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Abstract. We study pointwise properties of functions of bounded
variation on a metric space equipped with a doubling measure and
a Poincaré inequality. In particular, we obtain a Lebesgue type
result for BV functions. We also study approximations by Lips-
chitz continuous functions and a version of the Leibniz rule. We
give examples which show that our main result is optimal for BV
functions in this generality.

1. Introduction

This paper studies Lebesgue points for functions of bounded vari-
ation on a metric measure space (X, d, µ) equipped with a doubling
measure and supporting a Poincaré inequality. Here the metric d and
the measure µ will be fixed, and we denote the triple (X, d, µ) simply
by X. We say that x ∈ X is a Lebesgue point of a locally integrable
function u, if

lim
r→0

∫
B(x,r)

|u− u(x)| dµ = 0.

Observe that if x ∈ X is a Lebesgue point of u, then

lim
r→0

∫
B(x,r)

u dµ = u(x).

By the Lebesgue differentiation theorem for doubling measures, almost
every point with respect to the underlying measure is a Lebesgue point
of a locally integrable function. In this work, we focus on pointwise
properties of functions outside exceptional sets of codimension one.
The set of non-Lebesgue points of a classical Sobolev function is a set
of measure zero with respect the Hausdorff measure of codimension
one and this holds true also in metric spaces supporting a doubling
measure and a Poincaré inequality, see [11] and [12]. More precisely,
the set of non-Lebesgue points is of zero capacity, but we do not need
this refinement here.
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The situation is more delicate for BV functions. Indeed, easy exam-
ples show that already in the Euclidean case with Lebesgue measure
the characteristic function of a set of finite perimeter may fail to be
continuous on a set of positive Hausdorff measure of codimension one.
However, it is known that in the Euclidean case with Lebesgue measure,
a BV (Rn) function has the property

(1.1) lim
r→0

∫
B(x,r)

u dy =
1

2

(
u∧(x) + u∨(x)

)
for Hn−1-almost every x ∈ Rn, see [2], [6, Corollary 1 of page 216], [7,
Theorem 4.5.9] and [20, Theorem 5.14.4]. Here u∧(x) and u∨(x) are
the lower and upper approximate limits of u at x, see Definition 2.5.
The proof of this result lies rather deep in the theory of BV functions
and it seems to be very sensitive to the measure. Indeed, we give a
simple example which shows that the corresponding result is not true
even in the Euclidean case with a weighted measure. However, we are
able to show the following metric space analogue of the result. The
Hausdorff measure of codimension one is denoted by H. The precise
definitions will be given in Section 2.

Theorem 1.1. Assume that µ is doubling and that X supports a weak
(1, 1)-Poincaré inequality. If u ∈ BV (X), then for H-almost every
x ∈ X, we have

(1− γ)u∧(x) + γu∨(x) ≤ lim inf
r→0

∫
B(x,r)

u dµ

≤ lim sup
r→0

∫
B(x,r)

u dµ ≤ γu∧(x) + (1− γ)u∨(x),

where 0 < γ ≤ 1
2

and γ depends only on the doubling constant and the
constants in the in the weak (1, 1)-Poincaré inequality.

We also give examples which show that, unlike in the classical Eu-
clidean setting with the Lebesgue measure, in this generality we cannot
hope to get γ = 1

2
or the existence of the limit of the integral averages.

In this sense, the above result seems to be the best we can have in the
metric setting.

As an application of Theorem 1.1, we study approximations of BV
functions. By definition, a BV function can be approximated by locally
Lipschitz continuous functions in L1(X) so that the integral of upper
gradients converges to the total variation measure. In some applica-
tions, a better control on pointwise convergence would be desirable.
We construct two approximation procedures and apply one of the ap-
proximations in proving a version of the Leibniz rule for bounded BV
functions. In the Euclidean case, the corresponding result has been
studied in [5], [18] and [19]. An unexpected feature is that a multi-
plicative constant appears, which is not present for Sobolev functions.
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2. Preliminaries

In this paper, (X, d, µ) is a complete metric measure space with a
Borel regular outer measure µ. The measure is assumed to be doubling.
This means that there exists a constant cD > 0 such that

µ(B(x, 2r)) ≤ cDµ(B(x, r))

for all x ∈ X and r > 0. This implies that

µ(B(y,R))

µ(B(x, r))
≤ c

(
R

r

)Q
for every r ≤ R and y ∈ B(x, r) for some Q > 1 and c ≥ 1 that
only depend on cD. We recall that complete metric space endowed
with a doubling measure is proper, that is, closed and bounded sets
are compact.

A nonnegative Borel function g on X is an upper gradient of an
extended real valued function u on X if for all paths γ in X we have

(2.1) |u(x)− u(y)| ≤
∫
γ

g ds,

whenever both u(x) and u(y) are finite, and
∫
γ
g ds = ∞ otherwise.

Here x and y are the end points of γ. If g is a nonnegative measurable
function on X and if (2.1) holds for almost every path with respect to
the 1-modulus, then g is a 1-weak upper gradient of u. By saying that
(2.1) holds for 1-almost every path we mean that it fails only for a path
family with zero 1-modulus. A family Γ of curves is of zero 1-modulus
if there is a non-negative Borel measurable function ρ ∈ L1(X) such
that for all curves γ ∈ Γ, the path integral

∫
γ
ρ ds is infinite, see [10].

The collection of all upper gradients, together, play the role of the
modulus of the weak gradient of a Sobolev function in the metric set-
ting. We consider the following norm

‖u‖N1,1(X) = ‖u‖L1(X) + inf
g
‖g‖L1(X)

with the infimum taken over all upper gradients g of u. The Newton-
Sobolev space considered in this note is the space

N1,1(X) = {u : ‖u‖N1,1(X) <∞}/∼,
where the equivalence relation ∼ is given by u ∼ v if and only if

‖u− v‖N1,1(X) = 0.

Next we recall the definition and basic properties of functions of
bounded variation on metric spaces, see [14].

Definition 2.1. For u ∈ L1
loc(X), we define

‖Du‖(X)

= inf
{

lim inf
k→∞

∫
X

guk dµ : uk ∈ Liploc(X), uk → u in L1
loc(X)

}
,
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where guk is a 1-weak upper gradient of uk. We say that a function u ∈
L1(X) is of bounded variation, and denote u ∈ BV (X), if ‖Du‖(X) <
∞. Moreover, a measurable set E ⊂ X is said to have finite perimeter
if ‖DχE‖(X) <∞. By replacing X with an open set U ⊂ X, we may
define ‖Du‖(U) and we denote the perimeter of E in U as

P (E,U) = ‖DχE‖(U).

By [14, Theorem 3.4], we have the following result.

Theorem 2.2. Let u ∈ BV (X). For an arbitrary set A ⊂ X, we
define

‖Du‖(A) = inf
{
‖Du‖(U) : U ⊃ A, U ⊂ X is open

}
.

Then ‖Du‖(·) is a finite Borel outer measure.

Assume that E be a set of finite perimeter in X and let A ⊂ X be
an arbitrary set. As above, we denote

P (E,A) = ‖DχE‖(A).

We say that X supports a weak (1, 1)-Poincaré inequality if there
exist constants cP > 0 and τ > 1 such that for all balls B = B(x, r),
all locally integrable functions u and for all 1-weak upper gradients g
of u, we have

(2.2)

∫
B

|u− uB| dµ ≤ cP r

∫
τB

g dµ,

where

uB =

∫
B

u dµ =
1

µ(B)

∫
B

u dµ.

If the space supports a weak (1, 1)-Poincaré inequality, then for every
u ∈ BV (X), we have

(2.3)

∫
B

|u− uB| dµ ≤ cP r
‖Du‖(τB)

µ(B)
,

where the constant cP and the dilation factor τ are the same constants
as in (2.2).

The (1, 1)-Poincaré inequality implies the Sobolev-Poincaré inequal-
ity

(2.4)
(∫

B

|u− uB|Q/(Q−1) dµ
)(Q−1)/Q

≤ cr
‖Du‖(τB)

µ(B)
,

see [9, Theorem 9.7]. Here the constant c > 0 depends only on the
doubling constant and the constants in the Poincaré inequality. We
assume, without further notice, that the measure µ is doubling and
that the space supports a weak (1, 1)-Poincaré inequality. For brevity,
the weak (1, 1)-Poincaré inequality is called the Poincaré inequality
later on.
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The following coarea formula holds for BV functions. For a proof,
see [14, Proposition 4.2]. If u ∈ L1

loc(X) and A ⊂ X is open, then

(2.5) ‖Du‖(A) =

∫ ∞
−∞

P ({u > t}, A) dt.

In particular, if u ∈ BV (X), then the set {u > t} has finite perimeter
for almost every t ∈ R and formula (2.5) holds for all Borel sets A ⊂ X.

The restricted spherical Hausdorff content of codimension one of a
set A ⊂ X is

HR(A) = inf
{ ∞∑

i=1

µ(B(xi, ri))

ri
: A ⊂

∞⋃
i=1

B(xi, ri), ri ≤ R
}
,

where 0 < R ≤ ∞. When R =∞, the infimum is taken over coverings
with finite radii. The number H∞(A) is the Hausdorff content of A.
The Hausdorff measure of codimension one is

H(A) = lim
R→0
HR(A).

A combination of [3, Theorems 4.4 and 4.6] gives the equivalence of the
perimeter measure, and the Hausdorff measure of codimension one, of
measure theoretic boundaries of sets of finite perimeter. The measure
theoretic boundary of a set A ⊂ X, denoted by ∂∗A, is the set of points
x ∈ X, where both A and its complement have positive density, that
is,

lim sup
r→0

µ(A ∩B(x, r))

µ(B(x, r))
> 0 and lim sup

r→0

µ(B(x, r) \ A)

µ(B(x, r))
> 0.

The following result is extremely useful for us. For the proof, we
refer to [1] and [3].

Theorem 2.3. Assume that E is a set of finite perimeter and A is an
arbitrary subset of X. Then

(2.6)
1

c
P (E,A) ≤ H(∂∗E ∩ A) ≤ cP (E,A),

where c ≥ 1 depends only on the doubling constant and the constants
in the Poincaré inequality.

Moreover, the following theorem shows that we can consider even a
smaller part of the measure theoretic boundary. For a proof, see [1,
Theorem 5.3].

Theorem 2.4. Let E be a set of finite perimeter. For γ > 0, we define
Σγ(E) to be the set consisting of all points x ∈ X for which

lim inf
r→0

min
{µ(E ∩B(x, r))

µ(B(x, r))
,
µ(B(x, r) \ E)

µ(B(x, r))

}
≥ γ.
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Then there exists γ > 0, depending only on the doubling constant and
the constants in the Poincaré inequality, such that

H(∂∗E \ Σγ(E)) = 0.

Let A ⊂ X be a Borel set. The upper density of A at a point x ∈ X
is

D(A, x) = lim sup
r→0

µ(B(x, r) ∩ A)

µ(B(x, r))

and the lower density

D(A, x) = lim inf
r→0

µ(B(x, r) ∩ A)

µ(B(x, r))
.

If D(A, x) = D(A, x) then the limit exists and we denote it by D(A, x).
By the differentiation theory of doubling measures, we have

D(A, x) = 1 for µ-almost every x ∈ A

and

D(A, x) = 0 for µ-almost every x ∈ X \ A.
Following the notation of [3], we define upper and lower approximate
limits.

Definition 2.5. Let u : X → [−∞,∞] be a measurable function. The
upper and lower approximate limit of u at x ∈ X are

u∨(x) = inf
{
t : D({u > t}, x) = 0

}
and

u∧(x) = sup
{
t : D({u < t}, x) = 0

}
.

If u∨(x) = u∧(x), then the common value is denoted by ũ(x) and called
the approximate limit of u at x. The function u is approximately
continuous at x if ũ(x) exists and ũ(x) = u(x). The approximate jump
set of u is

Su = {u∧ < u∨}.

By the Lebesgue differentiation theorem, a locally integrable function
u is approximately continuous µ-almost everywhere and hence µ(Su) =
0. Therefore we can define ũ as we like on the approximate jump set
Su. A similar argument as in the classical case of [20, Remark 5.9.2]
shows that a function u is approximately continuous at x if and only if
there exists a measurable set E such that x ∈ E, D(E, x) = 1 and the
restriction of u to E is continuous.

We need the following standard measure theoretic lemma. We recall
the proof here to emphasize the fact that it also applies in the metric
context.
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Lemma 2.6. Assume that u ∈ BV (X) and λ > 0. Let A ⊂ X be a
Borel set such that

lim sup
r→0

r
‖Du‖(B(x, r))

µ(B(x, r))
> λ

for all x ∈ A. Then there is a constant c > 0, depending only on the
doubling constant, such that

‖Du‖(A) ≥ cλH(A).

Proof. Let ε > 0. Let U be an open set such that A ⊂ U . For each
x ∈ A there exists rx with

0 < rx ≤
1

5
min{ε, dist(x,X \ U)}

such that

(2.7)
µ(B(x, rx))

rx
<
‖Du‖(B(x, rx))

λ
.

By a covering argument, there is a subfamily of disjoint balls Bi =
B(xi, ri) ⊂ U , i = 1, 2, . . . , such that (2.7) holds for each Bi and
A ⊂ ∪∞i=15Bi. Using the doubling condition, (2.7) and the pairwise
disjointedness of the balls Bi, we obtain

Hε(A) ≤
∞∑
i=1

µ(5Bi)

5ri
≤ c

∞∑
i=1

µ(Bi)

ri

≤ c

λ

∞∑
i=1

‖Du‖(Bi) ≤
c

λ
‖Du‖(U).

Since
‖Du‖(A) = inf{‖Du‖(U) : U is open, A ⊂ U},

the claim follows by letting ε → 0 and then taking the infimum over
open sets U . �

3. Lebesgue points

In this section, we use the approximately continuous representative
ũ of u, and denote it by u. Our first lemma shows that the Sobolev-
Poincaré inequality holds infinitesimally without the integral average
on the left-hand side if the approximate limit of the function is zero in
the center of the ball.

Lemma 3.1. Let u ∈ BV (X) and let x0 ∈ X. If the approximate limit
ũ(x0) exists and ũ(x0) = 0, then

lim sup
r→0

(∫
B(x0,r)

|u|Q/(Q−1) dµ
)(Q−1)/Q

≤ c lim sup
r→0

r
‖Du‖(B(x0, r))

µ(B(x0, r))
.

Here the constant c > 0 depends only on the doubling constant and the
constants in the Poincaré inequality.
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Proof. Let 0 < ε < 1. Since 0 is the approximate limit of u at x0, we
have

D({|u| > t}, x0) = 0

for all t > 0. For a fixed t > 0, there exists rε > 0 such that

µ({|u| > t} ∩B(x0, r)) < εµ(B(x0, r))

whenever 0 < r ≤ rε. This implies that for the sets B = B(x0, r) and
E = {|u| ≤ t} ∩B, we have

µ(E) ≥ (1− ε)µ(B).

From this, together with the Sobolev-Poincaré inequality (2.4), we con-
clude that (∫

B

|u− uE|Q/(Q−1) dµ
)(Q−1)/Q

≤ 2
µ(B)

µ(E)

(∫
B

|u− uB|Q/(Q−1) dµ
)(Q−1)/Q

≤ 2cr

1− ε
‖Du‖(τB)

µ(B)
.

Hence(∫
B

|u|Q/(Q−1) dµ
)(Q−1)/Q

≤
(∫

B

|u− uE|Q/(Q−1) dµ
)(Q−1)/Q

+ |u|E

≤ 2cr

1− ε
‖Du‖(τB)

µ(B)
+ t

for 0 < r ≤ rε. The claim follows by taking the limes superior on both
sides as r → 0 and then letting t→ 0. �

Lemma 3.2. Let u ∈ BV (X). Then

−∞ < u∧(x) ≤ u∨(x) <∞

for H-almost every x ∈ X.

Proof. Since the question is of local nature, without loss of generality,
we may assume that u has compact support. First we will show that

H({u∧ =∞}) = 0.

For t ∈ R, let

Ft = {u∧ > t} and Et = {u > t}.

The definitions of u∧ and Ft imply that D(Et, x) = 1 for every x ∈ Ft.
Since µ-almost every point is a Lebesgue point of u, we have u∧(x) =
u(x) for µ-almost every x and therefore

D(Ft, x) = D(Et, x) = 1
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when x is a Lebesgue point of u. The boxing inequality ([12, Remark
3.3.(1)] and [16]) gives disjoint balls Bi = B(xi, τri), i = 1, 2, . . . , such
that Ft ⊂ ∪∞i=15Bi and

∞∑
i=1

µ(5Bi)

5τri
≤ cP (Ft, X).

Since u has compact support, we have ri ≤ R, i = 1, 2, . . ., for R > 0
large enough.

This implies that

HR(Ft) ≤ cP (Ft, X)

and

HR({u∧ =∞}) = HR

(⋂
t>0

Ft

)
≤ lim inf

t→∞
HR(Ft)

≤ lim inf
t→∞

cP (Ft, X).
(3.1)

As u∧ = u µ-almost everywhere, we also have

P (Et, X) = P (Ft, X)

and, by the coarea formula,∫ ∞
−∞

P (Ft, X) dt =

∫ ∞
−∞

P (Et, X) dt = ‖Du‖(X) <∞.

From this we conclude that

lim inf
t→∞

P (Ft, X) = 0.

By (3.1) we have HR({u∧ =∞}) = 0 and consequently also

H({u∧ =∞}) = 0,

see for example the proof of [12, Lemma 7.6]. A similar argument shows
that

H({u∨ = −∞}) = 0.

The first part of the proof shows that u∨−u∧ is well definedH-almost
everywhere. Next we show that

H({u∨ − u∧ =∞}) = 0.

It follows from the definitions of the approximate limits and the mea-
sure theoretic boundary that

Gt = {u∧ < t < u∨} ⊂ ∂∗Et



10 KINNUNEN, KORTE, SHANMUGALINGAM AND TUOMINEN

for every t ∈ R. Then, by the Fubini theorem,

(3.2)

∫ ∞
−∞
H(Gt) dt =

∫ ∞
−∞

∫
X

χGt(x) dH(x) dt

=

∫
X

∫ ∞
−∞

χGt(x) dt dH(x)

=

∫
X

∫ u∨(x)

u∧(x)

1 dt dH(x)

=

∫
Su

(u∨(x)− u∧(x)) dH(x).

By (3.2), Theorem 2.3, and the coarea formula, we have∫
Su

(u∨ − u∧) dH =

∫ ∞
−∞
H({u∧ < t < u∨}) dt

≤
∫ ∞
−∞
H(∂∗Et) dt

≤ c

∫ ∞
−∞

P (Et, X) dt

= c‖Du‖(X) <∞.

Since u∧ = u∨ outside Su, the claim follows from this. �

The next example shows that (1.1) does not even hold for BV func-
tions in weighted Euclidean spaces.

Example 3.3. Let X = R2 with the Euclidean distance and the mea-
sure with the derivative

DL2µ = ω, where ω = 1 + χB(0,1).

Let u = χB(0,1). Then for every x ∈ ∂B(0, 1), we have

1

2
(u∧(x) + u∨(x)) =

1

2
6= 2

3
= lim

r→0

∫
B(x,r)

u dµ.

The above example also shows that we cannot always take γ = 1
2

in

Theorem 1.1, for in this example we have γ = 1
3
.

We will start the proof of our main result by showing that the claim
of Theorem 1.1 holds outside the approximate jump set if u is bounded.
Later we remove the extra assumption on boundedness by a limiting
argument.

Lemma 3.4. Let u ∈ BV (X) ∩ L∞(X). Then

lim
r→0

∫
B(x0,r)

|u− u(x0)|Q/(Q−1) dµ = 0.

for all x0 ∈ X \ Su.
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Proof. Let x0 ∈ X \ Su. Since u is approximately continuous at x0,
there is a measurable set E such that x0 ∈ E, D(E, x0) = 1 and

lim
x→x0,x∈E

u(x) = u(x0).

Let r > 0 and denote B = B(x0, r). Then we have∫
B

|u− u(x0)|Q/(Q−1) dµ =
1

µ(B)

∫
B∩E
|u− u(x0)|Q/(Q−1) dµ

+
1

µ(B)

∫
B\E
|u− u(x0)|Q/(Q−1) dµ.

(3.3)

The second term on the right hand side of (3.3) has an upper bound

1

µ(B)

∫
B\E
|u− u(x0)|Q/(Q−1) dµ ≤ 2

µ(B \ E)

µ(B)
‖u‖Q/(Q−1)L∞(X) ,

which tends to zero as r → 0 because D(X \ E, x0) = 0.
Then we estimate the first term on the right hand side of (3.3).

Let 0 < ε < 1. There is rε > 0 such that |u(x) − u(x0)| < ε when
d(x, x0) < rε and x ∈ E. Hence, we obtain

1

µ(B)

∫
B∩E
|u− u(x0)|Q/(Q−1) dµ ≤ εQ/(Q−1)

µ(B ∩ E)

µ(B)
≤ εQ/(Q−1)

for 0 < r < rε. The claim follows by letting ε→ 0. �

Now we generalize the previous lemma for unbounded BV functions.
The proof is similar to the Euclidean argument of [20, Theorem 4.14.3].

Theorem 3.5. Let u ∈ BV (X). Then

lim
r→0

∫
B(x0,r)

|u− u(x0)|Q/(Q−1) dµ = 0.

for H-almost all x0 ∈ X \ Su.

Proof. Let 0 < ε < 1 and denote

Wk = {−k ≤ u∧ ≤ u∨ ≤ k}, k = 1, 2, . . .

By Lemma 3.2, we have

H
(
X \

∞⋃
k=1

Wk

)
= 0,

and hence it is enough to prove the claim for x0 ∈ (
⋃∞
k=1Wk) \ Su.

For k = 1, 2, . . . , let uk be a truncation of u defined as

uk(x) =


k, if u(x) > k,

u(x), if |u(x)| ≤ k,

−k, if u(x) < −k.
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By the Minkowski inequality, we have

(3.4)

(∫
B(x0,r)

|u− u(x0)|Q/(Q−1) dµ
)(Q−1)/Q

≤
(∫

B(x0,r)

|u− uk|Q/(Q−1) dµ
)(Q−1)/Q

+
(∫

B(x0,r)

|uk − u(x0)|Q/(Q−1) dµ
)(Q−1)/Q

.

Let k be large enough so that x0 ∈ Wk. Then the approximate limit of
u− uk at x0 is zero. Therefore Lemma 3.1 implies that

lim sup
r→0

(∫
B(x0,r)

|u− uk|Q/(Q−1) dµ
)(Q−1)/Q

≤ c lim sup
r→0

r
‖D(u− uk)‖(B(x0, τr))

µ(B(x0, r))
.

(3.5)

Let

Zk =
{
x ∈ X : lim sup

r→0
r
‖D(u− uk)‖(B(x, τr))

µ(B(x, r))
≤ ε
}
.

We begin by estimating the first term on the right hand side of (3.4)
in the case that x0 ∈ Z, where Z = ∪∞k=1Zk. Observe that Zk ⊂ Zk+1,
which follows from the coarea formula using a similar argument as in
the end of this proof. Then the definition of Zk together with (3.5)
shows that for k large enough, we have

lim sup
r→0

(∫
B(x0,r)

|u− uk|Q/(Q−1) dµ
)(Q−1)/Q

≤ cε.

For the second term on the right hand side of (3.4), we have(∫
B(x0,r)

|uk − u(x0)|Q/(Q−1) dµ
)(Q−1)/Q

≤
(∫

B(x0,r)

|uk − uk(x0)|Q/(Q−1) dµ
)(Q−1)/Q

+ |uk(x0)− u(x0)|.

Since k ≥ |u(x0)|, we have |uk(x0)− u(x0)| = 0. On the other hand,

lim
r→0

∫
B(x0,r)

|uk − uk(x0)|Q/(Q−1) dµ = 0

by Lemma 3.4 because uk is bounded and ũk(x0) = uk(x0).
Finally, we will show that H(X \ Z) = 0. By Lemma 2.6,

(3.6) H(X \ Zk) ≤
c

ε
‖D(u− uk)‖(X).

For t < 0 we have u − uk > t if and only if u > t − k, and for t > 0
we have u− uk > t if and only if u > t + k. Using the coarea formula
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(2.5) and the fact that a complement of a set has the same perimeter
as the set itself, we obtain

‖D(u− uk)‖(X) =

∫ ∞
−∞

P ({u− uk > t}, X) dt

=

∫ 0

−∞
P ({u− uk ≤ t}, X) dt+

∫ ∞
0

P ({u− uk > t}, X) dt

=

∫ 0

−∞
P ({u ≤ −k + t}, X) dt+

∫ ∞
0

P ({u > k + t}, X) dt

=

∫
{|t|>k}

P ({u > t}, X) dt.

(3.7)

Since u ∈ BV (X), the previous estimate implies that

‖D(u− uk)‖(X)→ 0

as k →∞. Consequently, estimate (3.6) shows that

H(X \ Z) ≤ H(X \ Zk)→ 0

as k →∞, and the result follows. �

Now we are ready to complete the proof of our main result.

Proof of Theorem 1.1. As before, denote Et = {u > t}. Let

N =
⋃
t∈T

(
∂∗Et \ Σγ(Et)

)
,

where Σγ and γ are as in Theorem 2.4 and T is a countable dense subset
of R so that the set Et is of finite perimeter when t ∈ T . Theorem 2.4
then implies that H(N) = 0.

Fix x0 ∈ Su \ N so that −∞ < u∧(x0) ≤ u∨(x0) < ∞, see Lemma
3.2. We set

u∗ =
u− u∧(x0)

u∨(x0)− u∧(x0)
and

v = (u∗ − 1)+ − u∗−.
Then x0 ∈ X \ Sv and v(x0) = 0.

Now take t ∈ (0, 1) such that t∗ = (u∨(x0)− u∧(x0))t+ u∧(x0) ∈ T .
By the definition of N , we have x0 ∈ Σγ(Et∗) for each such t. This
implies that

lim inf
r→0

∫
B(x0,r)

χEt∗ dµ ≥ γ.

As u∗ ≥ v + tχEt∗ , we have

lim inf
r→0

∫
B(x0,r)

u∗ dµ ≥ lim inf
r→0

∫
B(x0,r)

v dµ+ t lim inf
r→0

∫
B(x0,r)

χEt∗ dµ ≥ tγ.
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Here we used Theorem 3.5 for v. By letting t→ 1 we arrive at

γ ≤ lim inf
r→0

∫
B(x0,r)

u∗ dµ

≤ 1

u∨(x0)− u∧(x0)

(
lim inf
r→0

∫
B(x0,r)

u dµ− u∧(x0)
)

and consequently

(1− γ)u∧(x0) + γu∨(x0) ≤ lim inf
r→0

∫
B(x0,r)

u dµ.

The upper bound follows from a similar argument. Outside of the
approximate jump set, the result follows from Theorem 3.5. �

The next example shows that, unlike in the classical Euclidean set-
ting, we cannot hope to get the existence of the limit of the integral
averages H-almost everywhere in X in Theorem 1.1.

Example 3.6. Let X = R2 be equipped with the Euclidean metric
and the measure with the derivative DL2µ = ω with the weight ω
constructed as follows. For k = 1, 2, . . . let

Ak = {(x1, x2) ∈ R2 : 4−k < |x2| ≤ 41−k},
and define

ω = 1 + χ{x2<0}
∑
k even

χAk + χ{x2>0}
∑
k odd

χAk .

Then X is a metric measure space with a doubling measure, which
is even Ahlfors 2-regular, and supports a (1, 1)-Poincaré inequality.
However, the characteristic function u of the set

{(x1, x2) ∈ R2 : |x1| ≤ 1,−1 ≤ x2 ≤ 0}
is in BV (X), and for every x = (x1, 0) with |x1| < 1, we have

lim sup
r→0

∫
B(x,r)

u dµ =
1

2
+ α

and

lim inf
r→0

∫
B(x,r)

u dµ =
1

2
− α,

for some constant 0 < α < 1
2
.

Taking into account the pointwise behavior of BV functions, it is
natural to ask what type of behavior a BV function has on the set
where its total variation measure is absolutely continuous with respect
to the underlying measure µ. In particular, the following lemma tells
us that the total variation measure behaves like a weak derivative on
the subset where the function vanishes. In the Euclidean setting the
lemma follows from [6, page 232, Theorem 3 and page 233, Theorem 4
remark (i)]. The proof we give here is more direct.
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Lemma 3.7. Let u ∈ BV (X) and E ⊂ X a Borel set such that ‖Du‖
is absolutely continuous with respect to µ on E and u = 0 on E. Then
‖Du‖(E) = 0.

Proof. Without loss of generality we may assume that u ≥ 0 on X.
Since u = 0 on E, we see that ‖Du‖(int(E)) = 0. Consequently, if ∂E
has µ-measure zero, the conclusion follows. Hence we may assume that
µ(∂E) > 0. Let E0 be the collection of points x ∈ E for which

lim inf
r→0

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0.

Note that by the Lebesgue differentiation theorem we have µ(E \E0) =
0 and hence ‖Du‖(E \ E0) = 0. Therefore it suffices to prove that
‖Du‖(E0) = 0. In order to see this, we apply the coarea formula.

Denote Et = {u > t}. Let t > 0 be such that Et has finite perimeter
in X. This is possible by the coarea formula. If H(E0 ∩ ∂∗Et) > 0,
then because E0 ∩ ∂∗Et ⊂ Su, the measure ‖Du‖ cannot be absolutely
continuous with respect to µ on E0 and hence on E, see for example [3,
Theorem 5.3 and Theorem 4.4]. Therefore for all such t > 0 we have
H(E0 ∩ ∂∗Et) = 0. Finally, by the coarea formula again,

0 ≤ ‖Du‖(E0) =

∫ ∞
0

P (Et, E0) dt ≤ c

∫ ∞
0

H(E0 ∩ ∂∗Et) dt = 0. �

It would be interesting to know the answer to the following question:
If E is a Borel set on which ‖Du‖ is absolutely continuous with respect
to µ, is it then true that u|E ∈ N1,1(E) with the weak upper gradient

g = lim
r→0

‖Du‖(B(x, r))

µ(B(x, r))
?

4. Approximations for BV functions and the Leibniz rule

As an application of Theorem 1.1, we study approximations of BV
functions. By definition, for every u ∈ BV (X) there is a sequence of
locally Lipschitz continuous functions uk, k = 1, 2, . . . , which converges
to u in L1(X) and the sequence ‖Duk‖, k = 1, 2, . . . , converges weakly
to ‖Du‖ as k →∞. The problem with this sequence is that we do not
have control over how well it converges to u pointwise. In this section
we give two different constructions of approximating sequences that
converge to u ∈ BV (X); unfortunately, we lose the precise control over
the weak convergence of the measures. However, in the event that the
goal is to study capacities of sets, the needed control is over pointwise
convergence, and in this case either of these two propositions would be
useful. We continue using the approximately continuous representative
ũ of u, and we denote it by u.
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Proposition 4.1. Let u ∈ BV (X). Then there is a sequence of lo-
cally Lipschitz functions uk, k = 1, 2, . . . , such that uk → u H-almost
everywhere in X \ Su, uk → u in L1(X) as k →∞, and

lim sup
k→∞

‖Duk‖(X) ≤ c‖Du‖(X).

Moreover, we have

(1− γ̃)u∧(x) + γ̃u∨(x) ≤ lim inf
k→∞

uk(x)

≤ lim sup
k→∞

uk(x) ≤ γ̃u∧(x) + (1− γ̃)u∨(x)

for H-almost every x ∈ X. Here γ̃ = γ/c, where 0 < γ ≤ 1
2

is as in
Theorem 2.4, and c > 1 depends only on the doubling constant and the
constants in the Poincaré inequality.

Proof. Let ε > 0. Because µ is doubling, we can cover X by a countable
collection Bi, i = 1, 2, . . . , of balls Bi = B(xi, ε) such that

∞∑
i=1

χ20τBi ≤ c,

where c depends solely on the doubling constant and τ is the constant in
the Poincaré inequality. Subordinate to this cover, there is a partition
of unity ϕi with 0 ≤ ϕi ≤ 1,

∑∞
i=1 ϕi = 1, ϕi is c/ε-Lipschitz ϕi ≥ α > 0

in Bi, and supp(ϕi) ⊂ 2Bi for every i = 1, 2, . . . . We set

uε =
∞∑
i=1

u5Biϕi.

The function uε is sometimes called the discrete convolution of u. For
x ∈ Bj, we note that

|uε(x)− u(x)| ≤
∞∑
i=1

|u5Bi − u(x)|ϕi(x) ≤
∑

{i:2Bi∩Bj 6=∅}

|u(x)− u5Bi |.

Hence ∫
Bj

|uε − u| dµ ≤
∑

{i:2Bi∩Bj 6=∅}

∫
Bj

|u− u5Bi | dµ

≤ c
∑

{i:2Bi∩Bj 6=∅}

∫
10Bj

|u− u10Bj | dµ

≤ c

∫
10Bj

|u− u10Bj | dµ ≤ cε‖Du‖(10τBj),
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where we used the bounded overlap property of the collection 20τBi,
i = 1, 2, . . . and the Poincaré inequality. This implies that∫

X

|uε − u| dµ ≤
∞∑
j=1

∫
Bj

|uε − u| dµ

≤ cε
∞∑
j=1

‖Du‖(10τBj) ≤ cε‖Du‖(X).

Thus uε → u in L1(X) as ε → 0. The fact that uε → u H-almost
everywhere in X \ Su as ε→∞ follows from Theorem 3.5.

For x, y ∈ Bj we have

|uε(x)− uε(y)| ≤
∞∑
i=1

|u5Bi − u5Bj | |ϕi(x)− ϕi(y)|

≤ c

ε
d(x, y)

∑
{i:2Bi∩Bj 6=∅}

|u5Bi − u5Bj |

≤ c

ε
d(x, y)

∫
10Bj

|u− u10Bj | dµ

= cd(x, y)
‖Du‖(10τBj)

µ(Bj)
,

and so uε is locally Lipschitz continuous with the upper gradient

(4.1) gε = c
∞∑
j=1

‖Du‖(10τBj)

µ(Bj)
χBj .

Hence by the bounded overlap property of the covering and by the fact
that if Bj intersects Bi then µ(Bj) ≈ µ(Bi), we have

‖Duε‖(X) ≤
∫
X

gε dµ ≤
∞∑
i=1

∫
Bi

gε dµ

≤ c

∞∑
i=1

∑
{j:Bj∩Bi 6=∅}

‖Du‖(10τBj)

≤ c

∞∑
i=1

‖Du‖(20τBi) ≤ c‖Du‖(X).

Finally, we show estimates for the pointwise limes superior and limes
inferior. The idea in the proof is similar to the proof of Theorem 1.1.
As in the proof of Theorem 1.1, denote Et = {u > t} and let

N =
⋃
t∈T

(
∂∗Et \ Σγ(Et)

)
,

where Σγ and γ are as in Theorem 2.4 and T is a countable dense
subset of R so that the set Et is of finite perimeter when t ∈ T . Fix
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x0 ∈ Su \N so that −∞ < u∧(x0) ≤ u∨(x0) <∞, see Lemma 3.2. We
set

u∗ =
u− u∧(x0)

u∨(x0)− u∧(x0)
and

v = (u∗ − 1)+ − u∗−.
Then x0 ∈ X \ Sv and v(x0) = 0.

Now take t ∈ (0, 1) such that t∗ = (u∨(x0)− u∧(x0))t+ u∧(x0) ∈ T .
We notice that we can write the function vε as

vε(x) =
∞∑
i=1

v5Biϕi(x)

=

∫
X

v
∞∑
i=1

χ5Biϕi(x)

µ(5Bi)
dµ =

∫
X

vaεx dµ,

where the function aεx is defined as

aεx(y) =
∞∑
i=1

χ5Bi(y)ϕi(x)

µ(5Bi)

and satisfies
χB(x,ε)

cµ(B(x, ε))
≤ aεx ≤

cχB(x,7ε)

µ(B(x, ε))
.

Indeed, the left-hand side inequality holds because there exists i0 such
that x ∈ Bi0 and by the construction ϕi0 we have ϕi0 ≥ α for some
α > 0.

By the definition of N , we have x0 ∈ Σγ(Et∗) for each such t. This
implies

lim inf
ε→0

∫
B(x0,ε)

χEt∗dµ ≥ γ

and consequently

lim inf
ε→0

∫
B(x0,7ε)

χEt∗a
ε
x0
dµ ≥ γ

c
.

As v ≥ tχEt∗ , we have

lim inf
ε→0

vε(x0) ≥ t lim inf
ε→0

∫
X

χEt∗a
ε
x0
dµ ≥ t

γ

c
.

The claim follows by letting t → 1. By symmetry, we also have the
upper bound. From this we conclude that

γ

c
≤ lim inf

ε→0
vε(x0) ≤ lim inf

ε→0

uε(x0)− u∧(x0)
u∨(x0)− u∧(x0)

and consequently
γ

c
(u∨(x0)− u∧(x0)) ≤ lim inf

ε→0
uε(x0)− u∧(x0).
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This implies that(
1− γ

c

)
u∧(x0) +

γ

c
u∨(x0) ≤ lim inf

ε→0
uε(x0).

The upper bound follows from a similar argument. �

As a consequence of the previous approximation result we obtain a
version of Leibniz rule for nonnegative BV functions. Observe, that for
the upper gradients of bounded u and v belonging to N1,1(X)∩L∞(X),
we have

guv ≤ ugv + vgu,

and consequently,

d‖D(uv)‖ ≤ u d‖Dv‖+ v d‖Du‖,

but for BV functions a multiplicative constant appears.

Proposition 4.2. Let u, v ∈ BV (X) ∩ L∞(X) be nonnegative func-
tions. Then uv ∈ BV (X) ∩ L∞(X) and there is a constant c ≥ 1 such
that

d‖D(uv)‖ ≤ cu∨d‖Dv‖+ cv∨d‖Du‖.
The constant c depends only on the doubling constant and the constants
in the Poincaré inequality.

Proof. For ε > 0 let vε be the approximation of v as in Proposition 4.1
and let gε be an upper gradient of vε as in (4.1). Moreover, let uk, k =
1, 2, . . . , be an approximation of u in the sense that uk are nonnegative
Lipschitz functions uniformly bounded by ‖u‖L∞(X), uk → u in L1(X)
and ‖Duk‖ converges weakly to ‖Du‖ as k → ∞. Now, it is obvious
that ukvε forms an approximation of uv in L1(X) and, consequently,
we have

‖D(uv)‖ ≤ lim inf
ε→0

lim inf
k→∞

‖D(ukvε)‖.

By the Leibniz rule for functions in N1,1
loc (X), we have

d‖D(ukvε)‖ ≤ vεd‖Duk‖+ ukgε dµ.

Let us first consider the term vε d‖Duk‖. Since vε is continuous on X
and ‖Duk‖ converge weakly to ‖Du‖, we conclude that the measures
with vεd‖Duk‖ converge weakly to the measure with the derivative
vεd‖Du‖ as k →∞. Passing ε→ 0, by Proposition 4.1 we have

lim sup
ε→0

vε ≤ cv∨

H-almost everywhere in X and hence ‖Du‖-almost everywhere in X.
If φ is a compactly supported Lipschitz function on X, then by the
dominated convergence theorem we have

lim inf
ε→0

∫
X

φvε d‖Du‖ ≤ c

∫
X

φv∨ d‖Du‖,
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that is, a weak limit of the sequence of measures with the derivatives
vεd‖Du‖ is dominated by the measure with cv∨d‖Du‖.

Next we consider the term ukgε by first letting k → ∞ and then
ε→ 0. Since uk → u µ-almost everywhere in X and in L1(X), we see
that

lim
k→∞

∫
X

φukgε dµ =

∫
X

φugε dµ

whenever φ is a compactly supported Lipschitz function in X. By the
definition of gε (see (4.1)) and using the covering Bi, i = 1, 2, . . . , as in
the proof of Proposition 4.1, we see that∫

X

φu gε dµ ≤ c
∞∑
i=1

∫
Bi

φugε dµ

≤ c
∞∑
i=1

∑
{j:Bj∩Bi 6=∅}

∫
2Bi

φu dµ ‖Du‖(10τBj)

≤ c
∞∑
i=1

∫
20τBi

φu dµ ‖Dv‖(20τBi)

for nonnegative φ. Let ψε be a function defined by

ψε(x) =
∞∑
i=1

∫
B(x,40τε)

φu dµχ10τBi(x).

By the bounded overlap of the collection 10τBi, i = 1, 2, . . . , we have∫
X

φugε dµ ≤ c

∫
X

ψε d‖Dv‖.

As φ is continuous, Proposition 4.1 shows that

lim sup
ε→0

ψε ≤ c φu∨

H-almost everywhere in X and hence ‖Dv‖-almost everywhere. Con-
sequently, we arrive at

lim sup
ε→0

lim
k→∞

∫
X

φugε dµ ≤ c

∫
X

φu∨ d‖Dv‖

whenever φ is a nonnegative compactly supported Lipschitz continuous
function in X. If ν is a Radon measure that is obtained as a weak limit
of a subsequence of the measures with ukgε dµ, then

ν(X) = sup

∫
X

φ dν

= sup lim sup
ε→0

lim
k→∞

∫
X

φugε dµ

≤ c sup

∫
X

φu∨ d‖Dv‖,
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where the supremums are taken over all functions φ ∈ Lipc(X) with
0 ≤ φ ≤ 1. The above computation can be performed by restricting to
functions φ with support in a given open set, and so we can conclude
that

ν(U) ≤ c

∫
U

u∨ d‖Dv‖

for all open subsets U of X, and it follows that

dν ≤ cu∨d‖Dv‖.
�

Next we show that Lipschitz functions are dense in BV (X) in the
Lusin sense. For the Euclidean case, see [6, page 252, Theorem 2] and
for Sobolev functions in metric spaces, we refer to [8] and [12].

Proposition 4.3. Let u ∈ BV (X). The for every ε > 0, there exists
a Lipschitz function v in X such that

µ
(
{x ∈ X : u(x) 6= v(x)}

)
< ε and ‖u− v‖L1(X) < ε.

In addition, we have

‖Dv‖(X) ≤ c ‖Du‖(X)

for some constant c > 0 depending only on the doubling constant and
the constants in the Poincaré inequality.

Proof. Let λ > 0 and define

Eλ =
{
x ∈ X :

‖Du‖(B)

µ(B)
≤ λ for all balls B 3 x

}
.

Note that X \Eλ is an open set and so Eλ is a Borel set. We begin by
showing that there is a constant c > 0 such that

(4.2) µ(X \ Eλ) ≤
c

λ
‖Du‖(X \ Eλ).

Let Bi = B(xi, ri) ⊂ X \ Eλ, i = 1, 2, . . . , be disjoint balls such that

X \ Eλ ⊂
∞⋃
i=1

5Bi and ‖Du‖(Bi) > λµ(Bi)

for all i = 1, 2, . . . . Since µ is doubling and ‖Du‖ is a measure, we
obtain

µ(X \ Eλ) ≤
∞∑
i=1

µ(5Bi) ≤
c

λ

∞∑
i=1

‖Du‖(Bi) ≤
c

λ
‖Du‖(X \ Eλ).

Hence (4.2) follows.
Next we show that there is a constant c > 0 that depends only on the

doubling constant and the constants of the Poincaré inequality, such
that

(4.3) |u(x)− u(y)| ≤ cλd(x, y)
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for almost every x, y ∈ Eλ. Let x, y ∈ Eλ be Lebesgue points of u. Let
r = d(x, y), Bx = B(x, r) and By = B(y, r). Then

|u(x)− u(y)| ≤ |u(x)− uBx|+ |uBx − uBy |+ |u(y)− uBy |,

where, by a standard telescoping argument, using the doubling prop-
erty and the Poincaré inequality, we conclude that

|u(x)− uBx| ≤
∞∑
i=0

|u2−iBx(x)− u2−(i+1)Bx |

≤ c
∞∑
i=0

∫
2−iBx

|u− u2−iBx| dµ

≤ cr
∞∑
i=0

2−i
‖Du‖(τ2−iBx)

µ(2−iBx)

≤ crλ
∞∑
i=0

2−i = crλ.

Similar estimate holds for |u(y)− uBy |. By the doubling property and
the Poincaré inequality, we obtain

|uBx − uBy | ≤
∫
By

|u− uBx| dµ

≤ c

∫
B2Bx

|u− u2Bx| dµ ≤ cr
‖Du‖(τ2Bx)

µ(2Bx)
≤ crλ.

Since µ-almost every point of u is a Lebesgue point, previous estimates
imply that inequality (4.3) holds. Now the first claim of this propo-
sition follows using (4.2), (4.3) and McShane’s extension theorem for
Lipschitz functions. The extension of u is denoted by vλ. Observe that
vλ = u in Eλ and vλ is cλ-Lipschitz continuous in X.

We next provide a control for ‖u − vλ‖L1(X). First we assume that
u is bounded on X. We may also assume that |vλ| ≤ ‖u‖L∞(X) by
truncating the function, if necessary. By (4.2), we may conclude that

∫
X

|u− vλ| dµ =

∫
X\Eλ

|u− vλ| dµ

≤ 2‖u‖L∞(X)µ(X \ Eλ)

≤ c

λ
‖u‖L∞(X) ‖Du‖(X \ Eλ).
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Note that ‖Du‖ is absolutely continuous with respect to µ on Eλ and,
by Lemma 3.7, we have

‖D(u− vλ)‖(X) = ‖D(u− vλ)‖(X \ Eλ)
≤ ‖Du‖(X \ Eλ) + ‖Dvλ‖(X \ Eλ)
≤ ‖Du‖(X \ Eλ) + cλµ(X \ Eλ)
≤ c‖Du‖(X \ Eλ).

Here we also used the fact that vλ is cλ-Lipschitz and (4.2). This
implies that

‖D(vλ)‖(X) ≤ ‖D(u− vλ)‖(X) + ‖Du‖(X)

≤ c‖Du‖(X \ Eλ) + ‖Du‖(X)

≤ c‖Du‖(X).

We can remove the assumption on boundedness of u by approximat-
ing u by bounded functions

uk = min{k,max{u,−k}} ∈ BV (X), k = 1, 2, . . . ,

and approximate uk by Lipschitz functions as above. Observe that∫
X

|u− uk| dµ ≤
∫
{|u|>k}

|u| dµ→ 0

as k →∞. By the same argument as in (3.7), we also have

‖D(u− uk)‖(X)→ 0

as k →∞. �

Remark 4.4. By considering χB for a ball B in Rn, we see that the
result above is optimal.
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