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Abstract

We present a new method for efficient high-quality

image segmentation of objects and scenes. By analogizing

classical computer graphics methods for efficient rendering

with over- and undersampling challenges faced in pixel

labeling tasks, we develop a unique perspective of image

segmentation as a rendering problem. From this vantage,

we present the PointRend (Point-based Rendering) neural

network module: a module that performs point-based

segmentation predictions at adaptively selected locations

based on an iterative subdivision algorithm. PointRend

can be flexibly applied to both instance and semantic

segmentation tasks by building on top of existing state-of-

the-art models. While many concrete implementations of

the general idea are possible, we show that a simple design

already achieves excellent results. Qualitatively, PointRend

outputs crisp object boundaries in regions that are over-

smoothed by previous methods. Quantitatively, PointRend

yields significant gains on COCO and Cityscapes, for both

instance and semantic segmentation. PointRend’s efficiency

enables output resolutions that are otherwise impractical

in terms of memory or computation compared to existing

approaches. Code has been made available at https://

github.com/facebookresearch/detectron2/

tree/master/projects/PointRend.

1. Introduction

Image segmentation tasks involve mapping pixels sam-

pled on a regular grid to a label map, or a set of label maps,

on the same grid. For semantic segmentation, the label map

indicates the predicted category at each pixel. In the case of

instance segmentation, a binary foreground vs. background

map is predicted for each detected object. The modern tools

of choice for these tasks are built on convolutional neural

networks (CNNs) [24, 23].

CNNs for image segmentation typically operate on reg-

ular grids: the input image is a regular grid of pixels, their

hidden representations are feature vectors on a regular grid,

and their outputs are label maps on a regular grid. Regu-

lar grids are convenient, but not necessarily computation-
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Figure 1: Instance segmentation with PointRend. We introduce

the PointRend (Point-based Rendering) module that makes predic-

tions at adaptively sampled points on the image using a new point-

based feature representation (see Fig. 3). PointRend is general and

can be flexibly integrated into existing semantic and instance seg-

mentation systems. When used to replace Mask R-CNN’s default

mask head [17] (top-left), PointRend yields significantly more de-

tailed results (top-right). (bottom) During inference, PointRend it-

erative computes its prediction. Each step applies bilinear upsam-

pling in smooth regions and makes higher resolution predictions

at a small number of adaptively selected points that are likely to

lie on object boundaries (black points). All figures in the paper are

best viewed digitally with zoom. Image source: [36].

ally ideal for image segmentation. The label maps pre-

dicted by these networks should be mostly smooth, i.e.,

neighboring pixels often take the same label, because high-

frequency regions are restricted to the sparse boundaries be-

tween objects. A regular grid will unnecessarily oversample

the smooth areas while simultaneously undersampling ob-

ject boundaries. The result is excess computation in smooth

regions and blurry contours (Fig. 1, upper-left). Image seg-

mentation methods often predict labels on a low-resolution

regular grid, e.g., 1/8-th of the input [30] for semantic seg-

mentation, or 28×28 [17] for instance segmentation, as a

compromise between undersampling and oversampling.

Analogous sampling issues have been studied for

decades in computer graphics. For example, a renderer

maps a model (e.g., a 3D mesh) to a rasterized image, i.e. a
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Figure 2: Example result pairs from Mask R-CNN [17] with its standard mask head (left image) vs. with PointRend (right image),

using ResNet-50 [18] with FPN [25]. Note how PointRend predicts masks with substantially finer detail around object boundaries.

regular grid of pixels. While the output is on a regular grid,

computation is not allocated uniformly over the grid. In-

stead, a common graphics strategy is to compute pixel val-

ues at an irregular subset of adaptively selected points in the

image plane. The classical subdivision technique of [43], as

an example, yields a quadtree-like sampling pattern that ef-

ficiently renders an anti-aliased, high-resolution image.

The central idea of this paper is to view image seg-

mentation as a rendering problem and to adapt classical

ideas from computer graphics to efficiently “render” high-

quality label maps (see Fig. 1, bottom-left). We encap-

sulate this computational idea in a new neural network

module, called PointRend, that uses a subdivision strategy

to adaptively select a non-uniform set of points at which

to compute labels. PointRend can be incorporated into

popular meta-architectures for both instance segmentation

(e.g., Mask R-CNN [17]) and semantic segmentation (e.g.,

FCN [30]). Its subdivision strategy efficiently computes

high-resolution segmentation maps using an order of mag-

nitude fewer floating-point operations than direct, dense

computation.

PointRend is a general module that admits many pos-

sible implementations. Viewed abstractly, a PointRend

module accepts one or more typical CNN feature maps

f(xi, yi) that are defined over regular grids, and outputs

high-resolution predictions p(x′

i
, y′

i
) over a finer grid. In-

stead of making excessive predictions over all points on the

output grid, PointRend makes predictions only on carefully

selected points. To make these predictions, it extracts a

point-wise feature representation for the selected points by

interpolating f , and uses a small point head subnetwork to

predict output labels from the point-wise features. We will

present a simple and effective PointRend implementation.

We evaluate PointRend on instance and semantic seg-

mentation tasks using the COCO [26] and Cityscapes [8]

benchmarks. Qualitatively, PointRend efficiently computes

sharp boundaries between objects, as illustrated in Fig. 2

and Fig. 8. We also observe quantitative improvements even

though the standard intersection-over-union based metrics

for these tasks (mask AP and mIoU) are biased towards

object-interior pixels and are relatively insensitive to bound-

ary improvements. PointRend improves strong Mask R-

CNN and DeepLabV3 [4] models by a significant margin.

2. Related Work

Rendering algorithms in computer graphics output a reg-

ular grid of pixels. However, they usually compute these

pixel values over a non-uniform set of points. Efficient pro-

cedures like subdivision [43] and adaptive sampling [33, 37]

refine a coarse rasterization in areas where pixel values

have larger variance. Ray-tracing renderers often use over-

sampling [45], a technique that samples some points more

densely than the output grid to avoid aliasing effects. Here,

we apply classical subdivision to image segmentation.
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Non-uniform grid representations. Computation on reg-

ular grids is the dominant paradigm for 2D image analy-

sis, but this is not the case for other vision tasks. In 3D

shape recognition, large 3D grids are infeasible due to cu-

bic scaling. Most CNN-based approaches do not go be-

yond coarse 64×64×64 grids [11, 7]. Instead, recent works

consider more efficient non-uniform representations such as

meshes [42, 13], signed distance functions [32], and oc-

trees [41]. Similar to a signed distance function, PointRend

can compute segmentation values at any point.

Recently, Marin et al. [31] propose an efficient semantic

segmentation network based on non-uniform subsampling

of the input image prior to processing with a standard se-

mantic segmentation network. PointRend, in contrast, fo-

cuses on non-uniform sampling at the output. It may be

possible to combine the two approaches, though [31] is cur-

rently unproven for instance segmentation.

Instance segmentation methods based on the Mask R-

CNN meta-architecture [17] occupy top ranks in recent

challenges [29, 2]. These region-based architectures typ-

ically predict masks on a 28×28 grid irrespective of ob-

ject size. This is sufficient for small objects, but for large

objects it produces undesirable “blobby” output that over-

smooths the fine-level details of large objects (see Fig. 1,

top-left). Alternative, bottom-up approaches group pixels

to form object masks [28, 1, 22]. These methods can pro-

duce more detailed output, however, they lag behind region-

based approaches on most instance segmentation bench-

marks [26, 8, 35]. TensorMask [6], an alternative sliding-

window method, uses a sophisticated network design to

predict sharp high-resolution masks for large objects, but

its accuracy also lags slightly behind. In this paper, we

show that a region-based segmentation model equipped

with PointRend can produce masks with fine-level details

while improving the accuracy of region-based approaches.

Semantic segmentation. Fully convolutional networks

(FCNs) [30] are the foundation of modern semantic seg-

mentation approaches. They often predict outputs that have

lower resolution than the input grid and use bilinear upsam-

pling to recover the remaining 8-16× resolution. Results

may be improved with dilated/atrous convolutions that re-

place some subsampling layers [3, 4] at the expense of more

memory and computation.

Alternative approaches include encoder-decoder achitec-

tures [5, 21, 39, 40] that subsample the grid representation

in the encoder and then upsample it in the decoder, using

skip connections [39] to recover filtered details. Current

approaches combine dilated convolutions with an encoder-

decoder structure [5, 27] to produce output on a 4× sparser

grid than the input grid before applying bilinear interpola-

tion. In our work, we propose a method that can efficiently

predict fine-level details on a grid as dense as the input grid.

coarse prediction

point features point predictions

MLP

CNN backbone

fine-grained

features

Figure 3: PointRend applied to instance segmentation. A stan-

dard network for instance segmentation (solid red arrows) takes

an input image and yields a coarse (e.g. 7×7) mask prediction for

each detected object (red box) using a lightweight segmentation

head. To refine the coarse mask, PointRend selects a set of points

(red dots) and makes prediction for each point independently with

a small MLP. The MLP uses interpolated features computed at

these points (dashed red arrows) from (1) a fine-grained feature

map of the backbone CNN and (2) from the coarse prediction

mask. The coarse mask features enable the MLP to make differ-

ent predictions at a single point that is contained by two or more

boxes. The proposed subdivision mask rendering algorithm (see

Fig. 4 and §3.1) applies this process iteratively to refine uncertain

regions of the predicted mask.

3. Method

We analogize image segmentation (of objects and/or

scenes) in computer vision to image rendering in computer

graphics. Rendering is about displaying a model (e.g., a

3D mesh) as a regular grid of pixels, i.e., an image. While

the output representation is a regular grid, the underlying

physical entity (e.g., the 3D model) is continuous and its

physical occupancy and other attributes can be queried at

any real-value point on the image plane using physical and

geometric reasoning, such as ray-tracing.

Analogously, in computer vision, we can think of an im-

age segmentation as the occupancy map of an underlying

continuous entity, and the segmentation output, which is a

regular grid of predicted labels, is “rendered” from it. The

entity is encoded in the network’s feature maps and can be

accessed at any point by interpolation. A parameterized

function, that is trained to predict occupancy from these in-

terpolated point-wise feature representations, is the coun-

terpart to physical and geometric reasoning.

Based on this analogy, we propose PointRend (Point-

based Rendering) as a methodology for image segmenta-

tion using point representations. A PointRend module ac-

cepts one or more typical CNN feature maps of C chan-

nels f ∈ R
C×H×W , each defined over a regular grid (that

is typically 4× to 16× coarser than the image grid), and

9801



outputs predictions for the K class labels p ∈ R
K×H

′
×W

′

over a regular grid of different (and likely higher) resolu-

tion. A PointRend module consists of three main compo-

nents: (i) A point selection strategy chooses a small number

of real-value points to make predictions on, avoiding exces-

sive computation for all pixels in the high-resolution output

grid. (ii) For each selected point, a point-wise feature rep-

resentation is extracted. Features for a real-value point are

computed by bilinear interpolation of f , using the point’s 4

nearest neighbors that are on the regular grid of f . As a re-

sult, it is able to utilize sub-pixel information encoded in the

channel dimension of f to predict a segmentation that has

higher resolution than f . (iii) A point head: a small neu-

ral network trained to predict a label from this point-wise

feature representation, independently for each point.

The PointRend architecture can be applied to instance

segmentation (e.g., on Mask R-CNN [17]) and semantic

segmentation (e.g., on FCNs [30]) tasks. For instance seg-

mentation, PointRend is applied to each region. It com-

putes masks in a coarse-to-fine fashion by making predic-

tions over a set of selected points (see Fig. 3). For seman-

tic segmentation, the whole image can be considered as a

single region, and thus without loss of generality we will

describe PointRend in the context of instance segmentation.

We discuss the three main components in more detail next.

3.1. Point Selection for Inference and Training

At the core of our method is the idea of flexibly and

adaptively selecting points in the image plane at which to

predict segmentation labels. Intuitively, these points should

be located more densely near high-frequency areas, such as

object boundaries, analogous to the anti-aliasing problem in

ray-tracing. We develop this idea for inference and training.

Inference. Our selection strategy for inference is inspired

by the classical technique of adaptive subdivision [43] in

computer graphics. The technique is used to efficiently ren-

der high resolutions images (e.g., via ray-tracing) by com-

puting only at locations where there is a high chance that

the value is significantly different from its neighbors; for all

other locations the values are obtained by interpolating al-

ready computed output values (starting from a coarse grid).

For each region, we iteratively “render” the output mask

in a coarse-to-fine fashion. The coarsest level prediction is

made on the points on a regular grid (e.g., by using a stan-

dard coarse segmentation prediction head). In each itera-

tion, PointRend upsamples its previously predicted segmen-

tation using bilinear interpolation and then selects the N

most uncertain points (e.g., those with probabilities closest

to 0.5 for a binary mask) on this denser grid. PointRend then

computes the point-wise feature representation (described

shortly in §3.2) for each of these N points and predicts their

labels. This process is repeated until the segmentation is up-

sampled to a desired resolution. One step of this procedure

point

prediction

8× 88× 84× 4

2×

Figure 4: Example of one adaptive subdivision step. A predic-

tion on a 4×4 grid is upsampled by 2× using bilinear interpola-

tion. Then, PointRend makes prediction for the N most ambigu-

ous points (black dots) to recover detail on the finer grid. This

process is repeated until the desired grid resolution is achieved.

a) regular grid b) uniform c) mildly biased

k = 3,β = 0.75

d) heavily biased

k = 10,β = 0.75k = 1,β = 0.0

Figure 5: Point sampling during training. We show N=142

points sampled using different strategies for the same underlying

coarse prediction. To achieve high performance only a small num-

ber of points are sampled per region with a mildly biased sampling

strategy making the system more efficient during training.

is illustrated on a toy example in Fig. 4.

With a desired output resolution of M×M pixels and a

starting resolution of M0×M0, PointRend requires no more

than N log
2

M

M0

point predictions. This is much smaller

than M×M , allowing PointRend to make high-resolution

predictions much more effectively. For example, if M0 is

7 and the desired resolutions is M=224, then 5 subdivision

steps are preformed. If we select N=282 points at each

step, PointRend makes predictions for only 282·4.25 points,

which is 15 times smaller than 2242. Note that fewer than

N log
2

M

M0

points are selected overall because in the first

subdivision step only 142 points are available.

Training. During training, PointRend also needs to select

points at which to construct point-wise features for train-

ing the point head. In principle, the point selection strategy

can be similar to the subdivision strategy used in inference.

However, subdivision introduces sequential steps that are

less friendly to training neural networks with backpropaga-

tion. Instead, for training we use a non-iterative strategy

based on random sampling.

The sampling strategy selects N points on a fea-

ture map to train on.1 It is designed to bias se-

lection towards uncertain regions, while also retaining

some degree of uniform coverage, using three principles.

(i) Over generation: we over-generate candidate points by

1The value of N can be different for training and inference selection.
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randomly sampling kN points (k>1) from a uniform distri-

bution. (ii) Importance sampling: we focus on points with

uncertain coarse predictions by interpolating the coarse

prediction values at all kN points and computing a task-

specific uncertainty estimate (defined in §4 and §5). The

most uncertain βN points (β ∈ [0, 1]) are selected from

the kN candidates. (iii) Coverage: the remaining (1− β)N
points are sampled from a uniform distribution. We illus-

trate this procedure with different settings, and compare it

to regular grid selection, in Fig. 5.

At training time, predictions and loss functions are only

computed on the N sampled points (in addition to the coarse

segmentation), which is simpler and more efficient than

backpropagation through subdivision steps. This design is

similar to the parallel training of RPN + Fast R-CNN in a

Faster R-CNN system [12], whose inference is sequential.

3.2. Point-wise Representation and Point Head

PointRend constructs point-wise features at selected

points by combining (e.g., concatenating) two feature types,

fine-grained and coarse prediction features, described next.

Fine-grained features. To allow PointRend to render fine

segmentation details we extract a feature vector at each sam-

pled point from CNN feature maps. Because a point is a

real-value 2D coordinate, we perform bilinear interpolation

on the feature maps to compute the feature vector, follow-

ing standard practice [19, 17, 9]. Features can be extracted

from a single feature map (e.g., res2 in a ResNet); they can

also be extracted from multiple feature maps (e.g., res2 to

res5, or their feature pyramid [25] counterparts) and con-

catenated, following the Hypercolumn method [15].

Coarse prediction features. The fine-grained features en-

able resolving detail, but are also deficient in two regards.

First, they do not contain region-specific information and

thus the same point overlapped by two instances’ bound-

ing boxes will have the same fine-grained features. Yet, the

point can only be in the foreground of one instance. There-

fore, for the task of instance segmentation, where different

regions may predict different labels for the same point, ad-

ditional region-specific information is needed.

Second, depending on which feature maps are used for

the fine-grained features, the features may contain only rel-

atively low-level information (e.g., we will use res2 with

DeepLabV3). In this case, a feature source with more con-

textual and semantic information can be helpful. This issue

affects both instance and semantic segmentation.

Based on these considerations, the second feature type is

a coarse segmentation prediction from the network, i.e., a

K-dimensional vector at each point in the region (box) rep-

resenting a K-class prediction. The coarse resolution, by

design, provides more globalized context, while the chan-

nels convey the semantic classes. These coarse predictions

are similar to the outputs made by the existing architectures,

and are supervised during training in the same way as exist-

ing models. For instance segmentation, the coarse predic-

tion can be, for example, the output of a lightweight 7×7

resolution mask head in Mask R-CNN. For semantic seg-

mentation, it can be, for example, predictions from a stride

16 feature map.

Point head. Given the point-wise feature representation

at each selected point, PointRend makes point-wise seg-

mentation predictions using a simple multi-layer percep-

tron (MLP). This MLP shares weights across all points (and

all regions), analogous to a graph convolution [20] or a

PointNet [38]. Since the MLP predicts a segmentation la-

bel for each point, it can be trained by standard task-specific

segmentation losses (described in §4 and §5).

4. Experiments: Instance Segmentation

Datasets. We use two standard instance segmentation

datasets: COCO [26] and Cityscapes [8]. We report the

standard mask AP metric [26] using the median of 3 runs

for COCO and 5 for Cityscapes (it has higher variance).

COCO has 80 categories with instance-level annotation.

We train on train2017 (∼118k images) and report results

on val2017 (5k images). As noted in [14], the COCO

ground-truth is often coarse and AP for the dataset may not

fully reflect improvements in mask quality. Therefore we

supplement COCO results with AP measured using the 80

COCO category subset of LVIS [14], denoted by AP!. The

LVIS annotations have significantly higher quality. Note

that for AP! we use the same models trained on COCO

and simply re-evaluate their predictions against the higher-

quality LVIS annotations using the LVIS evaluation API.

Cityscapes is an ego-centric street-scene dataset with

8 categories, 2975 train images, and 500 validation im-

ages. The images are higher resolution compared to COCO

(1024×2048 pixels) and have finer, more pixel-accurate

ground-truth instance segmentations.

Architecture. Our experiments use Mask R-CNN with a

ResNet-50 [18] + FPN [25] backbone. The default mask

head in Mask R-CNN is a region-wise FCN, which we de-

note by “4× conv”.2 We use this as our baseline for com-

parison. For PointRend, we make appropriate modifications

to this baseline, as described next.

Lightweight, coarse mask prediction head. To compute

the coarse prediction, we replace the 4× conv mask head

with a lighter weight design that resembles Mask R-CNN’s

box head and produces a 7×7 mask prediction. Specifi-

cally, for each bounding box, we extract a 14×14 feature

2Four layers of 3×3 convolutions with 256 output channels are applied

to a 14×14 input feature map. Deconvolution with a 2×2 kernel trans-

forms this to 28×28. Finally, a 1×1 convolution predicts mask logits.
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map from the P2 level of the FPN using bilinear interpola-

tion. The features are computed on a regular grid inside the

bounding box (this operation can seen as a simple version of

RoIAlign). Next, we use a stride-two 2×2 convolution layer

with 256 output channels followed by ReLU [34], which

reduces the spatial size to 7×7. Finally, similar to Mask

R-CNN’s box head, an MLP with two 1024-wide hidden

layers is applied to yield a 7×7 mask prediction for each of

the K classes. ReLU is used on the MLP’s hidden layers

and the sigmoid activation function is applied to its outputs.

PointRend. At each selected point, a K-dimensional fea-

ture vector is extracted from the coarse prediction head’s

output using bilinear interpolation. PointRend also interpo-

lates a 256-dimensional feature vector from the P2 level of

the FPN. This level has a stride of 4 w.r.t. the input image.

These coarse prediction and fine-grained feature vectors are

concatenated. We make a K-class prediction at selected

points using an MLP with 3 hidden layers with 256 chan-

nels. In each layer of the MLP, we supplement the 256 out-

put channels with the K coarse prediction features to make

the input vector for the next layer. We use ReLU inside the

MLP and apply sigmoid to its output.

Training. We use the standard 1× training schedule and

data augmentation from Detectron2 [44] by default (full de-

tails are in the appendix). For PointRend, we sample 142

points using the biased sampling strategy described in the

§3.1 with k=3 and β=0.75. We use the distance between

0.5 and the probability of the ground truth class interpo-

lated from the coarse prediction as the point-wise uncer-

tainty measure. For a predicted box with ground-truth class

c, we sum the binary cross-entropy loss for the c-th MLP

output over the 142 points. The lightweight coarse predic-

tion head uses the average cross-entropy loss for the mask

predicted for class c, i.e., the same loss as the baseline 4×

conv head. We sum all losses without any re-weighting.

During training, Mask R-CNN applies the box and mask

heads in parallel, while during inference they run as a cas-

cade. We found that training as a cascade does not improve

the baseline Mask R-CNN, but PointRend can benefit from

it by sampling points inside more accurate boxes, slightly

improving overall performance (∼0.2% AP, absolute).

Inference. For inference on a box with predicted class c,

unless otherwise specified, we use the adaptive subdivision

technique to refine the coarse 7×7 prediction for class c to

the 224×224 in 5 steps. At each step, we select and update

(at most) the N=282 most uncertain points based on the

absolute difference between the predictions and 0.5.

4.1. Main Results

We compare PointRend to the default 4× conv head in

Mask R-CNN in Table 1. PointRend outperforms the de-

fault head on both datasets. The gap is larger when evaluat-

output COCO Cityscapes

mask head resolution AP AP! AP

4× conv 28×28 35.2 37.6 33.0

PointRend 28×28 36.1 (+0.9) 39.2 (+1.6) 35.5 (+2.5)

PointRend 224×224 36.3 (+1.1) 39.7 (+2.1) 35.8 (+2.8)

Table 1: PointRend vs. the default 4× conv mask head for Mask

R-CNN [17]. Mask AP is reported. AP! is COCO mask AP eval-

uated against the higher-quality LVIS annotations [14] (see text

for details). A ResNet-50-FPN backbone is used for both COCO

and Cityscapes models. PointRend outperforms the standard 4×

conv mask head both quantitively and qualitatively. Higher output

resolution leads to more detailed predictions, see Fig. 2 and Fig. 6.

2
8
×
2
8

2
2
4
×
2
2
4

Figure 6: PointRend inference with different output resolu-

tions. High resolution masks align better with object boundaries.

mask head output resolution FLOPs # activations

4× conv 28×28 0.5B 0.5M

4× conv 224×224 34B 33M

PointRend 224×224 0.9B 0.7M

Table 2: FLOPs (multiply-adds) and activation counts for a

224×224 output resolution mask. PointRend’s efficient subdi-

vision makes 224×224 output feasible in contrast to the standard

4× conv mask head modified to use an RoIAlign size of 112×112.

ing the COCO categories using the LVIS annotations (AP!)

and for Cityscapes, which we attribute to the superior anno-

tation quality in these datasets. Even with the same output

resolution PointRend outperforms the baseline. The differ-

ence between 28×28 and 224×224 is relatively small be-

cause AP uses intersection-over-union [10] and, therefore,

is heavily biased towards object-interior pixels and less sen-

sitive to the boundary quality. Visually, however, the differ-

ence in boundary quality is obvious, see Fig. 6.

Subdivision inference allows PointRend to yield a high

resolution 224×224 prediction using more than 30 times

less compute (FLOPs) and memory than the default 4×

conv head needs to output the same resolution (based on

taking a 112×112 RoIAlign input), see Table 2. PointRend

makes high resolution output feasible in the Mask R-CNN

framework by ignoring areas of an object where a coarse
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# points per COCO Cityscapes

output resolution subdivision step AP AP! AP

28×28 282 36.1 39.2 35.4

56×56 282 36.2 39.6 35.8

112×112 282 36.3 39.7 35.8

224×224 282 36.3 39.7 35.8

224×224 142 36.1 39.4 35.5

224×224 282 36.3 39.7 35.8

224×224 562 36.3 39.7 35.8

224×224 1122 36.3 39.7 35.8

Table 3: Subdivision inference parameters. Higher output res-

olution improves AP. Although improvements saturate quickly (at

underlined values) with the number of points sampled at each sub-

division step, qualitative results may continue to improve for com-

plex objects. AP! is COCO mask AP evaluated against the higher-

quality LVIS annotations [14] (see text for details).

56×56 112×112 224×22428×28

Figure 7: Anti-aliasing with PointRend. Precise object delin-

eation requires output mask resolution to match or exceed the res-

olution of the input image region that the object occupies.

prediction is sufficient (e.g., in the areas far away from ob-

ject boundaries). In terms of wall-clock runtime, our unop-

timized implementation outputs 224×224 masks at ∼13 fps,

which is roughly the same frame-rate as a 4× conv head

modified to output 56×56 masks (by doubling the default

RoIAlign size), a design that actually has lower COCO AP

compared to the 28×28 4× conv head (34.5% vs. 35.2%).

Table 3 shows PointRend subdivision inference with dif-

ferent output resolutions and number of points selected at

each subdivision step. Predicting masks at a higher res-

olution can improve results. Though AP saturates, visual

improvements are still apparent when moving from lower

(e.g., 56×56) to higher (e.g., 224×224) resolution outputs,

see Fig. 7. AP also saturates with the number of points sam-

pled in each subdivision step because points are selected in

the most ambiguous areas first. Additional points may make

predictions in the areas where a coarse prediction is already

sufficient. For objects with complex boundaries, however,

using more points may be beneficial.

COCO Cityscapes

selection strategy AP AP! AP

regular grid 35.7 39.1 34.4

uniform (k=1,β=0.0) 35.9 39.0 34.5

mildly biased (k=3,β=0.75) 36.3 39.7 35.8

heavily biased (k=10,β=1.0) 34.4 37.5 34.1

Table 4: Training-time point selection strategies with 142 points

per box. Mildly biasing sampling towards uncertain regions per-

forms the best. Heavily biased sampling performs even worse than

uniform or regular grid sampling indicating the importance of cov-

erage. AP! is COCO mask AP evaluated against the higher-quality

LVIS annotations [14] (see text for details).

COCO

mask head backbone AP AP!

4× conv R50-FPN 37.2 39.5

PointRend R50-FPN 38.2 (+1.0) 41.5 (+2.0)

4× conv R101-FPN 38.6 41.4

PointRend R101-FPN 39.8 (+1.2) 43.5 (+2.1)

4× conv X101-FPN 39.5 42.1

PointRend X101-FPN 40.9 (+1.4) 44.9 (+2.8)

Table 5: Larger models and a longer 3× schedule [16].

PointRend benefits from more advanced models and the longer

training. The gap between PointRend and the default mask head

in Mask R-CNN holds. AP! is COCO mask AP evaluated against

the higher-quality LVIS annotations [14] (see text for details).

4.2. Ablation Experiments

We conduct a number of ablations to analyze PointRend.

In general we note that it is robust to the exact design of the

point head MLP. Changes of its depth or width do not show

any significant difference in our experiments.

Point selection during training. During training we select

142 points per object following the biased sampling strat-

egy (§3.1). Sampling only 142 points makes training com-

putationally and memory efficient and we found that using

more points does not improve results. Surprisingly, sam-

pling only 49 points per box still maintains AP, though we

observe an increased variance in AP.

Table 4 shows PointRend performance with different se-

lection strategies during training. Regular grid selection

achieves similar results to uniform sampling. Whereas bias-

ing sampling toward ambiguous areas improves AP. How-

ever, a sampling strategy that is biased too heavily towards

boundaries of the coarse prediction (k>10 and β close to

1.0) decreases AP. Overall, we find a wide range of param-

eters 2<k<5 and 0.75<β<1.0 delivers similar results.

Larger models, longer training. Training ResNet-50 +

FPN (denoted R50-FPN) with the 1× schedule under-fits

on COCO. In Table 5 we show that the PointRend im-

provements over the baseline hold with both longer training

schedule and larger models (see the appendix for details).
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Mask R-CNN + 4   conv Mask R-CNN + PointRend DeeplabV3 DeeplabV3 + PointRend×

Figure 8: Cityscapes example results for instance and semantic segmentation. In instance segmentation larger objects benefit more

from PointRend ability to yield high resolution output. Whereas for semantic segmentation PointRend recovers small objects and details.

5. Experiments: Semantic Segmentation

PointRend is not limited to instance segmentation and

can be extended to other pixel-level recognition tasks. Here,

we demonstrate that PointRend can benefit two semantic

segmentation models: DeeplabV3 [4], which uses dilated

convolutions to make prediction on a denser grid, and Se-

manticFPN [21], a simple encoder-decoder architecture.

Dataset. We use the Cityscapes [8] semantic segmentation

set with 19 categories, 2975 training images, and 500 vali-

dation images. We report the median mIoU of 5 trials.

Implementation details. We reimplemented DeeplabV3

and SemanticFPN following their respective papers. Se-

manticFPN uses a standard ResNet-101 [18], whereas

DeeplabV3 uses the ResNet-103 proposed in [4].3 We fol-

low the original papers’ training schedules and data aug-

mentation (details are in the appendix).

We use the same PointRend architecture as for in-

stance segmentation. Coarse prediction features come from

the (already coarse) output of the semantic segmentation

model. Fine-grained features are interpolated from res2 for

DeeplabV3 and from P2 for SemanticFPN. During training

we sample as many points as there are on a stride 16 fea-

ture map of the input (2304 for deeplabV3 and 2048 for Se-

manticFPN). We use the same k=3,β=0.75 point selection

strategy. During inference, subdivision uses N=8096 (i.e.,

the number of points in the stride 16 map of a 1024×2048

image) until reaching the input image resolution. To mea-

sure prediction uncertainty we use the same strategy dur-

ing training and inference: the difference between the most

confident and second most confident class probabilities.

DeeplabV3. In Table 6 we compare DeepLabV3 to

DeeplabV3 with PointRend. The output resolution can also

be increased by 2× at inference by using dilated convolu-

tions in res4 stage, as described in [4]. Compared to both,

3It replaces the ResNet-101 res1 7×7 convolution with three 3×3 con-

volutions (hence “ResNet-103”).

method output resolution mIoU

DeeplabV3-OS-16 64×128 77.2

DeeplabV3-OS-8 128×256 77.8 (+0.6)

DeeplabV3-OS-16 + PointRend 1024×2048 78.4 (+1.2)

Table 6: DeeplabV3 with PointRend for Cityscapes semantic

segmentation outperforms baseline DeepLabV3. Dilating the res4
stage during inference yields a larger, more accurate prediction,

but at much higher computational and memory costs; it is still in-

ferior to using PointRend.

Figure 9: PointRend inference for semantic segmentation.

PointRend refines prediction scores for areas where a coarser pre-

diction is not sufficient. To visualize the scores at each step we

take argmax at given resolution without bilinear interpolation.

method output resolution mIoU

SemanticFPN P2-P5 256×512 77.7

SemanticFPN P2-P5 + PointRend 1024×2048 78.6 (+0.9)

SemanticFPN P3-P5 128×256 77.4

SemanticFPN P3-P5 + PointRend 1024×2048 78.5 (+1.1)

Table 7: SemanticFPN with PointRend for Cityscapes semantic

segmentation outperform the baseline SemanticFPN.

PointRend has higher mIoU. Qualitative improvements are

also evident, see Fig. 8. By sampling points adaptively,

PointRend reaches 1024×2048 resolution (i.e. 2M points)

by making predictions for only 32k points, see Fig. 9.

SemanticFPN. Table 7 shows that SemanticFPN with

PointRend improves over both 8× and 4× output stride

variants without PointRend.
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