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Pointwise Estimates for Monotone 
Polynomial Approximation 

Ronald A. DeVore and Xiang Ming Yu 

Abstract. We prove that if f is increasing on [ - 1,1], then for each n = 1, 2 . . . . .  
there is an increasing algebraic polynomial P. of degree n such that {f(x) - 
P.(x){ < cw2( f, V/I - x 2 /n) ,  where w2 is the second-order modulus of smooth- 
ness. These results complement the classical pointwise estimates of the same type 
for unconstrained polynomial approximation. Using these results, we char- 
acterize the monotone functions in the generalized Lipschitz spaces through their 
approximation properties. 

1. Introduction 

Several results show that in some sense monotone approximation by algebraic 
polynomials performs as well as unconstrained approximation. For example, 
Lorentz and Zeller [6] have shown that for each increasing function f in C(I), 
I "= [ - 1,1], there is an increasing polynomial P, of degree n that satisfies 

(1.1a) I I / -  P, II-< co~(f,n-1), n = 1,2 . . . .  , 

where to is the modulus of continuity of f and all norms here and throughout are 
the uniform norm on L 

More generally, for any k = 0, 1 . . . .  , there are increasing Pn that satisfy 

(1.1b) I I / -  Phil-< cn-ko~(f(k),n-1), n = 1,2 . . . . .  

When k = 1, this is a result of Lorentz [5], whereas the general case was proved 
by DeVore [3]. The cases k = 0, 1 are much easier to prove than the general case, 
since they can be proved using linear methods; in contrast, the proof in [3] uses 
rather involved nonlinear techniques. 

It is well-known that for unconstrained approximation, much improvement can 
be made in estimates of the form (1.1) when x is near an end point of L Such 
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improvements take the form of re~acing n -I  in (1.1) with either An(x) 
,= V/1 ~ - ~ / n  + 1/n 2 or just ~i - ~  x 2/n.  In fact, such improved estimates are 
needed if we wish to characterize the smoothness of a function by its degree of 
approximation by algebraic polynomials. 

In this article, we are interested in pointwise estimates for monotone approxi- 
mation. The only result of this type that we know of is by Beatsori [1]. He proved 
that the estimate 

(1.2) I f ( x )  - Pn(x)] _< cto(f, An(x)), x ~ I, n = 1,2 . . . .  

holds for suitable increasing polynomials Pn whenever f is increasing. Among 
other things, we shall show that this can be improved to allow second-order 
smoothness as measured by the second-order modulus of smoothness to 2. 

Theorem 1. I f  f is increasing on I, then for each n = 1,2 . . . .  , 
increasing polynomial Pn of degree n such that 

(1.3) I f (x )  Pn(x) l<cto2( f ,  v / ~ - x 2  ) - x ~ I .  
n 

there is an 

Notice that we have replaced An(x ) with the smaller quantity ~ - x 2/n.  For 
unconstrained approximation, such results were given first by Teljakovskii [7] (for 
~), and later by DeVore [2] (for to2). From the standard properties of to 2, we see 
that (1.3) contains the improved form of (1.2) as well as improved estimates of the 
form (1.1b) when k = 1. 

With Theorem 1 and the classical converse theorems for approximation 
by algebraic polynomials, we have the following result, which characterizes the 
Lip*a spaces, which are defined as the set of all f such that t02( f ,  t) = O(t~), 
0 < a < 2 .  

Theorem 2. I f  0 < a < 2, then a function f is increasing and in Lip*a if and only 
if for each n = 1, 2 . . . . .  there is an increasing algebraic polynomial Pn of degree n 
such that 

- x ~ I .  
n 

We do not know whether this result holds for a >__ 2. This would require at the 
least a refinement of (1.1b) for k _> 2 in which 1/n is replaced by An(x ). 

2. Proofs 

Our proof is based on a two-stage approximation. We first approximate f by an 
increasing piecewise linear function S, that approximates to the accuracy of the 
fight side of (1.3). We then approximate Sn by an increasing algebraic poly- 
nomial. 
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S, is constructed as follows. We shall select points - 1 = ~_, < ~_, + x < " '"  
< ~, = 1 (to be defined precisely later) that are more densely distributed near the 
end points o f / .  Roughly speaking, these points are uniformly distributed with 
respect to the Chebyshev measure dx/~/1 - x 2. Sn is then the piecewise linear 
function that interpolates f at the ~k, k = - n  . . . . .  n. If we let sy be the slopes 

r( x) - r( 
, , . . . ~  (2.1) sj : - ~  ~j+l - ~j j - n  n 1, 

then S. can be represented by the truncated power functions Oj(x) := (x - ~j)+: 

n - 1  

(2.2) S . ( x ) = f ( - 1 ) + s _ . ( x  + l)+ ~ (sj-sj_~)~j(x). 
j =  - - n + l  

It is clear that S, is increasing if f is. Also, if f is twice continuously 
differentiable, I[f"ll < M, then (Newton's formula) 

(2.3) [ f (x ) -S . (x ) t<(M/2) t (x -~ j ) (x -~y+l)[ ,  (;y<-X<-~y+l. 

We shall now construct a polynomial approximation to S n. To do this, we first 
construct polynomials R j, j = -n ..... n - 1, that approximate the truncated 
powers ~Pj. The construction of Rj begins with trigonometric polynomials Tj that 

are good approximations to the characteristic functions X 0 := 0 and X j := X [- t j, tjl, 
j = 1 , . . . , 2 n ,  with tj ".=j~r/2n, j = 0,1 . . . . .  2n. 

Let K ,  denote the Jackson kernel 

( sinnt/2 )s; f ~ /  
(2.4) K.(t) := a .  s i n t / 2  .(t)dt = 1. 

We recall that the K~ satisfy (see [4, p. 57]) 

(2.5a) tVK (t) dr <_ cn-J, j = o, 1 . . . . .  7, 

(2.5b) CO n-7  < a. <_ Cl n-7.  

Here and throughout c, c o, and c I denote absolute constants; the value of c may 
vary with each occurrence, even on the same line. We define 

(2.6) Tj(t):=ft+'JKn(u)du, j = O , 1  . . . . .  2n. 
t-ty 

In particular, T O --- Xo and I'2. -= X2.. We define 

dj(t) := max (ndis t  (t ,  {-t j ,  ty}); 1). 

L e m m a  3. Forj = 0 , 1 , . . . ,  2n, we have 

(2.7a) {Xj(t) - Tj(t)l  < c(dj(t)) -7, 

(2.7b) S)~lsintHxy(t)-Tj(t)ldt<c(Sinty+ n~2), 

--~r _< t _< ,r, 

--,r < t_< ft. 
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Proof .  W h e n  j = 0 or j = 2n, these inequalities are obvious. For  the other  
values of  j ,  we let a ".= min( l t  - tjl, It + tjO. Then 

- Tj ( t )  I -- /_" ( •  - X j ( t -  u ) ) K , ( u ) d u  I x j ( t )  

f~.f  f'_l u7 < , ( u ) d u  <_ - r , ( u ) d u  <_ c(an)  -7 
I~ ,r a 

because  of  (2.5). Since we also know that 0 < Tj(t) < 1, and hence IXj(t)  - 
Tj(t) l  < 1, we have (2.7a). 

To  prove  (2.7b) we multiply (2.7a) by  Isin t I and integrate; this leaves us the 
task of  est imating :g := f'_.,,lsin tKdj( t ) )  -7 dt. We write 

�89 = Isint l(dj( t))  -Tdt  = + , 

with 11 :--- It 2 - 1 /2n ,  tj + 1 / 2 n ]  and 12 "= [0, 9]  - 11. Since 1/11 < 1 /n  and 
Isin tl < clsin tjl for t ~ 11, we have fz~ < clsin tjL/n. To estimate the integral over 
I 2, we  note  that  Isin tl -< Isin tjl + I t - tj[, and therefore 

-7 . 

- tjI) ( I s m t j l +  I t -  t j l)dt 

(IsintjI  1 ) 
< c  + 

n ~ "  

N o w  let r j (x ) . '=  T~_j(t), x = cost ,  and for x ~ [ - 1 ,  1], we define 

~ r j (  ) R j ( x )  ".= u du, j = - n , . . . ,  n. 
1 

In  particular,  R , ( x )  = x + 1 --- dO_n(X ) and R , ( x )  = 0. The points ~j are 
defined b y  the equations 

1 - ~j .=  R ~ ( 1 ) ,  j = - , ,  . . . . .  n .  

In part icular,  ~ - ,  = - 1  and ~. = 1. We  now develop the relevant propert ies of  
the points  ~j and the polynomials  Rj. 

F r o m  the definition of  the polynomials  Tj, we have Tn_ j - T , _ ( j + I  ) > 0. 
Hence,  ~) - 5+ 1 > 0, and therefore 

(2.8) R j -  Rj+ 1 is increasing, j -- - n , . . . ,  n - 1. 

This  gives that  - 1  = ~_~ < ~- ,+1  < " '"  < *, = 1. Further  properties of the ~j 
are given b y  

Lemma 4. 

(2.9a)  

(2 .9b)  

(2.9c) 

(2 .9d)  

With 8j "= n-X(sint ,_j)  + n -2, we have 

I~j - cos t ,_ j l  < cn- l s in tn_ j ,  j = - n , . . . , n ,  

I c o s - X ~ y  - t . - j l  <- cn -1 ,  j = - n  . . . . .  n ,  

coSj<_~j§ - ~.~ <- e A ,  j = - ~  . . . . .  . - 1 ,  

C o 8 :  8j+, <_ c A ,  J = - ~ , " ' ,  ~ - 1. 
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P r o o f .  We shall use the fact that sin t k > c sin t k + t and sin t k >_ sin ~r/2n > 1 / n ,  

0 < k < 2n. In particular, this shows that (2.9d) is valid. Now, (2.9a) and (2.9b) 
are trivially true when j = - n  or j --- n. Hence, we check these only for other 
values of j .  From (2.7b) and the definition of the ~j, we have 

]~j -- COStn-j] ~- X . _ j ( t )  - T . _ j ( t ) ) s i n t d t  <_ cSj < c n - l s i n t n _ j .  

This gives (2.9a), and writing 

~j+l - ~j = (~j+l - c o s t , - j - l )  +(COStn-j-1 - COSt,_j) +(COSt._j - ~j), 

it also gives the right inequality in (2.9c). 
For  the remaining proofs, we consider only j > 0. Similar arguments prove the 

case when j < 0. To prove the left inequality in (2.9c), we let B = [ t . _ j -  
~r/4n,  t ,_j].  Then sint >__ c s i n t , _ j  on B, and so 

(2.10) ~j+l -- ~j---- J : ( T n - j ( t )  - T . - j - l ( t ) ) s i n t d t  

> clBlsin t . _ j i n f ( T . _ j  - T ._ j_ t )  

> c n - X s i n t . _ j i n f ( T . _ j -  T ._ j_ I ) .  

Now for t ~ B, we have [0, , r /4n]  c_ [t - t ._j ,  t - tn_j_l] =." A. Hence, from the 
definition (2.6) of the Tk, we have, for t ~ B, 

fA f0 ~r/4 Tn_j(t  ) - Tn_j_x(t ) > Kn(u  ) du >__ nKn(u ) du > c, 

where the very last inequality uses (2.5b) and the fact that (sin n u / 2 ) / ( s i n  u /2 )  > 
cn for 0 < u < ~r/4n. Using this in (2.10) proves the left inequality of (2.9c). 

Finally, we prove (2.9b) for j = 0 . . . .  , n - -  1. Let J be the smallest interval 
that contains cos-t~j, and t,_j. We claim that for n sufficiently large, 

(2.11) s int  >_ s i n t , _ j / 2  >_ c s i n t , _ j ,  for half of the t ~ J .  

This is clear if cos-l~j  < t ,_ j  ((2.11) holds on J t~ [t n j / 2 ,  t ,  j]) or if tn_ j < 
cos- t~j  < rr/2 ((2.11) holds on all of J) .  On the other hand, if cos-l~j  > ~r/2, 
then from (2.9a), ]~j - cost,_jI < c / n ,  and hence t ,_  1 > , r /4  and cos-l~y _< 3,r /4  
provided n is sufficiently large. Therefore (2.11) holds in this case as well. Now 
integrating (2.11) over J and using (2.9a) gives 

cs in tn_j lJI  < I~j - costn-j[ < e n - l s i n t . - j .  

This gives IJ  I < c / n  provided n is sufficiently large, and (2.9b) follows. �9 

Lemma 5. 

(2.12a) 

(2.12b) 

For j - -  - n  . . . .  ,n  - 1, x = cost  with 0 < t < ,r, we have 

sin t - 5 
]~j(x)  - R j ( x ) [  < c ( d n _ j ( t ) )  n 

]~;(X) -- R~-(x)I _< c (dn_ j ( t ) )  -7 
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Proof.  The case j = - n  follows from the fact that R _ ,  = ~_n.  Therefore, we 
assume j > - n .  We first prove (2.12b). Since R~i(x ) = rj(x) = Tn_j(t), we have, 
f rom (2.7a), 

(2.13) I~ j (x )  - R) (x ) ]  < IX,_j(t)  - T,_j(t)] + X j ( t )  

< c ( d , - j ( t ) ) - 7 +  Xs( t ) ,  

where J is the smallest interval that contains t ,_j and cos-l~j. It follows from 
(2.9b) that IJ I < cn -1. Hence d,_j( t )  < c for t ~ J. This means that the second 
term on the right side of (2.13) is smaller than the first term, and therefore (2.12b) 
holds. 

To prove (2.12a) we shall use the fact that for k = 0, 1 and all j ,  

(2.14a) fotlu - t j lk(dj(u))  -7 du < c n - k - z ( 4 ( t ) )  -s, 0 _< t <_ tj, 

(2.14b) f'~[u - t j lk(dj(u))  -T du < c n - k - l ( d j ( , ) )  -5 _ , t j ~ t < ~  Ct. 

For  example, the first inequality is proved by writing the integral as a sum of two 
integrals, the first over 11 := [0, t] N [tj - 1/n,  tj] and the second over 12 := [0, t] 
\ I x. Then 

ftz <- n-T f'lu12 - tJ l -V+kdu < cn-Vmin(n6-k ' l t  - tjl-6+k) 

< cn-k-X(dj ( t ) )  -s,  

where we have used the fact that dj(u) > 1 for all u. If the integral over I 1 is not 
zero, then [/11-< 1/n and dj(t) = 1. Hence, 

/, <_ n - k - 1  <_ n - k - 1  t , 

1 

as desired. The second inequalRy in (2.14) is proved in the same way. 
Now to prove (2.12a), we write 

- = ( - + 

= - f x l ( O ~ j ( y ) - R S ( y ) ) d y .  

If t > t,_j, we use the first representation in (2.15) and (2.12b) to find that 

(2.16) ] q ~ j ( x ) -  Rj(x)[  < f ~ l l ~ j ( y ) -  Rj ( y ) l dy  <_ c fTsinu(d._j(u))-T du. 

If r < t, then sin u < sin t on the interval of integration, and therefore by 
using (2.14b) with k = 0, we get (2.12a). 

On the other hand, if t < ~r/2, then we use sin u < sin t + l u - t l < sin t + l u 
- t,_jl on the interval of integration. Putting this in the right integral of (2.16) 
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and using (2.14b) gives 

sin t - 5 
(2.17) IOj(x) - Rj(x ) [  < c (d ,_ i ( t ) )  + n-2(a ,_ j ( t ) )  -s 

n 

But sin t > n -1, because t > t a = ~r/2n, and therefore (2.12a) follows in this case. 
If t < tn_ j, we use the second representation in (2.15) together with (2.14a) to 

arrive at the same conclusion. �9 

If f ~ C( I ) ,  we define 
n - - 1  

(2.18) L . ( f ) : = f ( - l ) + s _ . R _ . +  •" ( s j - s j _ t ) R j ,  
- - n + l  

with sj defined by (2.1). If f is increasing, then sj > O, j = - n  . . . .  , n - 1, and 
since we can also write 

n - 1  

L , ( f )  = f ( - 1 )  + Y', sj(ay - R]+I) , 
--V/ 

it follows from (2.8) that L , ( f )  is increasing. Also, since R j ( - 1 ) =  0 and 
Rj(1) = 1 - ~j = %(1) for all j ,  we have L, ( f ,  ___1) = f ( + l ) .  

Theorem 6. I f  f '  is absolutely continuous and If"l ~ M a.e. on I, then for each 
n = 1, 2, . . .  and each x E I, we have 

(2.19) I f (x )  - L " ( f ' x ) l  < c M ( 1 ~ -  x2 ) 

Proof.  We will check (2.19) for x > 0; the case x < 0 is proved similarly. If 
s < x < s and j < n - 2 (that is, excluding the rightmost interval), then 
writing 0j := cos-as we have [Oj+ 1 - G- j - I [  -< c/n and hence (2.9) gives 

( sin t"- j -1  n~ ) ( sinOj+l n~ ) 
- _< = c + _ < c  - - +  

n n 

( s i n t  1 ) s i n t  1 / 1 - x  2 
_<c - - + ~ - ~  < c  ---c 

n n n 

Hence, 

( 2 . 2 0 )  jf( ) - S . ( x ) l  _< - 

<~ cM( l~- xZ ) ~J < X < - 

This inequality also holds when j - - - n -  1, because ( x -  ( . _ 1 ) ( 1 -  x ) <  
c8._1(1 - x)  < c(1 - x) /n  2 on this interval. Hence, we have 

(2.21) I f ( x )  S,(x),<_ cM( ~ /1 -  12 )2, 
- 0 < x _ < l .  

n 
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We now estimate 

(2.22) E ( x )  := S , ( x )  - L , ( f , x ) =  ~ . , ( s j -  s j _x ) (dP j ( x  ) - R j ( x ) ) .  

Here and in what follows, an unsubscripted " E "  denotes the sum for j = - n + 1 
to j = n - 1. Now [sj - sj_l] <_ cM(~j+ 1 - ~j) < cM6j for each j [see (2.9c)]. 
Using this and (2.12a) with x = cos t gives 

IE(x)l-< c M  s in t  F.Sj(cl._j(t)) -5. 
n 

Now for I J[ < n, 6j < n- l ( s in t  + It - t ,_j l )  + n -2  < c n - l ( s i n t  + It - t ,_j l) .  
Hence, 

. sin t (2.23) IE(x)l-< cM--~- •(sin/+ I t -  t ._j l)(d._j(t))  -5 

s i n t ( s i n / +  1 / n )  < c M (  A , ( x ) )  2, 0 < x < 1, < c M - - ~ -  _ _ _ 

where we have used the easily verified inequalities 
2n--1 

(2.24) ~_, It - t j l k ( d j ( t ) )  - '  < cn -~ ,  k = 0,1. 
j = l  

We can improve (2.23) near the end point 1. Differentiating (2.22) and using 
(2.12b) gives 

[ E ' ( x ) l  < c M ~ . , 6 j ( d , _ j ( t ) ) - 7  < c M A , ( x ) ,  x ~ I ,  

where the sum has been estimated as in (2.23). Integrating this inequality from x 
to 1 and using the fact that E(1) = 0 gives 

(2.25) IE(x)l  _< c M ( 1  - x 2 ) A , ( x ) .  

If we superimpose the two inequalities (2.23) and (2.25), we get (2.19). That is, 
when 1 - x 2 ___ n -2, (2.23) gives the desired estimate, and when 1 - x 2 < n - z ,  

(2.25) gives the desired estimate (A, (x)  _< 2n-2 in this case). �9 

Proof of Theorem 1. We first prove that the L,  are uniformly bounded on C ( I ) .  
From (2.12), it follows that 

(2.26) I~ j (x)  - R j ( x ) l  < c n - a ( s i n t , _ j  + It - t , _ j l ) ( d , _ j ( t ) )  -5 .  

Now from (2.9), Isj[ <- 2[Ifll/(~j+l - ~j) < c l l f l l /6 j  <- cl l f l l /Sj+ v Using this with 
(2.26) in (2.22) gives 

n--1 

I t , ( f , x ) l  < - I S , ( x ) l  + E [sj - -  s j - d l R j ( x )  - % ( x ) l  
- . + 1  

n - 1  

-< Ilfll + cllfll E n- t ( s in t . - j  + It - t ._ j l ) (d~-j( t ) ) -56j  1 
- - n + l  

. - -1  

~] (1 + n i t - -  , , _ j [ ) ( d ~ _ j ( t ) )  -5 
- - n + l  

Ilfll + cllfll 

cll/ll ,  
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where the last inequality uses (2.24). This shows that the L n are uniformly 
bounded. 

It is well-known (see, e.g., [2]) that the K-functional 

g2( f ,  u):-- inf ( I ] / -  gll + uZllg"lloo) 
g 

is equivalent to o:2( f ,  u) when f is in C ( I ) ;  in particular, 

(2.27) K2( f ,  u) < co:2( f ,  u), u > O. 

Given x ~ 1, we fix x and we take u .'= r - x z/n. Then from (2.27), there is 
a g that  satisfies 

Ill - gll -< c~ u) 
and 

u211g'lloo ~ Ca:E(/, U). 
F r o m  Theorem 6 and the linearity of L~, we have 

I f ( x )  - L~(f ,  x)l  < If(x) - g ( x ) l  + Ig(x) - Zn(g, x)l  + ILn(f  - g, x)] 

_< (1 + IlZ,ll)ll/-: gll + cllg'll~u z 

< cw2(f 'u) = CWz( f' ~/1- xZ ) 

Since Ln(f) is increasing and a polynomial of degree < 8n, we have proved 
Theorem 1. �9 
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