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POINTWISE THEOREMS FOR AMENABLE GROUPS

ELON LINDENSTRAUSS

(Communicated by Yitzhak Katznelson)

Abstract. In this paper we describe proofs of the pointwise ergodic theo-
rem and Shannon-McMillan-Breiman theorem for discrete amenable groups,
along Følner sequences that obey some restrictions. These restrictions are mild
enough so that such sequences exist for all amenable groups.

1. Introduction

The classical ergodic theory deals with measure preserving Z actions. Since the
50’s, it has become increasingly clear that most of the results of the classical ergodic
theory can be extended to actions of amenable groups, including such deep results
as the isomorphism theorem for Bernoulli systems ([7]).

It is surprising, therefore, that two basic theorems of ergodic theory, the L1-
pointwise ergodic theorem and the Shannon-McMillan-Breiman theorem were not
known for general amenable groups, even for the case of discrete groups considered
here. While we consider only countable groups, the techniques we develop work
also for general locally compact amenable groups. In addition, these techniques
can be used to prove additional theorems on pointwise convergence. In the rest of
this paper, all groups are assumed to be countable and discrete.

Amenability has many equivalent formulations; for us, the most convenient def-
inition is that a discrete group G is amenable if for any finite K ⊂ G and δ > 0
there is a finite set F ⊂ G such that

|F 4 kF | < δ|F | for all k ∈ K.

Such a set F will be called (K, δ)-invariant. A sequence F1, F2, . . . of finite subsets
of G will be called a Følner sequence if for every K and δ > 0, for all large enough
n we have that Fn is (K, δ)-invariant. To avoid uninteresting complications, we
assume |Fn| ≥ n.

Suppose now that G acts from the left by measure preserving transformations
on a Lebesgue space (X,B, µ) with µ(X) = 1. For simplicity we assume the G
action to be ergodic, i.e., that there are no nontrivial G-invariant functions on X
(this is not a real restriction, since we can always decompose the measure µ into its
ergodic components). We recall the Mean Ergodic Theorem for amenable groups;
this theorem can be easily proved by the same methods that work for Z actions.
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Theorem 1.1. If G is amenable, and acts ergodically on (X,B, µ), then for any
f ∈ L1(µ), and Følner sequence Fn,

A(Fn, f)(x) −→
n→∞

∫
f(x)dµ(x) in L1,

where A(F, f)(x) denotes the average

A(F, f)(x) =
1
|F |

∑
g∈F

f(gx).

The obvious pointwise analogue of this fails, even for G = Z. Indeed, let

Fn = {n2, n2 + 1, . . . , n2 + n}.
Then it is not hard to find ergodic systems (X,B, µ) and functions f ∈ L∞(µ)
such that A(Fn, f)(x) does not have a limit almost everywhere (in fact, in [4] it is
shown that for every nontrivial (X,B, µ) there is such an f ∈ L∞(µ)). Thus one
needs to impose some clever condition on the Følner sequence to have pointwise
convergence. We shall use the following condition introduced in [10]:

Definition 1.2 (A. Shulman). A sequence of sets Fn will be said to be tempered
if for some C > 0 and all n,∣∣∣ ⋃

k≤n

F−1
k Fn+1

∣∣∣ ≤ C|Fn+1|.(1.1)

Shulman proved that along such sequences, the maximal ergodic theorem holds
for functions f ∈ L2. An accessible source is [12, Section 5.6]; the relevant theorem
is Corollary 6.2 there.

Our main results are the following:

Theorem 1.3 (Pointwise Ergodic Theorem). Let G be an amenable group acting
ergodically on a measure space (X,B, µ), and let Fn be a tempered Følner sequence.
Then for any f ∈ L1(µ),

lim
n→∞A(Fn, f)(x) =

∫
f(x)dµ(x) a.e.

We remark that the case of f ∈ L2 follows from Shulman’s result.

Theorem 1.4 (Generalized Shannon-McMillan-Breiman Theorem). Let P be a fi-
nite partition, and assume that G is an amenable group acting ergodically on a
measure space (X,B, µ). Let h(P) denote the entropy of this process. Assume that
Fn is a tempered sequence of Følner sets. Then for almost every x,

− log(µ(PFn(x)))
|Fn| → h(P) as n →∞.

The entropy of a process is defined in Section 4; an alternative point of view is
that the Shannon-McMillan-Breiman theorem asserts that the above limit exists
and is constant a.e., and then we can define the entropy to be this limit. We re-
mark that even though we consider here only finite partitions, in [6] there is a simple
argument showing that the pointwise ergodic theorem and the Shannon-McMillan-
Breiman theorem for finite partitions imply the Shannon-McMillan-Breiman theo-
rem for countable partitions.

A basic ingredient in many proofs of the pointwise theorems in Z and more
general groups is a version of the Vitali Covering Theorem. This is used to show
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that from a collection F̄ of right translates of certain sets F1, . . . , FM that cover
most of a big set F ⊂ G it is possible to extract a disjoint subcollection that covers
some fixed fraction of the elements of F (the sets F1, . . . , FM are assumed to be
much smaller than F ). For this to work, one needs that the sets Fn satisfy the
Tempelman condition

|F−1
n Fn| ≤ C|Fn|.

The basic new idea in our proof is to treat the subcollections of F̄ as random
variables. What we show in Lemma 2.3 is that it is possible to find a distribution
on the subcollections of F̄ so that usually the subcollection is almost disjoint and
covers most of F , and that these random subcollections cover F more or less evenly.

A considerable number of papers (e.g. [11], [2], [5]) have been written about
pointwise theorems along increasing Følner sequences satisfying the Tempelman
condition; a similar result can be found also in [1]. Shulman proved the pointwise
ergodic theorem for not necessarily increasing Følner sequence satisfying a modified
form of Tempelman’s condition, and also the maximal ergodic theorem for f ∈ L2

along tempered sequences mentioned earlier. Shulman proves these results using
a functional analysis argument; they can be found in [12, Section 5.6], or in [10].
Finally we remark that for f ∈ L1+ε, the pointwise ergodic theorem is known for
all connected locally compact amenable groups G. The proof in this case makes
use of the fact that such groups can be approximated by Lie groups. See [3] or [8,
Chapter 5].

Though superficially similar to (1.1), Tempelman’s condition is much stronger.
In particular, there seems to be no reason that a general amenable group have Følner
sequences satisfying the Tempelman condition. On the other hand the following is
easy:

Proposition 1.5. Every Følner sequence Fn has a tempered subsequence. In par-
ticular, every amenable group has a tempered Følner sequence.

Proof. Let Fn be a Følner sequence. We define ni inductively as follows. We
start with n1 = 1. If n1, . . . , ni have been determined, we set F̃i =

⋃
j≤i Fnj , and

take ni+1 to be large enough so that Fni+1 is
(
F̃−1

i , 1/|F̃i|
)
-invariant. A simple

calculation shows that ∣∣∣⋃
j≤i

F−1
nj

Fni+1

∣∣∣ < 2|Fni+1 |,

so the sequence Fni satisfies (1.1) with C = 2.

Conversely, one can show that for any group G, if Fn is a tempered sequence of
sets such that

⋃∞
n=1 Fn is not too small (for example, if it is equal to G), then Fn

is automatically a Følner sequence, and hence G is amenable.
These results are part of the author’s PhD thesis, conducted under the guidance

of Prof. B. Weiss, from whom I learned all I know on amenable groups. I wish to
thank him for many beneficial discussions and helpful suggestions. I would also like
to thank A. Tempelman for pointing out A. Shulman’s result.

2. Random selection of Følner sets

In this section we describe ways to choose in a random way a subcollection of
sets from a given collection. This method will be used as a substitute for the
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Vitali covering argument, which is often used (sometimes implicitly) in proving the
pointwise ergodic theorem for Zd actions (or, more generally, for actions of discrete
groups with polynomial growth).

We begin with a relatively simple covering lemma needed in the proof of the
Shannon-McMillan-Breiman theorem for amenable groups:

Lemma 2.1. Let δ > 0 be given, and take ε to be small, and M large depending
on δ. Let F̄1, . . . , F̄M ⊂ G be a sequence of finite sets such that∣∣∣⋃

j≤i

F̄−1
j F̄i+1

∣∣∣ < (1 + ε)|F̄i+1|,(2.1)

let F be another finite subset of G (usually much bigger than F̄M ), and, for i =
1, . . . , M , let Ai ⊂ F be a set such that FiAi ⊂ F . Then there are sets B(i, a)
which are either F̄ia or ∅ (with i = 1, . . . , M and a ∈ Ai) such that

(1 + δ)
∣∣∣⋃
i,a

B(i, a)
∣∣∣ ≥ ∑

i,a

|B(i, a)| ≥ min
i
|Ai| − δ|F |.

Lemma 2.1 is a traditional covering lemma, where we extract out of a given
collection of translates of the F̄i’s a single subcollection that covers much of F
and is close to being disjoint. The technique of considering such subcollections as
random variables is used, but only in the proof. This is not the case in the following
lemma, and in addition in this lemma a weaker form of (2.1) is used.

Lemma 2.2. Let δ > 0, and C > 0 be given. Let N ∈ N, and assume that the sets
F̄1, . . . , F̄N satisfy ∣∣∣⋃

j≤i

F̄−1
j F̄i+1

∣∣∣ < C|F̄i+1|.

Let F be a big finite subset of G, and let Aj (for j = 1, . . . , N) be sets such that
F̄jAj ⊂ F . Then it is possible to find set-valued random variables B(j, a) (for
j = 1, . . . , N and a ∈ Aj) such that

1. B(j, a) is either F̄ja or ∅.
2. If we set Λ: F → N to be the random function Λ(g) =

∑
j,a 1B(j,a)(g), then

for all g ∈ F ,

E(Λ(g) | Λ(g) > 0) < (1 + δ).

3. For some γ > 0 that depends on δ and C,

E
(∑

g∈G

Λ(g)
)

= E
(∑

j,a

|B(j, a)|
)

> γ(δ, C)
∣∣∣ N⋃
j=1

Aj

∣∣∣.
The main disadvantage of Lemma 2.2 is that the random subcollection of sets

{B(i, a)} covers only a small percentage of F . By combining Lemma 2.1 and
Lemma 2.2 we can overcome this problem. This combined lemma works with two-
dimensional arrays of Følner sets F̄i,j and possible centers Ai,j . It is also convenient
to add another feature to this covering lemma: a fixed finite set K used to “fatten”
the sets Ai,j . We use the notation (i, j) � (i′, j′) to denote that (i, j) is larger in
lexicographic order than (i′, j′) — i.e., i > i′ or i = i′ and j > j′.

Lemma 2.3. For any δ, C > 0 and finite K ⊂ G, if M is large enough and ε small
enough (depending on all these parameters), the following is true. Suppose that we
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are given an array of finite subsets F̄i,j of G, where i = 1, . . . , M and j = 1, . . . , Ni,
such that ∣∣∣ ⋃

(i′,k′)�(i,k)

F̄−1
i′,k′ F̄i,k+1

∣∣∣ ≤ C|F̄i,k+1| for k = 1, . . . , Ni − 1,

∣∣∣ ⋃
(i′,k′)�(i,Ni)

KF̄−1
i′,k′ F̄i+1,k

∣∣∣ ≤ (1 + ε)|F̄i+1,k| for k = 1, . . . , Ni+1.

We also assume we are given Ai,j ⊂ F (for i = 1, . . . , M and j = 1, . . . , Ni) such
that F̄i,jAi,j ⊂ F and take α so that for all i∣∣∣ Ni⋃

j=1

KAi,j

∣∣∣ ≥ α|F |.

Then it is possible to find set-valued random variables B(i, j, a) (for i = 1, . . . , M ,
j = 1, . . . , Ni and a ∈ Ai,j) such that

1. B(i, j, a) is either F̄i,ja or ∅.
2. If we set Λ: F → N to be the random function Λ(g) =

∑
i,j,a 1B(i,j,a)(g), then

for all g ∈ F ,

E(Λ(g) | Λ(g) > 0) < (1 + δ).

3. Furthermore,

E
(∑

g∈G

Λ(g)
)

= E
(∑

i,j,a

|B(i, j, a)|
)

> (α− δ)|F |.

It is easy to describe explicitly these set-valued random variables — or what is
equivalent, give a randomized algorithm to generate them. We give (without proof)
the randomized algorithm that works for Lemma 2.3; the other lemmas use similar
algorithms.
An algorithm to generate the B(i, j, a)’s:

1. We start with (i, j) := (N, NM ).
2. For every a ∈ Ai,j , we perform the following independently of all other b ∈

Ai,j :
• If F̄i,ja is disjoint from B(i′, j′, a′) for all (i′, j′) � (i, j) and a′ ∈ Ai′,j′ ,

then B(i, j, a) := F̄i,ja with probability ε/|F̄i,j | and ∅ with probability
1− ε/|F̄i,j |;

• otherwise B(i, j, a) := ∅.
3. Unless (i, j) = (1, 1), we replace (i, j) by its immediate predecessor in lexico-

graphic order, and return to step 2.

3. The pointwise ergodic theorem

Once one has proved the covering lemmas, proving pointwise theorems is not
much more difficult than it is for Z. The following proof of the pointwise ergodic
theorem is a typical application of the tools we described in the previous section.

Theorem 3.1. Let G be an amenable group acting ergodically on a measure space
(X,B, µ), and let Fn be a tempered Følner sequence. Then for any f ∈ L1(µ),

lim
n→∞A(Fn, f)(x) =

∫
f(x)dµ(x) a.e.(3.1)
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Proof. It suffices to show that for any f ∈ L1(µ) with f ≥ 0,

lim n→∞A(Fn, f)(x) ≤
∫

f(x)dµ(x) a.e.

Indeed, let g ∈ L1(µ), and take R very large. Then

lim n→∞A(Fn, g)(x) ≤ lim n→∞A(Fn, max(g,−R))(x)

≤
∫

max(g(x),−R)dµ(x) −→
R→∞

∫
g(x)dµ(x).

Applying this also to −g we get (3.1).
Let δ > 0, µ(f) =

∫
f(x)dµ(x). Recall that by assumption, there is a C such

that
∣∣⋃

k≤n F−1
k Fn+1

∣∣ ≤ C|Fn+1| for all n. Assume that for some c > 1, the set

B = {x : lim n→∞A(Fn, f)(x) > cµ(f)}
has positive measure. Take K to be a finite set such that

µ(KB) > 1− δ.

Let ε be small enough and M big enough so that Lemma 2.3 holds for the given δ,
C and K. Take Bn to be

Bn = {x : A(Fn, f)(x) > cµ(f)}.
It is clearly possible to find ai and Ni so that

B′ =
M⋂
i=1

( Ni⋃
j=1

Bai+j−1

)
has measure at least µ(B)− δ/|K|, and so that for every i and t ≥ ai+1,∣∣∣ ⋃

j≤ai+Ni−1

KF−1
j Ft

∣∣∣ < (1 + ε)|Ft|.

We now use the Mean Ergodic Theorem to deduce that if F is an invariant
enough set, for a set of x’s of large measure,

A(F, f)(x) < (1 + δ)µ(f),

and for another set of equally large measure,

A(F, 1KB′)(x) > 1− 3δ;

hence there is at least one x0 satisfying both.
To apply Lemma 2.3, set F̄i,j = Fai+j−1 for i = 1, . . . , M and j = 1, . . . , Ni, and

take

Ai,j = {g ∈ F : A(F̄i,j , f)(gx0) > cµ(f) and F̄i,jg ⊂ F}.
Up to boundary effects which are easily seen to be negligible, every g ∈ F such that
gx0 ∈ KB′ is in

⋃Ni

j=1 KAi,j for every i, hence∣∣∣ Ni⋃
j=1

KAi,j

∣∣∣ ≥ (1− 4δ)|F |.

Let

Λ =
∑
i,j

∑
a∈Ai,j

1B(i,j,a)(g) : F → N
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be a random function as in Lemma 2.3. We estimate

E
( ∑

g∈F

Λ(g)f(gx0)
)

in two ways. By definition of the sets Ai,j , for any a ∈ Ai,j ,∑
g∈B(i,j,a)

f(gx0) > c|B(i, j, a)|µ(f),

and so

E
(∑

g∈F

Λ(g)f(gx0)
)

= E
(∑

i,j,a

∑
g∈F

1B(i,j,a)f(g)
)
≥ cµ(f)E

(∑
i,j,a

|B(i, j, a)|
)

= cµ(f)E
(∑

g∈F

Λ(g)
)
≥ c(1− 5δ)|F |µ(f).

On the other hand,

E
(∑

g∈F

Λ(g)f(gx0)
)

=
∑
g∈F

f(gx0)E(Λ(g))

≤ (1 + δ)|F |A(F, f)(x0) ≤ (1 + δ)2|F |µ(f).

Since δ was arbitrary and c > 1 we get a contradiction.

4. The Shannon-McMillan-Breiman theorem

We begin with some notation. If P is a measurable partition of X , and F ⊂ G,
we set

PF =
∨
g∈F

g−1P .

If x ∈ X , and P is a partition, then P(x) is the unique element of P containing x,
and is called the P-name of x. Like in the previous section, we assume throughout
that G acts ergodically on (X,B, µ).

A process is simply a space (X,B, µ) on which G acts, together with a partition
P of X . The entropy h(P) of the process can be defined in a few equivalent ways.
Our approach to entropy is via name-counting, and our proof follows rather closely
the proof of the classical Shannon-McMillan-Breiman theorem for Z actions given
in [9, Chapter 5]. We recall the definition of the entropy h(P) of a process:

Definition 4.1. For any F ⊂ G and ε > 0, we set

b(F, ε,P) = min{|C| : C ⊂ PF and µ(
⋃
C) > 1− ε}.

Then the entropy h(P) is defined as

h(P) = lim
ε→0

lim n→∞
log b(Fn, ε,P)

|Fn|
where Fn is a Følner sequence for G.

For definiteness, we shall take all our logarithms in base 2. It can be shown that
the entropy does not depend on the Følner sequence used; For simplicity we assume
that Fn is the same Følner sequence for which we want to prove the Shannon-
McMillan-Breiman theorem. For ergodic G actions, this definition is known to be
equivalent to the more usual definition via the entropy function

∑
i−pi log pi.
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Theorem 4.2. Let P be a finite partition, and assume that G is an amenable group
acting ergodically on a measure space (X,B, µ). Assume Fn is a tempered sequence
of Følner sets. Then for almost every x,

− log(µ(PFn(x)))
|Fn| → h(P) as n →∞.

We include a rough sketch of the proof. It is divided into two parts: One first
shows using Lemma 2.1 and the pointwise ergodic theorem (applied to indicator
functions of certain sets) that for any η > 0 there is a sequence of C(n) ⊂ PFn of
cardinality

|C(n)| ≤ 2(h+η)|Fn|

such that for a.e. x for all n large enough,

PFn(x) ∈ C(n).

From this it is easy to deduce that

lim n→∞
− log(µ(PFn(x)))

|Fn| ≤ h(P) + 2η for a.e. x.(4.1)

Indeed, let

Y (n) = {x ∈
⋃
C(n) :

− log(µ(PFn(x)))
|Fn| > h(P) + 2η}.

Since

µ(Y (n)) ≤ |C(n)| × 2−(h+2η)|Fn| ≤ 2−η|Fn|,

we have that
∑∞

n=1 µ(Y (n)) < ∞, hence we can use the Borel-Cantelli lemma to
deduce that a.e. x is not in Y (n) for all n large enough. We already know a.e. x is
eventually in

⋃ C(n), hence (4.1) is established.
For the other direction, we show using Lemma 2.3 that if for a set of positive

measure of x’s,

lim n→∞
− log(µ(PFn(x)))

|Fn| < h(P)− 2η,

then for any δ > 0, if F is invariant enough, there is a set X ′ of measure 1− δ such
that for any x ∈ X ′ there is a collection F(x) = {Fniai}i∈I , satisfying the following
conditions:

1. ni ≥ δ−1 and Fniai ⊂ F for all i;
2. µ(PFni (aix)) > 2(h(P)−2η)|Fni

|;
3. (1 + δ)

∣∣⋃
i∈I Fniai

∣∣ ≥ ∑
i∈I |Fni | ≥ (1− δ)|F |.

One now simply counts the number of PF -names needed to cover X ′. This turns
out to be smaller than 2(h(P)−η)|F | as long as δ is smaller than some function of η.
Returning to the definition of entropy, we see that

h(P) = lim
ε→0

lim n→∞
log b(Fn, ε,P)

|Fn| ≤ h(P)− η,

a contradiction.
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