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Abstract

In this paper we propose a new kind of Hermite interpolation on arbitrary domains, matching derivative data

of arbitrary order on the boundary. The basic idea stems from an interpretation of mean value interpolation

as the pointwise minimization of a radial energy function involving first derivatives of linear polynomials. We

generalize this and minimize over derivatives of polynomials of arbitrary odd degree. We analyze the cubic case,

which assumes first derivative boundary data and show that the minimization has a unique, infinitely smooth

solution with cubic precision. We have not been able to prove that the solution satisfies the Hermite interpolation

conditions but numerical examples strongly indicate that it does for a wide variety of planar domains and that it

behaves nicely.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Numerical Analysis]: Interpolation – Inter-
polation formulas; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Curve, surface,
solid, and object representations; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD)
Additional Key Words and Phrases: Transfinite interpolation, Hermite interpolation, mean value interpolation

1. Introduction

Mean value interpolation has emerged as a simple and ro-
bust way to smoothly interpolate a function defined on the
boundary of an arbitrary domain in R

n, and provides an
alternative to solving a PDE such as the Laplace equa-
tion. This kind of interpolation started from a generaliza-
tion of barycentric coordinates in the plane [Flo03], and was
later extended to general polygons [HF06] and to triangular
meshes [FKR05, JSW05]. These constructions were further
generalized to continuous boundaries in [JSW05, SJW07].
More work on mean value coordinates and related topics
can be found in [Bel06,FHK06,FH07,JSWD05,LBS06,LK-
COL07, WSHD07].

Mean value interpolation only matches the values of a
function on the boundary, not its derivatives. However, there
are many applications in geometric modeling and scientific
computing in which it is also desirable to match certain
derivatives at the boundary, and again it is worth looking
for methods that avoid solving a PDE such as the bihar-
monic equation. An early approach was that of Gordon and
Wixom [GW74], which is based on averaging the values of
interpolatory univariate polynomials across the domain. This

method is simple conceptually but only applies to convex
domains and requires computing intersections between lines
and the domain boundary.

A more recent approach to higher order interpolation by
Langer and Seidel [LS08] is an extension of barycentric
coordinates to incorporate derivative data given at a set of
vertices. Generalized barycentric coordinates such as Wach-
spress, Sibson, and mean value coordinates are composed
with a modifying function and then used to interpolate first
order Taylor expansions at the vertices. This method is easy
to compute and was applied successfully to give greater con-
trol when deforming polygonal meshes. However, even in
the univariate case this method lacks cubic precision.

Another recent idea, developed in [DF07, BF], was to
build on properties of the mean value weight function, i.e.,
the reciprocal of the denominator in the rational expression
for the interpolant, in order to construct C1 Hermite inter-
polants on arbitrary domains. This method has the advantage
that it reduces to cubic polynomial interpolation in the uni-
variate case, and in R

2 and R
3 it can be evaluated approxi-

mately through explicit formulas for polygons and triangular
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meshes. However, the method does not have cubic precision
in R

n for n > 1.

In this paper we propose a new kind of Hermite interpola-
tion on arbitrary domains in R

n. The method has cubic pre-
cision for C1 boundary data for all n, and in R

2 the method
appears to perform very well in practice. We start by view-
ing mean value interpolation as the pointwise minimization
of a radial energy function involving first derivatives of lin-
ear polynomials. We then generalize this to match boundary
derivatives up to order k by minimizing a radial energy func-
tion involving (k+1)-st derivatives of polynomials of degree
2k + 1. The case k = 0 is simply mean value interpolation.
We analyze the cubic case, k = 1, and show that the min-
imization has a unique solution which has cubic precision.
We cannot prove that the solution satisfies the Hermite in-
terpolation conditions but numerical examples show that the
solution interpolates the derivative boundary data in R

2 for
a wide variety of domain shapes.

2. A new look at mean value interpolation

We start by showing that mean value interpolation can be
expressed as the solution to a radial minimization problem.

2.1. Convex domains

Consider the case that Ω ⊂ R
n is a bounded, open, convex

domain and that f : ∂Ω → R is a continuous function. For
any point x = (x1,x2, . . . ,xn) in Ω and any unit vector v in
the unit sphere S ⊂ R

n, let p(x,v) be the unique point of
intersection between the semi-infinite line {x + rv : r ≥ 0}
and the boundary ∂Ω; see Figure 1. Let ρ(x,v) be the Eu-
clidean distance ρ(x,v) = ‖p(x,v)−x‖. As developed in the
papers [Flo03,JSW05,DF07,BF], the mean value interpolant
g : Ω → R is given by the formula

g(x) =
Z

S

f (p(x,v))

ρ(x,v)
dv

/

φ(x),

φ(x) =
Z

S

1
ρ(x,v)

dv, x ∈ Ω.

Figure 2: Mean value interpolants.

It was shown in [DF07,BF] that under mild conditions on the
shape of the boundary ∂Ω, the function g interpolates f when
f is continuous. Figure 2 shows two examples of the mean
value interpolant g on a circular domain. In previous papers,
g was derived from the mean value property of harmonic
functions. In this paper we take a different viewpoint in order
to generalize to Hermite interpolation. We claim that at a
fixed point x ∈ Ω, the value g(x) is the unique minimizer
a = g(x) of the local ‘energy’ function

E(a) =
Z

S

Z ρ(x,v)

0

(

∂

∂r
F(x+ rv)

)2

dr dv,

where F : Ω → R is the radially linear function,

F(x+ rv) =
ρ(x,v)− r

ρ(x,v)
a+

r

ρ(x,v)
f (p(x,v)),

v ∈ S, 0 ≤ r ≤ ρ(x,v).
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To see this observe that

∂

∂r
F(x+ rv) =

f (p(x,v))−a

ρ(x,v)
,

and therefore,

E(a) =
Z

S

( f (p(x,v))−a)2

ρ(x,v)
dv.

Thus, setting the derivative of E with respect to a to zero
gives

Z

S

f (p(x,v))−a

ρ(x,v)
dv = 0,

and solving this for a gives the solution a = g(x).

2.2. Non-convex domains

An interpretation in terms of functional minimization can
also be made for non-convex domains. Let Ω ⊂ R

n be an
open, not necessarily convex domain. Recall that the inter-
section between a line and a surface is said to be transver-

sal if the line does not lie in the tangent space of the sur-
face at the point of intersection. We will say that a unit vec-
tor v is transversal with respect to x in Ω if all the inter-
sections between {x + rv : r ≥ 0} and ∂Ω are transversal.
For example, in the R

2 case of Figure 3 all unit vectors are
transversal at x except for v1 and v2. If v is transversal, let
µ(x,v) be the number of intersections of {x + rv : r ≥ 0}
with ∂Ω which will be an odd number, assumed finite, and
let p j(x,v), j = 1,2, . . . ,µ(x,v), be the points of intersection,
ordered so that their distances ρ j(x,v) = ‖p j(x,v)− x‖ are
increasing,

ρ1(x,v) < ρ2(x,v) < · · · < ρµ(x,v)(x,v).

For example, for v in Figure 3b, there are three such inter-
sections and so µ(x,v) = 3. We make the assumption that
the set {v ∈ S : v is non-transversal} has measure zero, so
that non-transversal v can be ignored when integrating over
S. The mean value interpolant [DF07, BF] is then

g(x) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1

ρ j(x,v)
f (p j(x,v))dv

/

φ(x),

φ(x) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1

ρ j(x,v)
dv.

We claim that g(x) is now the unique minimizer a = g(x) of

E(a) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1
Z ρ j(x,v)

0

(

q
′
v, j(r)

)2
dr dv,

where, for v ∈ S, 0 ≤ r ≤ ρ j(x,v), and j = 1, . . . ,µ(x,v), qv, j

is the linear polynomial

qv, j(r) =
ρ j(x,v)− r

ρ j(x,v)
a+

r

ρ j(x,v)
f (p j(x,v)).
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Figure 3: (a) Two non-transversal vectors. (b) A transversal

vector with three intersections.

Indeed, similar to the convex case, we find

E(a) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1 ( f (p j(x,v))−a)2

ρ j(x,v)
dv,

and setting E′(a) = 0 gives a = g(x).

3. Hermite interpolation

Having now recast mean value interpolation as the mini-
mization of a radial energy function, we are ready to ex-
plore a possible generalization in which the interpolant also
matches derivative boundary data. Instead of minimizing
over first derivatives of linear polynomials, we now min-
imize over (k + 1)-st derivatives of polynomials of degree
2k +1, for any k = 0,1,2, . . .. Specifically, we want to inter-
polate in Ω a Ck continuous real function f , given its values
and partial derivatives up to order k at the boundary ∂Ω. Fix
x ∈ Ω and let τ be some polynomial in πk(R

n), the linear
space of n-variate polynomials of degree ≤ k. We think of
τ as its own Taylor series at x because we are only inter-
ested in the derivatives of τ up to order k at x. Then, for each
transversal v ∈ S and for j = 1, . . . ,µ(x,v), let qv, j be the

c© 2008 The Author(s)
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univariate polynomial of degree ≤ 2k +1 such that

q
(i)
v, j(0) = D

i
vτ(x), i = 0,1, . . . ,k,

q
(i)
v, j(ρ j(x,v)) = D

i
v f (p j(x,v)), i = 0,1, . . . ,k,

where Dv f denotes the directional derivative of f in the di-
rection v. Then, defining

Ev, j(τ) =
Z ρ j(x,v)

0

(

q
(k+1)
v, j (r)

)2
dr,

we propose to choose τ in πk(R
n) to minimize

E(τ) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1
Ev, j(τ)dv,

and then set

g(x) = τ(x). (1)

This procedure defines, in a pointwise fashion, a function
g : Ω → R. In general, the minimization will yield a dif-
ferent polynomial τ at each x and so g will not itself be a
polynomial.

Several questions arise, the main ones being

1. does the minimization have a unique solution τ, so that g

is well-defined, and
2. do the derivatives of g up to order k match those of f on

∂Ω?

Considering first the univariate case, n = 1, it is well
known that among all piecewise Ck+1 functions q on a real
interval (a,b) that match derivatives up to order k of a given
function f at a and b, the unique minimizer of the energy

Z b

a
(q(k+1)(x))2

dx

is the polynomial Hermite interpolant to f of degree at most
2k + 1. Thus when n = 1 and Ω = (a,b), we see that g, de-
fined by (1), will simply be the Hermite polynomial inter-
polant to f of degree ≤ 2k + 1. Thus the answer to both
questions is ‘yes’ when n = 1. We are not able to answer
them for general n, however. Instead, in the rest of the pa-
per, we focus on the case k = 1 and we show that there is a
unique minimizer for all n. We cannot yet show that g really
interpolates the derivatives of f of order 0 and 1, but we can
show that if f is a cubic then g = f , in which case it trivially
interpolates, and numerical examples in R

2 strongly suggest
that it interpolates any f when n = 2.

In the case k = 1, we can express any polynomial τ ∈
π1(R

n) in the form

τ(y) = a+(y−x) ·b,

for some a ∈ R and b = (b1, . . . ,bn)
T ∈ R

n and then qv, j is
the cubic polynomial such that

qv, j(0) = a, qv, j(ρ j(x,v)) = f (p j(x,v)),

q
′
v, j(0) = v ·b, q

′
v, j(ρ j(x,v)) = Dv f (p j(x,v)).

Then, Ev, j and E can be viewed as functions of a and b, and
the task is to find a ∈ R and b ∈ R

n to minimize

E(a,b) =
Z

S

µ(x,v)

∑
j=1

(−1) j−1
Ev, j(a,b)dv, (2)

where

Ev, j(a,b) =
Z ρ j(x,v)

0

(

q
′′
v, j(r)

)2
dr, (3)

and set g(x) = a. In turns out that E has a unique minimizing
pair (a,b). In order to show this and to compute a we begin
with a lemma.

Lemma 1 Let q be the cubic polynomial such that

q(0) = f0, q
′(0) = m0, q(h) = f1, q

′(h) = m1,

for some h > 0, and let

E =
Z h

0
(q′′(x))2

dx. (4)

Then, with ∆ f0 = f1 − f0,

E = 12
(∆ f0)

2

h3 −12
(∆ f0)(m0 +m1)

h2 +4
m2

0 +m0m1 +m2
1

h
.

Proof Using the Bernstein polynomials

B
k
i (u) =

(

k

i

)

u
i(1−u)k−i, k ≥ 0, 0 ≤ i ≤ k,

we can express q in the Bernstein form

q(x) =
3

∑
i=0

ciB
3
i (x/h)

where

c0 = f0, c1 = f0 +M0, c2 = f1 −M1, c3 = f1,

and Mi = hmi/3. Then

q
′′(x) =

6
h2

1

∑
i=0

∆2
ciB

1
i (x/h),

where

∆2
ci = ci+2 −2ci+1 + ci,

and squaring and integrating over [0,h] yields

E =
12
h3

(

(∆2
c0)

2 +∆2
c0∆2

c1 +(∆2
c1)

2).

Then, since

∆2
c0 = ∆ f0 −2M0 −M1, ∆2

c1 = −∆ f0 +M0 +2M1,

a simple calculation gives

E =
12
h3

(

(∆ f0)
2 −3(∆ f0)(M0 +M1)+

3(M2
0 +M0M1 +M

2
1)
)

,

which gives the result.

c© 2008 The Author(s)
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We can now apply Lemma 1 to give a formula for
Ev, j(a,b) in (3), using matrix notation. Setting f0 = a, m0 =
v · b, f1 = f (p(x,v)), m1 = Dv f (p(x,v)), and h = ρ(x,v),
gives

Ev, j(a) = a
T

Mv, ja+N
T
v, ja+Pv, j, (5)

where, with the shorthand p := p j(x,v) and ρ := ρ j(x,v),

a =

(

a

b

)

, Mv, j =
2
ρ3

(

6 3ρvT

3ρv 2ρ2vvT

)

,

Nv, j =
4
ρ3

(

−6 f (p)+3ρDv f (p)

−3ρ f (p)v+ρ2Dv f (p)v

)

,

and

Pv, j =
4
ρ3

(

3( f (p))2 −3ρ f (p)Dv f (p)+ρ2(Dv f (p))2
)

.

Substituting (5) into (2) now gives

E(a) = a
T

Ma+N
T

a+P, (6)

where M is the matrix

M =
Z

S

µ(x,v)

∑
j=1

(−1) j−1
Mv, j dv, (7)

and similarly for N and P, and integrating a matrix means
integrating each element. As the set of non-transversal v has
measure zero for each x ∈ Ω, the integration can be achieved
by splitting the integral into a sum over integrals over the re-
gions of S where the number of intersections µ(x,v) is con-
stant.

The matrix M is clearly symmetric and if it is also positive
definite then it is non-singular and the unique minimum of
E is the unique solution a to the equation

Ma = −
1
2

N, (8)

and a can be computed directly from this using Cramer’s
rule. To show that M is positive definite we use the following
lemma.

Lemma 2 If f1 = m1 = 0 in Lemma 1 then E in (4) is non-
increasing in h.

Proof From Lemma 1 we know that

E = 12
f 2
0

h3 +12
f0m0

h2 +4
m2

0

h
,

and computing the derivative with respect to h yields

dE

dh
= −

(

36
f 2
0

h4 +24
f0m0

h3 +4
m2

0

h2

)

= −

(

6
f0

h2 +2
m0

h

)2

≤ 0.

Theorem 1 The matrix M is positive definite.

Proof We first show that aT Ma ≥ 0. To do this, let f = 0.
Then since N = 0 and P = 0, we have

a
T

Ma = E(a).

Since

qv,µ(ρµ(x,v)) = q
′
v,µ(ρµ(x,v)) = 0, (9)

Lemma 2 shows that Ev, j(a) in (3) is non-increasing in j.
Therefore Ev, j(a,b)−Ev, j+1(a,b) ≥ 0 in (2) and so

E(a) ≥
Z

S
Ev,µ(x,v)(a,b)dv ≥ 0.

Thus aT Ma ≥ 0 for all a ∈ R
n+1.

Further, suppose that aT Ma = 0. Then, letting f = 0 again,
we must have

Z

S
Ev,µ(x,v)(a,b)dv = 0,

and hence for each v ∈ S, with µ = µ(x,v), we must have

Ev,µ(a,b) =
Z ρµ(x,v)

0

(

q
′′
v,µ(r)

)2
dr = 0.

Therefore, for each v ∈ S, qv,µ is linear and by (9), qv,µ = 0.
Hence a = 0.

4. Boundary integrals

If a parametric representation of ∂Ω is available, the integrals
in M and N in (6) can be converted to integrals over the pa-
rameters of ∂Ω, in the spirit of [JSW05]. To this end, suppose
that s = (s1, . . . ,sn−1) : D → ∂Ω is a parameterization of the
curve or surface ∂Ω with parameter domain D ⊂ R

n−1. We
will assume that s is a regular parameterization, by which
we mean that s is piecewise C1 and that at every point of
differentiability t = (t1, . . . , tn−1) ∈ D, the first order partial
derivatives Dis := ∂s/∂ti, i = 1,2, . . . ,n−1, are linearly inde-
pendent. Thus, following the notation of [JSW05] and [BF],
their cross product,

s
⊥(t) := det(D1s(t), . . . ,Dn−1s(t))

is non-zero, and is orthogonal to the tangent space at s(t).
We make the convention that s⊥ points outwards from Ω.
Then, considering for example the integrals in M in (7), we
make the substitution p j(x,v) = s(t) in (7), so that

v =
s(t)−x

‖s(t)−x‖
,

and ρ j(x,v) = ‖s(t)−x‖, and then (see [BF]),

dv =
(s(t)−x) · s⊥(t)

‖s(t)−x‖n
dt.

Substituting these expressions into (7), and similarly for N,
gives the boundary representations

M =
Z

D
M̂w(x, t)dt, N =

Z

D
N̂w(x, t)dt, (10)

c© 2008 The Author(s)
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where

w(x, t) =
(s(t)−x) · s⊥(t)

‖s(t)−x‖n+3 ,

and, with the shorthand s := s(t),

M̂ = 2

(

6 3(s−x)T

3(s−x) 2(s−x)(s−x)T

)

,

N̂ = 4

(

−6 f (s)+3Ds−x f (s)
(−3 f (s)+Ds−x f (s))(s−x)

)

.

This provides a way of numerically computing the value of g

at a point x by sampling the surface s and its first derivatives
and applying numerical integration. It also shows that g is
C∞ smooth in Ω, due to differentiation under the integral
sign.

5. Cubic precision

We now establish cubic precision (for k = 1 and all n):

Theorem 2 Suppose that f : Ω → R is a cubic polynomial.
Then g = f in Ω.

Proof Fix an arbitrary x ∈ Ω and let â := f (x) and b̂ :=
∇ f (x). We will show that E(â, b̂) ≤ E(a,b) for all a ∈ R

and b ∈ R
n and hence g(x) = â = f (x).

Let ev, j : [0,ρ j(x,v)] → R be the cubic polynomial defined
by ev, j(r) = qv, j(r)− f (x+ rv). Then

q
′′
v, j(r) =

∂2

∂r2 f (x+ rv)+ e
′′
v, j(r)

and so

Ev, j(a,b) =
Z ρ j(x,v)

0

(

∂2

∂r2 f (x+ rv)

)2

dr+

2
Z ρ j(x,v)

0
e
′′
v, j(r)

∂2

∂r2 f (x+ rv)dr+

Z ρ j(x,v)

0

(

e
′′
v, j(r)

)2
dr.

Now
Z ρ j(x,v)

0

(

∂2

∂r2 f (x+ rv)

)2

dr = Ev, j(â, b̂),

and as ev, j is a cubic polynomial and

ev, j(ρ j(x,v)) = e
′
v, j(ρ j(x,v)) = 0,

it follows from Lemma 2 that
µ(x,v)

∑
j=1

(−1) j−1
Z ρ j(x,v)

0

(

e
′′
v, j(r)

)2
dr ≥ 0.

Thus,

E(a,b) ≥ E(â, b̂)+K,

where

K = 2
Z

S

µ(x,v)

∑
j=1

(−1) j−1
Z ρ j(x,v)

0
e
′′
v, j(r)

∂2

∂r2 f (x+ rv)dr dv.

Figure 4: Reproduction of a quadratic polynomial (maximal

absolute error due to numerical integration: 3.4 ·10−8).

We will show that K = 0, which will complete the proof. We
apply integration by parts to the inner integral, giving

Z ρ j(x,v)

0
e
′′
v, j(r)

∂2

∂r2 f (x+ rv)dr

= ev, j(0)D3
v f (x)− e

′
v, j(0)D2

v f (x)

= (a− â)D3
v f (x)− (v · (b− b̂))D2

v f (x).

Then, since this expression is independent of j, and recalling
that µ(x,v) is odd we deduce that

K = 2

(

(a− â)
Z

S
D

3
v f (x)dv− (b− b̂) ·

Z

S
D

2
v f (x)vdv

)

.

But both integrals in this expression are zero since

D
2
−v f (x) = D

2
v f (x) and D

3
−v f (x) = −D

3
v f (x).

6. Numerical Examples

We conclude the paper with some numerical examples of the
minimizing C1 Hermite interpolant g in R

2. All of these ex-
amples were computed using Cramer’s rule to find the value
of a in (8). The elements of M and N were found using the
boundary formula (10) and adaptive numerical integration
with a relative tolerance.

Figure 4 shows g on the unit disk in the case that f (x,y) =
r2 sin2θ, with polar coordinates x = r cosθ and y = r sinθ.
As predicted by Theorem 2, g is numerically equal to f in
this case, since f is the quadratic polynomial f (x,y) = 2xy.
In this example, the Hermite interpolant g is only slightly
different to the mean value interpolant to the Lagrange data
from f shown in Figure 2.

Figure 5 shows g on a non-convex domain with a hole,

c© 2008 The Author(s)
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Figure 5: Interpolant (top) and part of the error function

(bottom) for a non-convex domain with hole and cusp.

with f given by f (x,y) = sin(y)cos(2x). The interpolant g

behaves nicely even though there is a cusp at the leftmost
point of the boundary. The error between g and f near the
boundary of the hole is shown in the lower part of Figure
5. The error function is cut open to demonstrate numerically
that both the error and its gradient are zero at the boundary.
Figure 9 shows further numerical evidence of the Hermite
interpolation property of g. The errors in g along the x-axis
are plotted for three different functions f on the unit circle.

Figure 6 compares the minimizing Hermite interpolant g

with the Hermite interpolant of [DF07] on the unit circle
with f (x,y) = r2 sin4θ. The top left shows the interpolant
of [DF07] and the bottom left its error function. The right
part of the figure shows g on the top and its error function
at the bottom. Note that both error functions are tangentially
zero at the boundary.

In Figure 7 we use the interpolant for hole filling, with a
circular hole, and with f (x,y) = cosr. In the top f is shown
together with the boundary of the hole that is cut out. Then
the Hermite interpolant of [DF07] is shown, and at the bot-
tom the minimizing interpolant g.

Figure 8 shows another example of the nice behaviour of

Figure 6: Comparison between interpolants (top) and errors

(bottom) of the interpolant of [DF07] (left) and the minimiz-

ing interpolant g (right).

Figure 7: Hole filling with circular boundary. From top to
bottom: original function, interpolant of [DF07], minimiz-

ing interpolant.
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Figure 8: Hole filling with a piecewise smooth boundary.

g(x)− f (x)

−.2

−.1

0

.1

x
−1.0 −0.5 0.0 0.5 1.0

Figure 9: Errors along the x-axis (y = 0) for different f , with

the unit circle as domain.

the minimizing interpolant g for hole filling with the same
function f but with a more complicated boundary.
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