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POINTS OF SIGNIFICANCE

Principal component 
analysis
PCA helps you interpret your data, but it will not 
always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in 
high-dimensional data while retaining trends and patterns. It does 
this by transforming the data into fewer dimensions, which act as 
summaries of features. High-dimensional data are very common in 
biology and arise when multiple features, such as expression of many 
genes, are measured for each sample. This type of data presents sev-
eral challenges that PCA mitigates: computational expense and an 
increased error rate due to multiple test correction when testing each 
feature for association with an outcome. PCA is an unsupervised 
learning method and is similar to clustering1—it finds patterns with-
out reference to prior knowledge about whether the samples come 
from different treatment groups or have phenotypic differences.

PCA reduces data by geometrically projecting them onto lower 
dimensions called principal components (PCs), with the goal of 
finding the best summary of the data using a limited number of 
PCs. The first PC is chosen to minimize the total distance between 
the data and their projection onto the PC (Fig. 1a). By minimizing 
this distance, we also maximize the variance of the projected points, 
σ2 (Fig. 1b). The second (and subsequent) PCs are selected similarly, 
with the additional requirement that they be uncorrelated with all 
previous PCs. For example, projection onto PC1 is uncorrelated with 
projection onto PC2, and we can think of the PCs as geometrically 
orthogonal. This requirement of no correlation means that the maxi-
mum number of PCs possible is either the number of samples or the 
number of features, whichever is smaller. The PC selection process 
has the effect of maximizing the correlation (r2) (ref. 2) between 
data and their projection and is equivalent to carrying out multiple 
linear regression3,4 on the projected data against each variable of the 
original data. For example, the projection onto PC2 has maximum 
r2 when used in multiple regression with PC1. 

The PCs are defined as a linear combination of the data’s original 
variables, and in our two-dimensional (2D) example, PC1 = x/√2 

+ y/√2 (Fig. 1c). These coefficients are stored in a ‘PCA loading 
matrix’, which can be interpreted as a rotation matrix that rotates 
data such that the projection with greatest variance goes along the 
first axis. At first glance, PC1 closely resembles the linear regression 
line3 of y versus x or x versus y (Fig. 1c). However, PCA differs from 
linear regression in that PCA minimizes the perpendicular distance 
between a data point and the principal component, whereas linear 
regression minimizes the distance between the response variable 
and its predicted value. 

To illustrate PCA on biological data, we simulated expression 
profiles for nine genes that fall into one of three patterns across six 
samples (Fig. 2a). We find that the variance is fairly similar across 
samples (Fig. 2a), which tells us that no single sample captures the 
patterns in the data appreciably more than another. In other words, 
we need all six sample dimensions to express the data fully.

Let’s now use PCA to see whether a smaller number of combina-
tions of samples can capture the patterns. We start by finding the 
six PCs (PC1–PC6), which become our new axes (Fig. 2b). We next 
transform the profiles so that they are expressed as linear combina-
tions of PCs—each profile is now a set of coordinates on the PC 
axes—and calculate the variance (Fig. 2c). As expected, PC1 has the 
largest variance, with 52.6% captured by PC1 and 47.0% captured by 
PC2. A useful interpretation of PCA is that r2 of the regression is the 
percent variance (of all the data) explained by the PCs. As additional 
PCs are added to the prediction, the difference in r2 corresponds 
to the variance explained by that PC. However, all the PCs are not 
typically used because the majority of variance, and hence patterns 
in the data, will be limited to the first few PCs. In our example, we 
can ignore PC3−PC6, which contribute little (0.4%) to explaining 
the variance, and express the data in two dimensions instead of six.

Figure 2d verifies visually that we can faithfully reproduce the 
profiles using only PC1 and PC2. For example, the root mean 
square (r.m.s.) distances of the original profile A from its 1D, 
2D and 3D reconstructions are 0.29, 0.03 and 0.01, respectively.
Approximations using two or three PCs are useful, because we 

Figure 2 | PCA reduction of nine expression profiles from six to two 
dimensions. (a) Expression profiles for nine genes (A–I) across six samples 
(a−f), coded by color on the basis of shape similarity, and the expression 
variance of each sample. (b) PC1–PC6 of the profiles in a. PC1 and PC2 
reflect clearly visible trends, and the remaining capture only small 
fluctuations. (c) Transformed profiles, expressed as PC scores and σ2 of each 
component score. (d) The profiles reconstructed using PC1–PC3. (e) The 2D 
coordinates of each profile based on the scores of the first two PCs. 
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Figure 1 | PCA geometrically projects data onto a lower-dimensional space. 
(a) Projection is illustrated with 2D points projected onto 1D lines along 
a path perpendicular to the line (illustrated for the solid circle). (b) The 
projections of points in a onto each line. σ2 for projected points can vary 
(e.g., high for u and low for v). (c) PC1 maximizes the σ2 of the projection 
and is the line u from a. The second (v, PC2) is perpendicular to PC1. Note 
that PC1 is not the same as linear regression of y vs. x (y~x, dark brown) or x 
vs. y (x~y, light brown). Dashed lines indicates distances being minimized.
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variables use different scales, such as expression and phenotype data, 
it may be appropriate to standardize them such that each variable 
has unit variance. However, if the variables are already on the same 
scale, standardization is not normally appropriate, as it may actually 
distort the data. For instance, after standardization, gene expression 
that varies dramatically owing to biological function may look simi-
lar to gene expression that varies only owing to noise. 

PCA is a good data summary when the interesting patterns 
increase the variance of projections onto orthogonal components. 
But PCA also has limitations that must be considered when inter-
preting the output: the underlying structure of the data must be lin-
ear (Fig. 4a), patterns that are highly correlated may be unresolved 
because all PCs are uncorrelated (Fig. 4b), and the goal is to maxi-
mize variance and not necessarily to find clusters (Fig. 4c). 

Conclusions made with PCA must take these limitations into 
account. As with all statistical methods, PCA can be misused. The 
scaling of variables can cause different PCA results, and it is very 
important that the scaling is not adjusted to match prior knowledge 
of the data. If different scalings are tried, they should be described. 
PCA is a tool for identifying the main axes of variance within a data 
set and allows for easy data exploration to understand the key vari-
ables in the data and spot outliers. Properly applied, it is one of the 
most powerful tools in the data analysis tool kit.
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can summarize the data as a scatter plot. In our case, this plot 
easily identifies that the profiles fall into three patterns (Fig. 2e). 
Moreover, the projected data in such plots often appear less noisy, 
which enhances pattern recognition and data summary.

Such PCA plots are often used to find potential clusters. To 
relate PCA to clustering, we return to the 26 expression profiles 
across 15 subjects from a previous column1, which we grouped 
using hierarchical clustering (Fig. 3a). It turns out that we can 
recover these clusters using only two PCs (Fig. 3b), reducing the 
dimensionality from 15 (the number of subjects) to 2. 

Scale matters with PCA. We illustrate this by showing PC1 and 
PC2 coefficients of each profile after artificially scaling up the 
expression in the first two subjects in every profile by factors of 
300 and 200 so that they are dominant (Fig. 3c). This scenario 
might arise if expression in the first two subjects was measured 
using a different technique, resulting in dramatically different 
variance. In fact, when a small set of variables has a much larger 
magnitude than others, the components in the PCA analysis are 
heavily weighted along those variables, while other variables are 
ignored. As a consequence, the PCA simply recovers the values of 
these high-magnitude variables (Fig. 3d). 

If the variance is dramatically different across variables (e.g., 
expression across patients in the scaled data in Fig. 3c), or if the 

Figure 3 | PCA can help identify clusters in the data. (a) Complete linkage 
hierarchical clustering of previously described expression profiles1 with the 
expression of all 26 genes (listed vertically) represented with lines across 15 
samples (horizontally). (b) When shown as coefficients of the first two PCs, 
profiles group in a similar manner to the hierarchical clustering—groups 
D and E are still difficult to separate. (c) PCA is not scale invariant. Shown 
are the first two PC components of profiles whose first and second variable 
(subject) were scaled by 300 and 200, respectively. A grouping very different 
from that in b is obtained. (d) The plot of the two scaled variables in each 
profile, ignoring the remaining 13 variables. The grouping of points is very 
similar to that in c, because PCA puts more weight on variables with larger 
absolute magnitude.

Figure 4 | The assumptions of PCA place limitations on its use.  
(a–c) Limitations of PCA are that it may miss nonlinear data patterns 
(a); structure that is not orthogonal to previous PCs may not be well 
characterized (b); and PC1 (blue) may not split two obvious clusters (c). PC2 
is shown in orange.PC1
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