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Abstract. Let (uk(x)}, (vk(x)}, k = 0,± 1,..., 0 < x < 1, be sequences
of functions in L°°(0,1), such that (uk,Vj) = Skj. Let <¡>k(x) = exp Ikitix. It is
shown that if for a given p, 1 < p < oo, the sequence {uk} is complete in
L'(0,1), and {vk} is complete in Lq(p,\),pq = p + q, and if the uk\ v/s are
asymptotically related to the <¡>k's, in a sense to be made precise, then {uk} is
a basis for L*(0,1), equivalent to the basis {<t>k}, and for every fin 1/(0,1),
2-x(f,vk)uk(x) = f'x) a.e. This result is then applied to the eigenfunction
expansions of a large class of ordinary differential operators.

1. Introduction. Let t denote the «th order linear differential expression
defined for suitable functions u by

r(u) = M(n) + an_2(x)u{"-2) + • ■ • + a0(x)u

for 0 < x < 1, where Oj(x) is in L°°(0,1), / = 0,...,«- 2. (When n - 1,
tw = h(1).) Let Ux,... ,Un denote n linearly independent linear forms in «
and its first n — 1 derivatives, evaluated at 0 and at 1. Without loss of
generality, we can assume that the U/s are in normalized form [18, p. 48]:

kj-i
Uju = <XjuW(0) + ßjuW(l) + 2 [<*Jku(k)(0) + ßJku(k)(l)],

k = 0

where j=\,...,n, 0 < k,,< n - 1, kJ+x < kp kJ+2 < kp |o,| + \ß}\ > 0.
The set U — (Ux.U„) is Birkhoff regular [18, p. 49] if certain determi-
nants involving the a/s, ß/s, k/s are not zero. The pair (t,U) denotes the
problem of solving
(1.1a) t(u) = Xu,
where X is a complex parameter, subject to the boundary condition
(1.1b) Uu = 0.

It is assumed that u is in Cn_1[0,l], and that u(n~X) is absolutely continuous
on [0,1].

In [3] it was proved that if U is Birkhoff regular, then the system of
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260 H. E. BENZINGER

eigenfunctions and generalized eigenfunctions of (t,U) is a (Schauder) basis
for Lp(0,1), 1 <p < oo.

Definition. The problem (t, U) has simple spectrum if n is odd, or if « is
even and 0O2 - 40,0_, ^ 0. (See [18, p. 49] for notation.)

In §5 we shall derive new asymptotic estimates for the root functions {uk)
of a Birkhoff regular problem with simple spectrum, and for the root
functions {vk} of the adjoint problem. Consequently, these biorthogonal
systems have the properties stated in the abstract.

In [3] it was proved that the system of eigenfunctions of any Birkhoff
regular problem is a basis for 7/(0,1), 1 < p < oo. The result provided no
information on the problem of determining if such bases are unconditional.
In the case that p = 2, this question was considered by Dunford and
Schwartz, who proved that any differential operator in L2(0,1) generated by a
Birkhoff regular problem with simple spectrum is a spectral operator, and
consequently the root functions are an unconditional basis for L2(0,1). Since
the trigonometric system {<bk} is not unconditional whenp ^ 2, and since the
system {<bk} arises from a Birkhoff regular problem with simple spectrum, the
theory of spectral operators cannot be used whenp =£ 2.

Definition. Two bases {Uk}, {$k} of a Banach space X are equivalent if
there exists a bicontinuous linear map A: X-* X such that A$k = Uk for all
k.

A theorem of Lorch [16] states that if {Uk} and {®k} are unconditional
bases for a Hilbert space, and if m~x < ||Í4||, ||$¿|| < m for some m > 0,
then the two bases are equivalent. Conversely, it is clear that if two bases are
equivalent, and if one is unconditional, then the other is unconditional. Thus
the Dunford and Schwartz result is equivalent to showing that the system
{uk) of root functions of a Birkhoff regular problem with simple spectrum is
a basis in L2(0,1) equivalent to the trigonometric system {<bk}. It is this
formulation which can be extended to all Lp(0,l), 1 < p < oo.

For any biorthogonal system having the properties stated in the Abstract,
the expansion 2f w (f,vk)uk converges unconditionally to /in Lp(0,\) if and
only if H-^A _1/, <bk)<pk converges unconditionally to /, 1 <p < oo. In
addition, the set of Lp multiplier sequences for {uk} is the same as the set of
multipliers for {<¡>k}.

The pointwise convergence of eigenfunction expansions was studied by M.
H. Stone [21], who showed that for any/ in Lx(0,l), and for any Birkhoff
regular problem,

2 [(/>*)«*(*) - (/.**)**(*)] = o
— oo

uniformly on each interval [5,1 - 5], 0 < 5 < 1/2. Combining this with the
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A CLASS OF BIORTHOGONAL EXPANSIONS 261

result of Carleson and Hunt on the almost everywhere convergence of
Fourier series, we obtain the almost everywhere convergence of Birkhoff
regular eigenfunction expansions. This paper provides a new proof of this for
the case of simple spectrum.

Our result is similar to results in [10], [11] for real-valued orthonormal
systems in Lp(0,l), 1 <p < oo, and to applications there to singular and
nonsingular Sturm-Liouville systems. The asymptotic relation to the Fourier
system is different there.

A slight change in point of view leads to the problem of perturbation of
bases. As before, let {$k} denote a basis for X, but now {Uk} is just a
sequence in X such that ~2akUk = 0 is valid only when ak = 0 for all k. If, in
some sense, {Uk} is a sufficiently small perturbation of {$*}, and if {^A}
denotes the sequence in the dual space X* of functionals conjugate to {$k},
then Af = ~2(f,^k)Uk defines a bicontinuous linear map on X. Since A$k =
Uk, we conclude that {Uk) is a basis equivalent to {$*}. See [19] for a survey
of results and further references.

There are a number of papers concerned with showing that more or less
general classes of eigenfunction systems are bases by virtue of being perturba-
tions of more familiar systems. See [6] for a prototype of the contraction
operator method (in the language of [19]). See also [24, p. 86]. See [23] for the
prototype of the compact operator method. More recent results can be found
in [5, p. 337], [7] (in not quite the generality stated here) [15], [4].

In §2 we prove an abstract theorem on perturbation of bases in Banach
speces, and we introduce the terms needed to discuss almost everywhere
convergence. In §3 we show that certain subadditive (and possibly linear)
mappings on L^O.l) are of weak type (p,p) (and possibly of strong type
(p,p)). In §4 we define the asymptotic relations mentioned in the Abstract and
prove the theorem on equivalence of bases and almost everywhere conver-
gence. In §5 we show that the root functions of Birkhoff regular problems
with simple spectrum satisfy the asymptotic relations.

2. Transplantation theorems. Let {$,,} denote a basis for the Banach space
X, with conjugate functionals {^k} in A"*. Thus for each/in X,

C2-1) /- 2 (/.**)•*■
-co

Let {Uk} be another sequence in X, with complementary sequence {Vk} in
X* such that (Uk,V/) = 8kj.

Theorem 2.1. If {Uk) is complete in X, then {Uk} is a basis for X equivalent
to {$k} if and only if

(2-2) Af=2(f,*k)Uk,
— 00
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262 H. E. BENZINGER

(2.3) Bf=f(f,Vk)^k
— 00

converge for allf in X and represent bounded linear operators.

Proof. Suppose { Uk) is a basis for X equivalent to {$*}. Let A denote the
bicontinuous map such that A$k = Uk. Then applying A to (2.1), we see that
the series in (2.2) represents a bounded linear operator. To get (2.3) we
interchange the roles of {<f>k} and {Í4), and use B = A ~x.

For the converse, suppose the series (2.2), (2.3) represent bounded linear
operators on X. Then A$k = Uk, BUk = í>¿. Also, by (2.1), BA = 7, and for
each/ in X,

(2-4) ABf=ï(fVk)Uk
— oo

is a bounded linear operator. It remains to show that ABf = f. Let ABf = g.
Then (g, Vk) = (/, Vk) for all k, and by the completeness of ( Uk), g = f.

The discussion of pointwise convergence requires concepts of mappings of
weak type (p,p), and the maximal function map. For fixed p, p < oo, let S
denote a mapping (not necessarily linear) defined on 7/(0,1), so that for/in
7/(0,1), Sf is a function on [0,1], not necessarily in 7/(0,1). Let m denote
Lebesgue measure.

Definition. The mapping 5 is of weak type (p,p) if for each/in 7/(0,1),
and each y > 0,

(2-5) m{x:\Sf(x)\>y}<K[\\f\\py-x]P
where the constant K > 0 does not depend on/ or y.

Let {uk} in 7/(0,1) and {vk} in 7/(0,1), pq = p + a, be a biorthogonal
system. For/ in 7/(0,1), let

SN(x,f) = 2(fvk>k(x)-
-N

Definition. The mapping/-» 5*/defined by

(2.6) (S*f)(x) = sup\SN(xJ)\
N

is called the maximal function mapping.

Theorem 2.2 [17, p. 8]. The equation

(2.7) f(x) = 2 (/»*(*),   o.e.,
— oo

holds for all f in Lp (0,1 ) provided
(a) it holds for all fin a dense subset of Lp (0,1), and
(b) 5* ¿s of weak type (p,p).
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A CLASS OF BIORTHOGONAL EXPANSIONS 263

3. Mappings on Lp(0,l). Recall that <bk(x) = exp 2kmx. For / a function
defined on 0 < x < 1, consider the mappings/-» g defined by

(3.1) g(x)=/(l-x),

(3.2) g(x) = X(x)f(x),      ZinL"(0,l),

(3.3) g

(3.4) g

(3.5) g

These are all bounded linear mappings on Lp(0,l), 1 < p < oo. The first two
are obvious. For (3.3) and (3.4) we use the fact that the spaces Lp(0,l) admit
conjugation for 1 <p < co [14, p. 48]. For (3.5) we use the fact that any
sequence ak = 0(\k\~x/2) is a multiplier sequence for Lp(0,l), 1 <p < oo
[13, p. 231].

Let   ek(x) = exp[-2&77(a + iß)x],  e'k(x) = exp[-2&7T(y + i8)x],  k =
0,1.Consider the mapping

(3-6) 8 = î(f,e'kW
0

If a = y = 0, then with appropriate rescaling of the variable this is of the
form (3.3). If / is in L2(0,1) and if y > 0, then {(/,<)} is in I2 [9, p. 2332].
Thus *2o(f,e'k)<bk represents a bounded linear operator on L2(0,1). Its adjoint
is 2rf(/,<í>A)e¿, which is then also a bounded linear operator on L2(0,1).
Finally then we see that (3.6) is a bounded linear operator on L2(0,1) if a > 0,
y > 0.

Theorem 3.1. If a > 0, y > 0, \ß\ < 1, then (3.6) is a bounded linear
operator on Lp(0,l), 1 < p < 2.

Proof. The case a = y = 0 is contained in (3.3), so we consider the case
that a + y > 0. We shall show that (3.6) is of weak type (1,1). Since we have
just seen that (3.6) is of strong type (2,2), we can apply the Marcinkiewicz
interpolation theorem [25, p. 112].

Let/be in L'(0,1), and let gN(X) = ^-\f,e'k)ek(x). Then

= 2 (/.**)**

2 (M)**.
-oo
co

2 ak(f,<t>k)4>k>ak=0(\k\-^2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 H. E. BENZINGER

N-l
-2kTr[(ax + yl) + i(ßx-Sl)] f(t)dt

(3.7)

8n(x) = f   2
•'o    o

=   f   [l  - e-^<*x + f) + i<.ßx-*')\~\~X f(t\¿t
Jo

_e-2Nv(a + iß)x f   M   _ e-2irl(ax + yt) + i(ßx-6t)]-\~le-2Niriy-i6)tftt\clt

provided 1 - e-*lfr»+rt+'(*-«ffl ^ 0. If 0 < x < 1 and |£| < 1, this is the
case. If at least one of a,y is not zero, the last term in (3.7) converges to zero
as N -» oo, for 0 < x < 1. Thus

, - 2v[(ax + yt) + i(ßx -St)] "1 " Xf(A ¿t.
*(*)-/ [1-•'O

Now there exists a constant K   ' > 0 such that for all points in the spiral
exp[-2w[(ax + yt) + i(ßx - St)]], we have

|1 _ e-2»t(«+r«)+«(^-»)]|> k~xx(1 - x).

Thus

|g(x)|< K\\f\\lX-x(l-x)-x,       0<x<l.
This implies that

W{x:|g(x)|>y} <K\\j)\y-i,      y > 0,

so the map/-» g is of weak type (1,1).

Theorem 3.2. If fis in 7/(0,1), 1 < p < 2, then the map /-» {(f,ek)) is a
bounded linear operation into lq, pq = p + q.

Proof. For p = 2 this is proved in [9, p. 2332]. For p =■ 1 the result is
obvious. Then the Riesz-Thorin theorem [25, p. 95] gives the result for the
remaining values of p.

Note that the boundedness of this map yields

(3.8) 2 ¡(M)f
0

1/?

<K\\f\\p,       \<p<2.

Letg*(x) = supA,|gA,(x)|.

Theorem 3.3. The mapping f-^g* is of weak type (p,p) for 1 < p < 2 //
a > 0.

Proof. The case that/? = 1 is contained in the proof of Theorem 3.1. For
1 < p < 2 we use (3.8) and Holder's inequality:
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A CLASS OF BIORTHOGONAL EXPANSIONS 265

|**(*)| sW)f
0

1/?

< All

N-l

2
0

l/p

Ax)(
\/p

2*— 1-napxk = K\\ ,[1 , — llTOtpX Up

< K'\\f\\px-x/p,       0<x<\.
Thusg*(X) < K'\\f\\px-x/p.Thusm{x:g*(x)>y} < KlWfW^y.

4. Main theorems. Let <1> denote any function of the form

1 + akXx\k\-x/2+ ak2x2k-x + 0(k~3/2),

uniformly in x, 0 < x < 1, as \k\ -» oo, and {aki} is in l°°, i = 1,2. Let Fk(x)
denote any finite linear combination of functions of the form

[A + 0(k-l)]ew(x),       [A + 0(k-x)]elkl(\ - x)

where 0(k~x) is uniform in x, 0 < x < 1 as |/c| —*■ oo and e^ is generic
notation for any function exp[ — 2\k\tr(a + iß)x], with a > 0, \ß\ < 1. A is
any constant.

Theorem 4.1. Let p be fixed, 1 < p < oo. Let (uk(x)} in 7/(0,1), and
(vk(x)} in Lq(0,l), k = 0,± 1, . . ., be complete sequences which are biorthog-
onal: (uk,v/) = 8kJ. Suppose also that

uk(x) = *,(x)<¡>,(x)<l> + X2(x)<b_k(x)(l) + Fk(x), k-*+co,

vk(x) = Yx(x)<pk(x)(l) + Y2(x)<b_k(x)(l) + Fk(x), k^+oo,

uk(x) = X3(x)<¡>k(x)(l) + X4(x)^>_k(x)(l) + Fk(x), *-> -co,

vk(x) = Y3(x)<pk(x)(l) + Y4(x)<b_k(x)(l) + Fk(x), k-* -oo,

where X„Y, are in 7_°°(0,1), i - 1,..., 4. TAe/î {«¿} ¿s a èasw for Lp(0,l)
equivalent to {<¡>k}, and {vk} is a basis for Lq(0,l) equivalent to {<t>k}.

Proof. Since the hypotheses are symmetric with respect to the two
sequences {uk}, {vk}, there is no loss of generality in assuming 1 <p < 2.
Applying Theorem 2.1, consider

(4.1)
¿f= 2 (/.**K- xx(x)2(Uk)hO> + *2(*)2(/.**)*-*<i>

-oo o 0

+x3(x) 2 (Uk)h^> + xA(x) 2 (/,**)*_*<!> + 2 (fA)Fk-

The first term on the right of (4.1) becomes

*i (*)( 2 (/,**)** + 2 (/.**K,*-,/2** + 2 (M0(k-i)*k
loo 0
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266 H. E. BENZINGER

The first two terms in the bracket represent bounded linear operators, by
virtue of (3.3), (3.5) respectively. For the third term, we use the Hausdorf f-
Young inequality and Holder's inequality:

!'/?/„ \l/P
2(MO(k-x)h
o 2 \(Mf

0

< mi-

7 oo \'(H
Finally, multiplication by Xx is a bounded operation.

For the second term on the right of (4.1), we see that if F(x) = /(l - x),
then (F,<j>_k) = (f,<bk), so the second term can be written as

*22(*>-*)<f>-*<l>,
0

and then treated exactly as the first term. These arguments hold also for the
third and fourth terms in (4.1). For the fifth term, we note that a typical
expression is

2(7>*)[1 + 0(k-l)]ek=fl(f,<Pk)ek+ft(Mk)0(k-i)ek.
0 0 0

The first term on the right is bounded by virtue of Theorem 3.1. For the
second term we again use the Hausdorff-Young inequality. Thus A is a
bounded linear operator.

Next we consider

Bf= 2 (M)**-2(/.^<i>Ht+ 2(/.^.t<i))^
(4.2) -i

o

+ 2 (/,r3**0»**+ 2 (/,^-*<i»**+ 2 (fFk)<?k.— 00 —00 —00

The first term on the right of (4.2) becomes

2 (YlUk)h+ 2 (xYxf,<bk)akXk-l/\
0 0

+ 2 (x%f¿k)ak2k-\ + | (Yxf,<bk0(k-V2))$k.

These terms clearly represent bounded linear operators, and thus the first
four terms on the right of (4.2) are bounded. For the fifth term, a typical
expression is

|(/,[1 + 0(k-x)]ek)<?k=fi(f,ek)<bk+fl(f,0(k-l)ek)4>k.
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A CLASS OF BIORTHOGONAL EXPANSIONS 267

The first term is bounded by virtue of Theorem 3.1. For the second term, we
use Theorem 3.2 and Holder's inequality:

2lWi 2 |(M)Pi
00 \l/pH -m

Thus B is also a bounded linear operator.
Since A<bk = uk implies A ~x * <f>k = vk, we have

(4.3) (Af,vk) = (Mk).
Theorem 4.2. Let {uk}, {vk} be as in Theorem 4.1. Let f be in Lp(0,l),

1 < p. Thenf(x) - 2ü00(/,üJtK(x), a.e.

Proof. We apply Theorem 2.2. Let A denote the class of functions / of
class C2(0,1), such that / and /(1) are zero at x = 0 and x = I. For such /,
(/><&) = 0(k~2), and thus the Fourier series of /converges uniformly to/on
[0,1]. Clearly A is dense in Lp(0,l),p < oo, and since A is continuous, A à is
dense in Lp(0,l). Using (4.3), we see that if g = Af, then (g,vk) = 0(k~2).
Since the uk's are uniformly bounded, we see that for g in A A,
^-x(g'vk)uk(x) converges uniformly on [0,1] to g(x). This establishes condi-
tion (a) of Theorem 2.2.

To establish condition (b), we note first of all that the maximal function
mapping for ordinary Fourier series is of weak type (p,p) (in fact, of strong
type (p,p)) [17, p. 8]. Now

N

(4.4)

M*j) = 2(MK(x)
-N

= ̂ W^",/4(i)KW(i)
0

+ *i(*)2(V>*-*<i>>*W<i>
0

+x2(x)i(Yxuk(i))<t>_k(x)(iy
0

+ X2(x)Jt(Y2f,<¡>_k(l))<t>_k(x)(l)

N N

+*iv*)2(/.f*)**(*)<i> + *2(*)2(M)*-*(*)<i>

N N
+ S(v^(i>Kw+S(v,it{i))ftw

0 0

+ 2(M)^W + 2(MKW-
0 -N
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268 H. E. BENZINGER

The first four terms on the right of (4.4) can each be further decomposed, into
the partial sums of ordinary Fourier series. Thus each of these terms yields
maximal functions of weak type (p,p). The fifth through ninth terms can be
handled using Theorem 3.3. The last term is handled in a similar way. Note
that there is no loss of generality in assuming 1 < p < 2.

5. Eigenvalues and eigenfunctions of differential operators. Let (t, U) denote
an «th order Birkhoff regular boundary value problem with simple spectrum.
Then the eigenfunctions {uk) satisfy the conditions of Theorem 4.1, and the
eigenfunctions {vk} of the adjoint problem also satisfy these conditions. To
prove this, we need to know the asymptotic distribution of the eigenvalues of
(t, U), and we need to know how to form the root functions of (t, U) from a
fundamental set of solutions to tu = Xu.

If X is the eigenvalue parameter, it is customary to introduce a new
parameter by À = — p", and then restrict attention to a sector of the p-plane
of opening 2tr/n. S¡ denotes the sector h/n < arg p < (/ + \)tr/n. The
symbols 9_X,90,9X are defined in [18, p. 49], and the nth roots of — 1;
id,, ..., u„ are labeled as in [18, p. 49]. If X is an eigenvalue of (t, U), we shall
commonly refer to p as an eigenvalue, where it will always be clear which root
of X is meant.

The asymptotic behavior of the eigenvalues of a Birkhoff regular (t, U) is
completely described in [18]. We restate the result in terms of p rather than X.

Theorem 5.1 [18, p. 56]. Let (r,U) denote an nth order Birkhoff regular
boundary value problem.

I. If n = 2p — \, then all but finitely many eigenvalues are of algebraic
multiplicity one, and in each sector S¡, I = 0, 1, there is a sequence of
eigenvalues satisfying

(5.1) pk = ±2kmu~x + A + 0(k~x),       k->+oo,

where A is a constant depending on I, and the choice of sign depends upon I and
the value of n moduló 4.

II. If n = 2p and 9q - 49_X9X 7e 0, then all but finitely many eigenvalues of
(t,U) are of algebraic multiplicity one, and S0 contains two sequences of
eigenvalues, each satisfying

(5.2) pk = ±2kwia~x + A + 0(k~x),      £->oo,

where the constant A is not the same for both sequences, and the choice of sign
depends upon the value of « modulo 4.

The asymptotic behavior of eigenfunctions is also discussed in [18]. Let [B]
denote any function of the form B + 0(k~x) as |A:| —> oo, uniformly in x,
0 < x < 1.
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A CLASS OF BIORTHOGONAL EXPANSIONS 269

Theorem 5.2 [18, pp. 65-68]. Let (r, U) denote an nth order Birkhoff regular
boundary value problem.

I. If n = 2/x — 1 and \pk\ is sufficiently large, then the corresponding eigen-
function uk(x) is given by

p-1
"k(x) =[Bll] expfa^x) + 2 [B¡] exp(pkatx)

(5.3)
+   2    [P/] e*P(Pkui(x ~l)Y>

i=n+i
where B^ ¥= 0.

II. If n = 2/x, f?,2 — 49_X9X =£ 0 and \pk\ is sufficiently large, then the corre-
sponding eigenfunction uk(x) is given by

uk(x) -[By] exp(p^x) +[5,,+ ,] exp(pku¡í+xx)

(5.4) t-1 »
+ 2 [B,] exp(p*«zx) +   2    [B¡] exp(p4w,(x - 1)),

1=1 l=n+2

where |5„| + |B„+l\ > 0.
Note that the constants B^, B¡l+X are not zero as a consequence of Birkhoff

regularity.

Theorem 5.3. If (r,U) is any Birkhoff regular problem with simple spectrum,
then the eigenfunctions {uk) satisfy the conditions of Theorem 4.1.

Proof. In case I, consider (5.1) and (5.3). We have for k -» oo,
exp(pku¡íx) = exp(2kmx) exp Ax(l}

so

[fij exp(pk^x) = B^ exp Ax<bk(x)(\y.

The other terms in (5.3) contribute to Fk(x). For k -» - oo we get different Z?M
and A. Thus when « is odd, X2 and X4 are identically zero. Case II is handled
similarly, using (5.2), (5.3), and the relation 0$ - 49x9_x ¥= 0.

It is necessary to obtain similar estimates for the eigenfunctions {vk) of the
adjoint problem. Since the coefficients of r are not necessarily differentiable,
the adjoint problem is not necessarily a differential operator. However, the
explicit form of the adjoint is not of importance. Since (t, U) generates a
densely defined closed linear operator in each space L^O,!), 1 < p < oo, we
know from abstract considerations [12, p. 43] that an adjoint problem exists
as a densely defined operator in L9(0,1), pq — p + q. The eigenfunctions of
the adjoint problem can be obtained from the Green's function G(x,t,p) of
(t,U). If pk is an eigenvalue of (r,U), then for fixed x,t, np"~lG(x,t,p) has a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



270 H. E. BENZINGER

pole at pk. If the algebraic and geometric multiplicity of pk are both one, then
the principal part of np"~xG(x,t,p) at pk is

(5.5) uk(x)vk(t)[p-pky\

If the algebraic and geometric multiplicities are both two, then the principal
part is

[u?\x)v-k»\t) + uïx\x)v-kx\t)][p-pk]-\

where u¡¿°\ m|!) are two linearly independent eigenfunctions.
Consider the case that « is odd, so (5.5) is applicable. Then

"*(*)»*(0 = lim (P " Pk)n9n~xG(x^,P)-
P->Pk

Suppose k is large. Then

f\k(x)[B-xe-^<¡>k(x)]   dx= <1>,

so

(5.6) <1>^(0 =/Q1[¿m (p - pk)np"-xG(x,t,p)][B-xe-^k(x)\   àx.

Now the integral in (5.6) can be evaluated using equation (4.1) and Lemma
4.1, both in [1]. (In the last line of the statement of Lemma 4.1, replace co; by
a,.) Labeling the co/s according to [18] rather than [1], we see that

Hm (p - pk)P¡l¡í(p) = Clt+0(k-x),       C, * 0,

while the residues of the other pkJ(pys reflect the exponential decay of the
Fks. Thus the right side of (5.6) is

C,eD**k(x)(iy + Fk(x)
and then vk(t) has the same form. The case that « is even is handled in a
similar manner.

Theorem 5.4. Let (t, U) denote an nth order Birkhoff regular problem with
simple spectrum. Then the eigenfunctions {vk} of the adjoint problem satisfy the
conditions of Theorem 4.1.

Remark. There are Birkhoff regular problems whose eigenvalues have
algebraic multiplicity equal to two and geometric multiplicity equal to one.
The root functions of such problems are a basis for each Lp(0,l) [3], but in
general such a basis is conditional even if p = 2 [22].
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