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Pointwise adaptive estimation of
a multivariate density under independence
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In this paper, we study the problem of pointwise estimation of a multivariate density. We provide a data-
driven selection rule from the family of kernel estimators and derive for it a pointwise oracle inequality.
Using the latter bound, we show that the proposed estimator is minimax and minimax adaptive over the
scale of anisotropic Nikolskii classes. It is important to emphasize that our estimation method adjusts au-
tomatically to eventual independence structure of the underlying density. This, in its turn, allows to reduce
significantly the influence of the dimension on the accuracy of estimation (curse of dimensionality). The
main technical tools used in our considerations are pointwise uniform bounds of empirical processes devel-
oped recently in Lepski [Math. Methods Statist. 22 (2013) 83–99].
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1. Introduction

Let Xi = (Xi,1, . . . ,Xi,d), i ∈ N
∗, be a sequence of Rd -valued i.i.d. random vectors defined on

a complete probability space (�,A,P) and having the density f with respect to the Lebesgue
measure. Furthermore, P(n)

f denotes the probability law of X(n) = (X1, . . . ,Xn), n ∈ N
∗, and

E
(n)
f is the mathematical expectation with respect to P

(n)
f .

Our goal is to estimate the density f at a given point x0 ∈ R
d using the observation X(n) =

(X1, . . . ,Xn), n ∈ N
∗. As an estimator, we mean any X(n)-measurable mapping f̂ :Rn →R and

the accuracy of an estimator is measured by the pointwise risk:

R(q)
n [f̂ , f ] := (

E
(n)
f

∣∣f̂ (x0) − f (x0)
∣∣q)1/q

, q ≥ 1.

The discussion of traditional methods and a part of the vast literature on the theory and applica-
tion of the density estimation is given by Devroye and Györfi [7], Silverman [40] and Scott [39].
We do not pretend here to provide with a detailed overview and mention only the results which
are relevant for considered problems. The minimax and adaptive minimax multivariate density
estimation with Lp-loss on particular functional classes was studied in Bretagnolle and Hu-
ber [2], Ibragimov and Khasminskii [21,22], Devroye and Lugosi [8–10], Efroimovich [13,14],
Hasminskii and Ibragimov [20], Golubev [19], Donoho et al. [11], Kerkyacharian, Picard and
Tribouley [26], Giné and Guillou [15], Juditsky and Lambert-Lacroix [23], Rigollet [36], Mas-
sart [33] (Chapter 7), Samarov and Tsybakov [38], Birgé [1], Mason [32], Giné and Nickl [16],
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Chacón and Duong [5] and Goldenshluger and Lepski [18]. In Comte and Lacour [6], the
pointwise setting was first considered in the context of multidimensional deconvolution model.
More recently, in Goldenshluger and Lepski [17], adaptive minimax upper bounds were proved
for multivariate density estimation with Lp-risks on anisotropic Nikolskii classes using a lo-
cal (pointwise) procedure. The use of Nikolskii classes allows to consider the estimation of
anisotropic and inhomogeneous densities; see Ibragimov and Khasminskii [22], Goldenshluger
and Lepski [18] and Lepski [29].

In this paper, we focus on the problem of the minimax and adaptive minimax pointwise mul-
tivariate density estimation over the scale of anisotropic Nikolskii classes.

Minimax estimation. In the framework of the minimax estimation, it is assumed that f belongs
to a certain set of functions �, and then the accuracy of an estimator f̂ is measured by its maximal
risk over �:

R(q)
n [f̂ ,�] := sup

f ∈�

(
E

(n)
f

∣∣f̂ (x0) − f (x0)
∣∣q)1/q

, q ≥ 1. (1)

The objective here is to construct an estimator f̂∗ which achieves the asymptotic of the minimax
risk (minimax rate of convergence):

R(q)
n [f̂∗,�] � inf

f̂
R(q)

n [f̂ ,�] := ϕn(�).

Here, infimum is taken over all possible estimators.
Smoothness assumption. Let � be either Hölder classes H(β,L) or Lp-Sobolev classes

W(β,p,L) of univariate functions. Here, β represents the smoothness of the underlying den-
sity and p is the index of the norm where the smoothness is measured. Then

ϕn

(
H(β,L)

) = n−β/(2β+1),
(2)

ϕn

(
W(β,p,L)

) = n−(β−1/p)/(2(β−1/p)+1), β > 0,1 < p < ∞.

These minimax rates can be obtained from the results developed by Donoho and Low [12]; see
also Ibragimov and Khasminskii [21,22], and Hasminskii and Ibragimov [20].

Let now � = Hd(β,L) where Hd(β,L) is an anisotropic Hölder class determined by the
smoothness parameter β = (β1, . . . , βd). In this case,

ϕn

(
Hd(β,L)

)= n−β/(2β+1), β :=
[

d∑
i=1

1/βi

]−1

, βi > 0, i = 1, d. (3)

The latter result can be obtained from Kerkyacharian, Lepski and Picard [24], Proposition 1, in
the framework of the Gaussian white noise model. The similar minimax results will be estab-
lished for pointwise multivariate density estimation in Section 3.2; see Theorems 2 and 3.

It is important to emphasize that minimax rates depend heavily on the dimension d . Let us
briefly discuss how to reduce the influence of the dimension on the accuracy of estimation (curse
of dimensionality). The approach which have been recently proposed in Lepski [29] is to take
into account the eventual independence structure of the underlying density.
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Structural assumption. Note Id the set of all subsets of {1, . . . , d} and P the set of all partitions
of {1, . . . , d} completed by the empty set ∅. For all I ∈ Id and x ∈ R

d note also xI = (xi)i∈I ,
I = {1, . . . , d} \ I , |I | = card(I ) and put

fI (xI ) :=
∫
R|I |

f (x)dxI .

Obviously, fI is the marginal density of X1,I and, to take into account the independence structure
of the density f , we consider the following set:

P(f ) :=
{
P ∈P: f (x) =

∏
I∈P

fI (xI ),∀x ∈ R
d

}
.

In this paper, we focus on the problem of pointwise multivariate density estimation on
anisotropic Nikolskii classes. In particular, we will prove that the minimax rate on the class
N∗

p,d(β,L,P) (introduced in Lepski [29], see the definition in Section 3.1) for fixed β ∈
(0,+∞)d , p ∈ [1,+∞]d , L ∈ (0,+∞)d , P ∈ P(f ), are given by

ϕn

(
N∗

p,d(β,L,P)
)= n−r/(2r+1), r := inf

I∈P

[
1 −∑

i∈I 1/(βipi)∑
i∈I 1/βi

]
.

If d = 1, then the structural assumption does not exist, that means formally P = ∅, and we come
to the rates given in (2). Note that N∗∞,1(β,L,∅) coincides with the set of densities belonging
to H(β,L) and that N∗

p,1(β,L,∅) contains the set of densities belonging to W(β,p,L).

If d ≥ 2, pi = ∞, i = 1, d , and P = ∅ we find again the rates given in (3), and N∗∞,d (β,L,∅)

coincides with a set of densities belonging to Hd(β,L). Note however that if P 	= ∅ the
latter rates can be essentially improved. Indeed, if, for instance, β = (β, . . . ,β) and P∗ =
{{1}, . . . , {d}}, then r = β and

n−β/(2β+d) = ϕn

(
Hd(β,L)

)
 ϕn

(
N∗∞,d

(
β,L,P∗))= n−β/(2β+1). (4)

Moreover, ϕn(N
∗∞,d (β,L,P∗)) does not depend on the dimension d .

We remark that minimax rates (accuracy of estimation) depend heavily on the parameters β,p

and P . Their knowledge cannot be often supposed in particular practice. It makes necessary to
find an estimator whose construction would be parameter’s free.

Adaptive minimax estimation. In the framework of the adaptive minimax estimation the under-
lying density f is supposed to belong to the given scale of functional classes {�α,α ∈ A}. For
instance, if �α =H(β,L), α = (β,L), or if �α =W(β,p,L), α = (β,p,L).

The first question arising in the framework of the adaptive approach consists in the following:
does there exists an estimator f̂∗ such that

lim sup
n→+∞

{
ϕ−1

n (α)R(q)
n [f̂∗,�α]}< +∞ ∀α ∈ A, (5)

where ϕn(α) is the minimax rate of convergence over �α .
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As it was shown in Lepski [31] for the Gaussian white noise model, the answer of this question
is negative if �α =H(β,L), α = (β,L). Brown and Low [3] extended this result to the pointwise
density estimation. Further Butucea [4] extended the results of Brown and Low [3] over the scale
of Lp-Sobolev classes W(β,p,L). In Section 3.3.2, we will prove that the answer is also negative
for multivariate density estimation at a given point over the scale of anisotropic Nikolskii classes
N∗

p,d(β,L,P).
Thus, for problems in which (5) does not hold we need first to find a family of normalizations

Ψ = {Ψn(�α),α ∈ A} and an estimator f̂� such that

lim sup
n→+∞

{
Ψ −1

n (α)R(q)
n [f̂�,�α]}< +∞ ∀α ∈ A. (6)

Any family of normalizations satisfying (6) is called admissible and the estimator f̂Ψ is called
Ψ -adaptive. Next, we have to provide with the criterion of optimality allowing to select “the
best” admissible family of normalizations, usually called adaptive rate of convergence. The first
criterion was proposed in Lepski [31] and it was improved later in Tsybakov [41] and in Klutch-
nikoff [27].

In particular, in Lepski [31] and in Butucea [4], it was shown that the adaptive rate of conver-
gence for the considered problem is

Ψn

(
H(β,L)

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ln(n)

n

)β/(2β+1)

, β ∈ (0, βmax),(
1

n

)β/(2β+1)

, β = βmax,

Ψn

(
W(β,p,L)

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ln(n)

n

)(β−1/p)/(2(β−1/p)+1)

, β ∈ (0, βmax),(
1

n

)(β−1/p)/(2(β−1/p)+1)

, β = βmax,

with respect to the criterion in Lepski [31] and Tsybakov [41], respectively. Here, βmax is an
arbitrary positive number.

Later Klutchnikoff [27] studied the pointwise adaptive minimax estimation over anisotropic
Hölder classes, in the Gaussian white noise model. The consideration of anisotropic functional
classes required to develop a new criterion of optimality. Following this criterion, Klutch-
nikoff [27] proved that the adaptive rate of convergence is

Ψn

(
Hd(β,L)

)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ln(n)

n

)β(2β+1)

, β ∈
d∏

i=1

(
0, β

(max)
i

)d
,

(
1

n

)β
(max)

/(2β
(max)+1)

, β = β(max).

Recently, Comte and Lacour [6] found a similar form of admissible sequence for pointwise adap-
tive minimax estimation in the deconvolution model.
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In Section 3.3, we provide with minimax adaptive estimator in pointwise multivariate density
estimation over the scale of anisotropic Nikolskii classes. We will take into account not only the
approximation properties of the underlying density but the eventual independence structure as
well. To analyze the accuracy of the proposed estimator, we establish so-called pointwise oracle
inequality proved in Section 5.3. We will also show that the adaptive rate of convergence is given
by

Ψn

(
N∗

p,d(β,L,P)
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ln(n)

n

)r/(2r+1)

, 0 < r < rmax,(
1

n

)r/(2r+1)

, r = rmax,

r := inf
I∈P

[
1 −∑

i∈I 1/(βipi)∑
i∈I 1/βi

]
.

To assert the optimality of this family of normalizations, we generalize the criterion proposed in
Klutchnikoff [27]; see Section 3.3.2.

Organization of the paper. In Section 2, we provide a measurable data-driven selection rule
based on bandwidth selection of kernel estimators and we derive an oracle-type inequality for the
selected estimator at a given point. In Section 3, we treat the complete problem of minimax and
adaptive minimax pointwise multivariate density estimation on a scale of anisotropic Nikolskii
classes taking into account the independence structure of the underlying density. In Section 4,
we briefly compare our local method with the global one developed in Lepski [29]. Proofs of all
main results are given in Section 5. Proofs of technical lemmas are postponed to the Appendix.

2. Selection rule and pointwise oracle-type inequality

2.1. Kernel estimators related to independence structure

Let K :R → R be a fixed symmetric kernel satisfying
∫

K = 1, supp(K) ⊆ [−1/2,1/2],
‖K‖∞ < ∞,

∃LK > 0:
∣∣K(x) − K(y)

∣∣≤ LK|x − y| ∀x, y ∈R. (7)

For all I ∈ Id , h ∈ (0,1]d and x ∈ R
d put also

K(I)(xI ) :=
∏
i∈I

K(xi), VhI
:=

∏
i∈I

hi, K
(I)
hI

(xI ) := V −1
hI

∏
i∈I

K(xi/hi);

f̂
(n)
hI

(x0,I ) := n−1
n∑

i=1

K
(I)
hI

(Xi,I − x0,I ).
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Then introduce the family of estimators

F[P] :=
{
f̂

(n)

(h,P)
(x0) =

∏
I∈P

f̂
(n)
hI

(x0,I ), (h,P) ∈ (0,1]d ×P

}
.

Note first that f̂
(n)

(h,∅)
(x0) = f̂

(n)
h (x0) is the Parzen–Rosenblatt estimator (see, e.g., Rosen-

blatt [37], Parzen [35]) with kernel K(∅) and multibandwidth h.
Next, the introduction of the estimator f̂

(n)

(h,P)
(x0) is based on the following simple observation.

If there exists P ∈ P(f ), the idea is to estimate separately each marginal density corresponding
to I ∈ P . Since the estimated density possesses the product structure, we seek its estimator in the
same form.

Below we propose a data driven selection from the family F[P].

2.2. Auxiliary estimators and extra parameters

To define our selection rule, we need to introduce some notation and quantities.
Auxiliary estimators. For I ∈ Id and h ∈ (0,1]d put

G̃hI
(x0,I ) := 1 ∨

[
n−1

n∑
i=1

∣∣K(I)
hI

(Xi,I − x0,I )
∣∣].

Introduce for I ∈ Id and h,η ∈ (0,1]d auxiliary estimators

f̂
(n)
hI ,ηI

(x0,I ) := n−1
n∑

i=1

K
(I)
hI ∨ηI

(Xi,I − x0,I ), hI ∨ ηI := (hi ∨ ηi)i∈I .

Note that the idea to use such auxiliary estimators, defined with the multibandwidth h ∨ η, ap-
peared for the first time in Kerkyacharian, Lepski and Picard [24], in the framework of the Gaus-
sian white noise model.

We endow the set P with the operation “◦” introduced in Lepski [29]: for any P,P ′ ∈P

P ◦P ′ := {
I ∩ I ′ 	=∅, I ∈P, I ′ ∈P ′} ∈ P.

Then we define for h,η ∈ (0,1]d and P,P ′ ∈P

f̂
(n)

(h,P),(η,P ′)(x0) :=
∏

I∈P◦P ′
f̂

(n)
hI ,ηI

(x0,I ). (8)

Set of parameters. Our selection rule consists in choosing an estimator f̂
(n)

(h,P)
(x0) when the

parameter (h,P) belongs at most to the set H[P] defined as follows.
Let z> 0, τ(s) ∈ (0,1], s = 1, . . . , d , be fixed numbers and let h(I )

I ∈ (0,1]|I |, I ∈ Id , be fixed
multibandwidths. All these parameters will be chosen in accordance with our procedure.

Set also λ := supI∈Id
{1 ∨ λ

(2q)
|I | [K, z]} and a := {2λ

√
1 + 2q}−2, where constants λ

(q)
s [K, z],

s ∈N
∗, q ≥ 1, are given in Section 5.1. The explicit expressions of λ

(q)
s [K, z] are too cumbersome



1990 G. Rebelles

and it is not convenient for us to present them right now.
For all I ∈ Id and all integer m > 0 introduce

H
(I )
m,1 := {

hI ∈ (0,1]|I |: v(I)
m V

h
(I )
I

≤ VhI
≤ v

(I)
m−1Vh

(I )
I

}∩
∏
i∈I

[
1

n
,
(
v(I)
m

)−z
h

(I )
i

]
,

H
(I )
m,2 := {

hI ∈ (0,1]|I |: v(I)
m Vmax ≤ VhI

≤ v
(I)
m−1Vmax

}∩
∏
i∈I

[
1

n
,
(
v(I)
m

)−z
h

(I )
i

]
,

H(I ) :=
(

Mn(I)⋃
m=1

H
(I )
m,1

)⋃(
Mn(I)⋃
m=1

H
(I )
m,2

)
,

where v
(I)
m := 2−mτ(|I |), Mn(I) is the largest integer satisfying v

(I)
Mn(I)[Vh

(I )
I

∧ Vmax] ≥ ln(n)
an

and

Mn(I) ≤ log2(n), and Vmax is defined below.
Define finally

H[P] := {
(h,P) ∈ (0,1]d ×P: hI ∈ H(I ),∀I ∈ P

}
.

Extra parameters. Let H and P be arbitrary subsets of (0,1]d and P, respectively. The se-
lection rule (9)–(10) below run over H[P] := (H × P) ∩ H[P] and the reasons for introducing
these extra parameters are discussed in Remark 1. In particular, for measurability reasons, we
will always suppose that H is either a compact or a finite subset of (0,1]d .

Set �n(x0) := 3λd2[2Gn(x0)]d2−1, where

Gn(x0) := sup
(h,P)∈H[P]

sup
(η,P ′)∈H[P]

sup
I∈P◦P ′

[
2G̃hI ∨ηI

(x0,I )
]
.

Put also Vmax := supP∈P infI∈P V
h

(I )
I

and, for (h,P) ∈ (0,1]d ×P,

δ(h,P) := sup
P ′∈P

sup
I∩I ′∈P◦P ′

[V
h

(I )

I∩I ′∨h(I ′)
I∩I ′

VhI∩I ′

]
∨
[

Vmax

infI∈P V
h

(I )
I

]
.

Define finally, for (h,P) ∈ (0,1]d ×P,

Û(h,P)(x0) :=
√

[Gn(x0)]2{1 ∨ ln δ(h,P)}
nV (h,P)

, V (h,P) := inf
I∈P

VhI
.

2.3. Selection rule

For (h,P) ∈ (0,1]d ×P introduce

�̂(h,P)(x0)
(9)

:= sup
(η,P ′)∈H[P]

[∣∣f̂ (n)

(h,P),(η,P ′)(x0) − f̂
(n)

(η,P ′)(x0)
∣∣− �n(x0)

{
Û(η,P ′)(x0) + Û(h,P)(x0)

}]
+.
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Define finally (̂h, P̂) satisfying

�̂(̂h,P̂)(x0) + 2�n(x0)Û(̂h,P̂)(x0) = inf
(h,P)∈H[P]

[
�̂(h,P)(x0) + 2�n(x0)Û(h,P)(x0)

]
. (10)

The selected estimator is f̂n(x0) := f̂
(n)

(̂h,P̂)
(x0).

Similarly to Section 2.1 in Lepski [29] it is easy to show that (̂h, P̂) is X(n)-measurable and
that (̂h, P̂) ∈H[P]. It follows that f̂n(x0) is also a X(n)-measurable random variable.

Remark 1. The necessity to introduce the extra parameters H and P is dictated by several rea-
sons. The first one is computational namely the computation of �̂(h,P)(x0) and (̂h, P̂). However,
the computational aspects of the choice of P and H are quite different. Typically, H can be chosen
as an appropriate grid in (0,1]d , for instance, dyadic one, that is sufficient for proving adaptive
properties of the proposed estimator. The choice of P is much more delicate. The reason of con-
sidering P instead of P is explained by the fact that the cardinality of P grows exponentially
with the dimension d . Therefore, if P =P, for large values of d our procedure is not practically
feasible in view of huge amount of comparisons to be done. In the latter case, the interest of
our result is theoretical. Note also that the best attainable trade-off between approximation and
stochastic errors depends heavily on both the number of observations and the effective dimen-
sion d(f ) = infP∈P(f ) supI∈P |I |. Thus, if d(f ) is big the corresponding independence structure
does not bring a real improvement of the estimation accuracy. So, in practice, P is chosen to sat-
isfy supI∈P |I | ≤ d0, ∀P ∈ P \ {∅}. The choice of the parameter d0 (made by a statistician) is
based on the compromised between the sample size n, the desirable quality of estimation and the
number of computations. For instance, one can consider d0 = 1, that means that P contains two
elements, {{1, . . . , d}} and {{1}, . . . , {d}}. The latter case corresponds to the observations having
independent components and it can be illustrated in Example 1 below. On the other hand, in the
case of low dimension d , one can always take P = P, since if d = 2, |P| = 2, d = 3, |P| = 5,
d = 4, |P| = 12, etc.

Other reasons are related to the possibility to consider various problems arising in the frame-
work of minimax and minimax adaptive estimation and they will be discussed in detail in Sec-
tions 3.2 and 3.3.2. Here, we only mention that the choice P = {∅} allows to study the adaptive
estimation of a multivariate density on R

d without taking into account eventual independence
structure. We would like to emphasize that the latter problem was not studied in the literature.

At last the introduction of P allows to minimize the assumptions imposed on the density to be
estimated. In particular, the oracle inequality corresponding to P = {∅} is proved over the set of
bounded densities; see Corollary 1.

In spite of the fact that the construction of the proposed procedure does not require any condi-
tion on the density f , the following assumption will be used for computing its risk:

f ∈ Fd [f,P] :=
{
f : sup

P,P ′∈P
sup

I∈P◦P ′
‖fI‖∞ ≤ f,∃P ∈P(f ) ∩P

}
, 0 < f < +∞. (11)
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Note that the considered class of densities is determined by P and in particular, if ∅ ∈ P,

Fd [f,P] =
{
f : sup

I∈Id

‖fI‖∞ ≤ f
}

⊆ Fd [f,P],

Fd

[
f, {∅}] = {

f : ‖f ‖∞ ≤ f
}
, Fd

[
f, {P}]=

{
f : sup

I∈P
‖fI‖∞ ≤ f,P ∈ P(f )

}
.

2.4. Oracle-type inequality

For I ∈ Id and (h, η) ∈ (0,1]d × [0,1]d introduce

BhI ,ηI
(x0,I ) :=

∫
R|I |

K(I)(u)
[
fI

(
x0,I + (hI ∨ ηI )u

)− fI (x0,I + ηIu)
]

du,

where here and later yI xI denotes the coordinate-vise product of yI , xI ∈ R
|I |.

For (h,P) ∈ (0,1]d ×P define B(h,P)(x0) := supP ′∈P supI∈P◦P ′ supη∈[0,1]d |BhI ,ηI
(x0,I )|.

Introduce finally, if exists P ∈ P(f ) ∩P,

Rn(f ) := inf
(h,P)∈H[P]: P∈P(f )

[
B(h,P)(x0) +

√
1 ∨ ln δ(h,P)

nV (h,P)

]
.

The quantity Rn(f ) can be viewed as the optimal trade-off between approximation and stochastic
errors provided by estimators involved in the selection rule.

Theorem 1. Let H ⊆ (0,1]d and P ⊆P be arbitrary subsets such that H[P] is non-empty.
Then for any 0 < f < +∞, any q ≥ 1 and any integer n ≥ 3:

R(q)
n [f̂n, f ] ≤ α1Rn(f ) + α2[nVmax]−1/2 ∀f ∈ Fd [f,P], (12)

where α1 := α1(q, d,K, f) and α2 := α2(q, d,K, f) are given in the proof of the theorem.

Considering the case P = {∅} and noting H = H(∅) we come to the following consequence
of Theorem 1.

Corollary 1. Let assumptions of Theorem 1 be fulfilled. Then, for all densities f such that
‖f ‖∞ ≤ f,

R(q)
n [f̂n, f ] ≤ α1 inf

h∈H∩H

[
sup

η∈[0,1]d
∣∣Bh,η(x0)

∣∣+√
1 ∨ ln(Vh/Vh)

nVh

]
+ α2[nVh]−1/2. (13)

Looking at the assertion of Theorem 1 and its Corollary 1 it is not clear what can be gained by
taking into account eventual independence structure. This issue will be scrutinized in Section 3,
but some conclusions can be deduced directly from the latter results. Consider the following
example.
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Example 1. For any t ∈ R, put

f (t) = 64
15

{
4t1[0,1/8)(t) + ( 3

4 − 2t
)
1(1/8,1/4](t) + 1

4 1(1/4,3/4](t) + (1 − t)1(3/4,1](t)
}
,

and define fd(x) =∏d
i=1 f (xi), x ∈ R

d . It is easily seen that fd is a probability density and the
goal is to estimate f (x0), x0 ∈ (3/8,7/8)d .

Choose h = (1, . . . ,1), h = (1/4, . . . ,1/4) and let H = {h, h}. Put P1 = {{1, . . . , d}}, P2 =
{{1}, . . . , {d}} and let P = {P1,P2}. Since, in this case, H×P contains 4 elements, our estimator
can be computed in a reasonable time.

Moreover, in accordance with the oracle-type inequality proved in Theorem 1, the accuracy
provided by the selected estimator is proportional to

√[4 ln(4)]/n. On the other hand, the point-
wise risk of the kernel estimator with optimally chosen bandwidth and kernel is proportional to√[d4d ln(4)]/n if the independence structure is not taken into account. As we see, the adapta-
tion to eventual independence structure can lead to significant improvement of the constant. This
shows that the proposed methodology has an interest beyond derivation of minimax rates, which
is the subject of the next section.

3. Minimax and adaptive minimax pointwise estimation

In this section, we provide with minimax and adaptive minimax estimation over a scale of
anisotropic Nikolskii classes.

3.1. Anisotropic Nikolskii densities classes with independence structure

Let {e1, . . . , es} denote the canonical basis in R
s , s ∈ N

∗.

Definition 1. Let p = (p1, . . . , ps),pi ∈ [1,∞], β = (β1, . . . , βs), βi > 0 and L = (L1, . . . ,Ls),
Li > 0. A function f :Rs → R belongs to the anisotropic Nikolskii class Np,s(β,L) if

(i)
∥∥Dk

i f
∥∥

pi
≤ Li ∀k = 0, �βi�,∀i = 1, s;

(ii)
∥∥D�βi�

i f (· + tei) − D
�βi�
i f (·)∥∥

pi
≤ Li |t |βi−�βi� ∀t ∈ R,∀i = 1, s.

Here, Dk
i f denotes the kth order partial derivate of f with respect to the variable ti , and �βi� is

the largest integer strictly less than βi .

The following collection {N∗
p,d(β,L,P)}P was introduced in Lepski [29] in order to take

into account the smoothness of the underlying density and its eventual independence structure
simultaneously.

N∗
p,d(β,L,P) :=

{
f ∈N

∗
p,d(β,L): f ≥ 0,

∫
f = 1, f (x) =

∏
I∈P

fI (xI ),∀x ∈R
d

}
,
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where f ∈ N
∗
p,d(β,L) means that

fI ∈NpI ,|I |(βI ,LI ) ∀I ∈ Id . (14)

We remark that this collection of functional classes was used in the case of adaptive estima-
tion, that is, when the partition P ∈ P is unknown. However, when the minimax estimation is
considered (P is fixed), we do not need that condition (14) holds for any I ∈ Id . It suffices to
consider only I belonging to P , and we come to the following definition.

Definition 2 (Minimax estimation). Let p = (p1, . . . , pd),pi ∈ [1,∞], β = (β1, . . . , βd), βi >

0, L = (L1, . . . ,Ld), Li > 0 and P ∈ P. A probability density f :Rd →R+ belongs to the class
Np,d(β,L,P) if

f (x) =
∏
I∈P

fI (xI ) ∀x ∈R
d, fI ∈NpI ,|I |(βI ,LI ) ∀I ∈P . (15)

Let us now come back to the adaptive estimation. As it was discussed in Remark 1, the adapta-
tion is not necessarily considered with respect to P. If P ⊂ P is used instead of P, the assump-
tion (14) is too restrictive and can be weakened in the following way.

Denote P
∗ := {P ◦P ′: P,P ′ ∈ P} and I∗

d := {I ∈ Id : ∃P ∈ P
∗
, I ∈ P}.

Definition 3 (Adaptive estimation). Let P ⊆ P and (β,p,P) ∈ (0,+∞)d × [1,∞]d × P be
fixed. A probability density f :Rd →R+ belongs to the class Np,d(β,L,P) if

f (x) =
∏
I∈P

fI (xI ) ∀x ∈R
d; fI ∈ NpI ,|I |(βI ,LI ) ∀I ∈ I∗

d . (16)

Some remarks are in order.
(1) We note that if P = P, then Np,d(β,L,P) = N∗

p,d(β,L,P), but for some P ⊂ P, one

has N∗
p,d(β,L,P) ⊂ Np,d(β,L,P). The latter inclusion shows that the condition (16) is weaker

than f ∈ N∗
p,d(β,L,P). In particular, if P = {∅}, then Np,d(β,L,∅) = {f ∈ Np,d(β,L): f ≥

0,
∫

f = 1} ⊃ N∗
p,d(β,L,∅).

(2) Note that if P = {P}, then Np,d(β,L,P) coincides with the class Np,d(β,L,P) used for
minimax estimation. But Np,d(β,L,P) ⊂ Np,d(β,L,P) for all P ∈ P for any other choices
of P.

3.2. Minimax results

For (β,p,P) ∈ (0,+∞)d × [1,∞]d ×P define

r := r(β,p,P) = inf
I∈P

γI (β,p), γI := γI (β,p) = 1 −∑
i∈I 1/(βipi)∑
i∈I 1/βi

, I ∈P;
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ϕn(β,p,P) :=
(

1

n

)r/(2r+1)

, ρn(β,p,P) := 1{r≤0} + ϕn(β,p,P)1{r>0}. (17)

As it will follow from Theorems 2 and 3 below ϕn(β,p,P) is the minimax rate of convergence on
Np,d(β,L,P). Hence, similarly to the standard representation of minimax rates, the parameter r

can be interpreted as a smoothness index corresponding to the independence structure.

Theorem 2. ∀(β,p,P) ∈ (0,+∞)d × [1,∞]d ×P, ∀L ∈ (0,∞)d , ∃c > 0:

lim inf
n→+∞

{
ρ−1

n (β,p,P) inf
f̃n

R(q)
n

[
f̃n,Np,d(β,L,P)

]}≥ c,

where infimum is taken over all possible estimators.

Note that the assertion of Theorem 2 will be deduced from more general result established
in Proposition 1 below. It is also important to emphasize that if r ≤ 0 there is no uniformly
consistent estimator for the considered problem and, to the best of our knowledge, this fact was
not known before. Let us provide an example with a density for which r < 0.

Example 2. Suppose that d = 1 and, therefore, P = ∅ (no independence structure). For any
x ∈R, put

g(x) = 1{0}(x) + 1

2
√

x
1(0,1](x).

Some straightforward computations allows us to assert that g /∈ Np,1(β,L,∅), ∀L > 0, if pβ ≥ 1
(i.e., r ≥ 0), and that g ∈ N1,1(1/2,L,∅) for some L > 0 (p = 1, β = 1/2). Thus, in this case,
one has r < 0.

Our goal now is to show that ϕn(β,p,P) is the minimax rate of convergence on Np,d(β,L,P)

and that a minimax estimator belongs to the collection F[P]. In fact, we prove that the minimax
estimator is f̂

(n)

(h,P)
with properly chosen kernel K and bandwidth h.

For a given integer l ≥ 2 and a given symmetric Lipschitz function u :R → R satisfying
supp(u) ⊆ [−1/(2l),1/(2l)] and

∫
R

u(y)dy = 1 set

ul(z) :=
l∑

i=1

(
l

i

)
(−1)i+1 1

i
u

(
z

i

)
, z ∈ R. (18)

Furthermore, we use K ≡ ul in the definition of estimators collection F[P].
The relation of kernel ul to anisotropic Nikolskii classes is discussed in Kerkyacharian, Lepski

and Picard [26]. In particular, it was shown that∫
R

K(z)dz = 1,

∫
R

zkK(z)dz = 0 ∀k = 1, . . . , l − 1. (19)
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Choose finally h = (h1, . . . ,hd), where

hi = n−(γI (β,p)/(2γI (β,p)+1))(1/βi (I )), i ∈ I, I ∈ P .

Here,

βi(I ) := κ(I )βiκ
−1
i (I ), κ(I ) := 1−

∑
k∈I

(βkpk)
−1, κi (I ) := 1−

∑
k∈I

(
p−1

k −p−1
i

)
β−1

k .

Theorem 3. For all (β,p,P) ∈ (0, l]d × [1,∞]d × P such that r(β,p,P) > 0 and all L ∈
(0,∞)d

lim sup
n→+∞

{
ϕ−1

n (β,p,P)R(q)
n

[
f̂

(n)

(h,P)
,Np,d(β,L,P)

]}
< ∞.

To get the statement of this theorem, we apply Theorem 1 with P = {P} and H = {h}. In
view of the embedding theorem for anisotropic Nikolskii classes (formulated in the proof of
Lemma 3 and available when r(β,p,P) > 0), there exists a number f := f(β,p) > 0 such that
Np,d(β,L,P) ⊆ Fd [f, {P}]. It makes possible the application of Theorem 1.

Let us briefly discuss several consequences of Theorems 2 and 3. First, if P = ∅, we obtain the
minimax rate on the anisotropic Nikolskii class Np,d(β,L). In particular, if pi = +∞, i = 1, d ,
we find the minimax rate on the anisotropic Hölder class Hd(β,L) given in (3). If d = 1, then
our results coincide with those presented in (2).

Next, in view of Theorem 2 there is no consistent estimator for f (x0) on Np,d(β,L) if
r(β,p,∅) ≤ 0. On the other hand, if f ∈ Np,d(β,L,P) and r(β,p,P) > 0, then such estimator
for f (x0) does exist in view of Theorem 3 even if r(β,p,∅) < 0.

Note also that the condition r(β,p,∅) > 0 is sufficient to find a consistent estimator on each
functional class Np,d(β,L,P), P ∈ P, and that the same condition is necessary for the estima-
tion over Np,d(β,L,∅). It allows us to compare the influence of the independence structure on
the accuracy of estimation. For example, we see that

ϕn

(
Hd(β,L)

)
 ϕn(β,p,P), pi = ∞, i = 1, d.

We conclude that the existence of an independence structure improves significantly the accu-
racy of estimation.

We finish this section with the result being a refinement of Theorem 2.

Proposition 1. ∀(β,p,P) ∈ (0,+∞)d × [1,∞]d ×P, ∀L ∈ (0,∞)d , ∃c > 0:

lim inf
n→+∞

{
ρ−1

n (β,p,P) inf
f̃n

R(q)
n

[
f̃n,N

∗
p,d(β,L,P)

]}≥ c,

where infimum is taken over all possible estimators.

Remark 2. Recall (see Section 3.1) that N∗
p,d(β,L,P) ⊆ Np,d(β,L,P) ⊆ Np,d(β,L,P).

Hence, the statement of Theorem 3 remains true if one replaces Np,d(β,L,P) by Np,d(β,L,P),
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P ⊆ P. Thus, Proposition 1 together with Theorem 3 allows us to assert that ρn(β,p,P) is the
minimax rate of convergence on Np,d(β,L,P).

3.3. Adaptive estimation

3.3.1. Adaptive estimation. Upper bound

Let P ⊆ P, such that ∅ ∈ P, be fixed. Denote d(P) := supI∈P |I |, P ∈ P, and d :=
infP∈P d(P).

Set β
(max)
i = βmax > (d − d)/2, p

(max)
i = +∞, i = 1, d , and suppose additionally that l ≥

2 ∨ βmax. Choose K ≡ ul , z := 1
2βmax

and τ(s), s = 1, . . . , d , satisfying

τ(s) := 2βmax/(2βmax + d).

Let H be the dyadic grid in (0,1]d and let h(I )
I , I ∈ Id , be the projection on the dyadic grid in

(0,1]|I | of the multibandwith h(I )
I given by

h(I )
i := n−1/(2βmax+d), i ∈ I. (20)

Consider the estimator f̂n(x0) defined by the selection rule (9)–(10), in Section 2.3.
For (β,p,P) ∈ (0, βmax]d × [1,∞]d ×P introduce

ψn(β,p,P) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ln(n)

n

)r/(2r+1)

, r := r(β,p,P) < rmax,(
1

n

)rmax/(2rmax+1)

, r := r(β,p,P) = rmax,

rmax := βmax

d
. (21)

Theorem 4. For any (β,p) ∈ (0, βmax]d × [1,∞]d such that r(β,p,∅) > 0, any P ∈ P and
any L ∈ (0,∞)d

lim sup
n→+∞

{
ψ−1

n (β,p,P)R(q)
n

[
f̂n,Np,d(β,L,P)

]}
< ∞.

Similarly to Theorem 3, the proof of Theorem 4 is mostly based on the result of Theo-
rem 1. The application of Theorem 1 is possible because Np,d(β,L,P) ⊆ Fd [f,P] for some
f := f(β,p) > 0 that is guaranteed by the condition r(β,p,∅) > 0.

We would like to emphasize that the construction of f̂n(x0) does not involved the knowledge
of the parameters (β,L,p,P). Using the modern statistical language, one can say that f̂n(x0) is
fully adaptative.

Note, however, that the precision ψn(β,p,P) given by this estimator does not coincide with
minimax rate of convergence ϕn(β,p,P) whenever r 	= rmax. In the next section, we prove that
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ψn(β,p,P) found in Theorem 4 is an optimal payment for adaptation.

3.3.2. Adaptive estimation. Criterion of optimality

Let {�(α,b), (α, b) ∈ A × B} be the scale of functional classes where A ⊂ R
m is a (m)-

dimensional manifold and B is a finite set. Recall that the family Ψ = {Ψn(α,b), (α, b) ∈A×B}
of normalizations is called admissible if there exists an estimator f̂� such that

lim sup
n→+∞

{
Ψ −1

n (α, b)R(q)
n [f̂�,�(α,b)]

}
< +∞ ∀(α, b) ∈ A×B. (22)

The estimator f̂Ψ is called Ψ -adaptive.
In the considered problem, α = (β,p), b =P and

A= {
(β,p) ∈ (0, βmax]d × [1,∞]d : r(β,p,∅) > 0

}
, B= P.

As it follows from Theorem 4 ψn(β,p,P) is an admissible family of normalizations and the
estimator f̂n is ψn-adaptive.

Let Ψ = {Ψn(α,b) > 0, (α, b) ∈A×B} and Ψ̃ = {Ψ̃n(α, b) > 0, (α, b) ∈A×B} be arbitrary
families of normalizations and put

ϒn(α,b) := Ψ̃n(α, b)

Ψn(α, b)
, ϒn(α) := inf

b∈B
ϒn(α,b).

Define the set A(0)[Ψ̃ /Ψ ] ⊆A as follows:

A(0)[Ψ̃ /Ψ ] :=
{
α ∈A: lim

n→∞ϒn(α) = 0
}
.

The set A(0)[Ψ̃ /Ψ ] can be viewed as the set where the family Ψ̃ “outperforms” the family Ψ .
For any b ∈B, introduce

A(∞)
b [Ψ̃ /Ψ ] :=

{
α ∈A: lim

n→∞ϒn(α0)ϒn(α, b) = ∞,∀α0 ∈A(0)[Ψ̃ /Ψ ]
}
.

Remark first that the set A(∞)
b [Ψ̃ /Ψ ] is the set where the family Ψ “outperforms” the family Ψ̃ .

Moreover, the “gain” provided by Ψ with respect to Ψ̃ on A(∞)
b [Ψ̃ /Ψ ] is much larger than its

“loss” on A(0)[Ψ̃ /Ψ ].
The idea led to the criterion of optimality formulated below is to say that Ψ is “better” than Ψ̃

if there exists b ∈ B for which the set A(∞)
b [Ψ̃ /Ψ ] is much more “massive” than A(0)[Ψ̃ /Ψ ].

Definition 4. (I) A family of normalizations Ψ is called adaptive rate of convergence if

1. Ψ is an admissible family of normalizations;
2. for any admissible family of normalizations Ψ̃ satisfying A(0)[Ψ̃ /Ψ ] 	=∅
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• A(0)[Ψ̃ /Ψ ] is contained in a (m − 1)-dimensional manifold,
• there exists b ∈B such that A(∞)

b [Ψ̃ /Ψ ] contains an open set of A.

(II) If Ψ is an adaptive rate of convergence, then f̂� satisfying (22) is called rate adaptive
estimator.

The aforementioned definition is inspired by Klutchnikoff’s criterion; see Klutchnikoff [27].
Indeed if card(B) = 1 the both definitions coincide.

Theorem 5. (i) We can find no optimal rate adaptive estimator (satisfying (5) in Section 1) over
the scale {

Np,d(β,L,P), (β,p,L,P) ∈A
}
,

whenever A ⊆ {(β,p,L,P) ∈ (0, βmax]d ×[1,∞]d × (0,∞)d ×P: r(β,p,∅) > 0} contains at
least two elements (β,p,L,P) and (β ′,p′,L′,P ′) such that r(β,p,P) 	= r(β ′,p′,P ′).

(ii) f̂n(x0) is rate adaptive estimator of f (x0) and ψn is the adaptive rate of convergence, in
the sense of Definition 4, over the scale{

Np,d(β,L,P), (β,p,L,P) ∈ (0, βmax]d × [1,∞]d × (0,∞)d ×P, r(β,p,∅) > 0
}
.

It is important to emphasize that our results cover a large class of problems in the framework
of pointwise density estimation.

In particular, if P = {∅}, we deduce that f̂n(x0) is rate adaptive estimator of f (x0) over{
Np,d(β,L,∅), (β,p,L) ∈ (0, βmax]d × [1,∞]d × (0,∞)d , r(β,p,∅) > 0

}
.

The adaptive rate of convergence for this problem is given by

ψn(β,p,∅) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ln(n)

n

)r/(2r+1)

, (β,p) 	= (
β(max), p(max)

)
, r := 1 −∑d

i=1 1/(βipi)∑d
i=1 1/βi

,(
1

n

)rmax/(2rmax+1)

, (β,p) = (
β(max), p(max)

)
, rmax := βmax

d
.

To the best of our knowledge, the latter result is new. It is precise and generalizes the results
of Butucea [4] (d = 1) and Comte and Lacour [6] for the deconvolution model when the noise
variable is equal to zero.

Another interesting fact is related to the set of “nuisance” parameters where the adaptive rate of
convergence ψn(β,p,P) coincides with the minimax one. In all known for us problems of point-
wise adaptive estimation this set contains a single element. However, as it follows from Theo-
rem 5, this set may contain several elements. Indeed, if, for instance, d = 4 and P = {P1,P2,P3}
with P1 = {{1}, {2}, {3,4}}, P2 = {{1,2}, {3,4}}, P3 = {{1,2,3,4}}, then f̂n(x0) is rate adaptive
estimator of f (x0) over{

Np,4(β,L,P), (β,p,L,P) ∈ (0, βmax]4 × [1,∞]4 × (0,∞)4 ×P, r(β,p,∅) > 0
}
.
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In this case, the adaptive rate of convergence satisfies

ψn(β,p,P) :=
(

1

n

)rmax/(2rmax+1)

, (β,p,P) ∈ {
β(max)

}× {
p(max)

}× {P1,P2},

rmax := βmax

2
.

Thus, in the considered example the aforementioned set contains two elements.
Finally, let us note that there is a “ln-price” to pay for adaptation with respect to the structure

of independence even if the smoothness parameters β , L and p are known. This result follows
from the bound (41) established in the proof of Theorem 5.

4. Discussion: Comparison with the global method in
Lepski [29]

The latter paper deals with the rate optimal adaptive estimation of a probability density under
sup-norm loss. It is obvious that the estimator constructed in Lepski [29] is fully data-driven
and can be also used in pointwise estimation. However, this estimator is neither minimax nor
optimally minimax adaptive when pointwise estimation is considered. Below, we discuss this
issue in detail.

Oracle approach. Obviously, the use of a local method allows to control better the error of
approximation since B(h,P)(x0) is smaller than supx∈Rd B(h,P)(x). Moreover, our local method
controls better the stochastic error since ln δ(h,P) is smaller than ln(n). The latter fact is ex-
plained by the use of different constructions of the selection rule. First, it concerns the choice
of the regularization parameter h. Whereas Lepski [29] uses kernel convolution, we use the “op-
eration” ∨ on the set of bandwidth parameters. Next, in pointwise estimation, we select the
parameter (h,P) from very special set whose construction is new. It is important to emphasize
that the consideration of the parameter set used in Lepski [29] is too “rough” in order to bring an
optimal pointwise adaptive estimator. Both reasons required the introduction of novel technical
arguments for pointwise estimation with respect to those in Lepski [29] for estimation under sup-
norm loss; see the definition of our selection rule in Section 2.3, and the proofs of Proposition 2,
Lemma 1 and Theorem 1 in the next section. Note, however, that the adaptation to eventual
independence structure in both papers has rest upon the same methodology.

The following example illustrates clearly how the quality of estimation provided by Lepski’s
estimator can be significantly improved by application of our local method.

Example 3. Considering the problem described in Example 1, we compare both methods.

• Local method. We obtain from our local oracle inequality that(
E

(n)
f

∣∣f̂n(x0) − fd(x0)
∣∣q)1/q ≤ (

α1

√
4 ln(4) + α2

)
n−1/2, α1, α2 > 0.

• Global method. The best quality of estimation provided by Theorem 1 in Lepski [29] is(
E

(n)
f

∣∣f̃n(x0) − fd(x0)
∣∣q)1/q ≤ (2C1 + C2)

(
n/ ln(n)

)−1/3
, C1,C2 > 0.
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It is also important to emphasize that our Theorem 1 presents other advantages with respect to
that in Lepski [29].

(a) We derive our oracle-type inequality over the functional class Fd [f,P] which contains the
class Fd [f] used in Lepski [29] that allows to obtain upper bounds under more general assump-
tions. For instance, if P = {{1, . . . , d}}, we do not need that all marginals are uniformly bounded,
that is not true when we use Theorem 1 in Lepski [29]; see our Corollary 1 above.

(b) The oracle-type inequality for sup-norm risk cannot be used in general for other type of loss
functions. Contrary to this, the pointwise risk can be integrated that allows to obtain the results
under Lp-loss; see, for example, Lepski, Mammen and Spokoiny [30] and Goldenshluger and
Lepski [17]. In this context, the establishing of local oracle inequality with the term ln δ(h,P)

instead of ln(n) is crucial.
Minimax adaptive estimation. Comparing the minimax rate of convergence defined by (17),

we find a price to pay for adaptation in the pointwise setting. This does not exist in the estimation
under sup-norm loss. Note nevertheless that this price to pay for adaptation is not unavoidable
for all values of nuisance parameter (β,p,L,P). This explains the necessity of the introduction
of the optimality criterion presented in Section 3.3.2.

Let us also compare our results with those obtained in Lepski [29].

Example 4. Consider that P still contains the elements P1 and P2 defined in Example 1 and
that d = 2. Put βmax = 1.

• Local method. In view of our results, our estimator f̂n achieves the following minimax rate
of convergence:

inf
f̂

sup
f ∈N∞,2(β

(max),L,P2)

(
E

(n)
f

∣∣f̂ (x0) − f (x0)
∣∣q)1/q � n−1/3,

where infimum is taken over all possible estimators.
• Global method. In view of the results in Lepski [29], the estimator f̃n proposed in the latter

paper achieves the following minimax rate of convergence:

inf
f̂

sup
f ∈N∞,2(β

(max),L,P2)

(
E

(n)
f ‖f̂ − f ‖q∞

)1/q � (
n/ ln(n)

)−1/3
,

where infimum is taken over all possible estimators.

Thus, the application of the procedure from Lepski [29] for pointwise adaptive estimation
leads to the logarithmic loss of accuracy everywhere, while our estimator is rate optimal for
some values of nuisance parameter.

5. Proofs of main results

The main technical tools used in the derivation of pointwise oracle inequality given in Theorem 1
are uniform bounds of empirical processes. We start this section with presenting of corresponding
results those proof are postponed to the Appendix. In particular, we provide with the explicit ex-



2002 G. Rebelles

pression of the constants λ
(q)
s [K, z], q ≥ 1, used in the selection rule (9)–(10). Our considerations

here are mostly based on the results recently developed in Lepski [28].

5.1. Constants λ
(q)
s [K, z]

Set for any s ∈ N
∗, q ≥ 1, λ

(q)
s [K, z] := {3q + sq[1 ∨ z](1 + 1/τ)}1/2λ

(q)
s , where τ :=

infI∈Id
τ (|I |) > 0,

λ
(q)
s := λ

(q)
s [K] =

{(
10ses + 10seLK

‖K‖∞

)
∨ (48e)

}[√
7 + 7

√
(1 + q)‖K‖s∞

]
C

(q)

s,1 ‖K‖s∞

and C
(q)

s,1 := [144sδ−2∗ + 5q + 3 + 36Cs] ∨ 1.

Here, δ∗ is the smallest solution of the equation 8π2δ(1 + [ln δ]2) = 1 and

Cs := s sup
δ>δ∗

1

δ2

[
1 + ln

(
9216(s + 1)δ2

[s∗(δ)]2

)]
+

+ s sup
δ>δ∗

1

δ2

[
1 + ln

(
9216(s + 1)δ

s∗(δ)

)]
+
,

s∗(δ) := (6/π2)

1 + [ln δ]2
.

5.2. Pointwise uniform bounds of kernel-type empirical processes

Let s ∈ N
∗, s ≤ d , and let Yi = (Yi,1, . . . , Yi,s), i ∈ N

∗, be a sequence of Rs -valued i.i.d. random
vectors defined on a complete probability space (�,A,P) and having the density g with respect
to the Lebesgue measure. Later on P

(n)
g denotes the probability law of Y (n) := (Y1, . . . , Yn) and

E
(n)
g is the mathematical expectation with respect to P

(n)
g . Assume that ‖g‖∞ ≤ g where g > 0 is

a given number.
Set a

(q)
s := (2

√
1 + q[1 ∨ λ

(q)
s ])−2 and

H(s)
n :=

s∏
i=1

[
h

(min)
i (n),h

(max)
i (n)

]⊆
[

1

n
,1

]s

, H
(q)
s (n) := {

h ∈ H(s)
n : nVh ≥ [

a
(q)
s

]−1
ln(n)

}
.

For any h ∈H(s)
n , y0 ∈ R

s and u ≥ 1 set also

K(y) :=
s∏

i=1

K(yi), Vh :=
s∏

i=1

hi, Kh(y) := V −1
h

s∏
i=1

K(yi/hi) ∀y ∈R
s ,

Gh(y0) := 1 ∨
[∫

Rs

∣∣Kh(y − y0)
∣∣g(y)dy

]
, G̃h(y0) := 1 ∨

[
n−1

n∑
i=1

∣∣Kh(Yi − y0)
∣∣],

U (u)
h (y0) :=

√
[Gh(y0)]2

nVh

{
1 ∨ ln

(
Vh(max)

Vh

)
+ u

}
.
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For a given y0 ∈R
s consider the empirical processes

ξ
(n)
h (y0) := n−1

n∑
i=1

[
Kh(Yi − y0) −E

(n)
g

{
Kh(Yi − y0)

}]
, h ∈ H(s)

n ,

ξ
(n)

h (y0) := n−1
n∑

i=1

[∣∣Kh(Yi − y0)
∣∣−E

(n)
g

{∣∣Kh(Yi − y0)
∣∣}], h ∈H(s)

n .

Proposition 2. For all q ≥ 1, all integer n ≥ 3 and all number u satisfying 1 ≤ u ≤ q ln(n)

(i) E
(n)
g

{
sup

h∈H(q)
s (n)

[∣∣ξ (n)
h (y0)

∣∣− λ
(q)
s U (u)

h (y0)
]
+
}q ≤ C

(q)
s (K,g)[nVh(max)]−q/2e−u;

(ii) E
(n)
g

{
sup

h∈H(q)
s (n)

[∣∣ξ (n)

h (y0)
∣∣− 1

2
Gh(y0)

]
+

}q

≤ C
(q)
s (K,g)[nVh(max)]−q/2e−u;

(iii)
(
E

(n)
g

{
sup

h∈H(q)
s (n)

[
Gh(y0) − 2G̃h(y0)

]
+
}q)1/q ≤ 2

[
C

(q)
s (K,g)

]1/q [nVh(max) ]−1/2e−u/q .

The expression of the constant C
(q)
s (K,g) is given in the proof of the proposition.

5.3. Oracle-type inequality

5.3.1. Auxiliary result

For I ∈ Id and h ∈ (0,1]d set

bhI
(x0,I ) :=

∫
R|I |

K
(I)
hI

(xI − x0,I )fI (xI )dxI , ξ
(n)
hI

(x0,I ) := f̂
(n)
hI

(x0,I ) − bhI
(x0,I );

GhI
(x0,I ) := 1 ∨

[∫
R|I |

∣∣K(I)
hI

(xI − x0,I )
∣∣f (xI )dxI

]
,

G(x0) := sup
(h,P)∈H[P]

sup
(η,P ′)∈H[P]

sup
I∈P◦P ′

GhI ∨ηI
(x0,I ).

For any (h,P) ∈ (0,1]d ×P put

U(h,P)(x0) :=
√

[G(x0)]2{1 ∨ ln δ(h,P)}
nV (h,P)

.

Define also fn(x0) := 12λd3(2 max{Gn(x0),1 ∨ f‖K‖d
1})d2

and

ξn(x0) := sup
(h,P)∈H[P]

sup
(η,P ′)∈H[P]

sup
I∈P◦P ′

[∣∣ξ (n)
hI ∨ηI

(x0,I )
∣∣− λ

{
U(h,P)(x0) + U(η,P ′)(x0)

}]
+.
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Lemma 1. Set f > 0. For any q ≥ 1 there exist constants ci := ci (2q, d,K, f, z), i = 1,2,3,4,
such that ∀n ≥ 3, ∀f ∈ Fd [f,P], ∀(h,P) ∈ H[P], P ∈P(f ),

(i)
(
E

(n)
f

∣∣ξn(x0)
∣∣2q)1/2q ≤ c1[nVmax]−1/2;

(ii)
(
E

(n)
f

[
G(x0) − Gn(x0)

]2q

+
)1/2q ≤ c2[nVmax]−1/2;

(iii)
(
E

(n)
f

∣∣fn(x0)
∣∣2q)1/2q ≤ c3;

(iv)
(
E

(n)
f

∣∣Û(h,P)(x0)
∣∣2q)1/2q ≤ c4U(h,P)(x0).

5.3.2. Proof of Theorem 1

We divide the proof into several steps.
(1) Let (h,P) ∈ H[P], P ∈P(f ), be fixed. By the triangle inequality, we have∣∣f̂n(x0) − f (x0)

∣∣ ≤ ∣∣f̂ (n)

(̂h,P̂)
(x0) − f̂

(n)

(h,P),(̂h,P̂)
(x0)

∣∣+ ∣∣f̂ (n)

(h,P),(̂h,P̂)
(x0) − f̂

(n)

(h,P)
(x0)

∣∣
+ ∣∣f̂ (n)

(h,P)
(x0) − f (x0)

∣∣ (23)

≤ 2
[
�̂(h,P)(x0) + 2�n(x0)Û(h,P)(x0)

]+ ∣∣f̂ (n)

(h,P)
(x0) − f (x0)

∣∣.
Here, we have used that f̂

(n)

(h,P),(̂h,P̂)
(x0) = f̂

(n)

(̂h,P̂),(h,P)
(x0) and the definition of (̂h, P̂).

In what follows, we will use the inequality: for m ∈N
∗ and ai, bi ∈R, i = 1,m,∣∣∣∣∣

m∏
i=1

ai −
m∏

i=1

bi

∣∣∣∣∣≤ m
(

sup
i=1,m

max
{|ai |, |bi |

})m−1
sup

i=1,m

|ai − bi |. (24)

Here and later, we assume that the product and the supremum over empty set are equal to one
and zero, respectively.

(2) Since P ∈P(f ), using (24) we have∣∣f̂ (n)

(h,P)
(x0) − f (x0)

∣∣ ≤ d
(

sup
I∈P

max
{
ĜhI

(x0,I ), f
})d−1

sup
I∈P

∣∣f̂ (n)
hI

(x0,I ) − fI (x0,I )
∣∣

(25)
≤ d

(
max

{
Gn(x0), f

})d−1[B(h,P)(x0) + ξn(x0) + 2λU(h,P)(x0)
]
,

since Gn(x0) ≥ ĜhI
(x0,I ) ≥ 1 and |f̂ (n)

hI
(x0,I )−fI (x0,I )| ≤ |ξ (n)

hI
(x0,I )|+|bhI

(x0,I )−fI (x0,I )|,
∀I ∈ P .

(3) Set f
(1)

n := d[Gn(x0)]d(d−1). For any (η,P ′) ∈ H[P], we get from the inequality (24)

∣∣f̂ (n)

(h,P),(η,P ′)(x0) − f̂
(n)

(η,P ′)(x0)
∣∣≤ f

(1)

n sup
I ′∈P ′

∣∣∣∣ ∏
I∈P : I∩I ′ 	=∅

f̂
(n)
hI∩I ′ ,ηI∩I ′ (x0,I∩I ′) − f̂ (n)

ηI ′ (x0,I ′)

∣∣∣∣.
Introduce, for all I ∈ Id and all η ∈ (0,1]d , bhI ,ηI

(x0,I ) := ∫
R|I | K

(I)
hI ∨ηI

(u − x0,I )fI (u)du.
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Put also f
(2)

n := d(max{Gn(x0),G(x0)})d−1. For any (η,P ′) ∈ H[P] and any I ′ ∈ P ′, in view
of (24), ∣∣∣∣ ∏

I∈P : I∩I ′ 	=∅

f̂
(n)
hI∩I ′ ,ηI∩I ′ (x0,I∩I ′) −

∏
I∈P : I∩I ′ 	=∅

bhI∩I ′ ,ηI∩I ′ (x0,I∩I ′)

∣∣∣∣
≤ f

(2)

n sup
I∈P : I∩I ′ 	=∅

∣∣ξ (n)
hI∩I ′∨ηI∩I ′ (x0,I∩I ′)

∣∣,
∣∣∣∣ ∏
I∈P : I∩I ′ 	=∅

bhI∩I ′ ,ηI∩I ′ (x0,I∩I ′) − bηI ′ (x0,I ′)

∣∣∣∣≤ f
(2)

n B(h,P)(x0).

For the last inequality, we have used that P ∈ P(f ) and, therefore, for any η ∈ (0,1]d and any
I ′ ∈ Id

bηI ′ (x0,I ′) =
∫
R|I ′|

K(I ′)
ηI ′ (xI ′ − x0,I ′)

∏
I∈P : I∩I ′ 	=∅

fI∩I ′(xI∩I ′)dxI ′ =
∏

I∈P : I∩I ′ 	=∅

bηI∩I ′ (x0,I∩I ′).

(4) Applying the triangle inequality, we get since f
(2)

n ≥ 1 and U(h,P)(x0) > 0, for any (η,P ′) ∈
H[P],

∣∣f̂ (n)

(h,P),(η,P ′)(x0) − f̂
(n)

(η,P ′)(x0)
∣∣

≤ f
(1)

n sup
I ′∈P ′

{
f
(2)

n sup
I∈P : I∩I ′ 	=∅

∣∣ξ (n)
hI∩I ′∨ηI∩I ′ (x0,I∩I ′)

∣∣+ f
(2)

n B(h,P)(x0) + ∣∣ξ (n)
ηI ′ (x0,I ′)

∣∣}
≤ f

(1)

n f
(2)

n B(h,P)(x0) + 2f
(1)

n f
(2)

n ξn(x0) + 3λf
(1)

n f
(2)

n

{
U(η,P ′)(x0) + U(h,P)(x0)

}
.

Put f̃(2)
n := d[2Gn(x0)]d−1 and U(x0) := sup(η,P ′)∈H[P] U(η,P ′)(x0). We obtain that

�̂(h,P)(x0)

≤ 2f
(1)

n f
(2)

n

{
B(h,P)(x0) + ξn(x0)

}+ 3λf
(1)

n

{
U(x0) + U(h,P)(x0)

}[
f
(2)

n − f̃(2)
n

]
+

+ 3λf
(1)

n f̃(2)
n

{
sup

(η,P ′)∈H[P]

[
U(η,P ′)(x0) − Û(η,P ′)(x0)

]
+

(26)
+ [

U(h,P)(x0) − Û(h,P)(x0)
]
+
}
;

�̂(h,P)(x0)

≤ fn(x0)
{
B(h,P)(x0) + ξn(x0) + [

G(x0) − Gn(x0)
]
+
}
,
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where fn(x0) := 12λd3(2 max{Gn(x0),1 ∨ f‖K‖d
1})d2

, since λ ∧ ‖K‖1 ≥ 1,

U(η,P ′)(x0) ≤ (
1 ∨ f‖K‖d

1

)√1 ∨ ln δ(h,P)

nV (h,P)
≤ 1 ∨ f‖K‖d

1 ∀(η,P ′) ∈ H[P],

and [am − bm]+ ≤ m(max{a, b})m−1[a − b]+, ∀a, b > 0, ∀m ∈N
∗.

(5) Finally, we deduce from (23), (25) and (26), using again λ ∧ ‖K‖1 ≥ 1, that∣∣f̂n(x0) − f (x0)
∣∣

(27)
≤ 3fn(x0)

{
B(h,P)(x0) + U(h,P)(x0) + Û(h,P)(x0) + ξn(x0) + [

G(x0) − Gn(x0)
]
+
}
.

By the Cauchy–Schwarz inequality(
E

(n)
f

∣∣f̂n(x0) − f (x0)
∣∣q)1/q

≤ 3
(
E

(n)
f

∣∣fn(x0)
∣∣2q)1/(2q)[B(h,P)(x0) + U(h,P)(x0) + (

E
(n)
f

∣∣Û(h,P)(x0)
∣∣2q)1/(2q)

+ (
E

(n)
f

∣∣ξn(x0)
∣∣2q)1/(2q) + (

E
(n)
f

[
G(x0) − Gn(x0)

]2q

+
)1/(2q)]

.

Applying Lemma 1,(
E

(n)
f

∣∣f̂n(x0) − f (x0)
∣∣q)1/q ≤ 3c3

[
B(h,P)(x0) + (1 + c4)U(h,P)(x0) + (c1 + c2)[nVmax]−1/2],

and we come to the assertion of Theorem 1 with α1 = 3c3(1+c4)(1∨ f‖K‖d
1) and α2 = 3c3(c1 +

c2).

5.4. Lower bound for minimax estimation

5.4.1. Auxiliary result

The result formulated in Lemma 2 below is a direct consequence of the general bound obtain in
Kerkyacharian, Lepski and Picard [25], Proposition 7.

Let (β,p,P) ∈ (0,∞)d × [1,∞]d ×P and L ∈ (0,∞)d be fixed.

Lemma 2. Suppose that there exists {f0, f1} ⊂ N∗
p,d(β,L,P) such that P(n)

f1
is absolutely con-

tinuous with respect to P
(n)
f0

and ∣∣f1(x0) − f0(x0)
∣∣ ≥ sn(β,p,P); (28)

lim sup
n→+∞

E
(n)
f0

[dP(n)
f1

dP(n)
f0

(
X(n)

)− 1

]2

≤ C < ∞. (29)
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Then, for all q ≥ 1,

lim inf
n→+∞

{
s−1
n (β,p,P) inf

f̃n

R(q)
n

[
f̃n,N

∗
p,d(β,L,P)

]}
≥ 1

2

(
1 −√

C/(C + 4)
)
,

where infimum is taken over all possible estimators.

5.4.2. Proof of Proposition 1

Set N (x) := ∏d
i=1

√
2π

−1
exp(−x2

i /2) and let f0(x) := σ−1N (x/σ ). It is easily seen that one
can find σ > 0 such that

f0 ∈ N∗
p,d(β,L/2,P) ⊆ N∗

p,d(β,L,P),
(30)

Li := 2 ∧ Li, i = 1, d.

Let I = {i1, . . . , im} ∈ P be such that r := r(β,p,P) = γI (β,p) and g :R → R such that
supp(g) ⊆ (−1/2,1/2), g ∈⋂

i∈I Npi,1(βi,1/2),
∫

g = 0, and |g(0)| = ‖g‖∞. Define

G(xI ) = An

m∏
l=1

g

(
xil − x0,il

δl,n

)
,

where An, δl,n → 0, l = 1,m, if n → ∞, will be chosen later. Note that G ∈NpI ,|I |(βI ,LI /2) if

Anδ
−βil

l,n

(
m∏

j=1

δj,n

)1/pil

≤ Lil

cl

, l = 1,m, cl = ‖g‖m−1
pil

. (31)

Introduce

f1(x) =
∏
i /∈I

{[
2πσ 2]−1 exp

(−x2
i /2σ 2)}{∏

i∈I

[
2πσ 2]−1 exp

(−x2
i /2σ 2)+ G(xI )

}
. (32)

It is obvious that there exists A0 > 0 such that if An ≤ A0 then f1(x) > 0 for any x ∈ R
d .

Note also that the condition
∫

g = 0 implies that
∫

f1 = 1. We conclude that f1 is a probability
density. Furthermore, assumptions (30)–(31) and the definition of f0 allow us to assert that f1 ∈
N∗

p,d(β,L,P). We remark that

∣∣f1(x0) − f0(x0)
∣∣= c∗

1An, c∗
1 := (σ

√
2π)m−d

∣∣g(0)
∣∣m∏

i /∈I

exp
(−x2

0,i/2σ 2).
Then Assumption (28) of Lemma 2 is fulfilled when sn(β,p,P) ≤ c∗

1An.
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Since Xk, k = 1, n, are i.i.d. random fields and
∫

g = 0 it is easily check that

E
(n)
f0

[dP(n)
f1

dP(n)
f0

(
X(n)

)]2

≤
[

1 + 2

f0,I (x0,I )
A2

n

(
m∏

j=1

δj,n

)
‖g‖2m

2

]n

≤ exp

[
2‖g‖2m

2

f0,I (x0,I )
nA2

n

(
m∏

j=1

δj,n

)]
,

for n large enough. Here, we have used that supp(G) ⊆ �n :=∏m
l=1[x0,il − δl,n/2, x0,il + δl,n/2]

and that infxI ∈�n f0,I (xI ) ≥ f0,I (x0,I )/2 for n large enough.

Since E
(n)
f0

[ dP(n)
f1

dP(n)
f0

(X(n))] = 1, Assumption (29) of Lemma 2 is fulfilled if

exp

[
2‖g‖2m

2

f0,I (x0,I )
nA2

n

(
m∏

j=1

δj,n

)]
− 1 ≤ C.

The latter inequality holds if

nA2
n

(
m∏

j=1

δj,n

)
≤ t2, t :=

√[
c∗

2

]−1
ln(C + 1), c∗

2 := 2‖g‖2m
2

f0,I (x0,I )
. (33)

To finalize our proof, we study separately two cases: r > 0 and r ≤ 0. Note first that r =
(1 − 1/sI )/(1/βI ), where

1

sI
:=

∑
i∈I

1

βipi

,
1

βI

:=
∑
i∈I

1

βi

,

(1) Case r > 0. Solving the system

Anδ
−βil

l,n

(
m∏

j=1

δj,n

)1/pil

= Lil

cl

, l = 1,m, nA2
n

(
m∏

j=1

δj,n

)
= t2,

we obtain

δl,n =
(

cl

Lil

)1/βil
(

t2

n

)1/(βil
pil

)

A
1/βil

−2/(βil
pil

)
n , An = R

(
t2

n

)r/(2r+1)

,

R =
[

m∏
l=1

(
Lil

cl

)1/(2βil
)
]1/(1−1/sI −1/2βI )

.

It is easily seen that An, δl,n → 0, l = 1,m, if n → ∞ and one can choose C = 1.
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We conclude that, if r > 0, Lemma 2 is applicable with sn(β,p,P) = c∗
1R( t2

n
)r/(2r+1).

(2) Case r ≤ 0. We choose An ≡ A, where the constant A satisfies 0 < A < A0. Solving the
system

Aδ
−βil

l,n

(
m∏

j=1

δl,n

)1/pil

≤ Lil

cl

, l = 1,m, nA2

(
m∏

j=1

δj,n

)
≤ t2,

δl,n ≥
(

Acl

Lil

)1/βil

(
m∏

j=1

δj,n

)1/(pil
βil

)

,

m∏
j=1

δj,n ≤ R2n
−1,

R2 = ln(C + 1)

c∗
2A2

.

Note that one can choose A such that maxl=1,m(
Acl

Lil

)1/βil ≤ 1 and C = 1. Since sI ≤ 1, we obtain

the following solution:

δl,n =
(

R2

n

)sI /(pil
βil

)

→ 0, l = 1,m,n → ∞.

We conclude that, if r ≤ 0, Lemma 2 is applicable with sn(β,p,P) = c∗
1A.

This completes the proof of Proposition 1.

5.5. Upper bounds for minimax and adaptive minimax estimation

The proof of Theorems 3 and 4 is based on application of Theorem 1. Note that in view of
the embedding theorem for anisotropic Nikolskii classes (formulated in the proof of Lemma 3),
there exists a number f := f(β,p) > 0 such that supI∈P ‖fI‖∞ ≤ f if r(β,p,P) > 0 or such that
supP∈P∗ supI∈P ‖fI‖∞ ≤ f if r(β,p,∅) > 0. It makes possible the application of Theorem 1.

5.5.1. Auxiliary result

The result formulated in Lemma 3 below is a consequence of Theorem 6.9 in Nikolskii [34].
Let l ≥ 2 be a fixed integer and P ⊆ P be a fixed set of partitions of {1, . . . , d}. Let f ∈

Np,d(β,L,P), where β ∈ (0, l]d , P ∈ P, p ∈ [0,∞]d satisfy r(β,p,P) > 0 and L ∈ (0,∞)d .

Lemma 3. There exists c := c(K, d,p, l,P) > 0 such that

BhI ,ηI
(x0,I ) ≤ c

∑
i∈I

Lih
βi(I )
i ∀P ′ ∈P,∀I ∈ P ◦P ′,∀(h, η) ∈ (0,1]d × [0,1]d,

where BhI ,ηI
(x0,I ) is defined in Section 2.4, βi(I ) := κ(I )βiκ

−1
i (I ), κ(I ) := 1−∑

k∈I (βkpk)
−1

and κi (I ) := 1 −∑
k∈I (p

−1
k − p−1

i )β−1
k .

The proof of this lemma is given in the Appendix.
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5.5.2. Proof of Theorem 3

For all I ∈P , consider the following system of equations:

h
βj (I )

j = h
βi(I )
i =

√
1

nVhI

, i, j ∈ I,

and let hI denotes its solution. One can easily check that

hi = n−(γI (β,p)/(2γI (β,p)+1))(1/βi (I )), i ∈ I, I ∈ P . (34)

Here, we have used that 1/γI (β,p) =∑
i∈I 1/βi(I ).

We note that 2−1nV (h,P) ≥ a−1 ln(n) for all n large enough. To get the statement of the
theorem, we will apply Theorem 1 with z = 1, τ(s) = 1, s = 1, . . . , d , h(I )

I = hI if I ∈ P and

h
(I )
i = 1 if i ∈ I , I /∈P , H = {h}, P = {P}. Thus, H[P] is non-empty for n large enough and we

get

R(q)
n

[
f̂

(n)

(h,P)
, f

]≤ α1(cL ∨ 1)

[
sup
I∈P

∑
i∈I

hβi(I )
i + sup

I∈P

√
1

nVhI

]
+ α2 sup

I∈P

√
1

nVhI

, (35)

where L := supi=1,d Li . Here, we have used Lemma 3 and the definition of B(h,P)(x0).
We deduce from (34) and (35)

R(q)
n

[
f̂

(n)

(h,P)
, f

]≤ [
2α1(cL∨1)+α2

]
sup
I∈P

n−γI (β,p)/(2γI (β,p)+1) = [
2α1(cL∨1)+α2

]
n−r/(2r+1)

and the assertion of Theorem 3 follows.

5.5.3. Proof of Theorem 4

Set (β,p) ∈ (0, βmax]d × [1,∞]d such that r(β,p,∅) > 0, P ∈ P, L ∈ (0,∞)d , and f ∈
Np,d(β,L,P).

Let us first note the following simple fact. If P ′ ∈P and J = I ∩ I ′, I ∈ P, I ′ ∈P ′, we easily
prove that βi(J ) ≥ βi(I ) ∀i ∈ J ; see, for example, Lepski [29], proof of Theorem 3, for more
details. Thus, in view of Lemma 3,

B(h,P)(x0) ≤ c sup
I∈P

∑
i∈I

Lih
βi(I )
i ∀h ∈ (0,1]d . (36)

Recall that h(I )
I , I ∈ Id , is the projection on the dyadic grid in (0,1]|I | of h(I )

I given in (20)
and note that 2−1nV

h
(I )
I

≥ a−1 ln(n) for n large enough. Thus, H[P] is non-empty and one can

apply Theorem 1.
If r(β,p,P) = rmax, then it is obvious that (β,p) = (β(max), p(max)) and that d(P) = d . Thus,

in view of the definition of the multibandwidths h(I )
I , I ∈P , infI∈P V

h
(I )
I

= Vmax. It follows from
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Theorem 1 and (36)

R(q)
n [f̂n, f ] ≤ α1(cL ∨ 1)

[
sup
I∈P

∑
i∈I

(
h

(I )
i

)βmax + sup
I∈P

√
1

nV
h

(I )
I

]
+ α2[nVmax]−1/2,

where L := supi=1,d Li . Since rmax = βmax/d , we conclude that there exists a constant C > 0
such that

R(q)
n [f̂n, f ] ≤ C

[
α1(cL ∨ 1)(d + 1) + α2

]
n−rmax/(2rmax+1). (37)

If r(β,p,P) < rmax we solve, for all I ∈P , the system

Ljh
βj (I )

j = Lih
βi(I )
i =

√
ln(n)

nVhI

, i, j ∈ I.

The solution is

hi = L
−1/βi (I )
i

(
L(I) ln(n)

n

)γI (β,p)/(2γI (β,p)+1)1/βi (I )

,

(38)
L(I) =

∏
i∈I

L
1/βi (I )
i , i ∈ I, I ∈P .

It is easily seen that (h,P) ∈ H[P] for n large enough. Replacing h by its projection h̄ on the
dyadic grid H, one has (h̄,P) ∈ H[P] for n large enough. We deduce from Theorem 1 and (36)

R(q)
n [f̂n, f ] ≤ α1

[
c sup

I∈P

∑
i∈I

Lih̄
βi (I )
i + sup

I∈P

√
ln(n)

nVh̄I

]
+ α2[nVmax]−1/2. (39)

The assertion of Theorem 4 follows from (37), (38) and (39).

5.6. Lower bound for adaptive minimax estimation and optimal rate

5.6.1. Auxiliary result

To get the assertion of Theorem 5, we use the following lemma which is due to an oral commu-
nication with O. Lepski. This result can be viewed as a generalization of Lemma 2.

Let (β,p) ∈ (0, βmax]d ×[1,∞]d such that r(β,p,∅) > 0, P ∈ P, L ∈ (0,∞)d and (β ′,p′) ∈
(0, βmax]d × [1,∞]d such that r(β ′,p′,∅) > 0, P ′ ∈ P, L′ ∈ (0,∞)d be fixed.

Lemma 4. Set (an) and (bn) two sequences such that an, bn, bn/an → ∞, n → ∞. Suppose that
exist f0 ∈ N2 := Np′,d (β ′,L′,P ′) and f1 ∈ N1 := Np,d(β,L,P) such that P(n)

f1
is absolutely

continuous with respect to P
(n)
f0

and

∣∣f1(x0) − f0(x0)
∣∣= a−1

n ; E
(n)
f0

[dP(n)
f1

dP(n)
f0

(
X(n)

)]2

≤ bn

an

. (40)



2012 G. Rebelles

Then, for any q ≥ 1,

lim inf
n→+∞ inf

f̃n

[
sup

f ∈N1

E
(n)
f

{
an

∣∣f̃n(x0) − f (x0)
∣∣}q + sup

f ∈N2

E
(n)
f

{
bn

∣∣f̃n(x0) − f (x0)
∣∣}q

]
≥ 1

2
,

where infimum is taken over all possible estimators.

The proof of this lemma is given in the Appendix.

5.6.2. Proof of Theorem 5

(1) Set N1 := Np,d(β,L,P), N2 := Np′,d (β ′,L′,P ′), r1 := r(β,p,P) and r2 := r(β ′,p′,P ′)
such that 0 < r1 < r2. For any τ such that r1

2r1+1 < τ ≤ r2
2r2+1 , there exists C(τ) > 0 satisfying:

∀q ≥ 1,

lim inf
n→+∞ inf

f̃n

[
sup

f ∈N1

E
(n)
f

{(
n

ln(n)

)r1/(2r1+1)∣∣f̃n(x0) − f (x0)
∣∣}q

(41)

+ sup
f ∈N2

E
(n)
f

{
nτ
∣∣f̃n(x0) − f (x0)

∣∣}q
]

≥ C(τ).

Let us prove (41). The proof is based on Lemma 4 where we put

an := [
2C(τ)

]−1/q
(

n

ln(n)

)r1/(2r1+1)

, bn := [
2C(τ)

]−1/q
nτ ,

and the constant C(τ) > 0 will be specified later.

Similarly to the proof of Proposition 1, set N (x) := ∏d
i=1

√
2π

−1
exp(−x2

i /2) and define
f0(x) := σ−1N (x/σ ), where σ is chosen in such way that

f0 ∈ Np′,d
(
β ′,L′,P ′)∩ Np,d(β,L/2,P).

Let also f1 be given in (32). It is obvious that there exists a constant A0 such that f1 ∈ N1 if
An ≤ A0 and

Anδ
−βil

l,n

(
m∏

j=1

δj,n

)1/pil

≤ Lil

cl

, l = 1,m, cl = ‖g‖m−1
pil

. (42)

Assumptions of Lemma 4 are, respectively, fulfilled if

c∗
1An ≥ [

2C(τ)
]1/q

(
ln(n)

n

)r1/(2r1+1)

,

c∗
1 := (σ

√
2π)m−d

∣∣g(0)
∣∣m∏

i /∈I

exp
(−x2

0,i/2σ 2); (43)
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exp

[
2‖g‖2m

2

f0,I (x0,I )
nA2

n

(
m∏

l=1

δl,n

)]
≤ nτ

(
n

ln(n)

)−r1/(2r1+1)

.

The latter inequality, in its turn, holds if

nA2
n

(
m∏

l=1

δl,n

)
= t2 ln(n), t :=

√[
c∗

2

]−1
(

τ − r1

2r1 + 1

)
, c∗

2 := 2‖g‖2m
2

f0,I (x0,I )
. (44)

Solving the system

Anδ
−βil

l,n

(
m∏

j=1

δj,n

)1/pil

= Lil

cl

, l = 1,m, nA2
n

(
m∏

l=1

δl,n

)
= t2 ln(n),

we obtain

δl,n =
(

cl

Lil

)1/βil
(

t2 ln(n)

n

)1/(βil
pil

)

A
1/βil

−2/(βil
pil

)
n , An = R

(
t2 ln(n)

n

)r1/(2r1+1)

,

R =
[

m∏
l=1

(
Lil

cl

)1/(2βil
)
]1/(1−1/sI −1/2βI )

.

It is easily seen that An, δl,n → 0, l = 1,m, if n → ∞. The choice C(τ) = 1
2 [c∗

1R(t2r1/(2r1+1))]q ,
completes the proof of the inequality (41). It follows the assertion (i) of Theorem 5.

(2) Let us recall the definition of the set A×B, which is the set of “nuisance” parameters for
the considered problem.

A := {
(β,p) ∈ (0, βmax]d × [1,∞]d : r(β,p,∅) > 0

}
, B := P.

Let ψ̃n be an admissible family of normalizations and let f̃n(x0) be ψ̃n-adaptive estimator.
Define

A(0)[ψ̃/ψ] :=
{
(β,p) ∈A: lim

n→∞ϒn(β,p) = 0
}
,

ϒn(β,p) := inf
P∈P

ϒn(β,p,P), ϒn(β,p,P) := ψ̃n(β,p,P)

ψn(β,p,P)
,

where ψn is given in (21). For any P ∈ P put also

A(∞)

P [ψ̃/ψ] :=
{
(β,p) ∈ A: lim

n→∞ϒn(β0,p0)ϒn(β,p,P) = ∞,∀(β0,p0) ∈ A(0)[Ψ̃ /Ψ ]
}
.

In the slight abuse of the notation, we will use later ψn(r) instead of ψn(β,p,P), r = r(β,p,P).
For any (β0,p0) ∈ A(0)[ψ̃n/ψn] introduce

P0 := arg inf
P∈P

ϒn(β0,p0,P), r0 := r(β0,p0,P0). (45)
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Let us first note that 0 < r0 < rmax for any (β0,p0) ∈ A(0)[ψ̃n/ψn]. Indeed, if r0 = rmax then
(β0,p0) ∈ A(0)[ψ̃n/ψn] contradicts to ψn(rmax) is a minimax rate of convergence. Moreover,
for any r ∈ (r0, rmax), there exists (β,p) ∈ A and P ∈ P such that r(β,p,P) = r . It suffices
to choose P such that r(β(max), p(max),P) = rmax = βmax/|I |, I ∈ P , and βi = r|I |, pi = ∞,
i = 1, . . . , d .

(3) Our goal now is to prove that for any (β0,p0) ∈A(0)[ψ̃n/ψn] we have

lim
n→∞ϒn(β0,p0)ϒn(β,p,P) = ∞ ∀(β,p,P): r0 < r(β,p,P) < rmax. (46)

Set N0 := Np0,d (β0,L0,P0) and N := Np,d(β,L,P) such that r0 < r(β,p,P) < rmax. Ap-
plying the inequality (41) with r1 = r0,N1 = N0, r2 = r and N2 = N , we get for any τ satisfying

r0
2r0+1 < τ < r

2r+1

lim inf
n→+∞

[
sup

f ∈N0

E
(n)
f

{
ψ−1

n (r0)
∣∣f̃n(x0) − f (x0)

∣∣}q + sup
f ∈N

E
(n)
f

{
nτ
∣∣f̃n(x0) − f (x0)

∣∣}q
]

(47)
≥ C(τ).

Furthermore, by definition of f̃n(x0) and ψ̃n, there exist constants M0,M > 0 such that for all n

large enough

sup
f ∈N0

E
(n)
f

{
ψ̃−1

n (β0,p0,P0)
∣∣f̃n(x0) − f (x0)

∣∣}q ≤ M0; (48)

sup
f ∈N

E
(n)
f

{
ψ̃−1

n (β,p,P)
∣∣f̃n(x0) − f (x0)

∣∣}q ≤ M. (49)

Note that limn→∞ ψ̃n(β0,p0,P0)
ψn(β0,p0,P0)

= 0 that follows from (β0,p0) ∈ A(0)[ψ̃n/ψn] as well as the
definition of P0. Thus, we obtain in view of (48) that

lim
n→∞ sup

f ∈N0

E
(n)
f

{
ψ−1

n (r0)
∣∣f̃n(x0) − f (x0)

∣∣}q = 0.

It yields together with (47) and (49) that

lim inf
n→+∞Mnτ ψ̃n(β,p,P) ≥ C(τ). (50)

Recall that ψn(r) = (ln(n)/n)r/(2r+1). Since τ < r
2r+1 we get for some a > 0 satisfying τ +

a < r
2r+1 that nτψn(r) ≤ n−a for n large enough. Hence, we obtain in view of (50)

lim inf
n→+∞n−aϒn(β,p,P) := lim inf

n→+∞n−a ψ̃n(β,p,P)

ψn(β,p,P)
≥ C(τ)

M
. (51)

Furthermore, since ϕn(β0,p0,P0) is a minimax rate of convergence, there exists a constant
M1 > 0 such that

ϒn(β0,p0) := ψ̃n(β0,p0,P0)

ψn(β0,p0,P0)
≥ M1

ϕn(β0,p0,P0)

ψn(β0,p0,P0)
= M1

[
ln(n)

]−r0/(2r0+1) (52)
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for all n large enough. We deduce from (51) and (52) that limn→∞ ϒn(β0,p0)ϒn(β,p,P) = ∞.
(4) Let (β1,p1) ∈ A(0)[ψ̃n/ψn] and (β2,p2) ∈ A(0)[ψ̃n/ψn] be arbitrary pairs of parameters.

Let also P1 and P2 be defined in (45) where (β0,p0) is replaced by (β1,p1) and (β2,p2),
respectively. Then necessarily

r(β1,p1,P1) = r(β2,p2,P2). (53)

Indeed, assume that r(β1,p1,P1) < r(β2,p2,P2). Noting that ϒn(β2,p2) = ϒn(β2,p2,P2),
in view of the definition of P2 we deduce from (46) with (β1,p1) = (β0,p0) and (β,p,P) =
(β2,p2,P2) that

ϒn(β2,p2) → ∞, n → ∞. (54)

This contradicts to (β2,p2) ∈ A(0)[ψ̃n/ψn]. The case r(β1,p1,P1) > r(β2,p2,P2) is traited
similarly.

(5) We are now in position to prove Theorem 5.
First, if A(0)[ψ̃n/ψn] 	=∅, we deduce from (53) that there exists r0 ∈ (0, rmax) such that

r(β,p,P(β,p)) = r0 ∀(β,p) ∈ A(0)[ψ̃n/ψn]. (55)

Here, as previously, P(β,p) := arg infP∈P ϒn(β,p,P).

Recall that, for (β,p,P) ∈ (0,+∞)d × [1,∞]d ×P,

r(β,p,P) = inf
I∈P

γI (β,p), γI (β,p) = 1 −∑
i∈I 1/(βipi)∑
i∈I 1/βi

, I ∈P .

Thus, obviously

dim
(
A(0)[ψ̃n/ψn]

)≤ 2d − 1. (56)

Next, let P∗ ∈ P be a partition satisfying r(β(max), p(max),P∗) = rmax. We deduce from (46)
that

A(∞)

P∗ [ψ̃/ψ] ⊇ {
(β,p) ∈ A: r0 < r

(
β,p,P∗)< rmax

}
, (57)

where r0 is defined in (55). Thus, A(∞)

P∗ [ψ̃/ψ] contains an open set of A since (β,p) �→
r(β,p,P∗) is continuous. This together with (56) completes the proof of the theorem.

Appendix

A.1. Proof of Proposition 2

Our goal is to establish a uniform bound for the empirical process {ξ (n)
h (y0)}h. Note that the

considered family of random fields is a particular case of the generalized empirical processes
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studied in Lepski [28]. We get the assertions of Proposition 2 from the Theorem 1 in the latter
paper since it allows us to assert that, for any u ≥ 1, q ≥ 1 and any integer n ≥ 3

E
(n)
g

{
sup

h∈H(s)
n

[∣∣ξ (n)
h (y0)

∣∣− U (u,q)(n,h, y0)
]
+
}q ≤ C

(q)
s (K,g)[nVh(max) ]−q/2e−u,

U (u,q)(n,h, y0)
(58)

:= c(K, s, q)

√
Gh(y0)

nVh

{
1 ∨ ln

(
Vh(max)

Vh

)
+ 2 ln

(
2 + lnGh(y0)

)+ u

}

+ c(K, s, q)

nVh

{
1 ∨ ln

(
Vh(max)

Vh

)
+ 2 ln

(
2 + lnGh(y0)

)+ u

}
.

The constants C
(q)
s (K,g) and c(K, s, q) are given later.

Thus, we only have to check the Assumptions of Theorem 1 in Lepski [28] and to match the
notation used in the present paper and in the latter one. We divide this proof into several steps.

(1) For our case, we first consider that p = 1, m = s +1, k = s, Hk
1(n) =H(s)

n , Hm
k+1(n) = {y0},

h(k) = h and

G∞(h) = V −1
h ‖K‖s∞, Gn = V −1

h(max)‖K‖s∞, Gn = V −1
h(min)‖K‖s∞,

Gj,n(hj ) = h
(min)
j

hj

V −1
h(min)‖K‖s∞,

Gj,n = h
(min)
j

h
(max)
j

V −1
h(min)‖K‖s∞, j = 1, s, �(s)

n (̂h, h̄) = max
j=1,s

∣∣ln(̂hj ) − ln(h̄j )
∣∣.

Obviously, Assumption 1(i) in Lepski [28] is fulfilled. Using Assumption (7) (see Section 2.1
of the present paper), we get supp(K) ⊆ [−1/2,1/2]s and∣∣K(x) − K(y)

∣∣≤ L
(s)
K max

j=1,s

|xj − yj | ∀x, y ∈R
s , L

(s)
K := s‖K‖s−1∞ LK > 0.

Thus, we easily check that, for any h,h′ ∈H(s)
n and any y ∈R

s ,∣∣Kh(y − y0) − Kh′(y − y0)
∣∣

≤
[‖K‖s∞

Vh

∨ ‖K‖s∞
Vh′

]{
exp

(
s�(s)

n

(
h,h′))− 1 + L

(s)
K

‖K‖s∞

(
exp

(
�(s)

n

(
h,h′))− 1

)}
.

It implies that Assumption 1(ii) in Lepski [28] holds with

D0(z) = exp (sz) − 1 + L
(s)
K

‖K‖s∞
× (

exp (z) − 1
)
, Ds+1 ≡ 0,Ls+1 ≡ 0.
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Furthermore, Assumption 3 in Lepski [28] holds with N = 0 and R = 1 since Hm
k+1 =Hs+1 =

{y0} and Assumption 2 in Lepski [28] is not needed since n1 = n2 = n.
(2) Thus, the application of the Theorem 1 in Lepski [28] is possible. Let us first compute the

constants which appear in its proof.

CN,R,m,k = sup
δ>δ∗

δ−2s

[
1 + ln

(
9216(s + 1)δ2

[s∗(δ)]2

)]
+

+ sup
δ>δ∗

δ−2s

[
1 + ln

(
9216(s + 1)δ

[s∗(δ)]
)]

+
:= Cs;

CD = ses + seLK

‖K‖∞
, CD,b =√

2CD ∨ [
(2/3)(CD ∨ 8e)

]
,

λ1 = 4
√

2eCD,λ2 = (16/3)(CD ∨ 8e).

Next, we have to compute the quantities involved in the description of U (u,q)
r (n,h).

Mq(h) ≤ C
(q)

s,1

[
1 ∨ ln

(
Vh(max)

Vh

)]
, C

(q)

s,1 := [
144sδ−2∗ + 5q + 3 + 36Cs

]∨ 1.

Since Yi, i = 1, n, are identically distributed, putting h = (h, y0), n1 = n2 = n and r = 0, we
have

Fn,r(h) = 1 ∨
[∫

Rs

∣∣Kh(y − y0)
∣∣g(y)dy

]
:= Gh(y0),

Fn = sup
h∈H(s)

n

Gh(y0) ≤ 1 ∨ g‖K‖s
1;

U (u,q)
r (n,h) ≤ U (u,q)(n,h, y0), c(K, s, q) := [

(10CD) ∨ (48e)
]
C

(q)

s,1 ‖K‖s∞.

Here, we have used that C
(q)

s,1 ∧ ‖K‖s∞ ≥ 1. Thus, we come to the inequality (58) with

C
(q)
s (K,g) := cq‖K‖sq∞(1 ∨ g‖K‖s

1)
q/2, cq = 27q/2+53q+4�(q + 1)(CD,b)

q .

(3) If n ≥ 3, nVh ≥ ln(n),1 ≤ u ≤ q ln(n) and M(h) := 1 ∨ ln(
V

h(max)

Vh
), since 1 ≤ Gh(y0) ≤

‖K‖s∞, one has

(nVh)
−1{M(h) + 2 ln

(
2 + lnGh(y0)

)+ u
} ≤ 7(nVh)

−1Gh(y0)
{
M(h) + u

}
(59)

≤ 7(1 + q)‖K‖s∞.

Put finally λ
(q)
s [K] := c(K, s, q)

√
7{√7(1 + q)‖K‖s∞ + 1}. Since [a(q)

s ]−1 ≥ 1, the asser-
tion (i) of Proposition 2 follows from (58) and (59). Let us now prove the assertions (ii) and
(iii) of Proposition 2.

(4) First, in view of the definition of H(q)
s (n), we get the assertion (ii) from the assertion (i) of

Proposition 2 since u ≤ q ln(n) and [1 ∨ λ
(q)
s ]

√
(1 + q)a

(q)
s = 1/2. Here, we have used that if K
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satisfies the assumption (7), see Section 2.1, |K| satisfies it as well and, therefore, Proposition 2(i)

is applicable to the process ξ
(n)

h (y0).
Next, using the trivial inequality |x ∨ a − x ∨ b| ≤ |a − b|, x, a, b ∈R, we easily check that

Gh(y0) ≤ 2G̃h(y0) + 2 sup
h∈H(q)

s (n)

[∣∣ξ (n)

h (y0)
∣∣− 1

2
Gh(y0)

]
+

∀h ∈H(s)
as

(n). (60)

Assertion (iii) of Proposition 2 follows from assertion (ii) and (60).

A.2. Proof of Lemma 1

Note first that, for any (h,P) ∈H[P], any (η,P ′) ∈ H[P] and any I ∩ I ′ ∈ P ◦P ′

hI∩I ′ ∨ ηI∩I ′ ∈
Mn(I)⋃
m=1

Mn(I ′)⋃
l=1

H
(I∩I ′)
m,l ,

H
(I∩I ′)
m,l :=

{
hI∩I ′ ∈

∏
i∈I∩I ′

[
1

n
,h

(I∩I ′,m,l)
i

]
: nVhI

≥ [
a

(2q)

|I∩I ′|
]−1 ln(n)

}
,

where h
(I∩I ′,m,l)
i := (2m∨l )z[h(I )

i ∨ h
(I ′)
i ], i ∈ I ∩ I ′.

Set f ∈ Fd [f,P]. To get the assertions of Lemma 1, we apply Proposition 2 with s = |I ∩ I ′|,
g = fI∩I ′ , g = f, h

(min)
i (n) = 1

n
, h

(max)
i (n) = h

(I∩I ′,m,l)
i , H

(q)
s (n) = H

(I∩I ′)
m,l , Kh = K

(I∩I ′)
hI∩I ′ ,

Gh(y0) = GhI∩I ′ (x0,I∩I ′), G̃h(y0) = G̃hI∩I ′ (x0,I∩I ′), U (u)
h (y0) = U (u)

hI∩I ′ (x0,I∩I ′), ξ
(n)
h (y0) =

ξ
(n)
hI∩I ′ (x0,I∩I ′).

Recall that P
∗ := {P ◦P ′: P,P ′ ∈ P}. In view of the definition of H[P], we easily check that

ξn(x0) ≤
∑

P◦P ′∈P∗

∑
I∩I ′∈P◦P ′

Mn(I)∑
m=1

Mn(I ′)∑
l=1

sup
hI∩I ′ ∈H(I∩I ′)

m,l

[∣∣ξ (n)
hI∩I ′ (x0,I )

∣∣− λ
(2q)

|I∩I ′|U
(u)
hI∩I ′ (x0,I∩I ′)

]
+,

with u = q[1 ∨ ln(2m∧lVmax/ infI∈P V
h

(I )
I

)] ∈ [1,2q ln(n)], since V
h

(I )
I

≥ ln(n)
an

and Mn(I) ≤
log2(n), ∀I ∈ Id .

Therefore, it follows from the assertion (i) of Proposition 2, since V
h

(I )

I∩I ′∨h(I ′)
I∩I ′

≥ infI∈P V
h

(I )
I

,

(
E

(n)
f

{
sup

hI∩I ′ ∈H(I∩I ′)
m,l

[∣∣ξ (n)
hI∩I ′ (x0,I )

∣∣− λ
(2q)

|I∩I ′|U
(u)
hI∩I ′ (x0,I∩I ′)

]
+
}2q)1/(2q)

≤ {
C

(2q)

|I∩I ′|(K,g)
}1/(2q)[nVmax]−1/2(2z|I∩I ′|/2)−m∨l(21/2)−m∧l;(

E
(n)
f

∣∣ξn(x0)
∣∣2q)1/(2q) ≤ c1[nVmax]−1/2,
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c1 :=
∑

P∈P∗

∑
I∈P

{
C

(2q)
|I | (K, f)

}1/(2q)
[

2[(z|I |)∧1]/2

2[(z|I |)∧1]/2 − 1

]
.

Similarly, applying Proposition 2(iii) and using the trivial inequality [supi xi − supi yi]+ ≤
supi[xi − yi]+, we obtain the assertion (ii) of Lemma 1 with c2 := 2c1.

Next, it is easily seen that

Gn(x0) ≤ 2

( ∑
P◦P ′∈P∗

∑
I∩I ′∈P◦P ′

Mn(I)∑
m=1

Mn(I ′)∑
l=1

sup
hI∩I ′ ∈H(I∩I ′)

m,l

[∣∣ξ (n)

hI∩I ′ (x0,I )
∣∣− 1

2
GhI∩I ′ (x0,I )

]
+

)

+ 3G(x0),

and that(
E

(n)
f

∣∣fn(x0)
∣∣2q)1/2q ≤ 12λd32d2[(

E
(n)
f

∣∣Gn(x0)
∣∣2qd2)1/(2qd2) + (

1 ∨ f‖K‖d
1

)]d2
.

Thus, we get assertion (iii) of Lemma 1 from assertion (ii) of Proposition 2 with

c3 := 12λd3
[

4

( ∑
P∈P∗

∑
I∈P◦P ′

{
C

(2qd2)
|I | (K, f)

}1/(2qd2)
[

2[(z|I |)∧1]/2

2[(z|I |)∧1]/2 − 1

])
+ 8

(
1 ∨ f‖K‖d

1

)]d2

.

Similarly, we obtain assertion (iv) of Lemma 1 with

c4 := 2

( ∑
P∈P∗

∑
I∈P◦P ′

{
C

(2q)
|I | (K, f)

}1/(2q)
[

2[(z|I |)∧1]/2

2[(z|I |)∧1]/2 − 1

])
+ 3

(
1 ∨ f‖K‖d

1

)
.

This completes the proof of Lemma 1.

A.3. Proof of Lemma 3

The proof of this lemma is based on the embedding theorem for anisotropic Nikolskii classes;
see, for example, Theorem 6.9 in Nikolskii [34].

Let P ′ ∈ P and I ∈ P ◦ P ′ be fixed. Set κ(I ) := 1 − ∑
k∈I (βkpk)

−1 and βi(I ) :=
κ(I )βiκ

−1
i (I ), where κi (I ) := 1 − ∑

k∈I (p
−1
k − p−1

i )β−1
k , i ∈ I . Since κ(I ) > 0 there exists

cI := cI (K, |I |,pI , l) > 0 such that

NpI ,|I |(βI ,LI ) ⊆N∞,|I |
(
β(I), cILI

)
.

Introduce the family of |I | × |I | matrices Ej := (e1, . . . , ej ,0, . . . ,0), j = 1, |I |, and E0 is
zero matrix. For any (h, η) ∈ (0,1]d ×[0,1]d , using a telescopic sum and the triangle inequality,
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we get

∣∣BhI ,ηI
(x0,I )

∣∣≤ |I |∑
j=1

∣∣∣∣∫ K(I)(u)
[
fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Eju

)
− fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Ej−1u

)]
du

∣∣∣∣.
For j = 1, . . . , |I | put

BhI ,ηI ,j (x0,I ) :=
∫
R

K(uj )
[
fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Eju

)
− fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Ej−1u

)]
duj .

If ηj ≥ hj , then BhI ,ηI ,j (x0,I ) = 0, if not we put [u]j := u − uj ej , u ∈R
|I |, and we have

BhI ,ηI ,j (x0,I ) =
∫
R

K(uj )
[
fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Eju

)
− fI

(
x0,I + [ηIu]j + (hI ∨ ηI − ηI )Ej−1u

)]
duj

+
∫
R

K(uj )
[
fI

(
x0,I + [ηIu]j + (hI ∨ ηI − ηI )Ej−1u

)
− fI

(
x0,I + ηIu + (hI ∨ ηI − ηI )Ej−1u

)]
duj .

Thus, in view of the triangle inequality,

∣∣BhI ,ηI
(x0,I )

∣∣ ≤ 2
∑
i∈I

cILih
βi(I )
i

∫
R|I |

∣∣K(I)(u)
∣∣|ui |βi(I ) du ≤ c

∑
i∈I

Lih
βi(I )
i ,

c := c(K, d,p, l,P) = 2‖K‖d
1 sup
P ′∈P

sup
I∈P◦P ′

cI

(
K, |I |,pI , l

)
.

Here, we have used Taylor expansions of f ∈N∞,|I |(β(I ), cILI ), the product structure of K(I),
the Fubini theorem that β(I) ∈ (0, l]d and (19); see Section 3.2. We have also used that K is
compactly supported on [−1/2,1/2] and that ‖K‖1 ≥ 1.

A.4. Proof of Lemma 4

Put Tn := an|f̃n(x0) − f0(x0)| and

R(q)
n [an, bn, f̃ , f ] := sup

f ∈N1

E
(n)
f

{
an

∣∣f̃n(x0) − f (x0)
∣∣}q + sup

f ∈N2

E
(n)
f

{
bn

∣∣f̃n(x0) − f (x0)
∣∣}q

.
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It is easily seen that R(q)
n [an, bn, f̃ , f ] ≥R(1)

n [an, bn, f̃ , f ] and that

R(1)
n [an, bn, f̃ , f ] ≥ E

(n)
f1

{|Tn − 1|}+ bn

an

E
(n)
f0

{Tn}.

Here, we have used the triangle inequality and the assumption an|f1(x0) − f0(x0)| = 1.

Put also cn := bn

an
and Zn := dP(n)

f1

dP(n)
f0

(X(n)). We obtain

R(1)
n [an, bn, f̃ , f ] ≥ E

(n)
f0

{cn ∧ Zn} ≥ 1
2

[
cn + 1 −

√
E

(n)
f0

{cn − Zn}2
]
.

Here, we have used the trivial equality a ∧ b = 1
2 {a + b − |a − b|}, that E(n)

f0
{Zn} = 1 and the

Cauchy–Schwarz inequality. Using the third assumption, we also have E(n)
f0

{cn −Zn}2 ≤ c2
n − cn.

Finally, for n large enough,

inf
f̃
R(q)

n [an, bn, f̃ , f ] ≥ 1

2

[
cn + 1 −

√
c2
n − cn

]
≥ 1

2
.
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