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Poiseuille flow to measure the viscosity of particle model fluids
J. A. Backer,a! C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema
Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166,
1018 WV Amsterdam, The Netherlands

sReceived 27 December 2004; accepted 4 February 2005; published online 15 April 2005d

The most important property of a fluid is its viscosity, it determines the flow properties. If one
simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is
a collective property. In this article we describe a new method that has a better signal to noise ratio
than existing methods. It is based on using periodic boundary conditions to simulate counter-flowing
Poiseuille flows without the use of explicit boundaries. The viscosity is then related to the mean flow
velocity of the two flows. We apply the method to two quite different systems. First, a simple
generic fluid model, dissipative particle dynamics, for which accurate values of the viscosity are
needed to characterize the model fluid. Second, the more realistic Lennard-Jones fluid. In both cases
the values we calculated are consistent with previous work but, for a given simulation time, they are
more accurate than those obtained with other methods. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1883163g

I. INTRODUCTION

The viscosity of a fluid is the main parameter that deter-
mines its flow characteristics. Realistic fluids, for which the
rheological behavior is of intrinsic interest, can be simulated
with particle models, notably molecular dynamicssMDd.1

Recently, the idea of using simpler particle models, intended
to reproduce hydrodynamic behavior, has also been applied
in an attempt to overcome the time scale limitations inherent
in molecular dynamics.2–4 In these simple model fluids the
viscosity generally has to be measured because sufficiently
accurate theoretical expressions are lacking.5 That is, ideally
the viscosity would be an input parameter but in practice the
simulation must be “calibrated”. There are several methods
available to calculate viscosity, all with their relative advan-
tages and disadvantages. In this article we describe a novel
method that we show is advantageous in some circum-
stances. We begin with a review of the techniques currently
available.

A division can be made between equilibrium and non-
equilibrium methods. In the first the simulated system is first
equilibrated and subsequently remains in equilibrium. The
viscosity is then calculated from the stress–stress autocorre-
lation function through the Green–Kubo relation.1 Because
the system is in equilibrium, simple periodic boundary con-
ditions are adequate. Furthermore, the shear rate is by defi-
nition zero, so one is automatically in the linear regime.
These facts make this method very appealing, but unfortu-
nately the large fluctuations in the equilibrium stress lead to
a poor signal to noise ratio. An alternative equilibrium
method, proposed by Palmer,6 is based on the transverse-
current autocorrelation function. One can extract the viscos-
ity from the decay of this function, if one assumes the hy-
drodynamic prediction for its functional form. This
additional assumption means that it is not obviously prefer-

able to the stress–stress autocorrelation function, although it
is efficient for purely dissipative systems.7 Hess has com-
pared these two equilibrium methods to nonequilibrium
methods in molecular-dynamics simulations.8 His results
show that, despite their undoubted advantages, both equilib-
rium methods suffer from worse statistics than nonequilib-
rium methods.

In nonequilibrium methods the fluid is subjected to an
external perturbation that may be constant or temporally
varying. The properties of the nonequilibrium steady state or
the decay to the equilibrated state are then related to the
viscosity. One example is a periodic perturbation employed
to generate an oscillatory velocity profile,9 depending on the
frequency of the sinusoidal external force. Several measure-
ments at different frequencies and extrapolation to zero-
frequency are required to determine the viscosity. A more
recent method10 imposes a pulsed Gaussian velocity profile
on the system. The decay of the Gaussian peak gives an
estimate of the viscosity. Müller-Plathe obtains a linear ve-
locity profile by cleverly swapping impulses of spatially re-
mote particles.11 The interchanged momentum and the mea-
sured velocities provide the viscosity. More common is the
converse procedure, imposing a linear profile at a fixed shear
rate and measuring the resultant shear stress. This shear flow
method is the underlying principle of most experimental rhe-
ometers. In simulations, however, problems arise at the
boundaries of the simulation domain, as periodic boundary
conditions are not able to maintain a steady linear velocity
profile. Ways around this include stochastic boundary
conditions12 and Lees–Edwards boundary conditions.13 The
latter retain periodicity but alter the position and velocity of
the periodic images. An important advantage of the shear
flow method is the constant shear rate, which enables one to
study the dependence of the viscosity on the shear rate. For
example, the viscosity of a dissipative particle dynamics
sDPDd model of a colloidal suspension was studied using
this approach.14 The shear flow method is also successfullyadElectronic mail: backer@science.uva.nl
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applied to determine the viscosity in stochastic rotational dy-
namicssSRDd models.15 Less widely used is a similar “flow”
method that uses a Poiseuille flow profile. The problem with
this approach is that the boundary condition issues are still
unresolved. Considerable density fluctuations near the sys-
tem boundaries are present in MD simulations,16 SRD
simulations17 as well as DPD simulations.18 Relative to equi-
librium methods extra care is needed when using any non-
equilibrium method. The use of external fields causes vis-
cous heating. The energy supplied to the system causes the
temperature to rise monotonically for a steady perturbation.
In that case a heat sink is required to drain the excess energy,
e.g., through the use of a thermostat. Furthermore, the flow
needs to be in the linear regime and extrapolation to the zero
perturbation limit may be required.

Concluding from the existing literature, the stress auto-
correlation method and the shear flow method are favored in
most particle models to measure the viscosity. In this paper
we propose an improvement of the Poiseuille flow method
by introducing periodicity, that solves the boundary problem.
We compare the new method to the stress autocorrelation
and shear flow method and show its advantages, both in ac-
curacy of the results and in ease of implementation. For the
comparison of the methods, DPD simulations are a useful
tool. Viscous heating is absent because of the built-in ther-
mostat, and DPD fluids exhibit Newtonian behavior over a
large range of parameters.3 The periodic Poiseuille flow
method is not limited to DPD but can also be applied in other
particle models. To illustrate this, we use the same method-
ology to calculate the viscosity of a Lennard-Jones fluid in
an MD simulation. The rest of this paper is organized as
follows. Section II proposes a periodic Poiseuille flow
method. The computational details of the DPD and MD
simulations are given in Sec. III. Section IV first presents and
discusses the results of the new method. Then a comparison
between different techniques at different parameter sets is
made. The section concludes with the results for the MD
simulations. In Sec. V we draw conclusions from the present
work.

II. PERIODIC POISEUILLE FLOW METHOD

Poiseuille flow is obtained by applying a body force,
such as a gravitational force or pressure gradient, to each
particle. For instance, if gravity works in thez direction on a
fluid between two plates in thexy-plane, the resulting flow
field has a linear shear stress profile and a parabolic velocity
profile19

txz= rgzsx − 1
2Dd, s1d

vz =
rgz

2h
sxD − x2d. s2d

In these equationstxz is the shear stress,vz is the veloc-
ity directed parallel to the force,h is the dynamic viscosity,
r is the mass density,gz is the gravitational constant,x is the
position between the two plates, andD is the distance be-

tween the plates. Integration of Eq.s2d with respect tox over
the distance between the platesD gives the system average
of the velocitykvzl

kvzl =
1

D
E

0

D

vzsxddx=
rgzD

2

12h
. s3d

Measurement of this system average directly gives the
viscosity of the fluid. Note that this derivation assumes a
constant density in the simulation domain and a constant
viscosity over varying shear rates. The shear ratedvz/dx
ranges from zero, where the velocity is at a maximum, to a
maximum value where the velocity is zero. So, in contrast to
the shear flow method, this method is not suitable for deter-
mining the shear rate dependent viscosity. It is limited to
fluids in the Newtonian regime.

Periodic boundary conditions are not sufficient, because
they cannot keep the fluid at zero velocity at the edges of the
simulation domain. To circumvent this problem Kauzlarić et
al. implement stochastic boundary conditions18 and Allah-
yarov and Gompper use a bounce back condition.17 How-
ever, in both cases the density profile shows artefacts at the
boundary. An easier solution to this problem is to subdivide
the system into two domains, and apply a body force in the
opposite direction in the two domains. Figure 1 explains this
idea schematically. Because of the periodic boundary condi-
tions the counteracting body forces constrain the fluid at the
positions where the plates would be. Note that to obtain the
system average, the velocityvz has to be measured in the
direction of the external force.

Summarizing, the proposed Poiseuille flow method is
limited to fluids in the linear regime. Despite this drawback it
could have significant advantages over other methods. We
expect a more accurate result compared to the shear flow
method, as the system average of the velocity is less suscep-
tible to noise than the shear stress average. This is because,
in continuum terms, the shear stress is related to a derivative
of the velocity field. The body forces are easily implemented,
and when opposing forces are applied, ordinary periodic
boundary conditions can support the parabolic flow fields.

III. COMPUTATIONAL DETAILS

Three different viscosity measurement techniques, the
stress autocorrelation method, the shear flow method and the
periodic Poiseuille flow method, are compared in simula-
tions. We use dissipative particle dynamicssDPDd, a mesos-
cale particle model that was introduced by Hoogerbrugge

FIG. 1. Schematic representation of the periodic Poiseuille flow method.
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and Koelman3 in 1992 and put on a sounder theoretical foot-
ing by Español and Warren.20 In short, every particle is
meant to represent a fluid element that experiences other
fluid elements within a relatively small cut-off radiusrc.
They are kept in motion by a random force and counteracted
by a drag force depending on the velocity of surrounding
particles. Together these counteracting forces act as a ther-
mostat. All forces are finite and smooth allowing for large
time steps. For details on the algorithm we refer the reader to
Groot and Warren.21 For our purposes DPD has many advan-
tages over other particle methods. Because of the small cut-
off radiusrc, the stress autocorrelation function does not suf-
fer from finite size effects. The thermostat removes the risk
of viscous heating and, due to the large time step, simula-
tions do not take much computation time. Conservative
forces are not needed for this study and will be left out.

Marshet al. derived an estimate for the dynamic viscos-
ity h based on kinetic theory.5 There are two contributions to
the viscosity. The first term is a kinetic contribution originat-
ing from the motion of the individual particles and the sec-
ond term is a dissipative contribution from the energy dissi-
pation between particles

h =
45

2p

skBTd2

s2rc
3 +

p

1575

n2s2rc
5

kBT
. s4d

Heren is the number density,s the noise amplitude that
drives the random force,T the temperature, andkB Boltz-
mann’s constant. Although the trends are well described by
Eq. s4d, the prediction deviates considerably from the actual
viscosity. It can, however, help in the parameter choice. The
viscosity of a liquid is mainly attributed to the dissipative
term, whereas viscosity of a gas is largely determined by the
kinetic contribution. As we are interested in measurements in
the liquid regime, we should choose the parameters accord-
ingly. Equations4d shows that a large noise amplitudes, low
temperaturekBT, and a high number densityn achieve this
objective. We choose the parameters for the base case as
noise amplitudes=4.5, number densityn=6 and tempera-
turekBT=0.5, in units where the particle mass and the cut-off
radiusrc are unity. Furthermore, the time stepDt=0.01 and
the simulation box size is 12rc in x direction and 8rc in y
andz direction. The simulation time after equilibration is 100
time units, but when calculating profiles for the periodic Poi-
seuille flow method one long run of 1000 time units is per-
formed. For the comparison of the viscosity measurement
methods the noise amplitude, number density, and tempera-
ture are varied. We repeat the simulation for each parameter
set for each measurement method 10 times, from which the
average viscosity and standard deviation are calculated.

For the stress autocorrelation function the shear stress in
three directions is calculated at every time step. The maxi-
mum correlation time is set to 20 and the viscosity is calcu-
lated from the average over the last half of the integrated
correlation function, where the stress–stress autocorrelation
function is statistically indistinguishable from zero. The lin-
ear velocity profile required in the shear flow method is
achieved with Lees–Edwards boundary conditions.13 For the
shear flow method as well as the Poiseuille flow method the
external force must be determined. For each parameter set a

test run is performed to get an estimate for the viscosity.
Based on this preliminary viscosity and the requirement for a
small Reynolds numbersRe=rkvzlD /h, here we take Re
=4d the average velocity in the flow direction is calculated.
For the shear flow method the shear velocity is twice this
average velocity. The corresponding body force for the Poi-
seuille flow method is calculated from Eq.s3d. For both flow
methods the estimated velocity profile is imposed on the par-
ticles at the start of the simulation. Measurements take place
every 10 time steps and the velocities are corrected by the
addition of a constant factor every 100 time steps to enforce
the condition of zero total momentum.

The three methods are also used to measure the viscosity
of a Lennard-Jones fluid with molecular dynamics at con-
stant NVT.1,22 In contrast to the DPD simulations, only one
state point is considered, at a reduced1 number densityn
=0.8442 and reduced temperatureT=0.722. The cut-off ra-
dius for the Lennard-Jones potential isrc=2.5 and the time
step isDt=0.001. Because two of the methods involve an
external force, a thermostat is required to keep the tempera-
ture constant. The DPD thermostatsi.e., the random and dis-
sipative forcesd can be used for this purpose,23 but we choose
the Lowe–Andersen thermostat24 instead. This avoids any
time step dependence of the temperature. The collision pa-
rameter isG=20 and the cut-off radius for the thermostat is
rc

th=1.1. As this thermostat enhances viscosity, the system in
equilibrium for the stress autocorrelation method must also
be thermostatted. In this way we can compare the results of
the three methods. For the stress autocorrelation method the
average of the Green–Kubo integral from 10 to 30 time units
is taken to determine the viscosity. For the shear flow method
the shear velocity isVshear=0.04 and for the periodic Poi-
seuille flow method the body force isgz=0.02. These exter-
nal forces result in a maximum velocity well below the ki-
netic velocities. The simulation domain is a relatively large
cube of volume 163. The simulations are run for 200 time
units after an equilibration time of 50 time units and repeated
ten times.

IV. SIMULATION RESULTS AND DISCUSSION

In this section we first examine the DPD results of the
periodic Poiseuille flow method for the base case. Next, we
compare the DPD results of the stress autocorrelation
method, the shear flow method and the periodic Poiseuille
flow method over a range of parameters. Finally, we compare
the three methods for determining the viscosity of a Lennard-
Jones fluid at one state point.

A. Results of the periodic Poiseuille flow method

A long simulation for the base case parameterssn
=6, s=4.5, and kBT=0.5d and an external force ofgz

=0.055 allows us to determine the profiles of various prop-
erties to assess the periodic Poiseuille flow method in detail.
The density profile, shown in Fig. 2, is uniform except for
statistical fluctuations. Density artefacts as found in other
implementations of the Poiseuille flow17,18 are absent in our
method, as is required for a bulk Poiseuille flow.

154503-3 Viscosity of particle model fluids J. Chem. Phys. 122, 154503 ~2005!
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The difference between the particle velocities and the
local velocity based on the instantaneous viscosity is mea-
sured to plot the temperature profile. The measured tempera-
ture was 2% lower than the input value, because the time
step ofDt=0.01 proved to be too large for the thermostat to
work properly. This is a well known artefact of the simple
DPD algorithm,5,25 which is resolved in the Lowe–Andersen
thermostat.24 To distinguish between the effect of a large
time step and viscous heating, the same simulation was per-
formed with a smaller time step ofDt=0.001. The resulting
temperature profile is shown in Fig. 3. Although the shape of
a parabolic profile is present, the deviations from the input
value are sufficiently small to neglect viscous heating.

The measured velocity profile is shown in Fig. 4 together
with the parabolic flow fieldfEq. s2dg based on the measured
viscosity. To within an accuracy of 0.1% the profile agrees
with the analytic laminar Poiseuille flow field. This justifies
the use of the average velocity as a means to calculate the
viscosity fEq. s3dg.

The shear stress is determined from the pair interactions
and particle velocities.1 In Fig. 5 we show that the shear
stress profile is linear in accordance with Eq.s1d, and shows
a sudden change at the extreme values due to the switch of
the direction of the external force. The deviations from the
theoretical stress profile are not statistically significant.

The measured viscosity ish=2.09±0.02, based on the
overall average of the velocity. To test whether this viscosity

is constant over all shear rates, i.e., whether the liquid is in
the Newtonian regime, we determine the viscosity as a func-
tion of the shear rate. From the velocity profile the local
velocity gradient at each position is computed from the ve-
locities of the two neighboring data points. As the slope of
the parabolic profile is a linear function of the position, this
procedure should be sufficiently accurate. For a Newtonian
fluid the ratio of the measured shear stress and the local
velocity gradient gives the local viscosity. This is plotted
against the local shear rate in Fig. 6. The viscosity is equal to
the measured overall viscosity for high and intermediate
shear rates. The scatter at low shear rates reflects the larger
numerical errors due to the small values for both the shear
stress and the velocity gradient. This results in a large error
in their ratio. Given this, we find no evidence that the fluid is
not Newtonian. It should be emphasized again that this is not
a way to measure shear rate dependent viscosities. If the
viscosity is not constant, the measured average velocity will
in fact reflect the effects of the spatially varying viscosity.

B. Comparison of viscosity measurement techniques
in DPD

We calculate the viscosities for different parameter sets
with the three different methods. Figure 7 shows the viscos-
ity with error bars as a function of density. The measured
averages of the three methods agree well within their error
bars, but the size of the error bars differs greatly. As ex-

FIG. 2. Density profile for periodic Poiseuille flow method: Measured pro-
file ssolid lined and theoretical valuesdashed lined.

FIG. 3. Temperature profile for periodic Poiseuille flow method: Measure-
mentsssolid dotsd and theoretical valuesdashed lined.

FIG. 4. Velocity profile for periodic Poiseuille flow method: Measured pro-
file ssolid lined and theoretical valuesdashed lined.

FIG. 5. Shear stress profile for periodic Poiseuille flow method: Measure-
mentsssolid dotsd and theoretical valuesdashed lined.
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pected, the stress autocorrelation method is the least accu-
rate. Of the two flow methods the periodic Poiseuille flow
method gives the better results. The error bars of these two
methods do not change significantly over the density range,
because the simulations are performed at similar Reynolds
numbers.

The viscosity as a function of noise amplitude, plotted in
Fig. 8, also shows that the averages from all methods are in
agreement. Again the error bars of the shear flow method are
smaller than for the autocorrelation method, but larger than
for the Poiseuille flow method. The accuracy of the stress
autocorrelation method deteriorates with increasing noise
amplitude. This is because the dissipation in the system in-
creases and the fluctuation in the stress measurements is
mainly due to the dissipative part. This effect is not apparent
for the shear flow method, as the collective motion domi-
nates the chaotic motion of the particles. The error bars do
not change due to the constant Reynolds number. For the
periodic Poiseuille flow method the standard error shows no
discernible trend.

The measured viscosities at different temperatures in
Fig. 9 agree within the statistical accuracy for the three meth-
ods. The stress autocorrelation method gives poor results at
low temperatures, but gains in accuracy with increasing tem-
perature. The cause is the smaller role of the dissipation in

the stress measurements, as explained above. Again, the error
bars of the flow methods are not affected by the change in
temperature. The most accurate over all temperatures is the
periodic Poiseuille flow method.

A comparison between the methods is made, based on
the average accuracy of all parameter sets. We estimate that
the periodic Poiseuille flow method is 10 times as accurate as
the shear flow method and 30 times as accurate as the stress
autocorrelation method. Of course these ratios depend on the
parameter set and are only mentioned to illustrate the dispar-
ate relative performance. A more significant measure to com-
pare the methods is the number of measurements needed to
arrive at a result within a certain confidence interval. To this
end we performed 100 independent simulations with the base
case parameters for each measurement method. The 100 vis-
cosity results are grouped in sets ofN measurements, where
N ranges from one to ten. The average deviation of the sets
from the overall average is plotted in Fig. 10 as a function of
set sizeN. The figure shows that a single measurement of the
autocorrelation method can deviate 30% from the actual vis-
cosity, i.e., the average of 100 measurements. Even ten mea-
surements lead to an average that is unacceptably inaccurate.
The shear flow method does achieve acceptable results but
requires multiple measurements, while for the periodic Poi-

FIG. 6. Viscosity as a function of shear rate: Measurementsssolid dotsd and
value based on the average velocity measurementssolid lined.

FIG. 7. Viscosity as a function of density, measured with stress autocorre-
lation function ssd, shear flow methodshd and periodic Poiseuille flow
methodsnd; symbols are horizontally shifted for clarity purposes.

FIG. 8. Viscosity as a function of noise amplitude, measured with stress
autocorrelation functionssd, shear flow methodshd and periodic Poiseuille
flow methodsnd; symbols are horizontally shifted for clarity purposes.

FIG. 9. Viscosity as a function of temperature, measured with stress auto-
correlation functionssd, shear flow methodshd and periodic Poiseuille flow
methodsnd; symbols are horizontally shifted for clarity purposes.
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seuille flow method all single measurements are within a
98% confidence interval. Thus, even one short simulation is
sufficient to achieve accurate results.

C. Comparison of viscosity measurement techniques
for a Lennard-Jones fluid

Finally, we test the three methods on a Lennard-Jones
fluid at a reduced density ofn=0.8442 and reduced tempera-
ture ofT=0.722. At this state point, Meieret al.collected the
results of several studies.26 They report viscosities ranging
from 2.7 to 4.0, depending on measurement technique, simu-
lation time and system size. Our results are as follows:

sid Stress autocorrelation method:h=3.7±1.2;
sii d shear flow method:h=3.4±0.8;
siii d periodic Poiseuille flow method:h=3.4±0.2,

well within the range quoted in Ref. 26. The average viscosi-
ties of the three methods are in agreement. As expected the
stress autocorrelation method gives the least accurate results,
while the periodic Poiseuille flow method is four times as
accurate as the shear flow method. This example illustrates
that the periodic Poiseuille flow method is not only limited to
simple fluid models, but is applicable to realistic systems as
well. The latter often involve long simulation times, that can
be reduced considerably by our more accurate method. We
should point out though, that the nonuniform shear stress
means the method is restricted to the Newtonian regime.

V. CONCLUSION

The Poiseuille flow method to measure the viscosity in a
particle model is improved, guaranteeing a flat density pro-

file throughout the simulation domain. Shear stress measure-
ments are not required, as the system average of the velocity
in the flow direction directly provides the viscosity of the
fluid. Moreover, the application of opposing external forces
enables the use of ordinary periodic boundary conditions.

Series of DPD simulations were performed to measure
the viscosity with the stress autocorrelation method, the
shear flow method and the periodic Poiseuille flow method.
The methods give comparable results for the average of the
measured viscosity, but the accuracy differs greatly. Being an
equilibrium method, the stress autocorrelation method is the
least accurate. The periodic Poiseuille flow method gives the
best results, roughly ten times as accurate as the shear flow
method. Also for a Lennard-Jones fluid our method proves to
be advantageous. Thus, the periodic Poiseuille flow method
reduces the computation time needed to determine the vis-
cosity of a particle model fluid.
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of number of measurements for stress autocorrelation methods-s-d, shear
flow methods-h-d and periodic Poiseuille flow methods-n-d.

154503-6 Backer et al. J. Chem. Phys. 122, 154503 ~2005!

Downloaded 18 Jan 2006 to 145.18.135.180. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


