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Pointed Drawings of Planar Graphs
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Abstract

We study the problem how to draw a planar graph such
that every vertex is incident to an angle greater than π.
In general a straight-line embedding cannot guarantee
this property. We present algorithms which construct
such drawings with either tangent-continuous biarcs or
quadratic Bézier curves (parabolic arcs), even if the
positions of the vertices are predefined by a given plane
straight-line embedding of the graph. Moreover, the
graph can be embedded with circular arcs if the vertices
can be placed arbitrarily. The topic is related to non-
crossing drawings of multigraphs and vertex labeling.

1 Introduction

According to Fáry’s theorem [3], every (simple) planar
graph can be realized as plane straight-line embedding
in the Euclidean plane. There is a vast literature dealing
with the question of efficiently finding embeddings that
fulfill certain (optimality) criteria. De Fraysseix, Pach
and Pollack [4] and Schnyder [10] proved that every pla-
nar graph with n vertices can be drawn on a grid of size
(n−1)× (n−1). The famous Koebe-Andreev-Thurston
circle packing theorem [1, 6, 11] states that every planar
graph can be embedded in a way such that its vertices
correspond to interior disjoint disks, which touch if and
only if the corresponding vertices are connected with an
edge, see also [7, 12].

Straight line embeddings forbid multiple edges
between two vertices and loops. Thus, to draw multi-
graphs and graphs with loops, one has to allow more
general edge shapes. One common way is to represent
edges by polygonal lines, but another possibility is to
choose smooth curves (for example the simplest type of
curved curves, circular arcs).

A natural question is whether every planar multi-
graph can be drawn with circular arcs. Drawing parallel
edges as circular arcs is no problem: an edge in a
non-crossing straight-line drawing can be perturbed to
any number of close-by circular arcs. Loops, however,
require more space: The only circular arc between a ver-
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tex and itself is a full circle through this vertex; thus, an
angle of π incident to this vertex must be free of other
emanating arcs. (This angle is then sufficient for any
number of parallel loops.) This naturally leads to the
question of pointed drawings of simple graphs without
loops. In a pointed drawing of a graph, the incident
edges of each vertex emanate within an open half plane.

Another potential application comes from drawing
vertex labels. If the edges incident to a vertex point
in all directions, it is hard to place a label close to its
vertex. Thus it is good to have some angular space
without emanating edges.

Haas et al. [5] showed that a planar graph has a
plane pointed drawing with straight lines if and only
if it is minimally rigid or a subgraph of a minimally
rigid graph. A simple example of a graph that has no
plane pointed embedding is the complete graph with
four vertices.

We show that, for any given plane straight-line
embedding of a planar graph, there exists a pointed
plane embedding of the graph where the vertices stay
where they are, and the edges are simple smooth curves
of certain types: either quadratic Bézier curves, i. e.,
arcs of a parabola, or biarcs, i. e., curves consisting of
two circular arcs that join in a tangent-continuous way.
To the contrary, we observe that this is not possible
when using only circular arcs as edges.

Further we prove that every planar graph has a
plane pointed drawing with circular arcs as edges (for
a non-fixed embedding of the vertices). Moreover, with
tangent-continuous biarcs as edges, there exists a nice
plane embedding such that for every point its incident
edges all emanate in the very same direction (all sharing
a common tangent). For quadratic Bézier curves as
edges, the angle of edges emanating from a point can
be made arbitrary small.

2 Definitions and Notation

Throughout this paper, let G = (V,E) be a simple
planar graph without loops, with finite vertex set V and
finite set of edges E. In this paper we consider several
types of plane embeddings F(G), all with some type of
differentiable curves as edges.

For an embedding F(G) we denote the embedding of
vertex v ∈ V by F(v), and the embedding of an edge
e ∈ E by F(e).
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An embedding gives us a cyclic order of arcs leaving
a vertex. The angle between two consecutive arcs is
defined as the angle between the corresponding tangent
rays.

v2

v1

Figure 1: Embedding with a non-pointed vertex v1 and
a pointed vertex v2.

Definition 1 (Pointedness) A vertex in the embed-
ding F(G) is called pointed if it is incident to an angle
greater than π. If all vertices of a drawing are pointed
we call the drawing pointed.

Definition 2 (ε-Pointedness) Let ε > 0. A vertex in
the embedding F(G) is called ε-pointed if it is incident
to an angle greater than 2π − ε. If all vertices of a
drawing are ε-pointed we call the drawing ε-pointed.

For the special case of straight-line embeddings,
this definition is identical to the classic definition of
pointedness, see [8, 9].

3 Starting from a Plane Straight-Line Embedding

Theorem 1 Let a planar graph G = (V,E) and a
straight-line embedding Fs(G) be given. There exists a
pointed embedding Fq(G) with quadratic Bézier curves
as edges such that Fq(v) = Fs(v) for all v ∈ V .

Moreover, for every v ∈ V the cyclic order of the
edges incident to v in Fs(G) is the same as in Fq(G).

Proof. Assume that in Fs(G), no two vertices have
identical x-coordinates or y-coordinates. We build up
Fq(G) from bottom to top. To this end we order the
vertices by y-coordinates s.t. y(vi) < y(vj), ∀i < j. We
start by embedding all edges that are incident to v1

as straight lines. As Fs(v1) lies on the convex hull of
Fs(G), Fq(v1) is pointed. Now when processing vertex
vi ∈ V, i ≥ 2, all edges that connect vi to a vertex be-
low vi in Fs(G) are already embedded. All these edges
emanate from Fs(vi) strictly below the horizontal line
h through Fs(vi). The remaining edges, which point
upwards, emanate either to the left or to the right. We
process the edges on each side separately.

Suppose there are k edges that point upward and to
the right. We process these edges from bottom to top,
i. e., in counter-clockwise order e1, . . . , ek. We want to
embed e1 = vivj as a quadratic Bézier curve emanating

i−3v
i−2v

1q

q2vi

e1

e2

vi−1

Figure 2: Construction of a plane pointed embedding
where the edges are quadratic Bézier curves.

from Fs(vi) below h. To this end we choose a narrow
triangle Fs(vi)Fs(vj)q1, as shown in Figure 2.

The triangle must contain no vertices, and the point
q1 must lie below h, but above all already embedded
edges Fq(vlvi) at Fq(vi). We embed e1 as the Bézier
curve from Fs(vi) to Fs(vj) that uses this triangle as a
control polygon. The tangent directions at the endpoint
are the edges of the triangle, and thus, Fq(ei) emanates
from Fq(vi) below h. For embedding an edge ei, 2 ≤
i ≤ k, we proceed in a similar way. We place the control
point qi below h and on Fq(ei−1), thus ensuring that
Fq(ei−1) and Fq(ei) do not cross, and that Fq(ei) still
emanates from Fq(vi) below h.

The edges pointing left are treated in an analogous
manner. �

Theorem 2 For every graph G = (V,E) with a given
plane straight-line embedding Fs(G), there exists a
pointed embedding Fb(G) with tangent-continuous biarcs
as edges such that Fb(v) = Fs(v) for all v ∈ V .

Moreover, for every v ∈ V the cyclic order of the
edges incident to v in Fs(G) is the same as in Fq(G).

Proof. Our construction will mimic the proof of
Theorem 1. Again, we build up the embedding Fb

from bottom to top, considering the not yet embedded
incident edges for each vertex vi ∈ V, i ≥ 2 in the
same order. Like before, consider a narrow triangle

vi

vj

q

Figure 3: Embedding of an edge as a tangent-continuous
biarc in a triangle.

Fs(vi)Fs(vj)q for each edge vivj that we want to em-
bed. Instead of a quadratic Bézier curve, we take a
circular arc that is tangent to Fs(vi)q at vi and to
qFs(vj), and complete the edge with a straight line
along qFs(vj), see Figure 3. (When speaking of biarcs or
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more generally of circular arcs, we always allow stright
line segments as special cases.) This construction
assumes that Fs(vi)q is shorter than qFs(vj). Other-
wise, a symmetric construction works.

With the same arguments as in the proof of
Theorem 1, this leads to a plane, pointed embedding
Fb(G). �

Theorem 3 There are plane graphs G = (V,E) and
straight-line embeddings Fs(G), for which there are no
pointed embeddings Fc(G) with circular arcs as edges
such that Fc(v) = Fs(v) for all v ∈ V .

Figure 4: Starfish example of a plane embedding that
cannot be drawn pointed with circular arcs as edges.

Proof. Consider the plane straight-line graph shown
in Figure 4. The five points close to the center restrict
the circular arcs that are used for the edges incident to
the center. Since the arms of the star are thin enough,
there is no way to make the central vertex pointed. To
generalize this example to a larger number of points,
simply give the starfish more arms. �

4 Starting from an Abstract Planar Graph

In the last section we restricted ourselves to a predefined
placement of the points, determined by a given plane
straight-line embedding. If the location of the vertices
can be chosen arbitrarily, we get the following easy con-
sequence of Theorem 1.

Theorem 4 For any ε > 0 and any planar graph
G, there exists an ε-pointed embedding Fq(G) with
quadratic Bézier curves as edges.

Proof. Consider an arbitrary straight-line embedding
Fs(G). In the proof of Theorem 1 we showed a
construction for a pointed embedding F ′

q(G), in which
all vertices point either to the bottom or to the top. By
squeezing the embedding Fs(G) in direction of the x-
axis, the control triangles, which determine the tangent
directions, approach the vertical direction arbitrarily
closely. Thus, we obtain an embedding Fq(G) where
for every vertex v ∈ V , all edges emanate within an
angle of ε. �

By the same arguments, it is possible to apply the
construction in the proof of Theorem 2 to obtain an
ε-pointed embedding Fb(G) with biarcs. The disadvan-
tage of this approach is that the obtained embeddings
tend to have a bad aspect ratio. Therefore, in the
following we present a stronger and nicer result for
biarcs.

Theorem 5 Every planar graph G = (V,E) has a
pointed embedding Fb(G) with tangent-continuous biarcs
as edges such that Fb(G) is ε-pointed for any ε > 0.
That is, for all vertices v ∈ V all edges incident to v
share a common tangent at Fb(v) in Fb(G). The direc-
tions of these tangents can be specified independently for
each vertex.

Proof. According to the Koebe-Andreev-Thurston
circle packing theorem [1, 6, 11], there exists a straight-
line embedding Fs(G) such that the vertices of v ∈ V
are embedded as the center points of disjoint disks.
Moreover, two such disks touch if and only if the corre-
sponding vertices are connected with an edge in G.

We start by choosing such an embedding for the
vertices. We place every vertex v ∈ V on an arbitrary
point of the boundary of the disk corresponding to v in
Fs(G), avoiding touching points of the disk.
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Figure 5: Construction of a tangent-continuous biarc
from two touching disks Di, Dj .

For any edge e = vivj ∈ E, let pij be the touching
point of their corresponding disks Di, Dj , see Figure 5.
We draw a circular arc from vi to pij inside Di, as part
of the circle through vi and pij that is orthogonal to Di,
and we continue inside Dj to vj , on an arc orthogonal
to Dj . The arcs have a common tangent at the point pij

where they meet, orthogonal to the common tangent of
Di and Dj at this point. Since the arcs inside each disk
Di share a common tangent at vi, they don’t cross, and
we have a plane embedding. �

The above proof leaves some freedom to place the
vertices on the boundaries of the related disks. If in the
embedding Fs(G) no two disk centers have the same x-
coordinate, we can place each vertex on the bottommost
point of the boundary of its disk. We then obtain a
drawing where all vertices are pointed downwards, see
Figure 6 for an example. By this, both arcs of the edges
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bend in the same direction. (There are no S-shaped
biarcs.) Another possibility is to place each vertex vi ∈

Figure 6: Pointed embedding with biarcs as edges,
constructed from a circle packing.

V farthest away from any touching point of its disk Di.
In this way we can guarantee the radius of any circular
arc inside Di to be at least Ri · tan π

2ki
, where Ri is the

radius of Di, and ki ≥ 2 is the degree of vi. See the
full paper for more details. Finally, let us remark that
the freedom in placing the vertices allows us to choose
a direction of pointedness for each vertex separately.

Theorem 6 Every planar graph has a pointed embed-
ding with circular arcs as edges.

The basic idea of this embedding is based on the
canonical representation for plane graphs [4], which is a
labeling of the vertices of G meeting several conditions.
Using this labeling, we build up a flat embedding of G
where all vertices are pointed to the bottom. For the
proof refer to the full version of the paper.

A different way to find a pointed embedding utilizes
the framework established in [5]. We can transform the
abstract graph G into a so-called combinatorial pointed
pseudo-triangulation by subdividing at most n−3 edges.
With help of the techniques introduced in [5, Theorem
5.1] we obtain a pointed polygonal embedding of the
modified graph. The drawing has one bend for every
subdivided edge. The bends can be easily replaced by
biarcs or quadratic Bézier curves.

Theorem 7 Every planar graph with n vertices has a
pointed embedding with either quadratic Bézier curves,
biarcs, or polygonal chains consisting of two line seg-
ments, which uses at most n − 3 non-straight edges.
Moreover, for each inner vertex, one can arbitrarily
choose a face in which it is pointed. For the case of
Bézier curves and polygonal chains, it is also possible
to prescribe the shape of each face up to affine transfor-
mations.

The complete proof will be given in the full version of the
paper. In general it is not possible to draw a pointed
embedding with a larger number of straight lines. In
this sense, Theorem 7 is optimal.

5 Conclusion

We have shown that every plane straight-line embedding
can be redrawn pointed with identically embedded ver-
tices, and either tangent-continuous biarcs or quadratic
Bézier curves as edges. We can even ensure that all
edges emanate from the vertices within an arbitrary
small angle. These drawings are probably not satisfac-
tory from an aesthetic point of view. Our embedding
with biarcs, where all incident edges share a com-
mon tangent, is nicer and may be more useful for
applications. Still, as the construction we use relies
on circle packings (which to compute is considered a
hard problem), it is an interesting question whether
Theorem 5 can also be proven without using circle
packings. Further, it remains open whether there exist
aesthetically nice embeddings also for Bézier curves, or
even for circular arcs.
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