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Poiseuille flow to measure the viscosity of particle model fluids

J. A. Backer,a) C. P. Lowe, H. C. J. Hoefsloot, and P. D. ledema
Van t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166,
1018 WV Amsterdam, The Netherlands

(Received 27 December 2004; accepted 4 February 2005; published online 15 Apjil 2005

The most important property of a fluid is its viscosity, it determines the flow properties. If one
simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is
a collective property. In this article we describe a new method that has a better signal to noise ratio
than existing methods. It is based on using periodic boundary conditions to simulate counter-flowing
Poiseuille flows without the use of explicit boundaries. The viscosity is then related to the mean flow
velocity of the two flows. We apply the method to two quite different systems. First, a simple
generic fluid model, dissipative particle dynamics, for which accurate values of the viscosity are
needed to characterize the model fluid. Second, the more realistic Lennard-Jones fluid. In both cases
the values we calculated are consistent with previous work but, for a given simulation time, they are
more accurate than those obtained with other method20@5 American Institute of Physics
[DOI: 10.1063/1.1883163

I. INTRODUCTION able to the stress—stress autocorrelation function, although it
is efficient for purely dissipative systerﬁsHess has com-
The viscosity of a fluid is the main parameter that deterpared these two equilibrium methods to nonequilibrium
mines its flow characteristics. Realistic fluids, for which themethods in molecular-dynamics simulatidhsdis results
rheological behavior is of intrinsic interest, can be simulatedspow that, despite their undoubted advantages, both equilib-
with particle models, notably molecular dynami®dD)."  rium methods suffer from worse statistics than nonequilib-
Recently, the idea of using simpler particle models, intendegijym methods.
to reproduce hydrodynamic behavior, has also been applied |y nonequilibrium methods the fluid is subjected to an
in an attempt to overcome the time scale limitations inherengyternal perturbation that may be constant or temporally
in molecular dynamic&. In these simple model fluids the yarying. The properties of the nonequilibrium steady state or
viscosity generally has to be measured because sufficientipe decay to the equilibrated state are then related to the
accurate theoretical expressions are lacRifigat is, ideally viscosity. One example is a periodic perturbation employed
the visqosity would be an input parameter but in practice th§y generate an oscillatory velocity profi@epending on the
simulation must be “calibrated”. There are several methodgequency of the sinusoidal external force. Several measure-
available to calculate viscosity, all with their relative advan-ments at different frequencies and extrapolation to zero-
tages and disadvantages. In this article we describe a novgbquency are required to determine the viscosity. A more
method that we show is advantageous in some circumyecent methotf imposes a pulsed Gaussian velocity profile
stances. We begin with a review of the techniques currently, the system. The decay of the Gaussian peak gives an
available. estimate of the viscosity. Muller-Plathe obtains a linear ve-
A division can be made between equilibrium and non-jocity profile by cleverly swapping impulses of spatially re-
equilibrium methods. In the first the simulated system is firsinote particles? The interchanged momentum and the mea-
equilibrated and subsequently remains in equilibrium. Thesyred velocities provide the viscosity. More common is the
vis_cosity is _then calculated from the stress—stress autocor@pnyerse procedure, imposing a linear profile at a fixed shear
lation function through the Green—Kubo relatiecause  ate and measuring the resultant shear stress. This shear flow
the system is in equilibrium, simple periodic boundary con-method is the underlying principle of most experimental rhe-
ditions are adequate. Furthermore, the shear rate is by defimeters. In simulations, however, problems arise at the
nition zero, so one is automatically in the linear regime.poyndaries of the simulation domain, as periodic boundary
These facts make this method very appealing, but unfortugongitions are not able to maintain a steady linear velocity
nately the large fluctuations in the equilibrium stress lead Orofile. Ways around this include stochastic boundary
a poor signal to noise ratio. An alternative equilibrium ¢ongitiond? and Lees—Edwards boundary conditidhhe
method, proposed by Palnféis based on the transverse- |atter retain periodicity but alter the position and velocity of
current autocorrelation function. One can extract the viscosge periodic images. An important advantage of the shear
ity from the decay of this function, if one assumes the hy-fiow method is the constant shear rate, which enables one to
drodynamic prediction for its functional form. This sydy the dependence of the viscosity on the shear rate. For
additional assumption means that it is not obviously preferexample, the viscosity of a dissipative particle dynamics
(DPD) model of a colloidal suspension was studied using
PElectronic mail: backer@science.uva.nl this approacﬁf1 The shear flow method is also successfully
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applied to determine the viscosity in stochastic rotational dy- v
namics(SRD) models™ Less widely used is a similar “flow” T
method that uses a Poiseuille flow profile. The problem with 1-9;
this approach is that the boundary condition issues are still 0"
unresolved. Considerable density fluctuations near the sys-
tem boundaries are present in MD simulatidhsSRD - to.
simulations’ as well as DPD simulation¥.Relative to equi-
librium methods extra care is needed when using any non- -0 Lo
equilibrium method. The use of external fields causes vis- 2D
cous heating. The energy supplied to the system causes the _ _ o

. . . FIG. 1. Schematic representation of the periodic Poiseuille flow method.
temperature to rise monotonically for a steady perturbation.
In that case a heat sink is required to drain the excess energy,
e.g., through the use of a thermostat. Furthermore, the floWveen the plates. Integration of E@) with respect toc over
needs to be in the linear regime and extrapolation to the zere distance between the plat@sgives the system average

perturbation limit may be required. of the velocity (v,
Concluding from the existing literature, the stress auto- 1 (P pg,D?
correlation method and the shear flow method are favored in (v, = —f v(x)dx= ?77 3
0

most particle models to measure the viscosity. In this paper

we propose an improvement of the Poiseuille flow method  peasurement of this system average directly gives the
by introducing periodicity, that solves the boundary problem.yiscosity of the fluid. Note that this derivation assumes a
We compare the new method to the stress autocorrelatiogynstant density in the simulation domain and a constant
and shear flow method and show its advantages, both in aGiscosity over varying shear rates. The shear chtg dx

curacy of the results and in ease of implementation. For th’%anges from zero, where the velocity is at a maximum, to a
comparison of the methods, DPD simulations are a usefyhaximum value where the velocity is zero. So, in contrast to

tool. Viscous heating is absent because of the built-in therhe shear flow method, this method is not suitable for deter-
mostat, and DPD fluids exhibit Newtonian behavior over amining the shear rate dependent viscosity. It is limited to

large range of paramete?sThe periodic Poiseuille flow f,ids in the Newtonian regime.
method is not limited to DPD but can also be applied in other  periodic boundary conditions are not sufficient, because
particle models. To illustrate this, we use the same metho%ey cannot keep the fluid at zero velocity at the edges of the
ology to calculate the viscosity of a Lennard-Jones fluid ingjmylation domain. To circumvent this problem Kauzast
an MD simulation. The rest of this paper is organized asy| jmplement stochastic boundary conditibhand Allah-
follows. Section Il proposes a periodic Poiseuille flow yarov and Gompper use a bounce back conditloHow-
method. The computational details of the DPD and MDeyer, in both cases the density profile shows artefacts at the
simulations are given in Sec. lll. Section IV first presents a”dooundary. An easier solution to this problem is to subdivide
discusses 'Fhe results of _the new m_ethod. Then a comparisqﬁe system into two domains, and apply a body force in the
between different techniques at different parameter sets igpposite direction in the two domains. Figure 1 explains this
made. The section concludes with the results for the MOdea schematically. Because of the periodic boundary condi-
simulations. In Sec. V we draw conclusions from the presentions the counteracting body forces constrain the fluid at the
work. positions where the plates would be. Note that to obtain the
system average, the velocity, has to be measured in the
direction of the external force.
Il. PERIODIC POISEUILLE FLOW METHOD Summarizing, the proposed Poiseuille flow method is
limited to fluids in the linear regime. Despite this drawback it
Poisedille flow is obtained by applying a body force, could have significant advantages over other methods. We
such as a gravitational force or pressure gradient, to eacéxpect a more accurate result compared to the shear flow
particle. For instance, if gravity works in tlzedirection ona  method, as the system average of the velocity is less suscep-
fluid between two plates in they-plane, the resulting flow tible to noise than the shear stress average. This is because,
field has a linear shear stress profile and a parabolic velocityy continuum terms, the shear stress is related to a derivative

profile™® of the velocity field. The body forces are easily implemented,
L and when opposing forces are applied, ordinary periodic
Tyxz= pYX = 3D), (1) boundary conditions can support the parabolic flow fields.
_ ng(XD _ XZ). 2) I1l. COMPUTATIONAL DETAILS

U=
2 . . . .
K Three different viscosity measurement techniques, the

In these equations,, is the shear stress, is the veloc-  stress autocorrelation method, the shear flow method and the
ity directed parallel to the forcey is the dynamic viscosity, periodic Poiseuille flow method, are compared in simula-
p is the mass density, is the gravitational constant,is the  tions. We use dissipative particle dynam{&PD), a mesos-
position between the two plates, abdis the distance be- cale particle model that was introduced by Hoogerbrugge
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and Koelmafin 1992 and put on a sounder theoretical foot-test run is performed to get an estimate for the viscosity.
ing by Espafiol and Warref. In short, every particle is Based on this preliminary viscosity and the requirement for a
meant to represent a fluid element that experiences othemall Reynolds numbe(Re=p(v,)D/7%, here we take Re
fluid elements within a relatively small cut-off radius.  =4) the average velocity in the flow direction is calculated.
They are kept in motion by a random force and counteracteéor the shear flow method the shear velocity is twice this
by a drag force depending on the velocity of surroundingaverage velocity. The corresponding body force for the Poi-
particles. Together these counteracting forces act as a theseuille flow method is calculated from E@®). For both flow
mostat. All forces are finite and smooth allowing for large methods the estimated velocity profile is imposed on the par-
time steps. For details on the algorithm we refer the reader tticles at the start of the simulation. Measurements take place
Groot and WarreA! For our purposes DPD has many advan-every 10 time steps and the velocities are corrected by the
tages over other particle methods. Because of the small cu&ddition of a constant factor every 100 time steps to enforce
off radiusr,, the stress autocorrelation function does not sufthe condition of zero total momentum.
fer from finite size effects. The thermostat removes the risk  The three methods are also used to measure the viscosity
of viscous heating and, due to the large time step, simulaef a Lennard-Jones fluid with molecular dynamics at con-
tions do not take much computation time. Conservativestant NVT>?2 In contrast to the DPD simulations, only one
forces are not needed for this study and will be left out.  state point is considered, at a redutedimber densityn
Marshet al. derived an estimate for the dynamic viscos-=0.8442 and reduced temperatdre0.722. The cut-off ra-
ity » based on kinetic theoﬁf.l'here are two contributions to dius for the Lennard-Jones potentialris=2.5 and the time
the viscosity. The first term is a kinetic contribution originat- step isAt=0.001. Because two of the methods involve an
ing from the motion of the individual particles and the sec-external force, a thermostat is required to keep the tempera-
ond term is a dissipative contribution from the energy dissiture constant. The DPD thermostae., the random and dis-

pation between particles sipative forcescan be used for this purpo&&but we choose
2 5 55 the Lowe—Andersen thermostatinstead. This avoids any
45 (kgT) T NPory . -
N=——03 _ (4)  time step dependence of the temperature. The collision pa-
2m o*ri 1575 kgT rameter isI'=20 and the cut-off radius for the thermostat is

Heren is the number densityr the noise amplitude that rgh:.;.l.' As this thermostat enhances yiscosity, the system in
drives the random forceT the temperature, ank; Boltz- equilibrium for the stress autocorrelation method must also
mann’s constant. Although the trends are well described b€ thermostatted. In this way we can compare the results of
Eq. (4), the prediction deviates considerably from the actuathe three methods. For the ;tress autocorrelation n_1ethod_the
viscosity. It can, however, help in the parameter choice. Th@verage of the Green—Kubo integral from 10 to 30 time units
viscosity of a liquid is mainly attributed to the dissipative 1S taken to determm.e the viscosity. For the shear_ﬂoyv met_hod
term, whereas viscosity of a gas is largely determined by th&1€ shear velocity i8/4,¢,~=0.04 and for the periodic Poi-
kinetic contribution. As we are interested in measurements ifeuille flow method the body force g=0.02. These exter-
the liquid regime, we should choose the parameters accord@l forces result in a maximum velocity well below the ki-
ingly. Equation(4) shows that a large noise amplitudelow netic velocities. The S|mulf':1t|on QOma|n is a relatively !arge
temperaturék T, and a high number density achieve this Cube of volume 1% The simulations are run for 200 time
objective. We choose the parameters for the base case Hglts_ after an equilibration time of 50 time units and repeated
noise amplituder=4.5, number densitp=6 and tempera- €N times.
turekgT=0.5, in units where the particle mass and the cut-off
the simulation box size is 12 in x direction and & iny
andz direction. The simulation time after equilibration is 100 In this section we first examine the DPD results of the
time units, but when calculating profiles for the periodic Poi-periodic Poiseuille flow method for the base case. Next, we
seuille flow method one long run of 1000 time units is per-compare the DPD results of the stress autocorrelation
formed. For the comparison of the viscosity measuremenmethod, the shear flow method and the periodic Poiseuille
methods the noise amplitude, number density, and temperédow method over a range of parameters. Finally, we compare
ture are varied. We repeat the simulation for each parametéhe three methods for determining the viscosity of a Lennard-
set for each measurement method 10 times, from which thdones fluid at one state point.
average viscosity and standard deviation are calculated.

For_the §tres_s autocorrelation functhn the shear stress R Results of the periodic Poiseuille flow method
three directions is calculated at every time step. The maxi-
mum correlation time is set to 20 and the viscosity is calcu- A long simulation for the base case parameténs
lated from the average over the last half of the integrated-6, 0=4.5, and kzT=0.5 and an external force ofy,
correlation function, where the stress—stress autocorrelation0.055 allows us to determine the profiles of various prop-
function is statistically indistinguishable from zero. The lin- erties to assess the periodic Poiseuille flow method in detail.
ear velocity profile required in the shear flow method isThe density profile, shown in Fig. 2, is uniform except for
achieved with Lees—Edwards boundary conditibhor the  statistical fluctuations. Density artefacts as found in other
shear flow method as well as the Poiseuille flow method thémplementations of the Poiseuille fléW'8 are absent in our
external force must be determined. For each parameter setnaethod, as is required for a bulk Poiseuille flow.
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FIG. 2. Density profile for periodic Poiseuille flow method: Measured pro- FIG. 4. Velocity profile for periodic Poiseuille flow method: Measured pro-
file (solid line) and theoretical valuédashed ling file (solid line) and theoretical valuédashed ling

is constant over all shear rates, i.e., whether the liquid is in

The dlfference between_the particle veIQC|t|e_s a_nd thethe Newtonian regime, we determine the viscosity as a func-
local velocity based on the instantaneous viscosity is mea;

. ion of the shear rate. From the velocity profile the local
sured to plot the temperature profile. The measured temper@—eIOCity gradient at each position is computed from the ve-
ture was 2% lower than the input value, because the tim

focities of the two neighboring data points. As the slope of
step 0fAt=0.01 proved to be too large for the thermostat tothe parabolic profile is a linear function of the position, this

v[\)/gr[I; perDirrlly' 522'5 r:s r? .well kr|10v(\;n' ag]efell_ct of t:e dS|mpIe procedure should be sufficiently accurate. For a Newtonian
algoriinm, = which IS resolved In the LOWE-ANCErsen ¢,y e ratio of the measured shear stress and the local

4 .. .
t_hermostaﬁ To_dlstlngwsh_between the e_ffect 9f a large velocity gradient gives the local viscosity. This is plotted
time step and viscous heating, the same simulation was pe

. ) _ 5'gainst the local shear rate in Fig. 6. The viscosity is equal to
formed with a S”.‘a”.er time step .Qﬁ:o'OOl' The resulting he measured overall viscosity for high and intermediate
temperature profile is shown in Fig. 3. Although the shape o

. o L ! hear rates. The scatter at low shear rates reflects the larger
a parabolic profile is present, the deviations from the Inpu"lumerical errors due to the small values for both the shear
value are sufficiently small to neglect viscous heating.

. Lo - stress and the velocity gradient. This results in a large error
The measured velocity profile is shown in Fig. 4 together. vy g

with the parabolic flow fieldEq, (2)] based on the measured in their ratio. Given this, we find no evidence that the fluid is

. . o . not Newtonian. It should be emphasized again that this is not
viscosity. To within an accuracy of 0.1% the profile agrees P g

th th tic lami Poiseuille flow field. This ustifi a way to measure shear rate dependent viscosities. If the
Wi € analylic laminar Foiseuliie tlow Tieid. This justines viscosity is not constant, the measured average velocity will

the use of the average velocity as a means to calculate tqﬁ fact reflect the effects of the spatially varying viscosity.
viscosity[Eqg. (3)].

The shear stress is determined from the pair interactions ) ) ) .

and particle velocitied.In Fig. 5 we show that the shear B Comparison of viscosity measurement techniques
o . . in DPD

stress profile is linear in accordance with Et), and shows
a sudden change at the extreme values due to the switch of We calculate the viscosities for different parameter sets
the direction of the external force. The deviations from thewith the three different methods. Figure 7 shows the viscos-
theoretical stress profile are not statistically significant. ity with error bars as a function of density. The measured

The measured viscosity i§=2.09+0.02, based on the averages of the three methods agree well within their error
overall average of the velocity. To test whether this viscositybars, but the size of the error bars differs greatly. As ex-

0.52 T T T
1 ‘3
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R ] e 5y
051 8 B £
i o 4
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[ e 3 -, ket
£ 05 AT AP S ATIAFORICINT U K. £ 0f "'\x“ .o ]
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FIG. 3. Temperature profile for periodic Poiseuille flow method: Measure-FIG. 5. Shear stress profile for periodic Poiseuille flow method: Measure-
ments(solid dotg and theoretical valuédashed ling ments(solid dotg and theoretical valuédashed ling
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FIG. 6. Viscosity as a function of shear rate: Measuremesutd dotg and FIG. 8. Viscosity as a function of noise amplitude, measured with stress
value based on the average velocity measurertsatid line). autocorrelation functioiO), shear flow method ) and periodic Poiseuille
flow method(A); symbols are horizontally shifted for clarity purposes.

pected, the stress autocorrelation method is the least accu- . .
rate. Of the two flow methods the periodic Poiseuille flowthe stress measurements, as explained above. Again, the error

method gives the better results. The error bars of these twBars of the flow methods are not affected by the change in
methods do not change significantly over the density rangd€mperature. The most accurate over all temperatures is the

because the simulations are performed at similar Reynoldgeriodic Poiseuille flow method. _
numbers. A comparison between the methods is made, based on

The viscosity as a function of noise amplitude, plotted inthe average accuracy of all parameter sets. We estimate that

Fig. 8, also shows that the averages from all methods are ifhe periodic Poiseuille flow method is 10 times as accurate as
agreement. Again the error bars of the shear flow method af&€ shear flow method and 30 times as accurate as the stress
smaller than for the autocorrelation method, but larger thautocorrelation method. Of course these ratios depend on the
for the Poiseuille flow method. The accuracy of the stresfarameter set and are only mentioned to illustrate the dispar-
autocorrelation method deteriorates with increasing nois@te relative performance. A more significant measure to com-
amplitude. This is because the dissipation in the system inPare the methods is the number of measurements needed to
creases and the fluctuation in the stress measurements 8§ive at a result within a certain confidence interval. To this
mainly due to the dissipative part. This effect is not apparengnd we performed 100 independent simulations with the base
for the shear flow method, as the collective motion domi-Case parameters for each measurement method. The 100 vis-
nates the chaotic motion of the particles. The error bars d§OSity results are grouped in setshbfmeasurements, where
not change due to the constant Reynolds number. For thd ranges from one to ten. The average deviation of the sets

periodic Poiseuille flow method the standard error shows nérom the overall average is plotted in Fig. 10 as a function of
discernible trend. set sizeN. The figure shows that a single measurement of the

The measured viscosities at different temperatures jutocorrelation method can deviate 30% from the actual vis-

Fig. 9 agree within the statistical accuracy for the three meth€osity, i.e., the average of 100 measurements. Even ten mea-

ods. The stress autocorrelation method gives poor results trements lead to an average that is unacceptably inaccurate.
low temperatures, but gains in accuracy with increasing temThe shear flow method does achieve acceptable results but

perature. The cause is the smaller role of the dissipation iféquires multiple measurements, while for the periodic Poi-

8 T T T T 6 .‘,' ! j ' ' !
6 L. -
a P |
= (=
z 2
g 4r y 8
Q (%]
@2 2 | % %
> 2+ .
et | %
é - 0 1 n 1 1 1 1
2 4 6 P 10 0.2 0.4 0.6 08 1

density p temperature kT

FIG. 7. Viscosity as a function of density, measured with stress autocorreFIG. 9. Viscosity as a function of temperature, measured with stress auto-

lation function (O), shear flow method[]) and periodic Poiseuille flow correlation function(O), shear flow method 1) and periodic Poiseuille flow
method(A); symbols are horizontally shifted for clarity purposes. method(A); symbols are horizontally shifted for clarity purposes.
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' ' ' ’ ' file throughout the simulation domain. Shear stress measure-
03} . ments are not required, as the system average of the velocity
in the flow direction directly provides the viscosity of the
fluid. Moreover, the application of opposing external forces
0.2} . enables the use of ordinary periodic boundary conditions.
Series of DPD simulations were performed to measure
the viscosity with the stress autocorrelation method, the
0.1} . shear flow method and the periodic Poiseuille flow method.

The methods give comparable results for the average of the
measured viscosity, but the accuracy differs greatly. Being an
e S S N N N A equilibrium method, the stress autocorrelation method is the

0 2 4 6 8 10 - o :
number of measurements least accurate. The per|od.|c Poiseuille flow method gives the
best results, roughly ten times as accurate as the shear flow
FIG. 10. Average deviation of viscosity from average viscosity as a functionmethod. Also for a Lennard-Jones fluid our method proves to
of number of measurements for stress autocorrelation miod, shear o 5qvantageous. Thus, the periodic Poiseuille flow method
flow method(-[J-) and periodic Poiseuille flow methddA-). . . . I
reduces the computation time needed to determine the vis-
acosity of a particle model fluid.

average deviation

seuille flow method all single measurements are within
0 ! . . S
98% confidence interval. Thus, even one short simulation 1Stm, p, Allen and D. J. TildesleyComputer Simulations of Liquid<lar-

sufficient to achieve accurate results. endon Press, Oxford, 1987
23. J. Monaghan, Annu. Rev. Astron. Astrophyg, 543 (1992.
. . . . 3
C. Comparison of viscosity measurement techniques (P-ng-Z)HOOQefbfugge and J. M. V. A. Koelman, Europhys. L&8, 155
1992.

for a Lennard-Jones fluid 4
A. Malevanets and R. Kapral, J. Chem. Phy40, 8605(1999.

Finally, we test the three methods on a Lennard-JonesZC- A. M?rSh G-h Backx, anc; ’\g g( %r;jt, Phys. Rev.5E, 1676(1997.
; ; _ _ B.J. Palmer, Phys. Rev. B9, 359(1994.
Ilwd a]:[Ta_rgc;Léczeitd;?sm: (l:f_O._84‘2[4ﬁ/lal_’l£tl’eldUC”ed :e:jnfhera M. W. Heemels, A. F. Bakker, and C. P. Lowe, Prog. Colloid Polym. Sci.
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" _ . . 1rozzi an . Ciccott, yS. ReV. A .
= +
(") She_ar _ﬂOW r_nethOdn 3.4£0.8; 130, W. Lees and S. F. Edwards, J. Phys.5C1921(1972.
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