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POINTWISE ERROR ESTIMATES AND ASYMPTOTIC ERROR
EXPANSION INEQUALITIES FOR THE FINITE ELEMENT

METHOD ON IRREGULAR GRIDS:
PART I. GLOBAL ESTIMATES

ALFRED H. SCHATZ

Abstract. This part contains new pointwise error estimates for the finite
element method for second order elliptic boundary value problems on smooth
bounded domains in RN . In a sense to be discussed below these sharpen known
quasi–optimal L∞ and W 1∞ estimates for the error on irregular quasi–uniform
meshes in that they indicate a more local dependence of the error at a point
on the derivatives of the solution u. We note that in general the higher order
finite element spaces exhibit more local behavior than lower order spaces. As
a consequence of these estimates new types of error expansions will be derived
which are in the form of inequalities. These expansion inequalities are valid

for large classes of finite elements defined on irregular grids in RN and have
applications to superconvergence and extrapolation and a posteriori estimates.
Part II of this series will contain local estimates applicable to non–smooth
problems.

0. Introduction and discussion of results

This is the first of a series of papers whose aim is to derive new pointwise error
estimates for the finite element method on general quasi–uniform meshes for second
order elliptic boundary value problems in RN , N ≥ 2. In a sense to be discussed be-
low, these estimates represent an improvement on the now standard quasi–optimal
L∞ estimates. In order to fix the ideas, here we will deal with global estimates
for a model Neumann problem with smooth solutions. In succeeding papers, local
estimates, both interior and up to the boundary, which are applicable to a variety
of problems with both smooth and nonsmooth solutions will be considered. As
a consequence of these estimates, some new and useful inequalities will be given
which are in the form of error expansions. They are valid for large classes of finite
elements on general quasi–uniform meshes in RN and have application to super-
convergence and extrapolation and a posteriori esitmates. Let us begin by giving
a brief description of some of the main results of this paper.

Let Ω be a bounded domain in RN , N ≥ 2, with smooth boundary ∂Ω. Let

A(u, v) =
∫

Ω

( N∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
v + c(x)uv

)
dx(0.1)
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878 ALFRED H. SCHATZ

be coercive over W 1
2 (Ω) and for given f ∈ (W 1

2 (Ω))′ let u ∈ W 1
2 (Ω) be the solution

of the Neumann problem with homogeneous boundary data defined by

A(u, v) = (f, v) =
∫

Ω

fvdx for all v ∈W 1
2 (Ω).(0.2)

It is well known that if f is smooth in Ω, then u is also.
Now consider the approximation of u using the finite element method. Let

0 < h < 1 be a parameter, r ≥ 2 be an integer and Shr (Ω) ⊂ W 1∞(Ω) be a family
of finite element spaces. The precise assumptions on these subspaces are given
in Section 1 and are satisfied by many types of commonly used finite elements.
For the purposes of this introduction they may be thought of as any one of a
variety of spaces of continuous functions, which on each set τ of a quasi–uniform
partition of Ω, roughly of size h, contains all polynomials of degree r − 1 and fit
the boundary exactly. For example r = 2 could correspond to piecewise linear (or
bilinear, etc.) functions and r = 3 to piecewise quadratic functions, etc. Thus they
can approximate functions to order hr in L∞(Ω) and order hr−1 in W 1∞(Ω). The
finite element approximation uh ∈ Shr (Ω) is taken to satisfy

A(uh, ϕ) = (f, ϕ) for all ϕ ∈ Shr (Ω)(0.3)

or

A(u − uh, ϕ) = 0 for all ϕ ∈ Shr (Ω).(0.4)

Quasi–optimal L∞ estimates on general quasi–uniform meshes for the finite ele-
ment method were first proved by Natterer [3] and Scott [13] in 1975. These were
followed by many other studies which refined and extended their results to more
general situations (see for example [4], [5], [7], [8], [9], [10] and [11] to name a few).
These estimates take the form

‖u− uh‖L∞(Ω) ≤ Ch
(

ln
1
h

)r
inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω)(0.5)

and

‖u− uh‖W 1∞(Ω) ≤ C inf
χ∈Sh

R

‖u− χ‖W 1∞(Ω).(0.6)

In (0.5) r = 1 if r = 2 and r = 0 if r ≥ 3. The constants C in (0.5) and (0.6) are
independent of u, uh and h.

The results derived in this paper start with a slightly different point of view.
They are based on the fact that part of all of the present proofs of the global L∞
estimates have much in common with the proofs of local L2 based error estimates,
where cut–off functions are replaced by weight functions. The proofs in a sense
are local in nature. Hence here we shall focus our attention not on the L∞(Ω) or
W 1
∞(Ω) norm of the error but rather on the error at an arbitrary but fixed point x

of Ω.
In order to describe our first results we shall need some notation. For each fixed

point x ∈ Ω, real number s and arbitrary y ∈ RN consider the weight function

σsx,h(y) =
( h

|x− y|+ h

)s
.(0.7)

Notice that if s > 0 and |x− y| = O(h) then σsx(y) = 0(1). Furthermore σsx(y) is a
decreasing function of |x − y| and σsx(y) = O(hs) when |x − y| = O(1). A plot of
σsx(y) vs. |x− y| is given in Figure 1.
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x, h(y)

hs
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Figure 1

Remark. The denominator in (0.7) can be replaced with the “equivalent”
(|x− y|2 + h2)1/2 without effecting the results to follow.

For 1 ≤ p ≤ ∞ and fixed x consider the weighted norms

‖u‖Lp(Ω),x,s = ‖σsx(y)u(y)‖Lp(Ω)(0.8)

and

‖u‖W 1
p (Ω),x,s = ‖u‖Lp(Ω),x,s + ‖∇u‖Lp(Ω),x,s.(0.9)

Notice that if p = ∞ and s = 0 these weighted norms satisfy, for continuous u,

|u(x)| ≤ ‖u‖L∞(Ω),x,s ≤ ‖u‖L∞(Ω)(0.10)

and at points where ∇u(x) is continuous

|∇u(x)| ≤ ‖u‖W 1∞(Ω),x,s ≤ ‖u‖W 1∞(Ω).(0.11)

Our first result concerns the error of (u− uh)(x) at an arbitrary but fixed point
x ∈ Ω and is given in Theorem 2.1, which may be roughly stated as follows: Let
x ∈ Ω and 0 ≤ s ≤ r − 2, then

|(u− uh)(x)| ≤ ‖u− uh‖L∞(Ω),x,s ≤ Ch
(

ln
1
h

)s
inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.(0.12)

Here s = 1 if s = r− 2, s = 0 if 0 ≤ s < r− 2 and C is independent of u, uh and x.
It is easy to see that (0.12) is sharper than (0.5) when r ≥ 3. In fact choosing

x ∈ Ω to be the point where |(u−uh)(x)| = ‖u−uh‖L∞(Ω) and using the inequality
(0.11), it follows that (0.12) implies (0.5) when 0 < s < r − 2 but not vice versa.
The estimate (0.12) gives new information about the behavior of the error at a fixed
but arbitrary point x ∈ Ω. Because of the weighted norms on the right, it indicates
a more local dependence of the error at x on the solution u in a neighborhood
of x than is indicated by (0.5). Furthermore the larger the r the more local that
dependence is.
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880 ALFRED H. SCHATZ

Remark. Under some additional assumptions on the subspaces (see the Remark 2.1
after Theorem 2.2), the term

h inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s

may be replaced by

inf
χ∈Sh

r

‖u− χ‖L∞(Ω),x,s.

Let us briefly discuss the differences in the proofs of (0.5) and (0.12). The
starting point that can be used for both is the representation

|(u− uh)(x)| ≤ |A(u − χ, gx − gxh)|(0.13)

where gx may be thought of as a “smoothed” Green’s function with singularity at x,
gxh ∈ Shr (Ω) is its finite element approximation and χ ∈ Shr (Ω) is arbitrary. So the
problem reduces to obtaining estimates for gx−gxh. An analogous approach has been
used previously for obtaining pointwise estimates for finite difference methods and
was also used by Scott [13] in analyzing the finite element method. The estimate
(0.5) for the L∞ norm follows by taking

‖u− uh‖L∞(Ω) ≤ C‖u− χ‖W 1∞(Ω) sup
x∈Ω

‖gx − gxh‖W 1
1 (Ω)

and showing that

sup
x∈Ω

‖gx − gxh‖W 1
1 (Ω) ≤ Ch

(
ln

1
n

)r
.(0.14)

If one thinks of gx as “almost” being in W 2
1 (Ω), then (0.14) is reasonable from

the point of view of approximation theory, in terms of powers of h. This type of
estimate is in fact proved in all those papers using this approach. On the other
hand if one thinks of the Green’s function with singularity at x, its “nonsmooth”
behavior occurs only at x. Away from x it satisfies a homogeneous elliptic equation
and hence not only is it smooth but its derivatives have very special decay properties
as a function of inverse powers of the distance to the singularity. Thus we might
hope that away from x, gx may be approximated to order hr−1 in W 1

1 by using
the fact that it is in W r

1 and then bound the rth order derivatives in terms of
inverse powers of the distance to x. This in fact can be done and we shall prove
the weighted estimate

‖gx − gxh‖W 1
1 (Ω),x,−s ≤ Ch

(
ln

1
h

)s
(0.15)

where s = 0 for 0 ≤ s < r − 2, s = 1 if s = r − 2 and C is independent of h and x.
The presence of the weight σ−sx (y) indicates that the estimate (0.15) is in general
stronger than (0.14).

Interior pointwise error estimates for the Green’s function for this problem were
proved in Schatz and Wahlbin [9]. The estimate (0.12) now follows from (0.15) and
(0.13) which can be estimated by

|(u− uh)(x)| ≤ C‖u− χ‖W 1∞(Ω),x,s‖gx − gxh‖W 1
1 (Ω),x,−s.

There is an analogous result for pointwise error estimates for first derivatives
which is given in Theorem 3.1. This may be roughly stated as follows: Let x ∈ Ω
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and 0 ≤ s ≤ r − 1, then

‖u− uh‖W 1∞(Ω),x,s ≤ C
(

ln
1
h

)=
s

inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.(0.16)

Here
=
s = 0 if 0 ≤ s < r − 1,

=
s = 1 if s = r − 1 and C > 0 is independent of u, uh,

h, and x.
We remark that the proofs of Theorem 2.1 and Theorem 3.1 have much in com-

mon with the proofs of results given in Schatz and Wahlbin [9] and [10].
In view of our previous discussion it is easily seen that (0.16) implies (0.6), for

0 < s < r − 1 but not vice versa. Hence (0.16) is sharper than (0.6) this time for
r ≥ 2, and also because the weighted norm on the right indicates a far more local
dependence of derivatives of the error on u than is indicated by (0.6).

In this direction one consequence of the weighted estimates (0.12) and (0.16) are
estimates that we shall call “error expansion inequalities”. They show the local
dependence of the error on u. There are many variations which are easily derived
from (0.12) and (0.16). Here we shall present a special case of a result given in
Theorem 3.1. We begin with estimates for (u− uh)(x).

Suppose r ≥ 3 and u ∈ W 2r−2
∞ (Ω), then there exists a constant C independent

of u, uh, h and x such that

|(u− uh)(x)|
≤ C

(
ln

1
h

)(
hr

∑
|α|=r

|Dαu(x)|+ · · ·+ h2r−3
∑

|α|=2r−3

|Dαu(x)|

+ h2r−2‖u‖W 2r−2∞ (Ω)

)
.

(0.17)

A corresponding estimate for derivatives is as follows: Suppose r ≥ 2 and u ∈
W 2r−1
∞ (Ω), then there exists a constant C independent of u, uh, h and x such that

|∇(u − uh)(x)|
≤ C

(
ln

1
h

)(
hr−1

∑
|α|=r

|Dαu(x)|+ · · ·+ h2r−3
∑

|α|=2r−2

|Dαu(x)|

+ h2r−2‖u‖W 2r−1∞ (Ω)

)
.

(0.18)

We remark that these inequalities may be trivially changed to equalities with the
constants C replaced by functions g(x, u, uh, h) ≥ 0, which depend on x, u, uh, and
h such that g(x, u, uh, h) ≤ C independent of x, u, uh and h.

Notice that all the terms on the right except the last in (0.17) and (0.18) involve
derivatives of u at only one point. We would like to emphasize again that these
expansions are valid at any point of Ω and for a large class of finite elements in
RN , N ≥ 2, and for equations of the form (0.1), (0.2). Other expansions will be
given in forthcoming papers for different problems. With regard to other work, a
precise asymptotic expansion has been derived in Blum, Lin and Rannacher [1] for
the special case of Dirichlet’s problem in the plane for −∆u = f in Ω, u = 0 on
∂Ω. Their expansions are valid at special points x on a “two regular grid” using
piecewise linear elements. The approach used there is entirely different and seems
not to easily generalize to more general situations.
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We end this introduction by mentioning some consequences of the estimates
(0.17) and (0.18) given in Corollaries 4.1 through 4.3. Very roughly stated, Corol-
laries 4.1 and 4.2 say respectively that if Dαu(x) = 0 for all |α| = r, then the rate
of convergence of (u− uh)(x) for r ≥ 3 is greater than hr and when r ≥ 2 the rate
of convergence of ∇(u− uh)(x) is greater than hr−1. In Corollary 4.3 we shall give
a sufficient condition on u such that the error at a point may be bounded above by
the local interpolation error. In a future publication we shall use local results of this
type together with some additional ideas to obtain some new superconvergence and
extrapolation results for the finite element method and investigate some pointwise
a posteriori error estimators (cf. [14]).

A brief outline of this paper is as follows: In Section 1 we discuss some prelim-
inaries. Section 2 contains results on pointwise estimates and Section 3 estimates
for derivatives. Section 4 contains results on error expansion inequalities.

1. Preliminaries

(A) A Neumann problem. Let Ω be a bounded domain in RN with smooth
boundary ∂Ω. For any domain D ⊆ Ω, t ≥ 0 an integer and 1 ≤ p ≤ ∞, W t

p(D)

and
◦
W t

p(D) will denote the usual Sobolev spaces with the usual norms ‖ · ‖W t
p(D).

For t < 0 and 1 ≤ p ≤ ∞, W t
p(D) will denote the dual of

◦
W−t

q (D) with the norm

‖u‖W t
p(D) = sup

v∈C∞0 (Ω)
v 6=0

∫
D

uvdx

‖v‖W−t
q (D)

,
1
p

+
1
q

= 1.(1.1)

W̃ t
p(D) will denote the dual of W−t

q (D).
Consider the Neumann problem with homogeneous boundary conditions

Lu = −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ C(x)u = f in Ω,(1.2)

∂u

∂nL
= 0 on ∂Ω,(1.3)

where
∂u

∂nL
denotes the co–normal derivative on ∂Ω. For simplicity we shall assume

that the coefficients aij , bi and c are in C∞(Ω). These conditions can be weakened
(see Remark 1.1). Furthermore assume that L is uniformly elliptic, i.e., there exists
an m0 > 0 such that

m0

N∑
i=1

ζ2
i ≤

N∑
i,j=1

aij(x)ζiζj for all ζ ∈ RN and x ∈ Ω.(1.4)

The weak formulation of (1.2), (1.3) is given in (0.2) where A(·, ·) is defined by
(0.1). Throughout this paper it will be assumed that A(·, ·) is coercive on W 1

2 (Ω),
i.e., there exists an m > 0 such that

m‖u‖2
W 1

2 (Ω) ≤ A(u, u) for all u ∈ W 1
2 (Ω).(1.5)

In this case both (0.2) and its adjoint problem

A(v, w) = (f, v) for all v ∈W 1
2 (Ω)(1.6)
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have unique solutions for each f ∈ W̃−1
2 (Ω). If f ∈ W t

p(Ω) for t an integer 0 ≤ t ≤
r − 2 and 2 ≤ p <∞, then u and w ∈ W t+r

p (Ω) and

‖u‖W t+2
p (Ω) ≤ Cp‖f‖W t

p(Ω),

‖w‖W t+2
p (Ω) ≤ Cp‖f‖W t

p(Ω),
(1.7)

where C is independent of f , t and p.
Let us remark that as discussed in Schatz and Wahlbin [10], the dependence of

(1.7) on p for t = 2 may be found by tracing constants in, for example, the proof
given in Gilbarg and Trudinger [15]. The estimate for higher derivatives may be
found by bootstrapping with that case.

Let Gx(y) denote the Green’s function for the problem (1.2), (1.3) with singu-
larity at x. It will be convenient to use the following estimates for Gx(y) which can
be found in Krasovskii [2].

Lemma 1.1. There exists a constant C such that for x, y ∈ Ω

|Dα
xD

β
yG

x(y)| ≤ C|x− y|2−N−|α+β| for |α+ β| > 0.(1.8)

Here C depends only on Ω, m0, m and various norms of the coefficients.

Remark 1.1. If r ≥ 2 is an integer, then (1.8) holds for 0 < |α + β| ≤ r if for
example aij , bi, c ∈ Cr+1 and Ω ∈ Cr+3.

(B) The finite element subspaces. We shall now state our assumptions on
the finite element spaces used in this paper. They are basically, with some slight
simplifications, the same as those given in Schatz and Wahlbin [10] and [11].

For 0 < h < 1 a parameter and r ≥ 2 an integer, Shr (Ω) will denote a family
of finite dimensional subspaces of W 1∞(Ω). If D ⊆ Ω, then Shr (D) will denote the
restriction of functions in Shr (Ω) to D. In what follows D̃0 ⊂⊂ D̃1 ⊂⊂ D̃2 will
denote concentric balls and Di = D̃i ∩ Ω, i = 0, 1, 2.

Assume that there exist a constant k such that if dist(D̃0, ∂D̃1) ≥ kh and
dist(D̃1, ∂D̃2) ≥ kh, then the following hold:

A.1 (Approximation). If t = 0, 1, t ≤ ` ≤ r, 1 ≤ p ≤ ∞, then for each
v ∈W `

p (D2) there exists a χ ∈ Shr (D2) such that

‖v − χ‖W t
p(D1) ≤ Ch`−t‖v‖W `

p(D2).(1.9a)

If N < p ≤ ∞
‖v − χ‖W 1∞(D1) ≤ Chr−1−N/p‖v‖W r

p (D2).(1.9b)

Furthermore if v vanishes outside of D0, χ vanishes outside of D1. The constant C
is independent of h, v, χ, D1 and D2.

A.2 (Inverse properties). If χ ∈ Shr (Ω), then for t = 0, 1 and ` ≥ 0 is an integer
and 1 ≤ q ≤ p ≤ ∞,

‖χ‖Wp∞(D1) ≤ Ch−[ N
q −N

p ]−t−`‖χ‖W−`
q (D2)

.(1.10)

For easy reference we single out the special cases of (1.10) where for ` = 0, 1

‖χ‖W t
2 (D1) ≤ Ch`−t‖χ‖W−`

2 (D2).(1.11)

Here C is independent of h, χ, D1 and D2.
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884 ALFRED H. SCHATZ

A.3 (Superapproximation). Let ω ∈ C∞
0 (D̃1), then for each χ ∈ Shr (D3) there

exists an η ∈ Shr (D3), vanishing outside of D2, such that for some integer γ > 0

‖ωχ− η‖W 1
2 (D3) ≤ Ch‖ω‖Wγ∞(D1)‖χ‖W 1

2 (D3).(1.12)

Furthermore, if ω ≡ 1 on D̃0 and D̃−1 ⊂⊂ D̃0 with dist(D̃−1, ∂D̃0) ≥ k, then η = χ
on D−1 and

‖ωχ− η‖W 1
2 (D2) ≤ Ch‖ω‖Wγ∞(D1)‖χ‖W 1

2 (D2\D0).(1.13)

Here C is independent of ω, χ, η, h, D0, D1 and D2.

A.4 (Scaling). Let x0 ∈ Ω and d ≥ kh. The linear transformation y = (x− x0)/d
takes Bd(x0) = {x : |x − x0| < d} ∩ Ω into a new domain B̂1(x0) and Shr (Bd(x0))
into a new function space Ŝh/dr (B̂1(x0)). Then Ŝh/dr (B̂1(x0)) satisfies A.1, A.2 and
A.3 with h replaced by h/d. The constants occurring in A.1, A.2 and A.3 remain
unchanged, in particular independent of d.

(C) Some preliminary error estimates. For v ∈ W 1
2 (Ω) let vh be either the

solution of

A(v − vh, ϕ) = 0 for all ϕ ∈ Shr (Ω)(1.14)

or the solution of the adjoint problem

A(ϕ, v − vh) = 0 for all ϕ ∈ Shr (Ω).(1.15)

We shall need two well known error estimates, one global and one local, for the
problems (1.14) and (1.15). First a well–known global estimate.

Lemma 1.2. Let v and vh be as above, then

‖v − vh‖L2(Ω) + h‖v − vh‖W 1
2 (Ω) ≤ Ch‖f‖L2(Ω).(1.16)

We shall state the local results for special subdomains of Ω. Without loss of
generality we may assume throughout this paper that diam(Ω) ≤ 1. Let

dj = 2−j for j = 0, 1, 2, . . .

and for fixed x set

Ωj = {y ∈ Ω : dj+1 < |y − x| < dj},
Ω′
j = {y ∈ Ω : dj+2 < |y − x| < dj−1},

Ω′′
j = {y ∈ Ω : dj+3 < |y − x| < dj−2}.

(1.17)

Lemma 1.3. Suppose that A.1–A.4 are satisfied and that v − vh satisfies either
(1.14) and (1.15). Suppose that 0 ≤ t ≤ r − 2 is an integer, then if dj ≥ kh

‖v − vh‖W 1
2 (Ωj) ≤ C

(
hr−1‖v‖W r

2 (Ω′j) + d
−N/2−1−t
j ‖v − vh‖W−t

1 (Ω′j)

)
,(1.18)

where C is independent of v, vh, h and j.

If Ωj is an interior subdomain of Ω, then the result can be found in Schatz and
Wahlbin [11] and for domains abutting the boundary, it can be found in Schatz and
Wahlbin [10]. They are adaptations of the local result given in Nitsche and Schatz
[6].

We shall now define two functions gx(y) and gxh(y). gx(y) may be thought of
as a smoothed Green’s function with singularity at x, and gxh(y) ∈ Shr its finite
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element approximation. We now give some facts that will be needed for the proof
of pointwise estimates.

For d > 0 and any fixed x ∈ Ω, Bd(x) will denote the intersection of Ω with a
ball of radius d centered at x, i.e.,

Bd(x) = {y ∈ Ω : |y − x| < d}.(1.19)

Let k be as in A.1–A.4 and u− uh satisfy (1.14). Define

η(y) =

{
h−N/2(u− uh)(y)/‖u− uh‖L2(B2kh(x)) for y ∈ B2kh(x),

0 elsewhere.

Notice that supp(η) ⊆ B2kh(x) and ‖η‖L2(B2kh(x)) = h−N/2. For fixed x ∈ Ω, gx(y)
is defined to satisfy

A(v, gx) = (η, v) for all v ∈W 1
2 (Ω).(1.20)

The finite element approximation gxh(y) ∈ Shr (Ω) is taken to be the unique solu-
tion of

A(ϕ, gx − gxh) = 0 for all ϕ ∈ Shr (Ω).(1.21)

The importance of gx and gxh is the following:

Lemma 1.4. Let u−uh satisfy (1.14) and gx−gxh satisfy (1.21), then for any fixed
x ∈ Ω, 0 ≤ s ≤ s0 for any fixed s0 and any χ ∈ Shr (Ω)

|(u − uh)(x)| ≤ C
(
‖gx − gxh‖W 1

1 (Ω),x,−s + h
)
‖u− χ‖W 1∞(Ω),x,s.(1.22)

Here C is independent of u, uh, gx, gxh, h, x, s and χ.

Proof. For any ψ ∈ Shr (Ω), 0 ≤ s ≤ s0, the triangle inequality A.1 and A.2 yield

|(u− uh)(x)| ≤ |(u − ψ)(x)| + Ch−N/2‖ψ − uh‖L2(B2kh(x))

≤ |(u− ψ)(x)|
+ Ch−N/2

(
‖ψ − u‖L2(B2kh(x)) + ‖u− uh‖L2(B2kh(x))

)
≤ C(k)‖u− ψ‖L∞(B2kh(x)) + Ch−N/2‖u− uh‖L2(B2kh(x))

≤ C(k)h‖u‖W 1∞(B3kh(x)) + Ch−N/2‖u− uh‖L2(B2kh(x))

≤ C(k)h‖u‖W 1∞(Ω),s,x + Ch−N/2‖u− uh‖L2(B2kh(x)).

(1.23)

In view of (1.20), (1.21) and (0.4)

h−N/2‖u− uh‖L2(B2kh(x)) = (u − uh, η) = A(u − uh, g
x)

= A(u − uh, g
x − gxh) = A(u, gx − gxh)

≤ C‖gx − gxh‖W 1
1 (Ω),x−s‖u‖W 1∞(Ω),x,s.

This inequality together with (1.23) yields

|(u− uh)(x)| ≤ C
(
‖gx − gxh‖W 1

1 (Ω),x,−s + h
)
‖u‖W 1∞(Ω),x,s.(1.24)

The inequality (1.22) now follows by applying (1.24) with (u − χ) − (uh − χ), for
any χ ∈ Shr (Ω), in place of u− uh, which completes the proof.
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In the next section we shall prove the weighted estimate (0.15) for gx− gxh using
the local estimate (1.18) and the global estimate (1.16) as primary tools. Here we
collect two preliminary estimates.

Lemma 1.5. Let gx and gxh be defined as above, then
i) For any M ≥ 0

‖gx − gxh‖W 1
1 (BMh(x)) ≤ CMN/2h.(1.25)

ii) If dj ≥Mh ≥ 8kh and Ωj is defined by (1.17), then

‖gx − gxh‖W 1
1 (Ωj) ≤ C

(hr−1

dr−2
j

+ d−1
j ‖gx − gxh‖L1(Ω′j)

)
,(1.26)

where C is independent of gx, gxh, x, h and j.

Proof. To prove (1.25) we use the Cauchy–Schwarz inequality, (1.16) and (1.20) to
obtain

‖gx − gxh‖W 1
1 (BMh(x)) ≤ C(M)hN/2‖gx − gxh‖W 1

2 (BMh(x))

≤ C(M)hN/2+1‖η‖L2(B2kh(x)) ≤ CMN/2h.

To prove (1.26) we use the Cauchy–Schwarz inequality and (1.18) to obtain

‖gx − gxh‖W 1
1 (Ωj) ≤ Cd

N/2
j ‖gx − gxh‖W 1

2 (Ωj)

≤ C
(
d
N/2
j hr−1‖gx‖W r

2 (Ω′j) + d−1
j ‖gx − gxh‖L1(Ω′j)

)
.

(1.27)

Since for w ∈ B2kh and y ∈ Ω′
j , |w − y| ≥ 1

2dj , then in view of (1.8) it follows that
for any |α| ≤ r

|Dα
y g

x(y)| ≤
∫
B2kh(x)

|η(w)| |Dα
yG

y(w))|dw

≤ ChN/2‖η‖L2(B2kh(x))

dN−2+r
j

≤ C

dN−2+r
j

,

then

‖gx‖W r
2 (Ωj) ≤

C

d
N/2−2+r
j

.(1.28)

The inequality (1.26) follows from (1.27) and (1.28).
We shall need one more approximation result. For each λ ∈ C∞

0 (Ωj) with

‖λ‖L∞(Ωj) = 1,(1.29)

let z be the solution of

A(v, z) = (λ, v) for all v ∈W 1
2 (Ω).(1.30)

Lemma 1.6. There exists a χ ∈ Shr (Ω) such that

‖z − χ‖W 1∞(Ω/Ω′′j ) ≤ Chr−1d2−r
j(1.31)

and

‖z − χ‖W 1
2 (Ω′′j ) ≤ Chd

N/2
j ,(1.32)

where in (1.31) and (1.32) C is independent of z, λ, h and j.
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Proof. In view of (1.9), there exists a χ ∈ Shr (Ω) satisfying

‖z − χ‖W 1∞(Ω/Ω′′j ) ≤ Chr−1‖z‖W r∞(Ω/Ω′j).

If w ∈ Ω′
j and y ∈ Ωj ,

dj
2
≤ |w − y|. Hence for any |α| ≤ r

|Dαz(y)| ≤
∫

Ωj

|λ(w)| |Dα
yG

y(w)|dw ≤ C‖λ‖L∞(Ωj)d
2−r
j ≤ Cd2−r

j ,

where we have used (1.8) and (1.29). Together these last two estimates prove (1.31).
Using (1.9), (1.7) and (1.29)

‖z − χ‖W 1
2 (Ω′′j ) ≤ Ch‖z‖W 2

2 (Ω) ≤ Ch‖λ‖L2(Ωj) ≤ Chd
N/2
j ‖λ‖L∞(Ωj) ≤ Chd

N/2
j ,

which proves (1.32).

We shall also be interested in pointwise error estimates for
∂

∂xi
(u−uh). For this

we shall need analogues of Lemmas 1.4 and 1.5. To begin with, using (1.10) and
(1.11) and following a similar procedure as in deriving (1.22), we easily arrive at∥∥ ∂

∂xi
(u− uh)

∥∥
L∞(Bh(x))

≤ C
∥∥∂(u− χ)

∂xi

∥∥
L∞(BKh(x))

+ Ch−N/2−1
∥∥ ∂

∂xi
(u− uh)

∥∥
W−1

2 (BKh(x))
.

(1.33)

Now by duality ∥∥ ∂

∂xi
(u− uh)

∥∥
W−1

2 (BKh(x))

= sup
ψ∈C∞0 (BKh(x))
‖ψ‖

W1
2 (BKh(x))=1

(
h−N/2−1 ∂

∂xi
(u − uh), ψ

)

= sup
ψ∈C∞0 (BKh(x))
‖ψ‖

W1
2 (BKh(x))=1

(
u− uh,−h−N/2−1 ∂ψ

∂xi

)
.

(1.34)

Now for each such ψ let η̃ = h−N/2−1ψ and let g̃x be the solution of

A(v, g̃x) =
(
v,
−∂η̃
∂xi

)
for all v ∈W 1

2 (Ω).(1.35)

Furthermore let g̃xh ∈ Shr be its finite element approximation satisfying

A(ϕ, g̃x − g̃xh) = 0 for all ϕ ∈ Shr (Ω).(1.36)

Using (1.34), (1.35) and (1.36)(
u− uh, h

−N/2−1 ∂η̃

∂xi

)
= A(u − uh, g̃

x) = A(u− uh, g̃
x − g̃xh)

= A(u, g̃x − g̃xh) = A(u − χ, g̃x − x̃xh)

≤ ‖g̃x − g̃xh‖W 1
1 (Ω),x−s‖u− χ‖W 1∞(Ω),x,s.

Combining this estimate with (1.34) and (1.33) we have proved the following:
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Lemma 1.7. Let η̃, g̃x and g̃xh be defined as above, then for any 1 ≤ i ≤ N∥∥ ∂

∂xi
(u− uh)

∥∥
L∞(Bh(x0))

≤ C
(
1 + sup

g̃x

‖g̃x − g̃xh‖W 1
1 (Ω),x,−s

)
‖u− χ‖W 1∞(Ω),x,s.

(1.37)

We now present the analogue of Lemma 1.5 for the function g̃x − g̃xh.

Lemma 1.8. Let g̃x and g̃xh be defined as above, then
i) For any M ≥ 0

‖g̃x − g̃xh‖W 1
1 (BMh(x)) ≤ CMN/2.(1.38)

ii) If dj ≥Mh ≥ 9Kh and Ωj is defined by (1.17), then

‖g̃x − g̃xh‖W 1
1 (Ωj) ≤ C

(hr−1

dr−1
j

+ d−1
j ‖g̃x − g̃xh‖L1(Ω′j)

)
,(1.39)

where C is independent of g̃x, g̃xh, x, h and j.

Proof. To prove (1.38), notice that using (1.16) and (1.35)

‖g̃x − g̃xh‖W 1
1 (BMh(x)) ≤ CMN/2hN/2‖g̃ − g̃xh‖W 1

2 (BMh(x))

≤ CMN/2hN/2+1
∥∥ ∂η̃
∂xi

∥∥
L2(Ω)

≤ CMN/2.

The proof of (1.39) is similar to the proof of (1.26)

‖g̃x − g̃xh‖W 1
1 (Ωj) ≤ Cd

N/2
j ‖g̃x − g̃xh‖W 1

2 (Ωj)

≤ C
(
d
N/2
j hr−1‖g̃x‖W r

2 (Ω′j) + d−1
j ‖g̃x − g̃xh‖L1(Ωj)

)
.

(1.40)

Since for w ∈ B2Kh and y ∈ Ω′
j , |w− y| ≥ 1

2dj , then in view of (1.8) it follows that
for any |α| ≤ r

Dαg̃x(y) =
∫
B2Kh

−∂η̃(w)
∂wi

Dα
yG

y(w)dw =
∫
B2Kh

η̃(w)
∂

∂wi
(Dα

yG
y(w))dw,(1.41)

|Dαg̃x(y)| ≤ ChN/2‖η̃‖L2(B2Kh(x))

dN−1+r
j

≤ ChN/2+1‖η̃‖W 1
2 (B2Kh(x))

dN−1+r
j

and therefore

‖g̃x‖W r
2 (Ωj) ≤ C

d
N/2−1+r
j

and (1.39) follows from this and (1.40).

2. Pointwise estimates for (u− uh)(x)

(A) Statements of results. This section will be devoted to the derivation of
pointwise estimates for (u− uh)(x) satisfying

A(u− uh, ϕ) = 0 for all ϕ ∈ Shr (Ω).(2.1)

This will then be generalized to u− uh satisfying

A(u− uh, ϕ) = F (ϕ) for all ϕ ∈ Shr (Ω),(2.2)
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where F (ϕ) is a bounded linear functional on W 1
1 (Ω). Such equations often arise

when considering problems leading to perturbations of the bilinear form A (see, for
example, Nitsche and Schatz [6], Schatz and Wahlbin [10], Schatz, Sloan and Wahl-
bin [12]).

The main result of this section is as follows:

Theorem 2.1. Suppose that A.1–A.4 are satisfied and u ∈ W 1
∞(Ω) and uh ∈

Shr (Ω) satisfies (2.1). Let x ∈ Ω and s satisfy 0 ≤ s ≤ r − 2, r ≥ 2. Then
there exists a constant C independent of x, u, uh and h such that

|(u− uh)(x)| ≤ ‖u− uh‖L∞(Ω),x,s ≤ Ch
(

ln
1
h

)s
inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.(2.3)

Here s = 0 if 0 ≤ s < r − 2 and s = 1 if s = r − 2.

The generalization of Theorem 2.1 is as follows:

Theorem 2.2. Suppose the conditions of Theorem 2.1 are satisfied except that
u− uh satisfies (2.2). Then

|(u− uh)(x)| ≤ C
(
h
(

ln
1
h

)s
inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s

+ h
(

ln
1
h

)s
|||F |||−1,x,s +

(
ln

1
h

)
|||F |||−2

)
.

(2.4)

Here s, s and r are as in Theorem 2.1 and C is independent of x, u, uh, s, h and
F . Furthermore

|||F |||−1,x,s = sup
ϕ∈

◦
W 1

1(Ω)
‖ϕ‖

W1
1 (Ω),x,−s

=1

F (ϕ)(2.5)

and

|||F |||−2 = sup
ϕ∈

◦
W 2

1(Ω)
‖ϕ‖

W2
1 (Ω)=1

F (ϕ).(2.6)

Remark. Suppose that in addition to A.1–A.4 the following assumption on the
subspace holds:

Ω =
N(h)⋃
j=1

τhj ,

where the τhj are disjoint sets having the property that there exists a constant C
such that for any f ∈ W 1

1 (τhj ), 0 < h < 1, j = 1, . . . , N(h),∫
∂τh

j

|f |ds ≤ C
{
h−1‖f‖L1(τh

j
+ ‖f‖W 1

1 (τh
j )

}
.

Then using the technique introduced in [11] one can replace the term

h inf
χ∈Sh

r

‖u− χ‖W 1
1 (Ω),x,s

in (2.3) and (2.4) with

inf
χ∈Sh

r

‖u− χ‖L∞(Ω),x,s.
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(B) Proof of Theorem 2.1. As remarked in the introduction the proof of (2.3)
has much in common with previous proofs of L∞ estimates. With some essential
modifications, the proof given here will follow in outline that given in Schatz and
Wahlbin [9], [10].

In view of Lemma 1.4, we have for any χ ∈ Shr (Ω)

|(u− uh)(x)| ≤ C
(
‖gx − gxh‖W 1

1 (Ω),x,−s + h
)
‖u− χ‖W 1∞(Ω),x,s ,(2.7)

where gx(y) satisfies (1.20) and gxh(y) satisfies (1.21). The main step in the proof
of (2.3) is the following:

Lemma 2.1. Under the conditions of Theorem 2.1

‖gx − gxh‖W 1
1 (Ω),x,−s ≤ Ch

(
ln

1
h

)s
.(2.8)

Assuming (2.8) for the moment, let us complete the proof of Theorem 2.1. In
fact combining (2.8) with (2.7) it follows that for any x ∈ Ω and χ ∈ Shr (Ω)

|(u − u)(x)| ≤ Ch
(

ln
1
h

)s
‖u− χ‖W 1∞(Ω),x,s(2.9)

where C is as in Theorem 2.1. The inequality (2.3) follows from (2.9) and a simple
inequality. To see this first notice that for any x, y and w ∈ RN( h

|y − x|+ h

)( h

|y − w| + h

)
≤

( h2

|x− w| + h

)( (|x− y|+ h) + (|y − w|+ h)
(|x− y|+ h)(|y − w| + h)

)
≤ 2h
|x− w|+ h

.

(2.10)

Applying (2.9) with x replaced by y, then multiplying both sides by
( h

(|x − y|+h)
)
s

and using (2.10)∣∣∣( h

|x− y|+ h

)s
(u− uh)(y)

∣∣∣
≤ Ch

(
ln

1
n

)s(∥∥∥( h

|x− y|+ h

)s( h

|y − w|+ h

)s
(u− χ)(w)

∥∥∥
L∞(Ω)

+
∥∥∥( h

|x− y|+ h

)s( h

|y − w|+ h

)s
∇(u − χ)(w)

∥∥∥
L∞(Ω)

)
≤ 2sCh

(
ln

1
h

)s(∥∥∥( h

|x− w|+ h

)s
(u − χ)(w)

∥∥∥
L∞(Ω)

+
∥∥∥( h

|x− w|+ h

)s
∇(u − χ)(w)

∥∥∥
L∞(Ω)

)
.

Taking the supremum over y ∈ Ω

‖u− uh‖L∞(Ω),x,s ≤ Ch
(

ln
1
h

)s(
‖u− χ‖W 1∞(Ω),x,s

)
,

which completes the proof of (2.3) provided (2.8) holds.
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We now turn to the proof of (2.8). Let M ≥ 8k > 8 (k defined in Section 1) be
a constant which will be chosen later on to be sufficiently large. For convenience
we shall choose M to begin with so that for some integer J

Mh = 2−J .(2.11)

Notice that since M > 1

J = ln2
1
M

+ ln2
1
h
≤ ln2

1
h
.(2.12)

Set E ≡ gx − gxh, then

‖E‖W 1
1 (Ω),x,−s ≤ CM s‖E‖W 1

1 (BMh(x)) + 2s
J∑
j=0

dsj
hs
‖E‖W 1

1 (Ωj),(2.13)

where we have assumed without loss of generality that diam(Ω) ≤ 1. Using (1.25),
(1.26) and the fact that M ≥ 8k ≥ 8

‖E‖W 1
1 (Ω),x,−s

≤ CMN/2+sh+ C
( J∑
j=0

h
( h

dj

)r−2−s
+

J∑
j=0

d−1+s
j

hs
‖E‖L1(Ω′j)

)
≤ C1

(
MN/2+sh+ hδ(s) + h−1‖E‖L1(Ω),x,−s+1

)
,

(2.14)

where C1 is independent of h, M , s and x. Here we have used the fact that since
dj = 2−j and J ≤ ln 1

h and γ = r − 2− s,

J∑
j=1

( h

dj

)γ
≤

ln 1
h if γ = 0,

1
Mγ

(
1−( 1

2 )γ ln 1
h

1−( 1
2 )γ

)
if 0 < γ ≤ r − 2.

(2.15)

We shall now estimate the last term on the right in (2.14).

h−1‖E‖L1(Ω),x,−s+1 ≤ CM sh−1‖E‖L1(BMh(x)) + 2s
J∑
j=0

d−1+s
j

hs
‖E‖L1(Ωj).(2.16)

Using (1.16) and (1.20)

CM sh−1‖E‖L1(BMh(x)) ≤ CMN/2+shN/2−1‖E‖L2(BMh(x))

≤ CMN/2+shN/2+1‖η‖L2(Bkh(x))

≤ CMN/2+sh.

(2.17)

Furthermore for each 0 ≤ j ≤ J , it follows that

‖E‖L1(Ωj) = sup
λ∈C∞0 (Ωj)

‖λ‖L∞(Ωj )=1

(E, λ).(2.18)

For each λ, let z be the solution of

A(z, v) = (λ, v) for all v ∈ W 1
2 (Ω).(2.19)

Then for any χ ∈ Shr (Ω) it follows that

(E, λ) = A(z, E) = A(z − χ,E).
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Hence

|(E, λ)| ≤ C‖E‖W 1
1 (Ω/Ω′′j )‖z − χ‖W 1∞(Ω/Ω′′j )

+ C‖E‖W 1
2 (Ω′′j )‖z − χ‖W 1

2 (Ω′′j )

= I1 + I2.

(2.20)

In view of (1.31)

I1 ≤ C
hr−1

dr−2
j

‖E‖W 1
1 (Ω),x,−s ,

and from (1.26) and (1.32)

I2 ≤ C
hr

dr−2
j

+ C
h

dj
‖E‖L1(Ω′′′j ).

Collecting these estimates into (2.18) we obtain

‖E‖L1(Ωj) ≤ C
( hr

dr−2
j

+
hr−1

dr−2
j

‖E‖W 1
1 (Ω),x,−s +

hs+1

dsj
h−1‖E‖L1(Ω),x,−s+1

)
,

where C is independent of x, h, M and j.
Multiplying both sides by ds−1

j /hs, summing for 0 ≤ j ≤ J and then using the
result together with (2.17) in (2.16) we obtain

h−1‖E‖L1(Ω),x,−s+1 ≤ CMN/2+sh+ Ch
( J∑
j=0

( h
dj

)r−1−s)

+ C
( J∑
j=0

( h

dj

)r−1−s)
‖E‖W 1

1 (Ω),x,−s

+ C
( J∑
j=0

( h

dj

))
h−1‖E‖L1(Ω),x,−s+1.

(2.21)

Since r − 1− s ≥ 1, from (2.15) and (2.16) we obtain

h−1‖E‖L1(Ω),x,−s+1 ≤ CMN/2+sh+
C2

M
‖E‖W 1

1 (Ω),x,−s

+
C2

M
h−1‖E‖L1(Ω),x,−s+1,

(2.22)

where C2 is independent of x, M , s and h. Choosing M sufficiently large so that
C2

M
≤ 1

2
we easily find

h−1‖E‖L1(Ω),x,−s+1 ≤ 2C2M
N/2+sh+

2C2

M
‖E‖W 1

1 (Ω),x,−s.(2.23)

The inequality (2.8) follows upon substituting (2.23) into (2.14)

‖E‖W 1
1 (Ω),x,−s ≤ CMN/2+sh+ Ch

(
ln

1
h

)s
+

2C1C2

M
‖E‖W 1

1 (Ω),x,−s

and choosing M sufficiently large so that
2C1C2

M
≤ 1

2
, which completes the proof.
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(C) Proof of Theorem 2.2. The proof of (2.4) is almost exactly the same as
that of (2.3) with one difference. In fact because of (2.2), instead of (2.14) we have

|(u − uh)(x)| ≤ C
(
‖gx − gxh‖W 1

1 (Ω),x,−s + h
)
‖u‖W 1∞(Ω),x,s + |F (gxh)|.(2.24)

Now in view of (2.8)

|F (gxh)| ≤ |F (gx − gxh)|+ |F (gx)|
≤ |||F |||−1,x,s‖gx − gxh‖W 1

1 (Ω),x,s + |||F |||−2‖gx‖W 2
1 (Ω)

≤ Ch
(

ln
1
h

)s
|||F |||−1,x,s + ln

1
h
|||F |||−2,

(2.25)

where we have used the fact that

‖gx‖W 2
1 (Ω) ≤ CMN/2hN/2‖gx‖W 2

2 (BMh(x)) + C

J∑
j=0

d
N/2
j ‖gx‖W 2

2 (Ωj)

≤ CMN/2 + C
J∑
j=0

1

≤ CJ ≤ C
(

ln
1
h

)
.

(2.26)

Together, (2.24) and (2.25) imply (2.4) which completes the proof.

3. Estimates for first derivatives

(A) Statement of results. Here we shall be concerned with weighted W 1
∞ esti-

mates for u− uh. The main result of this section, Theorem 3.1, is the analogue for
first derivatives of Theorem 2.1.

Theorem 3.1. Suppose that A.1–A.4 are satisfied and that u ∈ W 1
∞(Ω) and uh ∈

Shr (Ω) satisfy (2.1). Let x ∈ Ω and s satisfy 0 ≤ s ≤ r − 1, where r ≥ 2. Then
there exists a constant C independent of x, u, uh and h such that

‖u− uh‖W 1∞(Bh(x)) ≤ 2‖u− uh‖W 1∞(Ω),x,s ≤ C
(

ln
1
h

)=
s

inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.

(3.1)

Here
=
s = 0 if 0 ≤ s < r − 1 and

=
s = 1 if s = r − 1.

Remark 3.1. Notice that the range of s is greater in Theorem 3.1 than in Theorem
2.1. Here s may be chosen s > 0 for any r ≥ 2.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold where now (2.2)
is satisfied. Then,

‖u− uh‖W 1∞(Bh(x)) ≤ 2‖u− uh‖W 1∞(Ω),x,s

≤ C
(

inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s + ln
( 1
h

)
|||F |||−1

)
,

(3.2)

where

|||F |||−1 = sup
ϕ∈

◦
W 1

1(Ω)
‖ϕ‖

W1
1 (Ω)=1

|F (ϕ)|.
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Proof of Theorem 3.1. Let us first remark that the inequality

‖u− uh‖W 1∞(Ω),x,s ≤ C inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s(3.3)

follows, using (2.10), from the inequality

‖u− uh‖W 1∞(Bh(x)) ≤ C inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.(3.4)

Furthermore it follows from Theorem 2.1 that for 0 ≤ s < r − 1

‖u− uh‖L∞(Bh(x)) ≤ C inf ‖u− χ‖W 1∞(Ω),x,s.

Hence Theorem 3.1 will follow once we have proved that for any 1 ≤ i ≤ N∥∥∥ ∂

∂xi
(u − uh)

∥∥∥
L∞(Bh(x))

≤ C inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s.(3.5)

On the other hand, it follows from Lemma 1.7 that∥∥∥ ∂

∂xi
(u − uh)

∥∥∥
L∞(Bh(x))

= C
(
1 + sup

ψ
‖g̃x − g̃xh‖W 1

1 (Ω),x,−s
)

inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s

(3.6)

for all ψ ∈ C∞
0 (Bkh(x)) with ‖ψ‖W 1

2 (Bkh(x)) = 1. Here g̃x satisfies (1.35), i.e.,

A(v, g̃x) =
(
v,−h−N/2 ∂ψ

∂xi

)
for all v ∈W 1

2 (Ω)(3.7)

and g̃xh satisfies (1.36), i.e.,

A(ϕ, g̃x − g̃xh) = 0 for all ϕ ∈ Shr (Ω).(3.8)

Thus Theorem 3.1 will follow from (3.6) once we have proved the following analogue
of Lemma 2.1:

Lemma 3.1. For any ψ as above, let g̃x and g̃xh satisfy (3.7) and (3.8). Then for
0 ≤ s < r − 1

‖g̃x − g̃xh‖W 1
1 (Ω),x,−s ≤ C

(
ln

1
h

)=
s

,(3.9)

where
=
s = 0 if 0 ≤ s < r − 1, s = 1 and C is independent of ψ, h and x.

Proof. The proof of (3.9) follows closely the proof of (2.8), the only difference being
the use of Lemma 1.8 instead of Lemma 1.5. Hence we shall only indicate the
differences. We shall start with the case that 0 ≤ s < r − 1.

Set Ẽ = g̃x − g̃xh, then analogous to (2.13) we have for 2−J = Mh

‖Ẽ‖W 1
1 (Ω),x,−s ≤ CM s‖Ẽ‖W 1

1 (BMh(x)) + 2s
J∑
j=0

dsj
hs
‖Ẽ‖W 1

1 (Ωj).(3.10)

In view of (1.38), (1.39) and (2.15)

‖Ẽ‖W 1
1 (Ω),x,−s ≤ C1

(
MN/2+s + δ(s) + h−1‖Ẽ‖L1(Ω),x,−s+1

)
(3.11)

where C1 is independent of h, M and x.
The procedure for estimating h−1‖Ẽ‖L1(Ω),x,−s+1 in this case is the same as that

used for estimating h−1‖E‖L1(Ω),x,−s+1 in Theorem 2.1, where we now use (1.38) in
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place of (1.25) and (1.39) in place of (1.26). It is then easy to see that the estimates
analogous to (2.21) and (2.22) are

h−1‖Ẽ‖L1(Ω),x,−s+1

≤ CMN/2+s + C

J∑
j=0

( h
dj

)r−1−s
+ C

( J∑
j=0

( h

dj

)r−1−s)
‖Ẽ‖W 1

1 (Ω),x,−s

+ C
( J∑
j=0

( h
dj

))
h−1‖Ẽ‖L1(Ω),x,−s

≤ CMN/2+s +
C2

M r−1−s ‖Ẽ‖W 1
1 (Ω),x,−s +

C2

M
h−1‖Ẽ‖L1(Ω),x,−s+1,

(3.12)

where C2 is independent of x, M and h. Choosing M sufficiently large so that
C2

M
≤ 1

2
in (3.12) and then combining the resulting inequality with (3.11) we arrive

at

‖Ẽ‖W 1
1 (Ω),x,−s ≤ CMN/2 +

2C1C2

M r−1−s ‖Ẽ‖W 1
1 (Ω),x−s.

For r−1−s = γ > 0 we may further chooseM sufficiently large so that
2C1C2

Mγ
≤ 1

2
,

which completes the proof for this case.
We now turn to a proof of (3.9) in the case that s = r − 1. We first note that

the inequality (1.39) may be replaced by

‖Ẽ‖W 1
1 (Ωj) ≤ C

(hr−1

dr−1
j

+ d1−r
j ‖Ẽ‖W 2−r

1 (Ω′j)

)
.(3.13)

This is easily obtained by using (1.18) with t = r − 2 in (1.40). Using (3.13) in
(3.10) with s = r − 1 we obtain instead of (3.11)

‖Ẽ‖W 1
1 (Ω),x,1−r ≤ C

(
MN/2+s + ln

1
h

+ h1−r‖Ẽ‖W 2−r
1 (Ω)

)
.(3.14)

Notice that the last norm on the right is not weighted. It will be estimated with a
duality argument

‖Ẽ‖W 2−r
1 (Ω) = sup

ψ∈C∞0 (Ω)
‖ψ‖

W
r−2∞ (Ω)

=1

(Ẽ, ψ).(3.15)

For each ψ, let Ψ ∈ W r
p (Ω) for 2 ≤ p <∞ satisfy

A(Ψ, v) = (ψ, v) for all v ∈ W 1
2 (Ω).(3.16)

Then for each such ψ and any χ ∈ Shr (Ω)

(Ẽ, ψ) = A(Ψ, Ẽ) = A(Ψ − χ, Ẽ) ≤ C‖Ẽ‖W 1
1 (Ω)‖Ψ− χ‖W 1∞(Ω).(3.17)

Now from the case s = 0 proved above

‖Ẽ‖W 1
1 (Ω) ≤ C(3.18)

and from (1.9b) and (1.7) and for the choice p = ln 1
h

‖Ψ− χ‖W 1∞(Ω) ≤ Chr−1−N/p‖Ψ‖W r
p (Ω) ≤ Cphr−1−N/p‖ψ‖W r−2

p (Ω)

≤ Cphr−1−N/p ≤ Chr−1 ln
1
h
.

(3.19)
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Using (3.18) and (3.19) in (3.17) and this in turn in (3.15) we obtain

‖Ẽ‖W 2−r
1 (Ω) ≤ Chr−1 ln

1
h
.(3.20)

The case s = r − 1 now follows by using (3.20) in (3.14). This completes the proof
of Lemma 3.1.

(C) Proof of Theorem 3.2. The proof of (3.2) is almost exactly the same as
that of (3.1) with one difference. This time instead of (3.6) we have∥∥∥ ∂

∂xi
(u− uh)

∥∥∥
L∞(Bh(x))

≤ C
(
1 + sup

ψ
‖g̃x − g̃xh‖W 1

1 (Ω),x,−s
)

inf
χ∈Sh

r

‖u− χ‖W 1∞(Ω),x,s + sup
ψ
|F (g̃xh)|

for all ψ ∈ C∞
0 (Bkh(x)), ‖ψ‖W 1

2 (Bkh(x)) = 1.
Now

|F (g̃xh)| ≤ |||F |||−1‖g̃xh‖W 1
1 (Ω) ≤ |||F |||−1

(
C + ‖g̃x‖W 1

1 (Ω)

)
.

Furthermore using estimates of the type (1.41)

‖g̃x‖W 1
1 (Ω) ≤ C

(
ln

1
h

)
.

And (3.2) easily follows from these estimates and Lemma 3.1.

4. Error expansion inequalities

(A) Preliminaries. Here we shall discuss some simple but useful consequences of
Theorems 2.1 and 3.1. In particular estimates will be derived which for want of
a better name we shall call “error expansion inequalities”. These are bounds for
the error at a point in terms of a sum of powers of h multiplied by appropriate
derivatives of u taken at the point or a sufficiently close point. These expansions
are a consequence of the weighted norm estimates and the fact that there are no
polution effects in the smooth problems we are considering. In Part II of this
work we shall show how localized versions of Theorems 2.1 and 3.1 lead to error
expansion inequalities which may be applied to a variety of problems with both
smooth and nonsmooth solutions (in which polution effects are present) to derive
new superconvergence and extrapolation results.

For simplicity, it will be convenient for us to assume a strengthened form of A.1
in the case p = ∞.

A.5. Assume that the function χ ∈ Shr in A.1 satisfies

‖u− χ‖W 1∞(D1) ≤ Chr−1|u|W r∞(D2)(4.1)

where | · |W r∞(D) denotes the semi–norm

|u|W r∞(D) =
∑
|α|=r

‖Dαu‖L∞(D).(4.2)

Consider now the weighted semi–norm

|u|W r∞(Ω),x,s =
∑
|α|=r

‖Dαu‖L∞(Ω),x,s.(4.3)
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Then a simple consequence of the approximation assumption (4.1) is the fact that
for any real s

‖u− χ‖W 1∞(Ω),x,s ≤ Chr−1|u|W r∞(Ω),x,s.(4.4)

(B) The main results. Our first expansion inequality is as follows:

Theorem 4.1. Suppose the conditions of Theorem 2.1 are satisfied and in addition
A.5 holds. Let u ∈ W t

∞(Ω) where t is an integer r + 1 ≤ t ≤ 2r − 2. Let Ĉ > 0
be a fixed but arbitrary constant. For any x ∈ Ω, let x̂ ∈ Ω be an arbitrary point
satisfying |x− x̂| ≤ Ĉh, then

|(u− uh)(x)| ≤ C
(

ln
1
h

)t(
hr

∑
|α|=r

|Dαu(x̂)|+ · · ·

+ ht−1
∑

|α|=t−1

|Dαu(x̂)|+ ht‖u‖W t∞(Ω)

)
.

(4.5)

Here C is independent of u, uh, h, x and x̂. t = 0 if t < 2r − 2 and t = 1 if
t = 2r − 2.

Before proving the error expansion inequality (4.5) let us make a few remarks.

Remark 4.1. The inequality (4.5) may be trivially converted to an equality of the
form

|(u− uh)(x)| = C(x, x̂, h, u, uh)
(

ln
1
h

)t(
hr

∑
|α|=r

|Dαu(x̂)|+ · · ·

+ ht−1
∑

|α|=t−1

|Dαu(x̂)|+ ht‖u‖W t∞(Ω)

)
.

(4.6)

Here C is a function of x, x̂, h, u, and uh but by (4.5) may be bounded by a
constant which is independent of these quantities.

Remark 4.2. As discussed in the introduction (4.5) indicates a more local depen-
dence of error on u than indicated by (0.5). We hope to discuss the implications of
this with respect to a posteriori estimates in another paper.

Remark 4.3. Higher order convergence than hr is obtained if appropriate deriva-
tives of u vanish at some point x̂. More precisely we have the following immediate
consequence of (4.5).

Corollary 4.1. Suppose that the conditions of Theorem 4.1 are satisfied and in
addition for some point x̂ with |x− x̂| ≤ Ĉh, Dαu(x̂) = 0 for r = |α| ≤ t− 1; then

|(u− uh)(x)| ≤
(

ln
1
h

)t
ht|u|W r

t (Ω).(4.7)

Notice that under these conditions the maximum rate of convergence possible
from (4.5) is h2r−2

(
ln 1

h

)
.

Remark 4.4. If u belongs to the Hölder space C`+γ , where r ≤ ` ≤ 2r − 3 is an
integer and 0 < γ ≤ 1, then one can easily derive the expansion inequality

|(u− uh)(x)|
≤ C

(
ln

1
h

)`(
hr

∑
|α|=r

|Dαu(x̂)|+ · · ·+ h`
∑
|α|=`

|D`u(x̂)|+ h`+γ‖u‖C`+γ(Ω)

)
.
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Here ` = 0 if `+ γ < 2r − 2 and ` = 1 if `+ γ = 2r − 2.

Proof of Theorem 4.1. In view of (2.3) and (4.4) we immediately have for the choice
s = t− r

|(u− uh)(x)| ≤ Chr
(

ln
1
h

)t
|u|W r∞(Ω),x,t−r.(4.8)

Now for any multi–index α′ with |α′| = r and any y ∈ Ω

|Dα′u(y)| ≤ C
( ∑

0≤|β|≤t−r−1

|Dα′+βu(x̂)| |y − x̂||β| + ‖u‖W t∞(Ω)|y − x̂|t−r
)
.(4.9)

This follows trivially from Taylor’s theorem when Ω is convex and in the non–
convex case by first extending u continuously in W t

∞ to a ball containing Ω. Now
from (4.9)

|Dα′u(y)| ≤ C
( ∑
r≤|α|≤t−1

|Dαu(x̂)|(|y − x|+ |x− x̂|)|α|−r

+ ‖u‖W t∞(Ω)(|y − x|+ |x− x̂|)t−1
)

≤ C
( ∑
r≤|α|≤t−1

|Dαu(x̂)|(|y − x|+ h)|α|−r

+ ‖u‖W t∞(Ω)(|y − x|+ h)t−r
)
.

(4.10)

Hence

ht−r

(|y − x|+ h)t−r
|Dα′u(y)| ≤ C

∑
r≤|α|≤t−1

h|α|−r|Dαu(x̂)|+ ht−r‖u‖W t∞(Ω).(4.11)

The inequality (4.5) now follows by summing (4.11) over |α′| = r and substituting
the resulting weighted semi–norm into (4.8).

We now state the corresponding result for derivatives. The proof, which follows
that of Theorem 4.1, will be left to the reader.

Theorem 4.2. Suppose that the conditions of Theorem 3.1 are satisfied and in
addition A.5 holds. Let u ∈ W t+1

∞ (Ω) where t is an integer r ≤ t ≤ 2r − 2. Let
Ĉ > 0 be a fixed but arbitrary constant. For any x ∈ Ω let x̂ ∈ Ω be an arbitrary
point such that |x− x̂| ≤ Ĉh; then

‖u− uh‖W 1∞(Bh(x)) ≤ C
(

ln
1
h

)=
`(
hr−1

∑
|α|=r

|Dαu(x̂)|+ · · ·

+ ht−1
∑

|α|=t−1

|Dαu(x̂)|+ ht‖u‖W t∞(Ω)

)
.

(4.12)

Here
=

` = 0 if r − 1 ≤ t < 2r − 2 and
=

` = 1 if t = 2r − 2.

Remarks similar to Remarks 4.1, 4.2 and 4.3 hold for the inequality (4.12). The
analogue of Corollary 4.1 is the following, whose proof will be left to the reader.
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Corollary 4.2. Suppose that the conditions of Theorem 4.2 are satisfied and in
addition for some point x̂ with |x − x̂| ≤ Ĉh, Dαu(x̂) = 0 for all r ≤ |α| ≤ t − 1,
then

‖u− uh‖W 1∞(Bh(x)) ≤ Cht−1‖u‖W t∞(Ω).(4.13)

It is important to notice here that since t ≤ 2r − 1, the maximal rate of con-
vergence that can be obtained from (4.13) is h2r−2 which is roughly comparable to
(4.7) when t = 2r − 2.
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