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Abstract

Unlike images which are represented in regular dense

grids, 3D point clouds are irregular and unordered, hence

applying convolution on them can be difficult. In this paper,

we extend the dynamic filter to a new convolution opera-

tion, named PointConv. PointConv can be applied on point

clouds to build deep convolutional networks. We treat con-

volution kernels as nonlinear functions of the local coordi-

nates of 3D points comprised of weight and density func-

tions. With respect to a given point, the weight functions

are learned with multi-layer perceptron networks and den-

sity functions through kernel density estimation. The most

important contribution of this work is a novel reformula-

tion proposed for efficiently computing the weight functions,

which allowed us to dramatically scale up the network and

significantly improve its performance. The learned convo-

lution kernel can be used to compute translation-invariant

and permutation-invariant convolution on any point set in

the 3D space. Besides, PointConv can also be used as de-

convolution operators to propagate features from a subsam-

pled point cloud back to its original resolution. Experiments

on ModelNet40, ShapeNet, and ScanNet show that deep

convolutional neural networks built on PointConv are able

to achieve state-of-the-art on challenging semantic segmen-

tation benchmarks on 3D point clouds. Besides, our exper-

iments converting CIFAR-10 into a point cloud showed that

networks built on PointConv can match the performance of

convolutional networks in 2D images of a similar structure.

1. Introduction

In recent robotics, autonomous driving and vir-

tual/augmented reality applications, sensors that can di-

rectly obtain 3D data are increasingly ubiquitous. This in-

cludes indoor sensors such as laser scanners, time-of-flight

sensors such as the Kinect, RealSense or Google Tango,

structural light sensors such as those on the iPhoneX, as

well as outdoor sensors such as LIDAR and MEMS sensors.

The capability to directly measure 3D data is invaluable in

those applications as depth information could remove a lot

of the segmentation ambiguities from 2D imagery, and sur-

face normals provide important cues of the scene geometry.

In 2D images, convolutional neural networks (CNNs)

have fundamentally changed the landscape of computer vi-

sion by greatly improving results on almost every vision

task. CNNs succeed by utilizing translation invariance, so

that the same set of convolutional filters can be applied on

all the locations in an image, reducing the number of param-

eters and improving generalization. We would hope such

successes to be transferred to the analysis of 3D data. How-

ever, 3D data often come in the form of point clouds, which

is a set of unordered 3D points, with or without additional

features (e.g. RGB) on each point. Point clouds are un-

ordered and do not conform to the regular lattice grids as

in 2D images. It is difficult to apply conventional CNNs on

such unordered input. An alternative approach is to treat the

3D space as a volumetric grid, but in this case, the volume

will be sparse and CNNs will be computationally intractable

on high-resolution volumes.

In this paper, we propose a novel approach to perform

convolution on 3D point clouds with non-uniform sampling.

We note that the convolution operation can be viewed as a

discrete approximation of a continuous convolution opera-

tor. In 3D space, we can treat the weights of this convolution

operator to be a (Lipschitz) continuous function of the local

3D point coordinates with respect to a reference 3D point.

The continuous function can be approximated by a multi-

layer perceptron(MLP), as done in [33] and [16]. But these

algorithms did not take non-uniform sampling into account.

We propose to use an inverse density scale to re-weight the

continuous function learned by MLP, which corresponds to

the Monte Carlo approximation of the continuous convo-

lution. We call such an operation PointConv. PointConv

involves taking the positions of point clouds as input and

learning an MLP to approximate a weight function, as well

as applying a inverse density scale on the learned weights

to compensate the non-uniform sampling.

The naive implementation of PointConv is memory inef-

ficient when the channel size of the output features is very

large and hence hard to train and scale up to large networks.

In order to reduce the memory consumption of PointConv,
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we introduce an approach which is able to greatly increase

the memory efficiency using a reformulation that changes

the summation order. The new structure is capable of build-

ing multi-layer deep convolutional networks on 3D point

clouds that have similar capabilities as 2D CNN on raster

images. We can achieve the same translation-invariance as

in 2D convolutional networks, and the invariance to permu-

tations on the ordering of points in a point cloud.

In segmentation tasks, the ability to transfer informa-

tion gradually from coarse layers to finer layer is important.

Hence, a deconvolution operation [24] that can fully lever-

age the feature from a coarse layer to a finer layer is vital for

the performance. Most state-of-the-art algorithms [26, 28]

are unable to perform deconvolution, which restricts their

performance on segmentation tasks. Since our PointConv

is a full approximation of convolution, it is natural to ex-

tend PointConv to a PointDeconv, which can fully untilize

the information in coarse layers and propagate to finer lay-

ers. By using PointConv and PointDeconv, we can achieve

improved performance on semantic segmentation tasks.

The contributions of our work are:

• We propose PointConv, a density re-weighted convolu-

tion, which is able to fully approximate the 3D continuous

convolution on any set of 3D points.

• We design a memory efficient approach to implement

PointConv using a change of summation order technique,

most importantly, allowing it to scale up to modern CNN

levels.

• We extend our PointConv to a deconvolution ver-

sion(PointDeconv) to achieve better segmentation results.

Experiments show that our deep network built on Point-

Conv is highly competitive against other point cloud deep

networks and achieve state-of-the-art results in part segmen-

tation [2] and indoor semantic segmentation benchmarks

[5]. In order to demonstrate that our PointConv is indeed

a true convolution operation, we also evaluate PointConv

on CIFAR-10 by converting all pixels in a 2D image into a

point cloud with 2D coordinates along with RGB features

on each point. Experiments on CIFAR-10 show that the

classification accuracy of our PointConv is comparable with

a image CNN of a similar structure, far outperforming pre-

vious best results achieved by point cloud networks. As a

basic approach to CNN on 3D data, we believe there could

be many potential applications of PointConv.

2. Related Work

Most work on 3D CNN networks convert 3D point

clouds to 2D images or 3D volumetric grids. [36, 27] pro-

posed to project 3D point clouds or shapes into several 2D

images, and then apply 2D convolutional networks for clas-

sification. Although these approaches have achieved dom-

inating performances on shape classification and retrieval

tasks, it is nontrivial to extend them to high-resolution scene

segmentation tasks [5]. [43, 23, 27] represent another type

of approach that voxelizes point clouds into volumetric

grids by quantization and then apply 3D convolution net-

works. This type of approach is constrained by its 3D vol-

umetric resolution and the computational cost of 3D convo-

lutions. [31] improves the resolution significantly by using

a set of unbalanced octrees where each leaf node stores a

pooled feature representation. Kd-networks[18] computes

the representations in a feed-forward bottom-up fashion on

a Kd-tree with certain size. In a Kd-network, the input num-

ber of points in the point cloud needs to be the same during

training and testing, which does not hold for many tasks.

SSCN [7] utilizes the convolution based on a volumetric

grid with novel speed/memory improvements by consider-

ing CNN outputs only on input points. However, if the

point cloud is sampled sparsely, especially when the sam-

pling rate is uneven, for the sparsely sampled regions on

may not be able to find any neighbor within the volumetric

convolutional filter, which could cause significant issues.

Some latest work [30, 26, 28, 35, 37, 13, 9, 39] di-

rectly take raw point clouds as input without converting

them to other formats. [26, 30] proposed to use shared

multi-layer perceptrons and max pooling layers to obtain

features of point clouds. Because the max pooling lay-

ers are applied across all the points in point cloud, it is

difficult to capture local features. PointNet++ [28] im-

proved the network in PointNet [26] by adding a hierar-

chical structure. The hierarchical structure is similar to

the one used in image CNNs, which extracts features start-

ing from small local regions and gradually extending to

larger regions. The key structure used in both PointNet

[26] and PointNet++ [28] to aggregate features from dif-

ferent points is max-pooling. However, max-pooling layers

keep only the strongest activation on features across a local

or global region, which may lose some useful detailed in-

formation for segmentation tasks. [35] presents a method

that projects the input features of the point clouds onto a

high-dimensional lattice, and then apply bilateral convolu-

tion on the high-dimensional lattice to aggregate features,

which called “SPLATNet”. The SPLATNet [35] is able to

give comparable results as PointNet++ [28]. The tangent

convolution [37] projects local surface geometry on a tan-

gent plane around every point, which gives a set of planar-

convolutionable tangent images. The pointwise convolution

[13] queries nearest neighbors on the fly and bins the points

into kernel cells, then applies kernel weights on the binned

cells to convolve on point clouds. Flex-convolution [9] in-

troduced a generalization of the conventional convolution

layer along with an efficient GPU implementation, which

can applied to point clouds with millions of points. FeaSt-

Net [39] proposes to generalize conventional convolution

layer to 3D point clouds by adding a soft-assignment ma-

trix. PointCNN [21] is to learn a χ−transformation from
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the input points and then use it to simultaneously weight

and permute the input features associated with the points.

Comparing to our approach, PointCNN is unable to achieve

permutation-invariance, which is desired for point clouds.

The work [33, 16, 41, 12, 40] and [44] propose to learn

continuous filters to perform convolution. [16] proposed

that the weight filter in 2d convolution can be treated as a

continuous function, which can be approximated by MLPs.

[33] firstly introduced the idea into 3d graph structure. [40]

extended the method in [33] to segmentation tasks and pro-

posed an efficient version, but their efficient version can

only approximate depth-wise convolution instead of real

convolution. Dynamic graph CNN [41] proposed a method

that can dynamically updating the graph. [44] presents a

special family of filters to approximate the weight function

instead of using MLPs. [12] proposed a Monta Carlo ap-

proximation of 3D convolution by taking density into ac-

count. Our work differ from those in 3 aspects. Most impor-

tantly, our efficient version of a real convolution was never

proposed in prior work. Also, we utilize density differently

than [12], and we propose a deconvolution operator based

on PointConv to perform semantic segmentation.

3. PointConv

We propose a convolution operation which extends tradi-

tional image convolution into the point cloud called Point-

Conv. PointConv is an extension to the Monte Carlo ap-

proximation of the 3D continuous convolution operator. For

each convolutional filter, it uses MLP to approximate a

weight function, then applies a density scale to re-weight

the learned weight functions. Sec. 3.1 introduces the struc-

ture of the PointConv layer. Sec. 3.2 introduces PointDe-

conv, using PointConv layers to deconvolve features.

3.1. Convolution on 3D Point Clouds

Formally, convolution is defined as in Eq.(1) for func-

tions f(x) and g(x) of a d-dimensional vector x.

(f ∗ g)(x) =

∫∫

τ∈Rd

f(τ )g(x+ τ )dτ (1)

Images can be interpreted as 2D discrete functions,

which are usually represented as grid-shaped matrices. In

CNN, each filter is restricted to a small local region, such as

3 × 3, 5 × 5, etc. Within each local region, the relative po-

sitions between different pixels are always fixed, as shown

in Figure 1(a). And the filter can be easily discretized to

a summation with a real-valued weight for each location

within the local region.

A point cloud is represented as a set of 3D points

{pi|i = 1, ..., n}, where each point contains a position vec-

tor (x, y, z) and its features such as color, surface normal,

etc. Different from images, point clouds have more flexible

(a)
(c)

(b)

Figure 1. Image grid vs. point cloud. (a) shows a 5× 5 local re-

gion in a image, where the distance between points can only attain

very few discrete values; (b) and (c) show that in different local

regions within a point cloud, the order and the relative positions

can be very different.

Figure 2. 2D weight function for PointConv. (a) is a learned

continuous weight function; (b) and (c) are different local regions

in a 2d point cloud. Given 2d points, we can obtain the weights at

particular locations. The same applies to 3D points. The regular

discrete 2D convolution can be viewed as a discretization of the

continuous convolution weight function, as in (d).

shapes. The coordinates p = (x, y, z) ∈ R
3 of a point in

a point cloud are not located on a fixed grid but can take

an arbitrary continuous value. Thus, the relative positions

of different points are diverse in each local region. Conven-

tional discretized convolution filters on raster images cannot

be applied directly on the point cloud. Fig. 1 shows the dif-

ference between a local region in a image and a point cloud.

To make convolution compatible with point sets, we pro-

pose a permutation-invariant convolution operation, called

PointConv. Our idea is to first go back to the continuous

version of 3D convolution as:

Conv(W,F )xyz =∫∫∫

(δx,δy,δz)∈G

W (δx, δy, δz)F (x+ δx, y + δy, z + δz)dδxδyδz

(2)
where F (x + δx, y + δy, z + δz) is the feature of a point

in the local region G centered around point p = (x, y, z).
A point cloud can be viewed as a non-uniform sample from

the continuous R
3 space. In each local region, (δx, δy, δz)

could be any possible position in the local region. We define

PointConv as the following:

PointConv(S,W,F )xyz =∑
(δx,δy,δz)∈G

S(δx, δy, δz)W (δx, δy, δz)F (x+ δx, y + δy, z + δz)

(3)

where S(δx, δy, δz) is the inverse density at point

(δx, δy, δz). S(δx, δy, δz) is required because the point

cloud can be sampled very non-uniformly1. Intuitively, the

1To see this, note the Monte Carlo estimate with a biased sample:
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number of points in the local region varies across the whole

point cloud, as in Figure 2 (b) and (c). Besides, in Figure

2 (c), points p3, p5, p6, p7, p8, p9, p10 are very close to one

another, hence the contribution of each should be smaller.

Our main idea is to approximate the weight function

W (δx, δy, δz) by multi-layer perceptrons from the 3D coor-

dinates (δx, δy, δz) and and the inverse density S(δx, δy, δz)
by a kernelized density estimation [38] followed by a

nonlinear transform implemented with MLP. Because the

weight function highly depends on the distribution of input

point cloud, we call the entire convolution operation Point-

Conv. [16, 33] considered the approximation of the weight

function but did not consider the approximation of the den-

sity scale, hence is not a full approximation of the contin-

uous convolution operator. Our nonlinear transform on the

density is also different from [12].

The weights of the MLP in PointConv are shared across

all the points in order to maintain the permutation invari-

ance. To compute the inverse density scale S(δx, δy, δz),
we first estimate the density of each point in a point cloud

offline using kernel density estimation (KDE), then feed the

density into a MLP for a 1D nonlinear transform. The rea-

son to use a nonlinear transform is for the network to decide

adaptively whether to use the density estimates.

Figure 3 shows the PointConv operation on a K-point

local region. Let Cin, Cout be the number of channels for

the input feature and output feature, k, cin, cout are the in-

dices for k-th neighbor, cin-th channel for input feature and

cout-th channel for output feature. The inputs are the 3D

local positions of the points Plocal ∈ R
K×3, which can be

computed by subtracting the coordinate of the centroid of

the local region and the feature Fin ∈ R
K×Cin of the local

region. We use 1 × 1 convolution to implement the MLP.

The output of the weight function is W ∈ R
K×(Cin×Cout).

So, W(k, cin) ∈ R
Cout is a vector. The density scale is

S ∈ R
K . After convolution, the feature Fin from a local

region with K neighbour points are encoded into the output

feature Fout ∈ R
Cout , as shown in Eq.(4).

Fout =
K∑

k=1

Cin∑

cin=1

S(k)W(k, cin)Fin(k, cin) (4)

PointConv learns a network to approximate the continu-

ous weights for convolution. For each input point, we can

compute the weights from the MLPs using its relative coor-

dinates. Figure 2(a) shows an example continuous weight

function for convolution. With a point cloud input as a dis-

cretization of the continuous input, a discrete convolution

can be computed by Fig. 2(b) to extract the local features,

which would work (with potentially different approxima-

tion accuracy) for different point cloud samples (Figure 2(b-

∫
f(x)dx =

∫ f(x)
p(x)

p(x)dx ≈

∑
i
f(xi)
p(xi)

, for xi ∼ p(x). Point clouds

are often biased samples because many sensors have difficulties measuring

points near plane boundaries, hence needing this reweighting

d)), including a regular grid (Figure 2(d)). Note that in a

raster image, the relative positions in local region are fixed.

Then PointConv (which takes only relative positions as in-

put for the weight functions) would output the same weight

and density across the whole image, where it reduces to the

conventional discretized convolution.

In order to aggregate the features in the entire point set,

we use a hierarchical structure that is able to combine de-

tailed small region features into abstract features that cover

a larger spatial extent. The hierarchical structure we use

is composed by several feature encoding modules, which is

similar to the one used in PointNet++ [28]. Each module

is roughly equivalent to one layer in a convolutional CNN.

The key layers in each feature encoding module are the sam-

pling layer, the grouping layer and the PointConv. More

details can be found in the supplementary material.

The drawback of this approach is that each filter needs

to be approximated by a network, hence is very inefficient.

In Sec.4, we propose an efficient approach to implement

PointConv.

3.2. Feature Propagation Using Deconvolution

For the segmentation task, we need point-wise predic-

tion. In order to obtain features for all the input points,

an approach to propagate features from a subsampled point

cloud to a denser one is needed. PointNet++ [28] proposes

to use distance-based interpolation to propagate features,

which is reasonable due to local correlations inside a local

region. However, this does not take full advantage of the

deconvolution operation that captures local correlations of

propagated information from the coarse level. We propose

to add a PointDeconv layer based on the PointConv, as a

deconvolution operation to address this issue.

As shown in Fig. 4, PointDeconv is composed of two

parts: interpolation and PointConv. Firstly, we employ

an interpolation to propagate coarse features from previ-

ous layer. Following [28], the interpolation is conducted

by linearly interpolating features from the 3 nearest points.

Then, the interpolated features are concatenated with fea-

tures from the convolutional layers with the same resolu-

tion using skip links. After concatenation, we apply Point-

Conv on the concatenated features to obtain the final decon-

volution output, similar to the image deconvolution layer

[24]. We apply this process until the features of all the input

points have been propagated back to the original resolution.

4. Efficient PointConv

The naive implementation of the PointConv is memory

consuming and inefficient. Different from [33], we propose

a novel reformulation to implement PointConv by reduc-

ing it to two standard operations: matrix multiplication and

2d convolution. This novel trick not only takes advantage

of the parallel computing of GPU, but also can be easily
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Figure 3. PointConv. (a) shows a local region with the coordinates of points transformed from global into local coordinates, p is the

coordinates of points, and f is the corresponding feature; (b) shows the process of conducting PointConv on one local region centered

around one point (p0, f0). The input features come form the K nearest neighbors centered at (p0, f0), and the output feature is Fout at p0.

𝑛 × 3

𝑛 × 𝑐
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Figure 4. Feature encoding and propagation. This figure shows

how the features are encoded and propagated in the network for

a m classes segmentation task. n is the number of points in each

layer, c is the channel size for the features. Best viewed in color.

implemented using main-stream deep learning frameworks.

Because the inverse density scale does not have such mem-

ory issues, the following discussion mainly focuses on the

weight function.

Specifically, let B be the mini-batch size in the training

stage, N be the number of points in a point cloud, K be

the number of points in each local region, Cin be the num-

ber of input channels, and Cout be the number of output

channels. For a point cloud, each local region shares the

same weight functions which can be learned using MLP.

However, weights computed from the weight functions at

different points are different. The size of the weights filters

generated by the MLP is B×N ×K× (Cin×Cout). Sup-

pose B = 32, N = 512, K = 32, Cin = 64, Cout = 64,

and the filters are stored with single point precision. Then,

the memory size for the filters is 8GB for only one layer.

The network would be hard to train with such high mem-

ory consumption. [33] used very small network with few

filters which significantly degraded its performance. To re-

solve this problem, we propose a memory efficient version

of PointConv based on the following lemma:

Lemma 1 The PointConv is equivalent to the following for-

mula: Fout = Conv1×1(H, (S · Fin)
T ⊗M) where M ∈

R
K×Cmid is the input to the last layer in the MLP for com-

puting the weight function, and H ∈ R
Cmid×(Cin×Cout) is

the weights of the last layer in the same MLP, Conv1×1 is

1× 1 convolution.

Proof: Generally, the last layer of the MLP is a linear layer.

In one local region, let F̃in = S · Fin ∈ R
K×Cin and

rewrite the MLP as a 1 × 1 convolution so that the out-

put of the weight function is W = Conv1×1(H,M) ∈
R

K×(Cin×Cout). Let k is the index of the points in a lo-

cal region, and cin, cmid, cout are the indices of the in-

put, middle layer and the filter output, respectively. Then

W(k, cin) ∈ R
Cout is a vector from W. And the

H(cmid, cin) ∈ R
Cout is a vector from H. According to

Eq.(4), the PointConv can be expressed in Eq.(5).

Fout =

K−1∑

k=0

Cin−1∑

cin=0

(W(k, cin)F̃in(k, cin)) (5)

Let’s explore Eq.(5) in a more detailed manner. The out-

put of the weight function can be expressed as:

W(k, cin) =

Cmid−1∑

cmid=0

(M(k, cmid)H(cmid, cin)) (6)

Substituting Eq.(6) into Eq.(5).

Fout =

K−1∑

k=0

Cin−1∑

cin=0

(F̃in(k, cin)

Cmid−1∑

cmid=0

(M(k, cmid)H(cmid, cin)))

=

Cin−1∑

cin=0

Cmid−1∑

cmid=0

(H(cmid, cin)

K−1∑

k=0

(F̃in(k, cin)M(k, cmid)))

= Conv1×1(H, F̃
T
in
M) (7)

Thus, the original PointConv can be equivalently re-

duced to a matrix multiplication and a 1 × 1 convolution.

Figure 5 shows the efficient version of PointConv.

In this method, instead of storing the generated filters in

memory, we divide the weights filters into two parts: the

intermediate result M and the convolution kernel H . As we

can see, the memory consumption reduces to Cmid

K×Cout

of the

original version. With the same input setup as the Figure 3

and let Cmid = 32, the memory consumption is 0.1255GB,

which is about 1/64 of the original PointConv.
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Figure 5. Efficient PointConv. The memory efficient version of PointConv on one local region with K points.

Table 1. ModelNet40 Classification Accuracy

Method Input Accuracy(%)

Subvolume [27] voxels 89.2

ECC [33] graphs 87.4

Kd-Network [18] 1024 points 91.8

PointNet [26] 1024 points 89.2

PointNet++ [28] 1024 points 90.2

PointNet++ [28] 5000 points+normal 91.9

SpiderCNN [44] 1024 points+normal 92.4

PointConv 1024 points+normal 92.5

5. Experiments

In order to evaluate our new PointConv network, we con-

duct experiments on several widely used datasets, Model-

Net40 [43], ShapeNet [2] and ScanNet [5]. In order to

demonstrate that our PointConv is able to fully approxi-

mate conventional convolution, we also report results on the

CIFAR-10 dataset [19]. In all experiments, we implement

the models with Tensorflow on a GTX 1080Ti GPU using

the Adam optimizer. ReLU and batch normalization are ap-

plied after each layer except the last fully connected layer.

5.1. Classification on ModelNet40

ModelNet40 contains 12,311 CAD models from 40 man-

made object categories. We use the official split with 9,843

shapes for training and 2,468 for testing. Following the con-

figuration in [26], we use the source code for PointNet [26]

to sample 1,024 points uniformly and compute the normal

vectors from the mesh models. For fair comparison, we

employ the same data augmentation strategy as [26] by ran-

domly rotating the point cloud along the z-axis and jittering

each point by a Gaussian noise with zero mean and 0.02

standard deviation. In Table 1, PointConv achieved state-

of-the-art performance among methods based on 3D input.

ECC[33] which is similar to our approach, cannot scale to a

large network, which limited their performance.

Figure 6. Part segmentation results. For each pair of objects, the

left one is the ground truth, the right one is predicted by PointConv.

Best viewed in color.

Table 2. Results on ShapeNet part dataset. Class avg. is the

mean IoU averaged across all object categories, and inctance avg.

is the mean IoU across all objects.

class avg. instance avg.

SSCNN [45] 82.0 84.7

Kd-net [18] 77.4 82.3

PointNet [26] 80.4 83.7

PointNet++[28] 81.9 85.1

SpiderCNN [44] 82.4 85.3

SPLATNet3D [35] 82.0 84.6

SSCN [7] - 86.0

PointConv 82.8 85.7

5.2. ShapeNet Part Segmentation

Part segmentation is a challenging fine-grained 3D

recognition task. The ShapeNet dataset contains 16,881

shapes from 16 classes and 50 parts in total. The input of the

task is shapes represented by a point cloud, and the goal is to

assign a part category label to each point in the point cloud.

The category label for each shape is given. We follow the

experiment setup in most related work [28, 35, 44, 18]. It is

common to narrow the possible part labels to the ones spe-

cific to the given object category by using the known input

3D object category. And we also compute the normal di-

rection on each point as input features to better describe the

underlying shape. Figure 6 visualizes some sample results.
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We use point intersection-over-union(IoU) to evaluate

our PointConv network, same as PointNet++ [28], SPLAT-

Net [35] and some other part segmentation algorithms

[45, 18, 44, 7]. The results are shown in Table 2. Point-

Conv obtains a class average mIoU of 82.8% and an in-

stance average mIoU of 85.7%, which are on par with the

state-of-the-art algorithms which only take point clouds as

input. According to [35], the SPLATNet2D−3D also takes

rendered 2D views as input. Since our PointConv only takes

3D point clouds as input, for fair comparison, we only com-

pare our result with the SPLATNet3D in [35].

5.3. Semantic Scene Labeling

Datasets such as ModelNet40 [43] and ShapeNet [2] are

man-made synthetic datasets. As we can see in the pre-

vious section, most state-of-the-art algorithms are able to

obtain relatively good results on such datasets. To evaluate

the capability of our approach in processing realistic point

clouds, which contains a lot of noisy data, we evaluate our

PointConv on semantic scene segmentation using the Scan-

Net dataset. The task is to predict semantic object labels

on each 3D point given indoor scenes represented by point

clouds. The newest version of ScanNet [5] includes up-

dated annotations for all 1513 ScanNet scans and 100 new

test scans with all semantic labels publicly unavailable and

we submitted our results to the official evaluation server to

compare against other approaches.

We compare our algorithm with Tangent Convolutions

[37], SPLAT Net [35], PointNet++ [28] and ScanNet [5].

All the algorithm mentioned reported their results on the

new ScanNet dataset to the benchmark, and the inputs of

the algorithms only uses 3D coordinates data plus RGB. In

our experiments, we generate training samples by randomly

sample 3m × 1.5m × 1.5m cubes from the indoor rooms,

and evaluate using a sliding window over the entire scan.

We report intersection over union (IoU) as our main mea-

sures, which is the same as the benchmark. We visualize

some example semantic segmentation results in Figure 7.

The mIoU is reported in Table 3. The mIoU is the mean of

IoU across all the categories. Our PointConv outperforms

other algorithm by a significant margin (Table 3). The total

running time of PointConv for training one epoch on Scan-

Net on one GTX1080Ti is around 170s, and the evaluation

time with 8 × 8192 points is around 0.5s.

5.4. Classification on CIFAR10

In Sec.3.1, we claimed that PointConv can be equiva-

lent with 2D CNN. If this is true, then the performance of

a network based on PointConv should be equivalent to that

of a raster image CNN. In order to verify that, we use the

CIFAR-10 dataset as a comparison benchmark. We treat

each pixel in CIFAR-10 as a 2D point with xy coordinates

and RGB features. The point clouds are scaled onto the unit

Input Scene Ground Truth PointConv

Figure 7. Examples of semantic scene labeling. The images from

left to right are the input scenes, the ground truth segmentation,

and the prediction from PointConv. For better visualization, the

point clouds are converted into mesh format. Best viewed in color.

Table 3. Semantic Scene Segmentation results on ScanNet

Method mIoU(%)

ScanNet [5] 30.6

PointNet++ [28] 33.9

SPLAT Net [35] 39.3

Tangent Convolutions [37] 43.8

PointConv 55.6

Table 4. CIFAR-10 Classification Accuracy

Accuracy(%)

Image Convolution 88.52

AlexNet [20] 89.00

VGG19 [34] 93.60

PointCNN [21] 80.22

SpiderCNN [44] 77.97

PointConv(5-layer) 89.13

PointConv(VGG19) 93.19

ball before training and testing.

Experiments show that PointConv on CIFAR-10 in-

deed has the same learning capacities as a 2D CNN. Ta-

ble 4 shows the results of image convolution and Point-

Conv. From the table, we can see that the accuracy of

PointCNN[21] on CIFAR-10 is only 80.22%, which is

much worse than image CNN. However, for 5-layer net-

works, the network using PointConv is able to achieve

89.13%, which is similar to the network using image con-

volution. And, PointConv with VGG19 [34] structure can

also achieve on par accuracy comparing with VGG19.

6. Ablation Experiments and Visualizations

In this section, we conduct additional experiments to

evaluate the effectiveness of each aspect of PointConv. Be-

sides the ablation study on the structure of the PointConv,

we also give an in-depth breakdown on the performance
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of PointConv on the ScanNet dataset. Finally, we provide

some learned filters for visualization.

6.1. The Structure of MLP

In this section, we design experiments to evaluate the

choice of MLP parameters in PointConv. For fast evalua-

tion, we generate a subset from the ScanNet dataset as a

classification task. Each example in the subset is randomly

sampled from the original scene scans with 1,024 points.

There are 20 different scene types for the ScanNet dataset.

We empirically sweep over different choices of Cmid and

different number of layers of the MLP in PointConv. Each

experiment was ran for 3 random trials.The results can be

find in supplementary. From the results, we find that larger

Cmid does not necessarily give better classification results.

And the different number of layers in MLP does not give

much difference in classification results. Since Cmid is

linearly correlated with the memory consumption of each

PointConv layer, this results shows that we can choose a

reasonably small Cmid for greater memory efficiency.

6.2. Inverse Density Scale

In this section, we study the effectiveness of the inverse

density scale S. We choose ScanNet as our evaluation task

since the point clouds in ScanNet are generated from real

indoor scenes. We follow the standard training/validation

split provided by the authors. We train the network with and

without the inverse density scale as described in Sec. 3.1,

respectively. Table 5 shows the results. As we can see,

PointConv with inverse density scale performs better than

the one without by about 1%, which proves the effective-

ness of inverse density scale. In our experiments, we ob-

serve that inverse density scale tend to be more effective in

layers closer to the input. In deep layers, the MLP tends to

learn to diminish the effect of the density scale. One possi-

ble reason is that with farthest point sampling algorithm as

our sub-sampling algorithm, the point cloud in deeper layer

tend to be more uniformly distributed. And as shown in Ta-

ble 5, directly applying density without using the nonlinear

transformation gives worse result comparing with the one

without density on ScanNet dataset, which shows that the

nonlinear transform is able to learn the inverse density scale

in the dataset.

6.3. Ablation Studies on ScanNet

As one can see, our PointConv outperforms other ap-

proaches with a large margin. Since we are only allowed

to submit one final result of our algorithm to the bench-

mark server of ScanNet, we perform more ablation stud-

ies for PointConv using the public validation set provide by

[5]. For the segmentation task, we train our PointConv with

8,192 points randomly sampled from a 3m×1.5m×1.5m,

and evaluate the model with exhaustively choose all points

Figure 8. Learned Convolutional Filters. The convolution filters

learned by the MLPs on ShapeNet.For better visualization, we take

all weights filters from z = 0 plane.

in the 3m× 1.5m× 1.5m cube in a sliding window fashion

through the xy-plane with different stride sizes. For robust-

ness, we use a majority vote from 5 windows in all of our

experiments. From Table 5, we can see that smaller stride

size is able to improve the segmentation results, and the

RGB information on ScanNet does not seem to significantly

improve the segmentation results. Even without these addi-

tional improvements, PointConv still outperforms baselines

by a large margin.

Table 5. Ablation study on ScanNet. With and without RGB in-

formation, inverse density scale and using different stride size of

sliding window.

Stride mIoU mIoU

Input Size(m) mIoU No Density Density

(no MLP)

xyz

0.5 61.0 60.3 60.1

1.0 59.0 58.2 57.7

1.5 58.2 56.9 57.3

xyz+RGB

0.5 60.8 58.9 -

1.0 58.6 56.7 -

1.5 57.5 56.1 -

6.4. Visualization

Figure 8 visualizes the learned filters from the MLPs in

our PointConv. In order to better visualize the filters, we

sample the learned functions through a plane z = 0. From

the Figure 8, we can see some patterns in the learned con-

tinuous filters.

7. Conclusion

In this work, we proposed a novel approach to per-

form convolution operation on 3D point clouds, called

PointConv. PointConv trains multi-layer perceptrons on

local point coordinates to approximate continuous weight

and density functions in convolutional filters, which makes

it naturally permutation-invariant and translation-invariant.

This allows deep convolutional networks to be built di-

rectly on 3D point clouds. We proposed an efficient imple-

mentation of it which greatly improved its scalability. We

demonstrated its strong performance on multiple challeng-

ing benchmarks and capability of matching the performance

of a grid-based convolutional network in 2D images. In fu-

ture work, we would like to adopt more mainstream image

convolution network architectures into point cloud data us-

ing PointConv, such as ResNet and DenseNet. The code can

be found here: https://github.com/DylanWusee/pointconv.
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