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The following will be proved:

Theorem. Let ABC be a triangle such that the length of at least one side

is rational and the squares of the lengths of all sides are rational. Then the

set of points P whose distances PA, PB, PC to the vertices of the triangle

are rational is dense in the plane of the triangle.

Almering [1] established the theorem for a triangle with all sides of ratio-
nal length. According to [3, p. 34] J. Leech has an elementary proof of this
case. The proof of the theorem given here uses, as does Almering’s proof
of the special case, results from the theory of elliptic curves, but otherwise
involves only elementary projective geometry.

Explicit constructions of points at rational distance from the vertices of
equilateral and isosceles right triangles can be found in [2]–[5]. It was the
study of points at rational distance from the vertices of an isosceles right
triangle in [2], which suggested the present proof.

Fig. 1

P r o o f o f t h e t h e o r e m. The notation is illustrated in Figure 1.
As usual, a, b, c denote the lengths of the sides CB, AC, AB. In order to
have homogeneous equations, we introduce the scale factor T and consider a
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triangle of lengths aT , bT , cT . Then the necessary and sufficient condition
that three non-negative reals X, Y , Z be the distances PA, PB, PC for
some point P is

(1) a2X4 + b2Y 4 + c2Z4 + a2b2c2T 4

= (a2 + b2 − c2)(X2Y 2 + c2Z2T 2) + (b2 + c2 − a2)(Y 2Z2 + a2X2T 2)

+(c2 + a2 − b2)(X2Z2 + b2Y 2T 2) .

This relation was known in the last century. Necessity can be established
by applying the cosine formula to triangles APB, PCA, ABC, and elim-
inating the angles 6 CAB, 6 CAP . A far neater derivation, by Cayley, is
indicated in [8, p. 134, Ex. 4]. It is clear from (1) that the condition that the
squares of the lengths of the sides be rational is necessary for the theorem
to hold.

We view equation (1) as defining a quartic surface S in complex projec-
tive 3-space with homogeneous coordinates (X,Y,Z, T ). It turns out that S
is a Kummer surface, that is, S has exactly 16 singular points, all nodes.
This is established directly by finding the singularities of S by calculating
explicitly the simultaneous solutions of the equations obtained from (1) by
taking partial derivatives of both sides. The result is the set of 16 solu-
tions given in Table 1. (The calculation was computer-assisted.) The most
famous property of Kummer surfaces (cf. [6]) is the existence of the 166

configuration: there are 16 planes, called the singular tangent planes of S;
each node of S lies on six singular tangent planes, and each plane contains
six nodes. The singular tangent planes are given in Table 2, and Table 3
gives the incidence diagram of the configuration: column i names the nodes
that lie on the singular tangent plane i, or dually names the singular tangent
planes passing through node i.

Under the hypotheses of the theorem to be proved, S is defined over
Q and we shall prove that S(Q) is dense in S(R). This clearly implies
the theorem. (Here as usual X(K) denotes the set of points of the va-
riety X whose coordinates lie in the field K.) However, in the following
two propositions the arguments are entirely geometric and independent of
any hypotheses on the numbers a, b, c. Thus, in order to keep the struc-
ture of the arguments clear, we do not yet introduce any restrictions on
a, b, c — until further notice they can be any non-zero complex num-
bers.

Table 1. The nodes of S

1. (1 − 1 1 0) 5. (b − a 0 1) 9. (c 0 − a 1) 13. (0 c − b 1)

2. (−b a 0 1) 6. (−1 1 1 0) 10. (0 c b − 1) 14. (c 0 a − 1)

3. (−c 0 a 1) 7. (0 c b 1) 11. (1 1 1 0) 15. (b a 0 − 1)

4. (0 − c b 1) 8. (c 0 a 1) 12. (b a 0 1) 16. (1 1 − 1 0)
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Table 2. The singular tangent planes of S

1. X + Y = cT 5. aX + bY = −cZ 9. Y + Z = −aT 13. X − Z = bT

2. aX + bY = cZ 6. X + Y = −cT 10. X + Z = −bT 14. Y − Z = aT

3. −Y + Z = aT 7. −X + Z = bT 11. −X + Y = cT 15. −aX + bY = cZ

4. X + Z = bT 8. Y + Z = aT 12. aX − bY = cZ 16. X − Y = cT

Table 3. The 166 configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4

8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9

7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10

6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11

Each singular tangent plane cuts out doubly on S a conic, called a trope.
For example, X +Y = cT cuts out the conic whose equations in 3-space are

(2) X + Y = cT , c(X2 − Z2 + b2T 2) + (a2 − b2 − c2)XT = 0 .

This can be seen by eliminating Y between X+Y = cT and equation (1).
The result is the second equation of (2), squared. We shall denote by Ci the
trope cut out by singular tangent plane i.

An intuitive hold on S can be obtained by means of the classical rep-
resentation of a Kummer surface as a double plane branched over six lines
tangent to a conic. The representation is obtained by projecting the surface
away from a node onto a plane. This means the following. Let N be a node
of S, and let Π be any plane not passing through N . Define p : S −N → Π
by sending P ∈ S−N to the intersection of the line PN with Π. A line has
in general four intersections with S, but a node counts as two, so that p is a
generically 2:1 map from S − N to Π. Each trope through N projects into
a line, namely the intersection of the plane of the trope with Π. Since the
plane of the trope cuts out the trope doubly, its image on Π is part of the
branch locus. This gives six branch lines coming from the six tropes con-
taining N , and one sees without much difficulty that this is all the branch
locus, and that the six branch lines are tangent to the conic which is the
intersection of the Zariski tangent cone at N with Π. (We shall not need
this last statement.) In our case we take N as node 11 and Π as Z = 0. In
coordinates, the projection is given by p(X,Y,Z, T ) = (X −Z, Y −Z, 0, T ).
The branch locus consists of the lines X = ±bT , Y = ±aT , −X + Y = cT ,
X − Y = cT , in the plane Z = 0.

Now let us consider the pencil of curves {Eλ} cut out on S by planes
passing through nodes 1 and 11. To be quite specific, let Eλ denote the curve
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cut out on S by the plane X = Z+λT , where λ ∈ P1 = C∪∞. Each Eλ is a
binodal plane quartic (except for finitely many values of λ when it acquires
extra singularities or is reducible), and as such it has genus 1, by the usual
genus formula for plane curves. On a non-singular model of S, the inverse
images of the Eλ form a pencil of curves of genus 1, without base points
(once the fixed components which are the inverse images of nodes 1 and 11
are removed). We shall apply some known theorems on such pencils. For a
useful summary of the theory, and complete bibliography, see [9]. In what
follows, however, to avoid introducing extra notation, we abuse language by
suppressing mention of the non-singular model. Specifically, the term “fibre”
will always refer to a member of the pencil on the non-singular model, and
if a curve of S is referred to as a section it is understood that it is the proper
transform of the curve which is the section (i.e. it is unisecant to the fibres).
Recall that if an elliptic pencil admits sections, then once one section is
chosen as the zero — call it, temporarily, C0 — the set of all sections has
the structure of a group. Moreover, when the set of non-singular points on
any particular fibre is given the structure of a group by taking as zero the
intersection of the fibre with C0, then the map from the set of sections to
the points of the fibre given by intersection is a group homomorphism.

For fixed λ, let Lλ be the line in P3 with equations Z = 0, X = λT .
Points on Lλ can be given as (λ, Y, 0, 1) so we consider Y as a non-homo-
geneous coordinate on Lλ.

Proposition 1. For any λ such that Eλ is a binodal quartic, the projec-

tion p, restricted to Eλ , represents Eλ as the double cover of Lλ branched

over points Y = ±a, λ ± c.

P r o o f. Since Eλ lies in a plane which passes through the vertex of
projection, the image of Eλ is the intersection of its plane with the plane
of projection; this is the line Lλ. Since p : S − N → Π represents S as a
branched double cover of Π, the restriction of p to Eλ has degree at most 2.
It cannot have degree 1 since then it would give a birational equivalence
of Eλ with Lλ, contradicting the hypothesis that Eλ has genus 1. Thus
the restriction of p represents Eλ as a branched double cover of Lλ. By
the general theory of double covers, the branch points of the restriction of
p to Eλ are the simple points of the intersections of Lλ with the branch
locus of p (so the point (0, 1, 0, 0) which is on X = bT and X = −bT is a
double point of the branch locus of p and does not contribute). Calcula-
tion of the intersections of Lλ with the branch lines gives the stated branch
points.

Proposition 2. (a) Any trope which passes through one of nodes 1 and

11 but not both is a section of the pencil {Eλ}.
(b) If one of the tropes through node 11 but not node 1 is taken as the
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zero for the group law on the sections, then the tropes through node 1 but

not 11 have infinite order in the group of sections.

P r o o f. The proof will only be sketched, since a similar argument ap-
pears in [2] for the case of the isosceles right triangle. Assertion (a) can most
elegantly be established by calculating intersections on a non-singular model
of S but it also follows from Proposition 1. Indeed, away from node 11, the
intersections of the tropes through node 11 but not 1 with an Eλ are ramifi-
cation points of the projection p, and by Proposition 1 there are 4 of these,
one on each trope. Thus each trope has just one intersection with Eλ away
from node 11, so that its proper transform is a section. This proves that
the nodes through 11 but not 1 are sections. A similar argument using the
projection from node 1 proves that tropes through 1 but not 11 are sections.

(b) It is an immediate consequence of the definition of the group law
that if an elliptic curve is represented as a double cover of the line and one
branch point is chosen as the zero of the group law, then the remaining
branch points are the 2-torsion elements of the group. Thus it follows from
the proof of (a) that when one trope through node 11 and not 1 is taken as
the zero for the group law on the sections, then the remaining tropes through
node 11 but not 1 are 2-torsion elements. Assertion (b) will therefore be
established if it is shown that the torsion subgroup of the group of sections
has order 4.

The torsion in the group of sections injects into the torsion of the group of
non-singular points on any fibre, so it is enough to find a fibre whose group
of non-singular points has torsion of order 4. Now the singular tangent
planes 7 and 13 pass through nodes 1 and 11 and so cut out members of
{Eλ}. On S the planes cut out tropes; it is easily seen that the corresponding
fibres on the minimal non-singular model of S have Kodaira type I∗0 ; indeed,
on resolving singularities by blowing up the nodes each node becomes a P1

with self-intersection −2 and the trope another such P1 transversal to the
inverse images of the nodes. The inverse images of nodes 1 and 11 are to be
discarded, and what remains is an I∗0 . The group of non-singular points on
an I∗0 is known to have torsion Z/2 × Z/2; thus (b) is proved.

R e m a r k. Proposition 2 gives as much information on the group of
sections of {Eλ} as is needed for present purposes. The entire structure of
the group can, however, be elucidated. This is much easier than it would
be for a general elliptic surface, or even for a general K3 surface, because
one can call into play the Abelian surface A which is a double cover of the
Kummer surface. For example, noting that the plane X = 0 cuts out on S
a pair of conics through four nodes, it follows that A is isogeneous to the
product E1×E2 where the Ei are elliptic curves defined as the double covers
of the two conics ramified over the nodes. A calculation shows that E1 and
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E2 are isogeneous, so that finally A is isogeneous to E×E where E is a known
elliptic curve. It follows that ̺(A), the rank of the Neron–Severi group of A,
is 3 or 4 according as E does or does not have complex multiplication. (Both
cases can occur. For the surface arising from an isosceles right triangle there
is no complex multiplication, but for the equilateral triangle there is.) By a
theorem of Shioda, the rank of the Neron–Severi group of S is 16+̺(A) and
from this the rank of the group of sections of Eλ can be determined, using
further results of Shioda. Pushing these ideas further one can calculate
generators for the Neron–Severi group of S and the group of sections of
{Eλ}. This program is carried through in [2] for the surface S arising from
an isosceles right triangle.

Now we introduce the hypotheses of the theorem to be proved and as-
sume that a, b, c are lengths of the sides of a triangle ABC, and that
a2, b2, c ∈ Q. Then the surface S, the projection p and the pencil {Eλ} are
all defined over Q, as are the tropes C11, C1, C6 (cf. Table 2; it is here that
the hypothesis that c ∈ Q is used). From now on we fix C11 as the zero for
the group law on the group of sections of {Eλ}. Since C11 is defined over
Q we obtain a group law on Eλ defined over Q for any λ ∈ Q, whose zero
is C11 ∩ Eλ. We shall show that S(Q) is dense in S(R), by showing that,
for almost all rational values of λ, the set Eλ(Q) is dense in Eλ(R). By the
theorem of Hurwitz and Poincaré (cf. [10, p. 78]) if E is an elliptic curve
defined over Q which has a rational point on each connected component of
E(R) and a rational point of infinite order, then E(Q) is dense in E(R).

We now show that, for almost all λ ∈ Q, the elliptic curve Eλ satisfies
the hypotheses of the theorem of Hurwitz and Poincaré. We first deal with
the existence of points of infinite order on Eλ, λ ∈ Q. Since C1 is defined
over Q and passes through node 1 but not 11 we have, by Proposition 2(b),
an element of infinite order, defined over Q, in the group of sections of {Eλ}.
But, by a theorem of Silverman [7, p. 306], if C is any element of infinite
order, defined over Q, in the group of sections, then for almost all λ ∈ Q the
intersection of C with Eλ has infinite order in Eλ(Q). Thus with finitely
many exceptions, if λ ∈ Q then Eλ∩C1 is a point of infinite order in Eλ(Q).

We next show that the rational points on Eλ given by the intersections
of C11, C16 and C1 with Eλ never lie all on the same connected component
of Eλ(R). This will follow from examination of the relative positions of the
projections of these points on Lλ. The projections of the first two are cal-
culated in Proposition 1 and we proceed to calculate the projection of the
third. The trope C1 is given by equations (2) above. On the other hand, if
(X,Y,Z, T ) in the plane X+Y = cT projects under p to (X∗, Y ∗, 0, T ∗) then

X = cT ∗+X∗−Y ∗ , Y = cT ∗−X∗+Y ∗ , Z = cT ∗−X∗−Y ∗ , T = 2T ∗

as may easily be calculated. Substituting in (2) for X, Y , Z, T and dropping
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the asterisks, we find that the image of trope C1 under p is the conic

Z = 0 , c((cT + X − Y )2 − (cT − X − Y )2 + 4b2T 2)

+2(a2 − b2 − c2)(cT + X − Y )T = 0 .

Calculating the intersections of this with the line Lλ, whose equations
are Z = 0, X = λT , we find (0, 1, 0, 0) and (λ, Y (λ), 0, 1), where

Y (λ) =
λ(a2 + c2 − b2) + c(a2 + b2 − c2)

2λc + (a2 − b2 − c2)

and this point is the image under p of the rational point which is the inter-
section of C1 with Eλ.

Proposition 3. If c − a ≤ λ ≤ c + a then |Y (λ)| ≥ a. If λ ≤ c − a or

λ ≥ a + c then |Y (λ)| ≤ a.

P r o o f. Direct calculation shows that Y (c− a) = −a and Y (c + a) = a.
It follows from the cosine formula in triangle ABC that

Y (λ) = a

(

λ cos B + b cos C

λ − b cos A

)

,

whence

lim
λ→∞

|Y (λ)| = |a cos B| ≤ a ,
dY (λ)

dλ
=

− sinA sin B

(λ − cos B)2
< 0 .

Here A, B, C denote as usual the angles 6 BAC, 6 CBA, 6 ACB, and the
final inequality holds since all angles are < π. The proposition follows from
these inequalities by elementary calculus. Incidentally, the only point at
which we use the fact that a, b, c are the sides of a triangle is in the proof
of this proposition.

The proof of the theorem may now be completed. A curve given as the
double cover of the line branched over real points α, β, γ, δ with α < β <
γ < δ has two real connected components — a finite loop lying over [β, γ]
and two infinite parts, which join at infinity, lying over [−∞, α] and [δ,∞].
Three points of the curve lie all on the same real component if and only if
their projections onto the branch line lie all in the finite interval [β, γ] or all
in the infinite interval [−∞, α]∪ [δ,∞]. By Proposition 1 the branch points
of p : Eλ → Lλ are ±a, λ ± c. The points of intersection of C11 and C6

with Eλ project onto the branch points λ ± c, while the intersection of C1

with Eλ projects onto Y (λ), where as before we use the Y-coordinate as
non-homogeneous coordinate on Lλ. Thus Eλ(R) has two components (if
λ ∈ R). Moreover, the branch points λ ± c themselves lie one on the finite
and one on the infinite interval defined by the branch points, unless one or
other of the inequalities −a < λ − c < λ + c < a or λ − c < −a < a < λ + c
is satisfied. But if either of these inequalities is satisfied then λ satisfies
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the corresponding inequality appearing in Proposition 3, and Proposition 3
then shows that Y (λ) lies on the interval to which the points λ ± c do not
belong. Thus if λ ∈ Q then Eλ has rational points on both real components.
There are finitely many λ ∈ Q for which either Eλ is not elliptic (i.e. the
fibre corresponding to Eλ is singular or reducible) or C1∩Eλ is torsion. For
all but these finitely many λ ∈ Q, the Hurwitz–Poincaré theorem applies to
Eλ and Eλ(Q) is dense in Eλ(R). Therefore S(Q) is dense in S(R), and the
theorem follows.

We remark finally that the annoying hypothesis that one side of the
triangle be rational cannot be totally eliminated. Elementary arguments
show that the surface S corresponding to a2 = 2, b2 = 3, c2 = 5 has no
rational points except for the nodes lying in T = 0. Thus there are no
points at all at rational distance from the vertices of the right triangle with
sides of lengths

√
2,

√
3,

√
5.
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