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Abstract: In this study, the poisoning effects of cerium oxide (CeO2) as the contaminant on the
performance of proton exchange membrane fuel cells (PEMFCs) are evaluated. An experimental
setup was developed to analyze the performance characteristic (I-V) curves in contaminated and
non-contaminated conditions. Focused ion-beam scanning electron microscopy (FIB-SEM) cross-
section images were obtained as an input for the energy dispersive X-ray (EDX) analysis. The
results of the EDX analysis verified the presence of CeO2 in the contaminated membrane electrode
assembly (MEA), in addition to fluorine and sulfur. EDX analysis also revealed that as a result
of CeO2 contamination, sulfur and fluorine would be distributed all around the MEA, instead of
being only in the membrane. The results illustrate that hydrofluoric acid (HF), sulfuric acid (H2SO4),
and fluorinated polymer fragments are released, which enhance the crossover of the reactant gases
through the membrane, hence reducing the cell’s performance. The I-V characteristic curves proved
that the non-contaminated PEMFC setup had double the performance of the contaminated PEMFC.

Keywords: proton exchange membrane fuel cell (PEMFC); cerium oxide poisoning effect; focused
ion-beam scanning electron microscopy (FIB-SEM); energy dispersive X-ray (EDX); I-V characteristics;
membrane electrode assembly (MEA)

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) are known as efficient electrochem-
ical devices that use hydrogen to generate electricity without greenhouse gas (GHG)
emissions [1]. This environmentally friendly device can be considered an alternative to
conventional fossil fuel-based engines [2]. Compared to other renewable energies such as
solar and wind, which are unstable and intermittent [3], PEMFCs can work continuously in
a stable manner. The required hydrogen for PEMFCs can be provided through different
sources such as integration with electrolyzers [4]. Although the efficiency of this electro-
chemical device is high (around 50–60%), the performance can be further improved by
preventing possible contaminations [5].

Mass transport issues, mitigating reaction sites, and the reduction in the ionic con-
ductivity of ionomers are the main adverse effects of contaminants in the PEMFC [6].
Contaminants endanger the chemical stability of the membrane electrode assembly (MEA),
which should be controlled deliberately to achieve higher durability [7]. Additionally,
different types of contaminants have their specific impacts on the performance of the
PEMFC [8]. PEMFC contaminants can be categorized into fuel impurities, air impurities,
and cationic ions.

Fuel impurities such as CO, CO2, and H2S, which are the results of hydrogen refor-
mation, reduce kinetic reaction rates by involving active sites [9]. Hydrogen sulfide (H2S)
deactivates Pt particles and results in the cell’s degradation. The presence of CO and CO2
result in the occupation of the Pt available surface area, hence lowering the hydrogen
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oxidation reaction (HOR) [10]. The existence of ammonia in natural gas also results in the
formation of NH3 as a fuel impurity, decreasing the ionic conductivity of the catalyst layer
(CL) and the membrane. Bilondi et al. [11] performed a two-dimensional numerical study
to evaluate the impacts of CO as the contaminant. Results indicate that pre-mixing the
hydrogen with 15 ppm of CO can reduce the performance by 30% in 30 min.

The main sources of the air impurities are the exhaust of automobiles and factories
such as nitrogen oxides (NOx), sulfur oxides (SOx), carbon oxides (COx), and ozone [12].
Toluene was also considered an air impurity by Li et al. [13] in different operating conditions
and Pt loadings. EIS measurements indicate that although toluene contamination has a
negligible impact on the membrane resistance, it increases the kinetic and mass transfer
resistances. In another study, Li et al. [14,15] also demonstrated that chlorine can be harmful
both in anodes and cathodes due to blocking active sites of Pt in the CL.

Cationic ions such as Fe3+, Co2+, Cu2+, Ni2+, and Na+ result in the corrosion of
the fuel cell stack. Li et al. [16] evaluated the effects of Co2+ contamination at different
concentrations and operating temperatures. The results indicate that lower temperatures
lead to higher adsorption of Co2+ on the Pt catalyst surface, hence reducing the oxygen
reduction reaction (ORR) rate [17]. Li et al. [18] also showed that 5 ppm of Al3+ and 5 ppm
of Fe3+ reduce the performance by 65 mV in 282 h, and 174 mV in 191 h, respectively.
Jia et al. [19] analyzed the effects of cationic contamination on the mechanical properties
of the Nafion® perfluorosulfonic acid (PFSA) membranes at different temperatures. The
results indicate that the enhancement of water absorption and temperature lead to lower
values of the elastic moduli of the membrane. However, the higher radius of the exchanged
cation results in the higher elastic moduli of the membrane. Although there have been
many studies evaluating the harmful effects of contaminants, further analyses are needed to
consider the resulting microstructural changes and performance degradation in PEMFCs.

Advanced imaging technologies can be used to perform the microstructural analysis
of the PEMFC. The formation of water in the gas diffusion layer (GDL) and the CL has been
analyzed by neutron imaging to improve water management [20]. Minard et al. [21] also
used magnetic resonance imaging (MRI) to predict gas manifold flooding. Although these
imaging techniques are appropriate to detect the formation of water in the cell, focused
ion beam scanning electron microscopy (FIB-SEM) images can be used to provide details
about the microstructure of the MEA [22]. Using FIB-SEM images, energy dispersive X-ray
analysis (EDX) can be applied to detect the existing elements in the microstructure [23].

In this study, CeO2 particles were injected in an experimental setup to evaluate the per-
formance of the PEMFC after and before contamination. As a result of CeO2 contamination,
a sulfonic acid group in the membrane was released and created radical sulfur in the CL,
hence causing higher degradation. The I-V characteristic curves of the contaminated and
non-contaminated systems were compared to show the degrading impacts of excess cerium
particles. Although there have been studies to predict cerium migration during accelerated
tests, further studies are needed to characterize performance using microscope imaging
and experimental tests in the presence of cerium as a contaminant. FIB-SEM cross-section
images were obtained for the contaminated and non-contaminated MEAs followed by
EDX analyses to detect the contaminants. Thus, the novelties of the current study can be
considered as the experimental investigation of the I-V characteristics of the contaminated
and non-contaminated PEMFC in addition to the microstructural analysis using FIB-SEM
and EDX.

2. Materials and Methods

To compare the I-V characteristic curves, an experimental setup was developed based
on Figure 1. Measurements were obtained with cathode and anode flow rates of 7 (nL/min)
and 2.1 (nL/min), respectively, with the corresponding stoichiometric ratio of 2 and 1.4
on the cathode and anode. The back pressure of the gases was also 1 bar gauge pressure,
while the average operating temperature was 75 ◦C. After obtaining the I-V curves of the
PEMFC in the non-contaminated conditions, 4 ppm of CeO2 particles were injected to
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compare the results. It is noteworthy to mention that a complete PEMFC setup similar to
Figure 1 is needed to characterize the impact of any type of contaminant. Different types of
contaminants may be harmful for different parts of a stack. Although the impact of cerium
(IV) contaminants is mainly on the membrane, only ex situ experiments of the membrane to
observe its chemical stability are not enough, and a setup similar to Figure 1 is required to
obtain the characteristic curves. In this study, CeO2 was injected to the system, since CeO2
is more probable to be in the feed gases rather than cerium (IV). Once I-V characteristic
curves of the contaminated and non-contaminated cells are obtained, FIB-SEM cross-section
imaging helps to detect the distribution of the contaminants and the existence of different
elements in the membrane and CL.
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Figure 1. A schematic of the required system to obtain the I-V characteristic curves in contaminated
and non-contaminated PEMFCs.

The samples needed for the microscope imaging were the membrane electrode as-
semblies (MEAs) provided by the 3M company with a thickness of 14 µm and catalyst
loading of 0.25/0.05 on the cathode/anode side. Similar to the membranes with perflu-
orinated sulfonic acid [24] and Nafion [25] membranes that have a sulfonic acid group
(SO3H) in their structure, the exposure of the membranes provided by the 3M company
to the humidified environment or liquid water enhanced the amount of water molecules
associated with each sulfonic acid group. The MEA samples were embedded in a resin
to perform the FIB-SEM cross-section imaging. The resin was a mixture of epoxy em-
bedding medium (diglycidyl ether of bisphenol A) with two different hardeners, DDSA
(2-dodecenylsuccinic anhydride) and MNA (methylnadic anhydride), which were mixed
with DPM-30 [2,4,6-tris(dimethylaminomethyl)phenol] as the accelerator, using 0.4 gr of
cobalt (II) acetylacetonate nanoparticles to improve the contrast of the images; all were
provided by Sigma Aldrich.

The samples were impregnated with the resin under vacuum to be pressurized (3 MPa)
for 20 min, and heated afterward in an oven at 60 ◦C for 12 h. The surfaces for analyses
were cut by a diamond wire, polished by abrasive plates down to 0.1 µm, and gold-coated
(20 nm).

FIB-SEM cross-section images were obtained with a focused ion beam (LMIS Ga+

source) at 1 nA (Zeiss Crossbeam 540). Milling and imaging were performed at a stage
tilt of 54◦, i.e., the coincidence point of the electron and ion beams. Signals from the Everhart-
Thornley secondary electron secondary ion (SESI) detector and the energy-selective backscat-
tered (EsB) detector were recorded for each section.

3. Results

The water flux from the inlet of the cell to the outlet of the PEMFC generates in-plane
cerium gradients in fully humidified operations, hence increasing the cerium migration
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from the membrane to the CL [26]. Once cerium exists in the membrane, it reduces
the cell’s degradation by neutralizing reactive radical species, which were generated by
electrochemical fuel cell processes, before they attack the ionomer. Radical scavenging is
initiated when cerium (III) ions are oxidized by hydroxyl radicals to form tetravalent (IV)
ions and water. Based on the conclusions given by Baker et al. [26], in this condition, the
thickness of the membrane will be reduced and local pinholes will be generated. As an
outcome, hydrofluoric acid (HF), sulfuric acid (H2SO4), and fluorinated polymer fragments
will be released, which enhances the crossover of the reactant gases through the membrane,
hence reducing the cell’s performance. Successful cerium stabilization increases PEMFC
durability and minimizes performance losses. Figure 2 illustrates the degrading effects of
CeO2 as the contaminant using the I-V characteristic curves.
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Figure 2. The obtained experimental I-V characteristic curve of the contaminated and non-contaminated
PEMFC. Noted that CeO2 = 6 ppm was not measured in this study, and it is an estimation from the
contamination by CeO2 = 2 ppm and CeO2 = 4 ppm.

As shown in Figure 2, higher values of the CeO2 particles lead to performance losses.
These performance losses are attributed to reduced proton conductivity and enhanced mean
proton transport length in the CL ionomer. In this condition, the operation of the PEMFC is
still possible; however, performance losses will be observed. It should be noted that the
proposed experimental setup only detects the impact of the contaminants on the overall
output performance such as the I-V characteristic curve. The suggested post-processing
analysis using SEM imaging and EDX analysis also only determines the existence of the
contaminants, and the values of the produced sulfur radical in the CL should be determined
using other methods. Moreover, Figure 3 shows the FIB-SEM cross-section images of the
contaminated and non-contaminated MEAs that are used for EDX analysis. Figure 3 also
illustrates that the contamination of the membrane does not lead to the decomposition of
the membrane PTFE backbone.
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Figure 4 presents the results of EDX analyses on the obtained cross-section images
of Figure 3. Figure 4a shows the existing elements in the contaminated MEA sample.
Gallium (Ga) corresponds to the Ga beam used to perform the FIB-SEM imaging, while
a gold (Au) coating was applied on the surface of the samples to prevent the charging
effects of the electrons. Cobalt (Co) nanoparticles were also added to the embedding
resin to improve the contrast of the FIB-SEM images. Compared to Figure 4b, it is clear
that the only difference between the contaminated and non-contaminated samples is
related to the cerium nanoparticles. Based on Figure 4a, which presents the EDX analysis
of the contaminated MEA, there are peaks of the characteristic x-rays at 4.839 keV and
0.883 keV that are related to cerium. These two peaks cannot be seen in Figure 4b, which is
representative of the non-contaminated MEA. Previous studies have already indicated that
the cerium contaminant creates pinholes in the membrane and releases sulfuric acid and
hydrofluoric acid [27]. Thus, sulfur and fluorine are distributed in all parts of the MEA,
while they were only in the membrane before contamination by CeO2.

It should be noted that the created pinholes are of nanometer size and it is possible
to observe them using transmission electron microscopy (TEM); since the milling process
to prepare the cross-sections in FIB-SEM imaging destroys the pinholes and dislocations,
local pinholes have not been observed in this study. 0 illustrates the distribution of the
sulfur and fluorine in both contaminated and non-contaminated (4 ppm of CeO2) samples
using EDX analysis. As shown in Figure 5, the concentration of sulfur and fluorine is
increased in the CL after contamination, which leads to performance losses especially in
the case of sulfur contamination. Baker et al. [27] already concluded the formation of
sulfuric acid and hydrofluoric acid, which was not verified by experimental evidence. In
this regard, advanced spectroscopy methods should be used in future studies to detect the
created acids.
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4. Conclusions

This study evaluated the poisoning effects of CeO2 as a contaminant in proton ex-
change membrane fuel cells. Although the existence of CeO2 nanoparticles has advantages
in the membrane, the migration of this element to the catalyst layer deactivates the active
sites and reduces the electrochemical performance. Radical scavenging is initiated when
cerium (III) ions are oxidized by hydroxyl radicals to form tetravalent (IV) ions and water.
In this regard, the thickness of the membrane will be reduced and local pinholes in the
membrane will be generated. The results of FIB-SEM imaging and EDX analysis reveal
that hydrofluoric acid, and sulfuric acid are released, increasing the distribution of fluorine
and sulfur in the catalyst layer. An experimental setup was also developed to obtain the
I-V characteristic curves of contaminated and non-contaminated PEMFCs. The results
indicate that the contaminated stack has half of the performance of the system when it
operates in normal conditions. Although this study encompassed the required procedure
to analyze the performance of PEMFCs, further fault diagnosis methods such as cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) can be used to better
characterize the performance. The formation of sulfuric acid and hydrofluoric acid as a
result of cerium contamination can also be verified using Raman spectroscopy in future
studies. TEM imaging can be further utilized to observe the local pinholes and dislocations
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created as a result of contamination. Efficient numerical models can also be used to better
show the cerium migration and its effects on the output power of the system.
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