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Abstract

The problem of rare and unknown words

is an important issue that can potentially

effect the performance of many NLP sys-

tems, including traditional count-based

and deep learning models. We propose a

novel way to deal with the rare and unseen

words for the neural network models us-

ing attention. Our model uses two softmax

layers in order to predict the next word in

conditional language models: one predicts

the location of a word in the source sen-

tence, and the other predicts a word in the

shortlist vocabulary. At each timestep, the

decision of which softmax layer to use is

adaptively made by an MLP which is con-

ditioned on the context. We motivate this

work from a psychological evidence that

humans naturally have a tendency to point

towards objects in the context or the envi-

ronment when the name of an object is not

known. Using our proposed model, we ob-

serve improvements on two tasks, neural

machine translation on the Europarl En-

glish to French parallel corpora and text

summarization on the Gigaword dataset.

1 Introduction

Words are the basic input/output units in most of

the NLP systems, and thus the ability to cover a

large number of words is a key to building a ro-

bust NLP system. However, considering that (i)

the number of all words in a language including

named entities is very large and that (ii) language

itself is an evolving system (people create new

words), this can be a challenging problem.

A common approach followed by the recent

neural network based NLP systems is to use a

softmax output layer where each of the output di-

mension corresponds to a word in a predefined

word-shortlist. Because computing high dimen-

sional softmax is computationally expensive, in

practice the shortlist is limited to have only top-

K most frequent words in the training corpus. All

other words are then replaced by a special word,

called the unknown word (UNK).

The shortlist approach has two fundamental

problems. The first problem, which is known as

the rare word problem, is that some of the words

in the shortlist occur less frequently in the train-

ing set and thus are difficult to learn a good repre-

sentation, resulting in poor performance. Second,

it is obvious that we can lose some important in-

formation by mapping different words to a single

dummy token UNK. Even if we have a very large

shortlist including all unique words in the training

set, it does not necessarily improve the test perfor-

mance, because there still exists a chance to see an

unknown word at test time. This is known as the

unknown word problem. In addition, increasing

the shortlist size mostly leads to increasing rare

words due to Zipf’s Law.

These two problems are particularly critical

in language understanding tasks such as factoid

question answering (Bordes et al., 2015) where the

words that we are interested in are often named en-

tities which are usually unknown or rare words.

In a similar situation, where we have a limited

information on how to call an object of interest, it

seems that humans (and also some primates) have

an efficient behavioral mechanism of drawing at-

tention to the object: pointing (Matthews et al.,

2012). Pointing makes it possible to deliver in-

formation and to associate context to a particular

object without knowing how to call it. In partic-

ular, human infants use pointing as a fundamental

communication tool (Tomasello et al., 2007).

In this paper, inspired by the pointing behav-

ior of humans and recent advances in the atten-
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tion mechanism (Bahdanau et al., 2014) and the

pointer networks (Vinyals et al., 2015), we pro-

pose a novel method to deal with the rare or un-

known word problem. The basic idea is that we

can see many NLP problems as a task of predict-

ing target text given context text, where some of

the target words appear in the context as well. We

observe that in this case we can make the model

learn to point a word in the context and copy it to

the target text, as well as when to point. For exam-

ple, in machine translation, we can see the source

sentence as the context, and the target sentence as

what we need to predict. In Figure 1, we show

an example depiction of how words can be copied

from source to target in machine translation. Al-

though the source and target languages are differ-

ent, many of the words such as named entities are

usually represented by the same characters in both

languages, making it possible to copy. Similarly,

in text summarization, it is natural to use some

words in the original text in the summarized text

as well.

Specifically, to predict a target word at each

timestep, our model first determines the source of

the word generation, that is, whether to take one

from a predefined shortlist or to copy one from

the context. For the former, we apply the typical

softmax operation, and for the latter, we use the

attention mechanism to obtain the pointing soft-

max probability over the context words and pick

the one of high probability. The model learns this

decision so as to use the pointing only when the

context includes a word that can be copied to the

target. This way, our model can predict even the

words which are not in the shortlist, as long as

it appears in the context. Although some of the

words still need to be labeled as UNK, i.e., if it is

neither in the shortlist nor in the context, in ex-

periments we show that this learning when and

where to point improves the performance in ma-

chine translation and text summarization.

Guillaume et Cesar ont une voiture bleue a Lausanne.

Guillaume and Cesar have a blue car in Lausanne.

Copy Copy Copy

French:

English:

Figure 1: An example of how copying can happen

for machine translation. Common words that ap-

pear both in source and the target can directly be

copied from input to source. The rest of the un-

known in the target can be copied from the input

after being translated with a dictionary.

The rest of the paper is organized as follows. In

the next section, we review the related works in-

cluding pointer networks and previous approaches

to the rare/unknown problem. In Section 3, we

review the neural machine translation with atten-

tion mechanism which is the baseline in our ex-

periments. Then, in Section 4, we propose our

method dealing with the rare/unknown word prob-

lem, called the Pointer Softmax (PS). The exper-

imental results are provided in the Section 5 and

we conclude our work in Section 6.

2 Related Work

The attention-based pointing mechanism is intro-

duced first in the pointer networks (Vinyals et al.,

2015). In the pointer networks, the output space of

the target sequence is constrained to be the obser-

vations in the input sequence (not the input space).

Instead of having a fixed dimension softmax out-

put layer, softmax outputs of varying dimension is

dynamically computed for each input sequence in

such a way to maximize the attention probability

of the target input. However, its applicability is

rather limited because, unlike our model, there is

no option to choose whether to point or not; it al-

ways points. In this sense, we can see the pointer

networks as a special case of our model where we

always choose to point a context word.

Several approaches have been proposed towards

solving the rare words/unknown words problem,

which can be broadly divided into three categories.

The first category of the approaches focuses on

improving the computation speed of the softmax

output so that it can maintain a very large vocabu-

lary. Because this only increases the shortlist size,

it helps to mitigate the unknown word problem,

but still suffers from the rare word problem. The

hierarchical softmax (Morin and Bengio, 2005),

importance sampling (Bengio and Senécal, 2008;

Jean et al., 2014), and the noise contrastive esti-

mation (Gutmann and Hyvärinen, 2012; Mnih and

Kavukcuoglu, 2013) methods are in the class.

The second category, where our proposed

method also belongs to, uses information from the

context. Notable works are (Luong et al., 2015)

and (Hermann et al., 2015). In particular, ap-

plying to machine translation task, (Luong et al.,

2015) learns to point some words in source sen-

tence and copy it to the target sentence, similarly

to our method. However, it does not use atten-

tion mechanism, and by having fixed sized soft-
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max output over the relative pointing range (e.g.,

-7, . . . , -1, 0, 1, . . . , 7), their model (the Posi-

tional All model) has a limitation in applying to

more general problems such as summarization and

question answering, where, unlike machine trans-

lation, the length of the context and the pointing

locations in the context can vary dramatically. In

question answering setting, (Hermann et al., 2015)

have used placeholders on named entities in the

context. However, the placeholder id is directly

predicted in the softmax output rather than predict-

ing its location in the context.

The third category of the approaches changes

the unit of input/output itself from words to a

smaller resolution such as characters (Graves,

2013) or bytecodes (Sennrich et al., 2015; Gillick

et al., 2015). Although this approach has the

main advantage that it could suffer less from the

rare/unknown word problem, the training usually

becomes much harder because the length of se-

quences significantly increases.

Simultaneously to our work, (Gu et al., 2016)

and (Cheng and Lapata, 2016) proposed models

that learn to copy from source to target and both

papers analyzed their models on summarization

tasks.

3 Neural Machine Translation Model

with Attention

As the baseline neural machine translation sys-

tem, we use the model proposed by (Bahdanau et

al., 2014) that learns to (soft-)align and translate

jointly. We refer this model as NMT.

The encoder of the NMT is a bidirectional

RNN (Schuster and Paliwal, 1997). The forward

RNN reads input sequence x = (x1, . . . , xT )
in left-to-right direction, resulting in a sequence

of hidden states (
−→
h 1, . . . ,

−→
h T ). The backward

RNN reads x in the reversed direction and outputs

(
←−
h 1, . . . ,

←−
h T ). We then concatenate the hidden

states of forward and backward RNNs at each time

step and obtain a sequence of annotation vectors

(h1, . . . ,hT ) where hj =
[−→
h j ||
←−
h j

]

. Here, ||

denotes the concatenation operator. Thus, each an-

notation vector hj encodes information about the

j-th word with respect to all the other surrounding

words in both directions.

In the decoder, we usually use gated recur-

rent unit (GRU) (Cho et al., 2014; Chung et al.,

2014). Specifically, at each time-step t, the soft-

alignment mechanism first computes the relevance

weight etj which determines the contribution of

annotation vector hj to the t-th target word. We

use a non-linear mapping f (e.g., MLP) which

takes hj , the previous decoder’s hidden state st−1

and the previous output yt−1 as input:

etj = f(st−1,hj , yt−1).

The outputs etj are then normalized as follows:

ltj =
exp(etj)

∑T
k=1 exp(etk)

. (1)

We call ltj as the relevance score, or the align-

ment weight, of the j-th annotation vector.

The relevance scores are used to get the context

vector ct of the t-th target word in the translation:

ct =
T

∑

j=1

ltjhj ,

The hidden state of the decoder st is computed

based on the previous hidden state st−1, the con-

text vector ct and the output word of the previous

time-step yt−1:

st = fr(st−1, yt−1, ct), (2)

where fr is GRU.

We use a deep output layer (Pascanu et al.,

2013) to compute the conditional distribution over

words:

p(yt = a|y<t,x) ∝

exp
(

ψa
(Wo,bo)fo(st, yt−1, ct)

)

,
(3)

where W is a learned weight matrix and b is a

bias of the output layer. fo is a single-layer feed-

forward neural network. ψ(Wo,bo)(·) is a function

that performs an affine transformation on its input.

And the superscript a in ψa indicates the a-th col-

umn vector of ψ.

The whole model, including both the encoder

and the decoder, is jointly trained to maximize the

(conditional) log-likelihood of target sequences

given input sequences, where the training corpus

is a set of (xn,yn)’s. Figure 2 illustrates the ar-

chitecture of the NMT.

4 The Pointer Softmax

In this section, we introduce our method, called

as the pointer softmax (PS), to deal with the rare

and unknown words. The pointer softmax can be
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lt

wt

st-1

ct

  ... st

h0 hk...

  ...st+1

Encoder

Figure 2: A depiction of neural machine transla-

tion architecture with attention. At each timestep,

the model generates the attention weights lt. We

use lt the encoder’s hidden state to obtain the con-

text ct. The decoder uses ct to predict a vector of

probabilities for the words wt by using softmax.

applicable approach to many NLP tasks, because

it resolves the limitations about unknown words

for neural networks. It can be used in parallel with

other existing techniques such as the large vocabu-

lary trick (Jean et al., 2014). Our model learns two

key abilities jointly to make the pointing mech-

anism applicable in more general settings: (i) to

predict whether it is required to use the pointing

or not at each time step and (ii) to point any lo-

cation of the context sequence whose length can

vary widely over examples. Note that the pointer

networks (Vinyals et al., 2015) are in lack of the

ability (i), and the ability (ii) is not achieved in the

models by (Luong et al., 2015).

To achieve this, our model uses two softmax

output layers, the shortlist softmax and the loca-

tion softmax. The shortlist softmax is the same

as the typical softmax output layer where each

dimension corresponds a word in the predefined

word shortlist. The location softmax is a pointer

network where each of the output dimension cor-

responds to the location of a word in the context

sequence. Thus, the output dimension of the loca-

tion softmax varies according to the length of the

given context sequence.

At each time-step, if the model decides to use

the shortlist softmax, we generate a word wt from

the shortlist. Otherwise, if it is expected that the

context sequence contains a word which needs to

be generated at the time step, we obtain the loca-

tion of the context word lt from the location soft-

max. The key to making this possible is decid-

ing when to use the shortlist softmax or the lo-

cation softmax at each time step. In order to ac-

complish this, we introduce a switching network

to the model. The switching network, which is

a multilayer perceptron in our experiments, takes

the representation of the context sequence (similar

to the input annotation in NMT) and the previous

hidden state of the output RNN as its input. It out-

puts a binary variable zt which indicates whether

to use the shortlist softmax (when zt = 1) or the

location softmax (when zt = 0). Note that if the

word that is expected to be generated at each time-

step is neither in the shortlist nor in the context se-

quence, the switching network selects the shortlist

softmax, and then the shortlist softmax predicts

UNK. The details of the pointer softmax model

can be seen in Figure 3 as well.

lt

wt

st-1

ct

p 1 - p

ft

  ... st

h0 hk...Encoder

Figure 3: A simple depiction of the Pointer Soft-

max(PS) architecture. At each timestep as usuallt,

ct and the wt for the words over the limited vocab-

ulary(shortlist) is being generated. We have an ad-

ditional switching variable zt that decides whether

to use wt or copy the word from the input via lt.

The final word prediction will be performed via

pointer softmax ft which can either copy the word

from the source or predict the word from the short-

list vocabulary.

More specifically, our goal is to maximize the

probability of observing the target word sequence

y = (y1, y2, . . . , yTy) and the word generation

source z = (z1, z2, . . . , zTy), given the context se-

quence x = (x1, x2, . . . , xTx):

pθ(y, z|x) =

Ty
∏

t=1

pθ(yt, zt|y<t, z<t,x). (4)
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Note that the word observation yt can be either

a word wt from the shortlist softmax or a loca-

tion lt from the location softmax, depending on

the switching variable zt.

Considering this, we can factorize the above

equation further

p(y, z|x) =
∏

t∈Tw

p(wt, zt|(y, z)<t,x)×

∏

t′∈Tl

p(lt′ , zt′ |(y, z)<t′ ,x). (5)

Here, Tw is a set of time steps where zt = 1, and Tl
is a set of time-steps where zt = 0. And, Tw∪Tl =
{1, 2, . . . , Ty} and Tw ∩ Tl = ∅. We denote all

previous observations at step t by (y, z)<t. Note

also that ht = f((y, z)<t).

Then, the joint probabilities inside each product

can be further factorized as follows:

p(wt, zt|(y, z)<t) = p(wt|zt = 1, (y, z)<t)×

p(zt = 1|(y, z)<t) (6)

p(lt, zt|(y, z)<t) = p(lt|zt = 0, (y, z)<t)×

p(zt = 0|(y, z)<t) (7)

here, we omitted x which is conditioned on all

probabilities in the above.

The switch probability is modeled as a multi-

layer perceptron with binary output:

p(zt = 1|(y, z)<t,x) = σ(f(x,ht−1; θ)) (8)

p(zt = 0|(y, z)<t,x) = 1− σ(f(x,ht−1; θ)). (9)

And p(wt|zt = 1, (y, z)<t,x) is the shortlist soft-

max and p(lt|zt = 0, (y, z)<t,x) is the location

softmax which can be a pointer network. σ(·)
stands for the sigmoid function, σ(x) = 1

exp(-x)+1 .

GivenN such context and target sequence pairs,

our training objective is to maximize the following

log likelihood w.r.t. the model parameter θ

arg max
θ

1

N

N
∑

n=1

log pθ(yn, zn|xn). (10)

4.1 Basic Components of the Pointer Softmax

In this section, we discuss practical details of the

three fundamental components of the pointer soft-

max. The interactions between these components

and the model is depicted in Figure 3.

Location Softmax lt : The location of the word

to copy from source text to the target is predicted

by the location softmax lt. The location soft-

max outputs the conditional probability distribu-

tion p(lt|zt = 0, (y, z)<t,x). For models using the

attention mechanism such as NMT, we can reuse

the probability distributions over the source words

in order to predict the location of the word to point.

Otherwise we can simply use a pointer network of

the model to predict the location.

Shortlist Softmax wt : The subset of the words

in the vocabulary V is being predicted by the

shortlist softmax wt.

Switching network dt : The switching network

dt is an MLP with sigmoid output function that

outputs a scalar probability of switching between

lt and wt, and represents the conditional prob-

ability distribution p(zt|(y, z)<t,x). For NMT

model, we condition the MLP that outputs the

switching probability on the representation of the

context of the source text ct and the hidden state

of the decoder ht. Note that, during the training,

dt is observed, and thus we do not have to sample.

The output of the pointer softmax, ft will be the

concatenation of the the two vectors, dt ×wt and

(1− dt)× lt.

At test time, we compute Eqn. (6) and (7) for

all shortlist word wt and all location lt, and pick

the word or location of the highest probability.

5 Experiments

In this section, we provide our main experimen-

tal results with the pointer softmax on machine

translation and summarization tasks. In our ex-

periments, we have used the same baseline model

and just replaced the softmax layer with pointer

softmax layer at the language model. We use the

Adadelta (Zeiler, 2012) learning rule for the train-

ing of NMT models. The code for pointer softmax

model is available at https://github.com/

caglar/pointer_softmax.

5.1 The Rarest Word Detection

We construct a synthetic task and run some prelim-

inary experiments in order to compare the results

with the pointer softmax and the regular softmax’s

performance for the rare-words. The vocabulary

size of our synthetic task is |V |= 600 using se-

quences of length 7. The words in the sequences

are sampled according to their unigram distribu-
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tion which has the form of a geometric distribu-

tion. The task is to predict the least frequent word

in the sequence according to unigram distribution

of the words. During the training, the sequences

are generated randomly. Before the training, val-

idation and test sets are constructed with a fixed

seed.

We use a GRU layer over the input sequence

and take the last-hidden state, in order to get the

summary ct of the input sequence. The wt, lt
are only conditioned on ct, and the MLP pre-

dicting the dt is conditioned on the latent repre-

sentations of wt and lt. We use minibatches of

size 250 using adam adaptive learning rate algo-

rithm (Kingma and Adam, 2015) using the learn-

ing rate of 8 × 10−4 and hidden layers with 1000

units.

We train a model with pointer softmax where

we assign pointers for the rarest 60 words and the

rest of the words are predicted from the shortlist

softmax of size 540. We observe that increasing

the inverse temperature of the sigmoid output of

dt to 2, in other words making the decisions of dt

to become sharper, works better, i.e. dt = σ(2x).

At the end of training with pointer softmax we

obtain the error rate of 17.4% and by using soft-

max over all 600 tokens, we obtain the error-rate

of 48.2%.

5.2 Summarization

In these series of experiments, we use the anno-

tated Gigaword corpus as described in (Rush et al.,

2015). Moreover, we use the scripts that are made

available by the authors of (Rush et al., 2015) 1

to preprocess the data, which results to approxi-

mately 3.8M training examples. This script gen-

erates about 400K validation and an equal number

of test examples, but we use a randomly sampled

subset of 2000 examples each for validation and

testing. We also have made small modifications to

the script to extract not only the tokenized words,

but also system-generated named-entity tags. We

have created two different versions of training data

for pointers, which we call UNK-pointers data and

entity-pointers data respectively.

For the UNK-pointers data, we trim the vocabu-

lary of the source and target data in the training set

and replace a word by the UNK token whenever

a word occurs less than 5 times in either source

or target data separately. Then, we create pointers

1https://github.com/facebook/NAMAS

from each UNK token in the target data to the posi-

tion in the corresponding source document where

the same word occurs in the source, as seen in the

data before UNKs were created. It is possible that

the source can have an UNK in the matching posi-

tion, but we still created a pointer in this scenario

as well. The resulting data has 2.7 pointers per

100 examples in the training set and 9.1 pointers

rate in the validation set.

In the entity-pointers data, we exploit the

named-entity tags in the annotated corpus and first

anonymize the entities by replacing them with an

integer-id that always starts from 1 for each doc-

ument and increments from left to right. Entities

that occur more than once in a single document

share the same id. We create the anonymization at

token-level, so as to allow partial entity matches

between the source and target for multi-token en-

tities. Next, we create a pointer from the target

to source on similar lines as before, but only for

exact matches of the anonymized entities. The re-

sulting data has 161 pointers per 100 examples in

the training set and 139 pointers per 100 examples

in the validation set.

If there are multiple matches in the source,

either in the UNK-pointers data or the entity-

pointers data, we resolve the conflict in favor of

the first occurrence of the matching word in the

source document. In the UNK data, we model

the UNK tokens on the source side using a sin-

gle placeholder embedding that is shared across

all documents, and in the entity-pointers data, we

model each entity-id in the source by a distinct

placeholder, each of which is shared across all

documents.

In all our experiments, we use a bidirectional

GRU-RNN (Chung et al., 2014) for the encoder

and a uni-directional RNN for the decoder. To

speed-up training, we use the large-vocabulary

trick (Jean et al., 2014) where we limit the vocab-

ulary of the softmax layer of the decoder to 2000
words dynamically chosen from the words in the

source documents of each batch and the most com-

mon words in the target vocabulary. In both ex-

periments, we fix the embedding size to 100 and

the hidden state dimension to 200. We use pre-

trained word2vec vectors trained on the same cor-

pus to initialize the embeddings, but we finetuned

them by backpropagating through the embeddings

during training. Our vocabulary sizes are fixed to

125K for source and 75K for target for both exper-
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iments.

We use the reference data for pointers for the

model only at the training time. During the test

time, the switch makes a decision at every timestep

on which softmax layer to use.

For evaluation, we use full-length Rouge F1 us-

ing the official evaluation tool 2. In their work, the

authors of (Bahdanau et al., 2014) use full-length

Rouge Recall on this corpus, since the maximum

length of limited-length version of Rouge recall

of 75 bytes (intended for DUC data) is already

long for Gigaword summaries. However, since

full-length Recall can unfairly reward longer sum-

maries, we also use full-length F1 in our experi-

ments for a fair comparison between our models,

independent of the summary length.

The experimental results comparing the Pointer

Softmax with NMT model are displayed in Ta-

ble 1 for the UNK pointers data and in Table 2

for the entity pointers data. As the experiments

show, pointer softmax improves over the baseline

NMT on both UNK data and entities data. Our

hope was that the improvement would be larger

for the entities data since the incidence of point-

ers was much greater. However, it turns out this

is not the case, and we suspect the main reason

is anonymization of entities which removed data-

sparsity by converting all entities to integer-ids

that are shared across all documents. We believe

that on de-anonymized data, our model could help

more, since the issue of data-sparsity is more acute

in this case.

Table 1: Results on Gigaword Corpus when point-

ers are used for UNKs in the training data, using

Rouge-F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L

NMT + lvt 34.87 16.54 32.27

NMT + lvt + PS 35.19 16.66 32.51

Table 2: Results on anonymized Gigaword Corpus

when pointers are used for entities, using Rouge-

F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L

NMT + lvt 34.89 16.78 32.37

NMT + lvt + PS 35.11 16.76 32.55

2http://www.berouge.com/Pages/default.

aspx

Table 3: Results on Gigaword Corpus for model-

ing UNK’s with pointers in terms of recall.

Rouge-1 Rouge-2 Rouge-L

NMT + lvt 36.45 17.41 33.90

NMT + lvt + PS 37.29 17.75 34.70

In Table 3, we provide the results for summa-

rization on Gigaword corpus in terms of recall

as also similar comparison done by (Rush et al.,

2015). We observe improvements on all the scores

with the addition of pointer softmax. Let us note

that, since the test set of (Rush et al., 2015) is not

publicly available, we sample 2000 texts with their

summaries without replacement from the valida-

tion set and used those examples as our test set.

In Table 4 we present a few system gener-

ated summaries from the Pointer Softmax model

trained on the UNK pointers data. From those ex-

amples, it is apparent that the model has learned to

accurately point to the source positions whenever

it needs to generate rare words in the summary.

5.3 Neural Machine Translation

In our neural machine translation (NMT) experi-

ments, we train NMT models with attention over

the Europarl corpus (Bahdanau et al., 2014) over

the sequences of length up to 50 for English to

French translation. 3. All models are trained with

early-stopping which is done based on the negative

log-likelihood (NLL) on the development set. Our

evaluations to report the performance of our mod-

els are done on newstest2011 by using BLUE

score. 4

We use 30, 000 tokens for both the source and

the target language shortlist vocabularies (1 of the

token is still reserved for the unknown words).

The whole corpus contains 134, 831 unique En-

glish words and 153, 083 unique French words.

We have created a word-level dictionary from

French to English which contains translation of

15,953 words that are neither in shortlist vocab-

ulary nor dictionary of common words for both

the source and the target. There are about 49, 490
words shared between English and French parallel

corpora of Europarl.

3In our experiments, we use an existing code, pro-
vided in https://github.com/kyunghyuncho/

dl4mt-material, and on the original model we only
changed the last softmax layer for our experiments

4We compute the BLEU score using the multi-blue.perl
script from Moses on tokenized sentence pairs.
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Table 4: Generated summaries from NMT with PS. Boldface words are the words copied from the source.

Source #1 china ’s tang gonghong set a world record with a clean and

jerk lift of ### kilograms to win the women ’s over-## kilogram

weightlifting title at the asian games on tuesday .

Target #1 china ’s tang <unk>,sets world weightlifting record

NMT+PS #1 china ’s tang gonghong wins women ’s weightlifting weightlift-

ing title at asian games

Source #2 owing to criticism , nbc said on wednesday that it was ending

a three-month-old experiment that would have brought the first

liquor advertisements onto national broadcast network television

.

Target #2 advertising : nbc retreats from liquor commercials

NMT+PS #2 nbc says it is ending a three-month-old experiment

Source #3 a senior trade union official here wednesday called on ghana ’s

government to be “ mindful of the plight ” of the ordinary people

in the country in its decisions on tax increases .

Target #3 tuc official,on behalf of ordinary ghanaians

NMT+PS #3 ghana ’s government urged to be mindful of the plight

During the training, in order to decide whether

to pick a word from the source sentence using at-

tention/pointers or to predict the word from the

short-list vocabulary, we use a simple heuristic. If

the word is not in the short-list vocabulary, we first

check if the word yt itself appears in the source

sentence. If it is not, we check if the word it-

self is in the source sentence by using the shared

words lookup table for the source and the target

language. If the word is in the source sentence,

we then use the location of the word in the source

as the target. Otherwise we check if one of the

English senses from the cross-language dictionary

of the French word is in the source. If it is in the

source sentence, then we use the location of that

word as our translation. Otherwise we just use the

argmax of lt as the target.

For switching network dt, we observed that us-

ing a two-layered MLP with noisy-tanh activation

(Gulcehre et al., 2016) function with residual con-

nection from the lower layer (He et al., 2015) ac-

tivation function to the upper hidden layers im-

proves the BLEU score about 1 points over the

dt using ReLU activation function. We initialized

the biases of the last sigmoid layer of dt to −1
such that if dt becomes more biased toward choos-

ing the shortlist vocabulary at the beginning of the

training. We renormalize the gradients if the norm

of the gradients exceed 1 (Pascanu et al., 2012).

In Table 5, we provided the result of NMT with

pointer softmax and we observe about 3.6 BLEU

Table 5: Europarl Dataset (EN-FR)

BLEU-4

NMT 20.19

NMT + PS 23.76

score improvement over our baseline.

In Figure 4, we show the validation curves

of the NMT model with attention and the NMT

model with shortlist-softmax layer. Pointer soft-

max converges faster in terms of number of mini-

batch updates and achieves a lower validation

negative-log-likelihood (NLL) (63.91) after 200k
updates over the Europarl dataset than the NMT

model with shortlist softmax trained for 400k
minibatch updates (65.26). Pointer softmax con-

verges faster than the model using the short-

list softmax, because the targets provided to the

pointer softmax also acts like guiding hints to the

attention.

6 Conclusion

In this paper, we propose a simple extension to

the traditional soft attention-based shortlist soft-

max by using pointers over the input sequence. We

show that the whole model can be trained jointly

with single objective function. We observe no-

ticeable improvements over the baselines on ma-

chine translation and summarization tasks by us-

ing pointer softmax. By doing a very simple mod-
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Figure 4: A comparison of the validation learning-

curves of the same NMT model trained with

pointer softmax and the regular softmax layer. As

can be seen from the figures, the model trained

with pointer softmax converges faster than the reg-

ular softmax layer. Switching network for pointer

softmax in this Figure uses ReLU activation func-

tion.

ification over the NMT, our model is able to gen-

eralize to the unseen words and can deal with rare-

words more efficiently. For the summarization

task on Gigaword dataset, the pointer softmax was

able to improve the results even when it is used

together with the large-vocabulary trick. In the

case of neural machine translation, we observed

that the training with the pointer softmax is also

improved the convergence speed of the model as

well. For French to English machine translation

on Europarl corpora, we observe that using the

pointer softmax can also improve the training con-

vergence of the model.
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