitative relationship

between eve and ftz. The expression levels of these two genes are spatially largely non-

overlapping and change relative to one another along each body axis.

Figure 3: Gene expression surfaces for eve (light gray) and ftz (dark gray).

5 3D Parallel Coordinates

A limitation of all described Embryo Views is that when more than four or five genes

whose expression overlaps are displayed at the same time, it is often not possible to dis-

tinguish each gene’s expression. Therefore, we have adapted parallel coordinates to create

several Parallel Coordinate Views, in which relationships between many genes’ expres-

sion can be visualized. See Section 2 for an introduction to parallel coordinates. Further,

we have linked Parallel Coordinate Views and Embryo Views, ensuring that all brushes

defined in the Embryo Views can be displayed in the Parallel Coordinate Views and vice

versa. In general, parallel coordinates introduce several other visulaization problems, such

as occlusion and cluttering. To reduce these problems, several extensions to standard par-
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Figure 4: Expression level of four different genes visualized in 2D Parallel Coordinates (left) and
3D Parallel Coordinates (right).

allel coordinates have been developed, which have already been described in more detail

in [OGS+06]. By varying color and transparency of data lines it is much easier to gain

a fast overview and to detect important features and clusters in the data. Line trace high-

lighting and animation are additional tools which allow one to follow the course of single

data lines through the graph. To allow for detailed analysis of brushes the dimensional

zooming technique is used. Brushes define a subspace of the entire gene expression space.

By scaling the selected ranges to the entire length of the parallel axis it is possible to anal-

yse details in a user-defined subspace. Statistical properties of brushes such as selected

minimum- and maximum values, average expression values, and standard deviations can

be analyzed using brush bands (see Fig 5(d)).

Information about the spatial relationships between different genes’ expression patterns is

essential for the analysis of regulatory networks. Information about relative cell positions

along the two main axes of the embryo, anterior/posterior (AP) and dorsal/ventral (DV),

can be derived from the Unrolled View described in Section 4.2. To display this informa-

tion in Parallel Coordinate Views, the coordinate axes have been extruded into the third

dimension (Figure 4 (left)). Data lines are ordered from back-to-front according to cell

positions along either the AP axis or the DV circumference. Along any given data line,

the positional information is constant, such that data lines do not intersect each other in

this third dimension. The 3D coordinate axes are drawn highly transparent with active

z-buffering to prevent the addition of colors of overlapping parallel axes. This strategy

guarantees a complete overview of the entire plot, with no details hidden. In addition, the

outer frame of the coordinate axes are drawn with full opacity, which makes it easier to

determine the position of the coordinate axis in 3D space.

By using this 3D visualization, spatial data dimensions are clearly separated from gene

expression dimensions of the data, and the basic character of the spatial gene expression

patterns in one dimension is preserved. For example, if data lines are sorted according

to the position of cells along the AP axis, then the stripe patterns of genes like eve or ftz

are visible in the plot (Figure 4 (left)). This 3D view also reveals what is not obvious
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(a) (b) (c) (d)

Figure 5: Defining brushes in Parallel Coordinate View. In (a) a brush is defined to exclude all cells
expressing eve at more than 20%. In (b) this brush is further refined to also exclude all cells express-
ing ftz at a value greater than 20%. (c) shows a 3D Parallel Coordinate View of the brush defined
in (b) , where cell locations along the A/P axis of the embryo are shown in the third dimension. (d)
Shows a broad color band display of the brush selected in (b), indicating the minimum, maximum,
mean, and standard deviations for expression values for each gene.

in the 2D views shown in Figure 4: Cells expressing both eve and ftz at low levels are

mainly at the anterior and posterior of the embryo, and a subset of these cells is found in

the principal areas where hkb and tll are highly expressed. Even if tens of additional gene

dimensions were added to the 3D view, these and doubtless other relationships could still

be visualized.

Brushing can be executed in parallel coordinates using two sliders attached to each axis

to define ranges in gene expression. In 3D parallel coordinates, two additional sliders are

available to allow one to select cells also according to their relative AP- or DV position

within the embryo. The physical views and the parallel coordinates are synchronized, i.e.,

if a brush is edited in one view, then the other view is also updated. If, for example, a

brush is changed in parallel coordinates then the user can view in parallel how the spatial

pattern the brush defines alters in any physical view. In Figure 5, an example for brushing

in parallel coordinates is shown. One can see how additional relationships are revealed

in 3D parallel coordinates where the brush splits of into two characteristic regions in the

anterior and posterior of the embryo (see Figure 5(c)). Visualizing the brush just as broad

color band reveals basic statistical properties of the brush (see Figure 5(d)).

6 Conclusions and Future Work

We have introduced PointCloudXplore and described a subset of its views and functional-

ity. Dedicated physical views of the Drosophila melanogaster blastoderm (termed Embryo

Views) make the comparison and analysis of spatial gene expression patterns possible. Ex-

pression Surfaces provide an effective and intuitive way for quantitative analysis of gene

expression data. To support analysis of the relationships between genes directly in gene

expression space, we have integrated parallel coordinates into the system (Parallel Coor-
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dinate Views). Parallel Coordinate Views have been extended to a 3D rendering, making

it possible to present spatial and gene expression data dimensions in one plot, while both

dimension types are visually separated and basic spatial properties of gene expression

patterns are preserved. All views are linked via brushing. PointCloudXplore makes inter-

active analysis of 3D expression data possible for the first time.

We plan to integrate automatic data analysis tools into PCX. Unsupervised clustering has

been used previously to analyze microarray data and can also be applied to 3D gene ex-

pression data. Singular value decomposition (SVD) and other techniques have also been

used to analyze gene expression and similar data. For analysis of 3D gene expression data,

these techniques need to be modified, and new ones developed. Integration of such tools

should further improve the utility of PCX.
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