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The Poisson–Nernst–Planck (PNP) model is based on a mean-field approximation of ion interactions
and continuum descriptions of concentration and electrostatic potential. It provides qualitative expla-
nation and increasingly quantitative predictions of experimental measurements for the ion transport
problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems,
despite many limitations. While the PNP model gives a good prediction of the ion transport phe-
nomenon for chemical, physical, and biological systems, the number of equations to be solved and
the number of diffusion coefficient profiles to be determined for the calculation directly depend on the
number of ion species in the system, since each ion species corresponds to one Nernst–Planck equa-
tion and one position-dependent diffusion coefficient profile. In a complex system with multiple ion
species, the PNP can be computationally expensive and parameter demanding, as experimental mea-
surements of diffusion coefficient profiles are generally quite limited for most confined regions such
as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of
Nernst–Planck equations to be solved in complex chemical and biological systems with multiple ion
species by substituting Nernst–Planck equations with Boltzmann distributions of ion concentrations.
As such, we solve the coupled Poisson–Boltzmann and Nernst–Planck (PBNP) equations, instead of
the PNP equations. The proposed PBNP equations are derived from a total energy functional by using
the variational principle. We design a number of computational techniques, including the Dirichlet to
Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to
ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551
and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion con-
centrations and external voltages. Extensive numerical experiments show that there is an excellent
consistency between the results predicted from the present PBNP model and those obtained from the
PNP model in terms of the electrostatic potentials, ion concentration profiles, and current–voltage
(I–V) curves. The present PBNP model is further validated by a comparison with experimental mea-
surements of I–V curves under various ion bulk concentrations. Numerical experiments indicate that
the proposed PBNP model is more efficient than the original PNP model in terms of simulation time.
© 2011 American Institute of Physics. [doi:10.1063/1.3581031]

I. INTRODUCTION

One of the most interesting problems studied in bio-
physics is the molecular mechanism of ionic movements
through transmembrane channels,1 which is of crucial impor-
tance to living cells. Ion channels are pore-forming proteins
observed in cell membranes, usually allowing specific ions to
pass across the membranes and maintaining the correct inter-
nal ion composition.2 They play important roles in the cellular
activity via regulating the flow of ions,3 and are fundamen-
tal elements in many basic biological processes from excita-
tion, signaling, gene regulation, to secretion and absorption.4

Therefore, ion channels are crucial to cell survival and
function.

In order to understand the physiological function of the
ion channels, a number of theoretical and computational ap-
proaches have been developed over the past few decades

a)Author to whom correspondence should be addressed. Electronic mail:
wei@math.msu.edu.

based on the molecular structures of channel components.5 In
classical molecular dynamics (MD), ion, water, and protein
dynamics are described in the atomic detail. Due to compu-
tational cost, it is challenging to carry out the MD simulation
up to the time scale required for a sufficiently large number
of ions to pass through the channels and thereby determine
the macroscopic current.5, 6 To improve the computational ef-
ficiency, approaches that reduce the dimensionality of the ion
channel systems by making some simplified assumptions be-
come popular in the study of ion channel dynamics and trans-
port. One of these approaches is Monte Carlo (MC) methods,7

in which “the ions are undergoing a random walk on a dis-
crete mesh.”8 Another class of important simplified models is
Brownian dynamics (BD), in which motions of ions follow a
stochastic governing equation describing some effective po-
tential effects. Both MC and BD approaches represent ions
explicitly while treating solvent and lipids as featureless di-
electric media.8 These reduced models are simpler and com-
putationally less demanding than all-atom MD methods and
have been attractive in ion channel transport modeling and
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predictions for many years. A quantum dynamics in contin-
uum model via the Poisson–Boltzmann Kohn–Sham equa-
tions has been proposed to account for the quantum effect
in the proton transport of transmembrane proteins.9 Further
simplifications based on continuum theory, which are the so
called mean field approximations, also gain much attention
recently. In the mean field continuum theory, the involved
ion species are represented by macroscopic ion concentra-
tions instead of microscopic discrete particles. Since all the
above mentioned models treat the system of interest with dif-
ferent levels of complexity, each model has its own merits and
limitations.5, 6, 8–12

One of the most popular continuum theories describing
ion transport in complex biological systems is the Poisson–
Nernst–Planck (PNP) model. In the PNP theory, the Poisson
equation is applied to describe the electric field in terms of the
electrostatic potential, whose gradient serves as the electric
driven force of the ion motion. The Nernst–Planck (NP) equa-
tion is used to describe the electrodiffusion of ions in terms
of ion concentration. The coupled PNP equations are widely
used in chemistry, physics, biology, and many engineering
sciences. However, the PNP model has some well-known lim-
itations, such as the neglect of the finite volume effect of
ion particles7 and correlation effects (i.e., self-energy). These
limitations may become important for ion transport in highly
confined channels.13 Concerning about the model limitations
such as ion–ion interactions and steric effects,14 some modi-
fications have been developed recently to improve the theory.
Corry et al.15 demonstrated that if a specific self-energy term
is included in the Nernst–Planck equation, qualitative im-
provements could be observed in PNP computational results
comparing to the BD simulations. Kilic et al.14, 16 proposed a
simple modification of the widely used PNP equations, which
could include the steric effects for the ionic transport. There-
fore, PNP theory has gained much attention in the sense that
it provides a general framework to successfully describe the
essential ionic transport phenomenon in electrochemistry.17

It offers reasonable predictions for many applications and its
limitations in some specific applications, such as ion channel
systems, can be improved by simply adjusting the diffusion
coefficients, or by considering additional force contributions
in the ion flux term of the Nernst–Planck equation. Despite
many limitations, the PNP theory is still one of the most well-
established models in this field. The basic framework and es-
sential assumptions of the PNP theory are still used in most
modifications.

In many applications of the PNP model, the goal is
to generate the electrostatic potential profile around the
biomolecule and the concentration profiles of each ion
species. For realistic applications in the cellular environment,
the PNP theory may become cumbersome due to the existence
of a large number of ion species. First, a three-dimensional
(3D) concentration profile is to be computed from a Nernst–
Planck equation for each ionic species. This can be a com-
putational burden when the number of ionic species is very
large. Additionally, in the solution of the NP equations, dif-
fusion coefficient profiles are required for all ionic species.
Experimental measurements are often not available for com-
plex ionic species, such as nucleotides. Even for simple ionic

species, their diffusion coefficient profiles are often not accu-
rate in the geometrically confined locations. This fact severely
limits the prediction power of the PNP model. Therefore, it is
highly desirable to come up with a modified PNP model in
which one does not have to solve one 3D NP equation for
each ionic species, but is still able to offer the basic predic-
tion of electrostatic profile around the biomolecule and the
concentration profiles of each ionic species.

The objective of the present work is to explore the
possibility of avoiding the solution of some or all of the NP
equations in realistic applications. We present implicit treat-
ments of certain or all ionic species as those in the implicit
solvent theory.18–21 Consider a system where multiple ionic
species coexist, and the ion transport is driven by the external
electric field. We model the ion species in two different man-
ners. For the target ions (ions of interest), the Nernst–Planck
equation is used for the description; whereas for the rest ions
in the system (ions of no interest), Boltzmann distributions
of the total potential, including electrostatic and chemical
potentials, is employed for their descriptions. All ion species
contribute to the electrostatic potential governed by the
Poisson theory. Consequently, we have a system of coupled
Poisson–Boltzmann Nernst–Planck (PBNP) equations. We
call this a PBNP model, or an implicit PNP model. The
coupled PBNP equations are derived from a total energy
functional using the variational method via the Euler–
Lagrange equation. One advantage of this semiexplicit ionic
representation is that fewer Nernst–Planck equations are to
be solved. Additional benefit of our PBNP model is that one
can avoid the modeling errors due to incomplete knowledge
of diffusion coefficient profiles for many ion species. The
rationalities of treating ion concentrations in the implicit rep-
resentation lie in the following aspects: First, if the ionic flux
is zero for the electrodiffusion system, PNP system is known
to be equivalent to Poisson–Boltzmann system;8 Second, in
the electrochemical potential representation, an exponential
relation can be observed between the ion concentration and
electrostatic potential, both in the equilibrium and nonequilib-
rium systems; Third, several researchers have pointed out the
connections and differences between the PNP and Poisson–
Boltzmann (PB) models under various circumstances. If the
electrostatic potential is decomposed into two parts, i.e., ex-
ternally imposed potential and the internal electric potential,
usually the internal electric potential is modeled by the PB
equation for the bulk region.22, 23 The difference between PB
and PNP models in the analysis of electro-osmotic flows is
studied. It is found that the PB model provides a good predic-
tion if the electric double layer (EDL) is thin and the solvent
region is of regular shapes.22, 23 While in other cases where
the EDL is thick or the solvent region is of irregular shapes
where the convective transport of ions is not negligible, it is
necessary to apply the PNP model for a reasonable prediction.
Also, in a reduced model24 for the reactive and nonreactive
species, the reactive species is modeled by the Nernst–Planck
model and the nonreactive species follows equilibrium Boltz-
mann distribution. Differences are observed by comparisons
between PB equations and the reduced model when there is a
chemical reaction. While the differences between equilibrium
PB and Nernst–Planck models are emphasized in previous
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work, the present work considers an electrodiffusion system
under external electric field and explores the connections of
Nernst–Planck equations and the general Boltzmann distri-
bution. The PB equation (20) in the present work is different
from that in the original PB equation18–20 and that in other
reduced model.24 The relations between the proposed model
and the original Nernst–Planck representations are discussed.

The rest of the present paper is organized as follows.
Section II is devoted to the theory and formulation of our theo-
retical models. The basic theories are briefly reviewed to illus-
trate the motivation and establish notations. The PBNP model
is presented. In Sec. III, a number of associated computational
algorithms are proposed and discussed. Both linear and non-
linear implementations of the PB equation are discussed for
solving the electrostatic potential. For the interface problem
in the Poisson equation and the PB equation, the matched
interface and boundary (MIB) method25–27 is utilized to en-
force the interface jump condition and to obtain the second
order of accuracy. The Gummel iteration technique28, 29 is uti-
lized for coupled iteration between electrostatic potential and
ion concentrations. A Dirichlet to Neumann mapping (DNM)
technique is used to improve the convergence of the PB equa-
tion in the presence of singular charges. To verify the feasi-
bility of the proposed model, comparison between PNP and
PBNP models are carried out in Sec. IV. It can be observed
that predictions obtained from the PBNP model are in an ex-
cellent agreement with those obtained from the PNP model in
terms of ion concentration and electrostatic potential profiles.
Therefore, the proposed PBNP model can be utilized as an al-
ternative model to reduce the computational complexity when
multiple ionic species exist in chemical, physical, and biologi-
cal systems. The proposed PBNP model is carefully validated
in terms of electrostatic potential, ionic concentration profiles
and current–voltage (I–V) curves by using realistic biomolec-
ular systems. Applications are considered to the Gramicidin
A (GA) channel and cytochrome c551. A comparison with
experimental data further confirms the validity of the present
PBNP model. A comparison of central processing unit (CPU)
cost indicates that the proposed PBNP model is much more
efficient than the PNP model. In the end, the present work is
summarized and some applicable areas are discussed in the
conclusion part.

II. THEORY AND FORMULATION

To establish notations and a framework for our implicit
model, we briefly review the PNP model. A more compre-
hensive derivation of the PNP model together with a differen-
tial geometry based solvent-solute interface description can
be found elsewhere.18 The variational derivation of the PBNP
model via the Euler–Lagrange variational theory is presented.

A. Poisson-Nernst-Planck (PNP) model

Consider an open domain � ∈ R
3, � = �m ∪ �s , where

�m represents the solute region (or the ion exclusion region)
and �s represents the solvent region (or the ion inclusion re-
gion). The interface is denoted by Ŵ such that Ŵ = �m ∩ �s .

In electrochemistry, the electrochemical potential is the me-
chanical work done in bringing one mole of an ion species
from a standard state to a specified concentration and elec-
trical potential. Under the conditions that the particles do not
interact and that their concentrations are sufficiently low, the
total chemical potential (electrochemical potential) of the αth
ion species, denoted as μ′

α , can be expressed as30

μ′
α(r) = kB T ln nα(r) − kB T ln nQα + qα�(r), (1)

where � is the electrostatic potential of the system, kB and
T are the Boltzmann constant and the absolute temperature,
respectively, nα and qα are the concentration and the valence
of the αth ion species, respectively. Here, nQα is the intrin-
sic concentration of the αth species,30 note that the intrinsic
concentration is independent of the concentration nα , and for
a specific ion species, it is a constant under a given tempera-
ture. For example, nQ is the density of state for an ideal gas
nQ = ((mgkB T )/(2π¯2))3/2, where mg is the molecular mass
of the gas and ¯ is the reduced Planck constant.

Denote μ′
0α as a homogeneous reference chemical po-

tential at which the associated ion concentration is n0α and
� = 0. Then the following relation can be obtained from
Eq. (1):

μ′
α(r) − kB T ln nα(r) − qα�(r) = μ′

0α − kB T ln n0α. (2)

Then the concentration has the following form:

nα(r) = n0α exp[−(qα�(r) − μα(r))/(kB T )], (3)

where μα(r) = μ′
α(r) − μ′

0α . Note that μ′
0α is position inde-

pendent.
When the system is in equilibrium, then μα(r) = 0, one

has ρα = qαnα = qαn0α exp[−(qα�)/(kB T )], which is the
charge source term in the normal Poisson–Boltzmann equa-
tion. Define the ion flux Jα as

Jα = −Dαnα∇
μα

kB T
, (4)

and according to the general conservation law,14

∂nα

∂t
= −∇·Jα. (5)

Therefore, the concentration nα is governed by the fol-
lowing Nernst–Planck equation:

∂nα

∂t
= ∇·

[
Dα

(
∇nα +

qαnα

kB T
∇�

)]
, α = 1, 2, · · · , Nc,

(6)
where Dα(r) is the spatially dependent diffusion coefficient of
ion species α and Nc is the total number of ion species in the
systems. In general, it is difficult to obtain valid Dα(r) profiles
for nanobio environments, although its bulk values are com-
monly known from experimental measurements. Moreover,
for complex ion species, such as charged ligand and many
biomolecules, experimental data of the bulk diffusion coeffi-
cients may not be available. This difficulty limits the applica-
bility and predictive accuracy of the Nernst–Planck equation.
In Eq. (6), the potential � is governed by the Poisson equation

−∇·(ǫ∇�) = 4πρ f + 4π

Nc∑

α=1

qαnα, (7)
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where the fixed charge density is given by

ρ f (r) =

Na∑

j=1

q jδ(r − r j ), (8)

with q j being the (fractional) charge of the biomolecule at
position r j ( j = 1, 2, . . . , Na), r indicates the position where
the function/variable is defined, (r = (x, y, z) ∈ �), and Na

indicates the total number of charged atoms in the solute. In
most biophysical models, the dielectric function ǫ is defined
as a piecewise constant

ǫ(r) =

{
ǫm, r ∈ �m,

ǫs, r ∈ �s,
(9)

where ǫm and ǫs are the dielectric constants in the molecu-
lar and solvent regions, respectively. Equations (6) and (7)
form the PNP system, where the Poisson equation describes
the electrostatic potential and the Nernst–Planck equation de-
scribes the concentration of each ion species. The PNP equa-
tions are coupled together to form a closed system and have
been widely used for electrochemical diffusion, nanofluidic
systems and ion channel applications.

B. Poisson-Boltzmann-Nernst-Planck (PBNP) model

The PNP model gives a good prediction of ion transport
phenomena in the biological channels for nonequilibrium sys-
tems. However, the computational cost increases dramatically

as the number of ion species in the system increases. Since the
concentration of each ion species is governed by one Nernst–
Planck equation, the number of equations needed to be solved
depends directly on the number of ion species in the system.
In a complex system with multiple ion species, the PNP sys-
tem can be a complicated model. Here an alternative model
is proposed to reduce the number of Nernst–Planck equations
needed for a system with multiple ion species. In our model,
we treat ion species in two different representations. Specif-
ically, the Nernst–Planck equation is applied for the descrip-
tion of the ion species of interest, while the concentrations of
other ion species in the system are represented by the Boltz-
mann distributions as shown in Eq. (3). As a result, the elec-
trostatic potential of the system is governed by the Poisson–
Boltzmann equation, rather than by the Poisson equation (7).

Assuming that the total number of ion species in the
system is Nc, and we are interested in certain ion species
(which are called the target ion species), while the rest of
the ion species are not the ions of interest, but their im-
pact on the system has to be returned. We denote nα(α
= 1, . . . , NNP) as the concentration of the target ion species,
nβ(β = NNP + 1, . . . , Nc) as the concentration of the remain-
ing ion species in the system, where NNP is the total number
of ion species treated by using the Nernst–Planck equation,
and NB = Nc − NNP is the total number of the remaining ion
species which are represented by the Boltzmann distribution.
Based on this consideration, we propose the total free energy
functional

G[�, nα, NNP] =

∫ {
NNP∑

α=1

nα

[
μ′

0α + kB T ln
nα

n0α

− kB T

]

−
ǫ

8π
| ∇� |2 +

(
ρ f +

NNP∑

α=1

qαnα

)
�−kB T

Nc∑

β=NNP+1

n0β(exp[−(qβ� − μβ)/(kB T )] − 1)

⎫
⎬
⎭ d�. (10)

The total energy functional is designed in the same
spirit as our earlier variational formalism18 and as that in the
literature.31, 32 By taking the variation of G[�, nα, NNP] with
respect to the electrostatic potential, �, one has

−∇·(ǫ∇�) = 4πρ f + 4π

NNP∑

α=1

qαnα + 4π

Nc∑

β=NNP+1

qβnβ ,

(11)
where static charge sources and quasiequilibrium charge
sources are represented by

ρ f =

Na∑

j=1

q jδ(r − r j ), (12)

nβ = n0β exp[−(qβ� − μβ)/(kB T )],

β = NNP + 1, . . . , Nc. (13)

Here n0β represents the bulk concentration of the βth ion
species.

By taking the variation of G[�, nα, NNP] with respect to
nα (α = 1, 2, . . . , NNP),

δG[�, nα]

δnα

= μ′
α ⇒ μ′

α(r)

= μ′
0α(r) + kB T ln

nα(r)

n0α

+ qα�(r). (14)

Similarly, we consider the dynamic ion flux Jα

Jα = −Dαnα∇
μα

kB T
, (15)

and the conservation of density leads to

∂nα

∂t
= −∇·Jα. (16)
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Therefore, the concentration nα is governed by the fol-
lowing Nernst–Planck equation:

∂nα

∂t
= ∇·

[
Dα

(
∇nα +

qαnα

kB T
∇�

)]
, α = 1, 2, . . . , NNP.

(17)

Equations (11) and (17) are coupled to each other and
form a closed equation system, i.e., the Poisson–Boltzmann–
Nernst–Planck equations.

To ensure the well posedness, Eq. (11) satisfies the jump
conditions at the interface Ŵ

{
[�(r)] = 0, r ∈ Ŵ,

[ǫ�n(r)] = 0, r ∈ Ŵ,
(18)

where �n indicates the derivative along the normal direction
with n being the outward normal direction of the interface.
For a function u, the jump [·] in Eq. (37) is defined as

[u(r)] ≡ lim
ε→0

(u(r + εn) − u(r − εn)) ,

(r ∈ Ŵ and ε > 0). (19)

The steady state of the equation system (11) and (17) can
be written as follows:

− ∇·(ǫ∇�) = 4πρ f + 4π

NNP∑

α=1

qαnα

+4π

Nc∑

β=NNP+1

qβn0β exp[−(qβ� − μβ)/(kB T )]

(20)

and

∇·

[
Dα

(
∇nα +

qαnα

kB T
∇�

)]
= 0, α = 1, 2, · · · , NNP.

(21)

Equations (20) and (21) are together named a steady state
Poisson–Boltzmann–Nernst–Planck system, and its time-
dependent version is given in Eqs. (11) and (17). The PBNP
system differs from the original PNP system in the sense that
only the ions of interest are described by the Nernst–Planck
equation while others are described by the Boltzmann distri-
bution. An advantage of the PBNP system is that one does
not have to solve one Nernst–Planck equation for each ion
species. This can reduce the computational cost when there
are multiple ion species in a biomolecular system. Addition-
ally, since the Nernst–Planck equation requires the knowledge
of the diffusion coefficient for each ion species in the solvent
domain, this can be a hurdle in real applications. Particularly,
the diffusion coefficient is position-dependent in general and
its experimental measurement is often unavailable for differ-
ent ion channels. Therefore, the proposed PBNP model can
avoid this difficulty for many ion species. Moreover, the PB
equation (20) in the present PBNP system is different from
that in the original PB equation18–20 and that in other reduced
model.24

Define ∂� as the boundary of the whole domain for
the Poisson equation or the Poisson–Boltzmann equation, the
electrostatic potential satisfies the far field boundary con-
dition, i.e., limr→±∞ �(r) = 0. In practical computations,
Dirichlet and Neumann boundary conditions are mostly used,
i.e., �(r) = �0(r) is given on ∂� where the external volt-
age is applied. The Neumann boundary can be used in other
parts of boundaries. Numerical tests indicate that as long as
boundaries are sufficiently far from the ion channel region,
the boundary conditions are not very important, except for
the applied voltage conditions.

Note that the boundary of the Nernst–Planck equation is
defined only as the boundary of the solvent domain �s . First,
zero flux condition is applied on the interface Ŵ = �m ∩ �s

(Ref. 17)

−Dα(r)

[
∇nα(r) +

qαnα(r)

kB T
∇�(r)

]
= 0 on Ŵ. (22)

Furthermore, on the boundary ∂�s ∩ ∂�, nα(r) = n0α is en-
forced according to the bulk concentration of each species.
The knowledge of μβ is required in the application of the pro-
posed PBNP system to ion channel transport. We show in the
present work that μβ can be estimated during the computa-
tion. In fact, for equilibrium system without external electrical
field, μβ vanishes.

It remains to explore the domain of applicability, the use-
fulness and the effectiveness of the PBNP model. In partic-
ular, we are interested in the understanding whether the pro-
posed PBNP model can be used in place of the PNP model for
ion channel transport in complex biomolecular systems, with
and without the presence of the external voltage. To this end,
we develop computational techniques for the present PBNP
model in Sec. III.

III. NUMERICAL ALGORITHMS

The solution of the proposed PBNP equations is quite
technically intriguing. For the closely related PNP equations,
a second order accurate scheme has not been developed un-
til very recently for realistic biomolecular systems.17 Here,
“second order accurate” means that when the mesh size is
halved, the accuracy increases by a factor of 22 times. Al-
though achieving this factor may appear easy in the solution
of many other partial differential equations, it is a severe chal-
lenge in solving the PBNP equations for realistic biomolec-
ular systems. The first difficulty is due to the fact that the
proposed PBNP equations are nonlinear and closely coupled,
making their solution nontrivial. Additionally, the presence
of complex solvent-solute interface in the PBNP equations
attributes to challenges in constructing high order numerical
methods. In particular, the possible presence of geometric sin-
gularity in protein molecular surfaces33 makes it difficult to
implement interface jump conditions (18). Moreover, discon-
tinuous coefficients shown in Eq. (9) lead to slow convergence
in commonly used numerical discretization methods. Finally,
the singular charges represented by the Dirac delta functions
(8) also cause slow convergence in numerical simulation.

Since Eqs. (20) and (21) are coupled together, �

and nα need to be solved iteratively. Here two different
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approaches are discussed and compared based on differ-
ent implementation of the nonlinear PB equation. For the
sake of simplicity, we assume NNP = NB = 1 in this sec-
tion, while actual algorithms are easily extended to a system
with more ion species (i.e., NNP > 1 or NB > 1). Given NNP

= NB = 1, define ψ = (�)/(kB T ) and γ = (4π )/(kB T ),
Uα = (μα)/(kB T ), then Eqs. (20) and (21) take the following
simpler forms:

−∇·(ǫ∇ψ) = γ [ρ f + q1n1 + q2 n02e−(q2ψ−U2)] (23)

and

∇·[D1(∇n1 + q1n1∇ψ)] = 0. (24)

We present a linear algorithm and a nonlinear algorithm for
Eqs. (23) and (24).

A. Linear algorithm

Equation (23) itself is a nonlinear equation of �(r); how-
ever in terms of implementation, it can be implemented by
solving a linear equation as shown below.

1. Iterative procedure

The iteration loop for the linear implementation starts
from an initial guess of ψ (0) and n

(0)
1 , then n

(1)
1 is obtained

by solving

∇·
[
Dα

(
∇n

(1)
1 + q1n

(1)
1 ∇ψ (0)

)]
= 0. (25)

And ψ (1) can be obtained by

− ∇·(ǫ∇ψ (1)) = γ
[
ρ f + q1n

(1)
1 + q2 n02e

−

(
q2ψ

(0)−U
(1)
2

)]
,

(26)

where the superscripts of ψ and n1 indicate the iteration step.
To ensure the convergence, the Gummel scheme28, 29 widely
used in the PNP system is applied for updating ψ at the j th
iteration step ( j = 1, 2, . . .), that is,

−∇·(ǫ∇ψ ( j)) + caddψ
( j)

= γ
[
ρ f + q1n

( j)
1 + q2 n02e

−

(
q2ψ

( j−1)−U
( j)
2

)]
+caddψ

( j−1),

(27)

where

cadd = γ
[
q1n

( j)
1 + q2 n02e

−

(
q2ψ

( j−1)−U
( j)
2

)]
. (28)

Thus in Gummel iteration, Eqs. (25) and (27) are solved iter-
atively. Meanwhile n2 is actually updated accordingly. There-
fore, the overall iteration starts from an initial guess, followed
by solving the linear equations (25) and (27), where an addi-
tional term is applied to ensure the convergence, and further
followed by another iteration. The stopping criteria is that

‖ ψ (j) − ψ (j−1) ‖L∞
≤ tolerance and

‖ n
(j)
1 − n

(j−1)
1 ‖L∞

≤ tolerance.

Two related computational issues are discussed here for
the implementation of this algorithm. First issue is how to
treat the fixed charge term ρ f which contains the singular
source term in the Poisson equation and how to solve the re-
sulting Poisson equation. The other issue is how to find U2 in
each iteration step.

2. Dirichlet to Neumann mapping

To remove the Dirac delta functions describing partial
charge sources in ρ f , the Green’s function formulation tech-
nique is employed.19, 34 Split ψ into the regular part ψ̃(r) and
the singular part ψ(r), i.e., ψ = ψ̃ + ψ , where ψ(r) is defined
only in �m .19, 35 Define ψ(r) = ψ∗(r) + ψ0(r), here ψ∗(r) is
the Green’s function which can be given analytically

ψ∗(r) =
γ

4π

Na∑

j=1

q j

ǫm | r − r j |
.

To compensate the values induced by the Green’s function
ψ∗ on the interface Ŵ, ψ0(r) satisfies the following Laplace
equation with a Dirichlet boundary condition:

{
∇2ψ0(r) = 0, r ∈ �m,

ψ0(r) = −ψ∗(r), r ∈ Ŵ.
(29)

This decomposition of ψ gives rise to a Poisson equation
for ψ̃(r) without the singular term,
⎧
⎪⎪⎨
⎪⎪⎩

− ∇ · (ǫ∇ψ̃(r)) = γ q1n1(r) + γ q2 n02e−(q2ψ̃−U2), r ∈ �

[ψ̃(r)] = 0, r ∈ Ŵ

[ǫψ̃n(r)] = ǫm∇(ψ∗(r) + ψ0(r)) · n, r ∈ Ŵ.

(30)

Due to the introduction of the new Neumann interface condi-
tion in Eq. (30), this method is also called Dirichlet to Neu-
mann mapping.

Note that after the decomposition, ψ depends on the ge-
ometry of the computational domain and fixed protein charge
information and is independent of the concentration. There-
fore, ψ needs to be solved only once. In contrast, ψ̃ is coupled
to the ion concentrations, therefore ψ̃ is to be solved in each
iteration step.

3. Matched interface and boundary method

The discretization of Eq. (30) requires the enforcement
of interface jump conditions (18) in a very careful manner
and taking care of discontinuous coefficients (9) to ensure
the second order accuracy for arbitrarily complex molecular
surfaces. In this work, we utilize the matched interface and
boundary method25–27, 36–38 for the discretization of Eq. (30).
The main idea of the MIB method is that to maintain the de-
signed order of accuracy, the finite difference schemes for reg-
ular points (away from the interface) and irregular points (near
the interface) are different. As illustrated in Fig. 1, on the
mesh line where j and k values are fixed, points (i − 2, j, k),
(i − 1, j, k), and (i + 2, j, k) are all regular points, while
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FIG. 1. A 1D illustration of the regular points and irregular points near the
interface point (o, j, k). The green line shows the interface, black dots are
regular points while red dots are irregular points.

(i, j, k) and (i + 1, j, k) are irregular points. For the dis-
cretization along x direction at point (i − 1, j, k), we use the
standard finite difference scheme,

(ǫψ̃x )x =
ǫi− 1

2
ψ̃i, j,k − (ǫi− 1

2
+ ǫi− 3

2
)ψ̃i−1, j,k + ǫi− 3

2
ψ̃i−2, j,k

(�x)2

at (i − 1, j, k), (31)

where �x is the mesh size on the x direction. However, for
the point (i, j, k), since point (i + 1, j, k) lies on a different
subdomain, and the solution might not be smooth across the
interface, a fictitious value is utilized for the discretization

(ǫψ̃x )x =
ǫi+ 1

2
fi+1, j,k − (ǫi+ 1

2
+ ǫi− 1

2
)ψ̃i, j,k + ǫi− 1

2
ψ̃i−1, j,k

(�x)2

at (i, j, k), (32)

where fi+1, j,k is the fictitious value defined at point (i +

1, j, k) and the value is interpolated by using the interface
jump conditions shown in Eq. (30). This is nontrivial for com-
plex biomolecules since the discretization of the jump condi-
tions is defined on the interface, and in most cases the inter-
face points are off grid. The discretizations from both sides
of the interface are required for the enforcement of the jump
conditions, which needs many auxiliary points. The details
of the technique are referred to the related work on the MIB
method.25, 26, 36–38 Essentially, the MIB method makes use of
simple Cartesian grids, standard finite difference schemes,
lower order physical jump conditions and the idea of ficti-
tious values defined on irregular points close to the interface.
While the physical jump conditions are enforced at each in-
tersecting point of the interface and the mesh lines, the MIB
method takes care of the interface condition in a systematic
way. It is the only known method that is able to achieve the
second order accuracy for solving the PB equation with re-
alistic molecular surfaces of proteins and associate singular
charges to our knowledge.

4. Algebraic equation solver

Here, solution of the formed linear algebraic sys-
tem is credited to “the portable, extensible toolkit
for scientific computation” (PETSc), see the webpage
“http://www.mcs.anl.gov/petsc/petsc-as/” for detail. It is a
suite of data structures and routines for the scalable (par-
allel) solution of scientific applications modeled by partial
differential equations.

5. Electrochemical potential

Another issue here is how to find U2 in each iteration
step. As stated before, for the ions of no interest, we use
the estimation in the Boltzmann distribution based on the
information obtained from solving the concentration of
the target ion species. For example, after n

(1)
1 is solved

from Eq. (25), U
(1)
1 can be obtained based on Eq. (1),

that is, U
(1)
1 = ln (n(1)

1 )/(n01) + qαψ (0), assuming that
U

(1)
2 = aU

(1)
1 + E12, where a, E12 are constants taking

account the different chemical property of different ions.
Here U

(1)
2 can be used in Eq. (33).

B. Nonlinear algorithm

As mentioned earlier, Eq. (23) itself is a nonlinear equa-
tion of �(r). The iteration loop still starts from an initial guess
of ψ (0) and n

(0)
1 . Then n

(1)
1 is obtained by solving Eq. (25).

However, the difference is that ψ (1) is obtained by solving

− ∇·(ǫ∇ψ (1)) − γ q2 n02e−(q2ψ
(1)−U

(1)
2 ) = γ

[
ρ f + q1n

(1)
1

]
,

(33)

Similarly the singular term ρ f is removed by the above men-
tioned Dirichlet to Neumann technique and the discretiza-
tion is also done by using the MIB method. Note that the
resulting discretized system is nonlinear in terms of ψ and
the convergence of the algebraic equations can be a prob-
lem. Here, solution of the formed nonlinear system is cred-
ited to (PETSc). For PETSc options, the scalable nonlinear
equations solvers component provides an easy-to-use inter-
face to Newton-based methods for solving systems of nonlin-
ear equations.

C. Nonlinear algorithm versus linear algorithm

Basically, the implementation procedure is quite similar
between the nonlinear algorithm and linear algorithm; while
the only difference is how to treat the nonlinear Poisson–
Boltzmann equation during the iteration process. Theoreti-
cally, both ways should converge to the same results if the
uniqueness of the solution exists, and through the numerical
verification, the potential and concentration profiles are ex-
actly the same for two algorithms as shown in Fig. 2 for Gram-
icidin A (see Sec. IV A for implementation detail). However,
it takes much longer CPU time to solve the nonlinear system
compared to the linear one. For example, for one given bound-
ary condition, it takes 1147 s for the nonlinear algorithm while
only 267 s for the linear algorithm in solving the same equa-
tions. Therefore, while both algorithms can be utilized to get
the solution, the linear algorithm is preferred for the compu-
tational efficiency. The computations in the rest of this paper
are carried out by using the linear algorithm implementation.

IV. TEST AND VALIDATION

In this section, we examine the performance of the pro-
posed PBNP system and validate the computational algo-
rithms discussed in the earlier sections. First, we consider a

http://www.mcs.anl.gov/petsc/petsc-as/
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FIG. 2. Comparison of the linear algorithm and the nonlinear algorithm. The enclosed region between the dashed lines is the channel region. (a) Potential
profiles, (b) concentration profiles, the solid lines (red and magenta) represent the concentration of Na+ and Cl− in PNP computation, while the dots (green and
yellow) represent the concentration of Na+ and Cl− in PBNP computation.

situation there is no external electrical field. In such a case, we
need to establish the equivalence between the PB model and
the PNP model for electrostatic potential profiles. Meanwhile,
we also need to examine the equivalence of ionic concentra-
tion distributions predicted by PB and PNP models. Our main
task is to confirm the performance of the proposed PBNP sys-
tem under the presence of external electric field across the
membrane protein.

Two proteins are used for our tests. One protein is a
heme-binding protein, cytochrome c551 (PDB ID: 451c),
from the organism Pseudomonas aeruginosa. This protein
binds one heme group per molecule and biologically func-
tions as an electron donor for cytochrome cd1 in nitrite and
nitrate respiration. The second example is an ion channel,
Gramicidin A (PDB ID: 1mag). The GA is a widely used
biomolecule for many ion channel models.9, 17 Experimental
measurements are available in terms of current–voltage (I–V)
curves under various concentrations and lipid bilayer polar-
ization environments.39 Therefore, this is a good benchmark
test for the proposed PBNP model.

A. Chemical diffusion in biomolecular systems

To demonstrate the validity of the proposed model and ef-
ficiency of numerical algorithms, the computation is first car-
ried out given that no external voltage is applied to the system.
As discussed in Sec. II, both PBNP and PNP models would be
equivalent to the PB model when there is no external electri-
cal field. Note that the nonlinear Boltzmann factor in the PB
model reduces to the normal one without the electrochemical
potential

−∇·(ǫ∇�) = 4πρ f + 4π

Nc∑

β=1

qβn0β exp[−(qβ�)/(kB T )],

(34)
where all quantities are defined in early sections. Therefore,
the numerical results should agree with each other if the com-
putations are carried out in an appropriate manner.

1. Cytochrome c551

Our first test example is the protein structure of cy-
tochrome c551 (PDB: 451c). The structure preparation is
done according to the following procedure. First, the molecu-
lar surface of the protein is generated by the MSMS program
(a fast molecular surface calculation library, the webpage
is “http://mgltools.scripps.edu/packages/MSMS/”.)33 with
density 10 and probe radius 1.4 Å. All the atomic van der
Waals radii are adopted from the CHARMM22 force field.40

The partial charges for each atom in the protein are obtained
by using the PDB2PQR software46, 47 and are accounted in
ψ∗. The solvent environment is represented by the dielectric
continuum bulk environment, and the computational domain
is a box which contains the protein. Assume that there are
monovalent positive and negative ions in the solvent, then
the computation is done by using both the PB model and the
PNP model. It turns out that the computational results are
very close to each other. Figure 3 shows the computational
results illustrated on the surface of the protein. From the
color indication, basically the concentration of the negative
ions follow the same pattern as the potential profile while the
concentration of the positive ions shows the opposite pattern.

It is interesting to check the differences between results
predicted by PB and PNP models. We map these differences
on the molecular surface of protein c551. The surface plot
of differences is very sensitive and depends not only on the-
oretical models, but also on the numerical procedure.19, 41

Figure 4 illustrates the differences in electrostatic potentials,
positive ion concentrations, and negative ion concentrations.
Clearly, the differences of results calculated from two models
are relatively small in most regions. Therefore, when there is
no external electric field, PB and PNP models offer consistent
results on electrostatic potential and ion concentration.

2. Gramicidin A

Our second test concerns Gramicidin A ion channel
(PDB: 1mag) as shown in Fig. 5(a). The GA is one of the
most popular ion channel models in the literature. A wide
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FIG. 3. Illustrations of computational results on the molecular surface of protein 451c. (a) Electrostatic potential profile; (b) concentration of positive ions; (c)
concentration of negative ions. The unit of electrostatic potential is kB T/ec , and the unit of concentration is molar , here the blue color shows larger values
while red color shows smaller values.

FIG. 4. The differences between results predicted by PB and PNP models mapped on the surface of protein 451c. (a) Difference of electrostatic potential
profiles; (b) difference of positive ion concentrations; and (c) difference of negative ion concentrations.

FIG. 5. Illustrations of ion channel protein and computational setup of the channel system. (a) Illustrations of ion channel geometry from the top view, where
the hole in the middle is the channel region formed by the protein; (b) Illustrations of the computational setup for the membrane protein environment from the
side view, where the light blue color shows the extracellular and intracellular bulk regions, the light green color shows the channel protein, the purple color
shows the membrane region, and the dark blue color shows the channel region where ions exchange between extracellular and intracellular environment.
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FIG. 6. Computational results for PB and PNP models. (a) Electrostatic potential profile along z direction; (b) concentration profile along z direction.

variety of theoretical models have been applied to the GA
channel because of its relatively small number of atoms and
the availability of experimental data in the literature.9, 17, 39, 42

The computational domain of the GA channel incorporates
four different regions, i.e., the channel region, bulk ion re-
gion, protein region, and the membrane layers, see Fig. 5(b).
As stated in the literature, it is known that the GA channel
pore region is along the z direction.17, 42 Therefore, to locate
channel grid points in the solvent, the surface is sliced along
z direction. For each slice, the solvent region enclosed by the
biomolecule is the channel pore region, and the solvent re-
gion outside the biomolecule is the bulk ion region. After all
the channel pore points are located, the membrane layers are
added to the geometry. Here a slab with no charge and a total
length of 24 Å along the z direction is used for the represen-
tation of implicit membrane layers. In general, the position
of membrane layers has little impact to the channel transport
property because no charge is assigned to the membrane in
the present work. On the other hand, it would be very impor-
tant to precisely define the membrane position had the mem-
brane been doped with charges, which can be easily done.
Figure 6 illustrates the electrostatic potential and concentra-
tion profiles (which are averaged on each x–y plane for given
z value) along the z direction. It is seen that the computational
results for PB and PNP models are essentially the same when
the external voltage is set to zero. This agreement also vali-
dates our computational algorithms discussed in Sec. III.

B. Ion transport over transmembrane channel

In this subsection, we consider the present PBNP model
under the presence of the external electric field in the GA

channel. The GA channel is selective to monovalent positive
ions such as sodium and potassium where reject negative
ions such as chlorine. However, in the extracellular and
intracellular environment, there could be many ion species.
Here, the computational setup of the GA channel is the same
as that shown in Fig. 5(b), while the ion concentrations of
different species are included in the description of the PBNP
model. Two electrodes are located on the top and bottom
boundaries of the GA channel, respectively. The ion transport
path (the pore region) is along z direction where electrical
voltage applies. For the boundary condition in the channel,
defining z ∈ [zbottom, ztop], then the concentration and poten-
tial values at zbottom and ztop are given. For the rest of the
computational boundary, the Neumann boundary condition
is employed for the potential and the Dirichlet boundary
condition is employed for the concentration. Note that
actually the Neumann boundary condition ((∂�)/(∂n) = 0)
can be replaced by assigning the protein with fixed charges
at the boundary, i.e., the Dirichlet boundary condition. For
the diffusion coefficient, the value in the bulk region can be
obtained from the experimental measurement; however, there
are very limited experimental data available for the diffusion
coefficients in the channel pore region. For experimental
measurements in other field, such as magnetic resonance
imaging, it is generally known that diffusion coefficients are
much smaller in confined systems, such as microchannels
and nanopores, than those in the bulk regions. Computa-
tionally, here we introduce buffering regions between the
bulk and channel regions, where the diffusion coefficient
is interpolated by the value between the bulk and channel
regions. The diffusion coefficient function is defined as
follows:

D(r) =

⎧
⎪⎪⎨
⎪⎪⎩

Dchannel, r ∈ Channel region

Dchannel + (Dchannel − Dbulk) f (r), r ∈ Buffering region

Dbulk, r ∈ Bulk region

, (35)
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FIG. 7. Comparison of PNP and PBNP models with V0 = 50 mV and n0 = 2 M in the KCl mixture. (a) Electrostatic potential profiles; (b) concentration
profiles, the solid lines (red and magenta) represent the concentration of K+ and Cl− in PNP computation, while the dots (green and yellow) represent the
concentration of K+ and Cl− in PBNP computation.

where the function f (r) is given by

f (r) = f (z) = n

(
z − zchannel

zbulk − zchan

)n+1

− (n + 1)

(
z − zchannel

zbulk − zchan

)n

, (36)

where n is an integer, n ≥ 2 and z ∈ [zchannel, zbulk]. Here we
assume that the channel structure lies along the z direction,
and similar profiles can be constructed for other transport di-
rection as well. This construction is a generalization of the
diffusion profile mentioned by Hwang et al.7 And the bulk
diffusion coefficients in this work are taken from Table 10.1
in the literature,4 given the temperature is 25 ◦C.

We are interested in examining the consistence between
the PBNP model and the PNP model for the prediction of
electrostatic potential, ion concentration profiles, and I–V

curves. Two systems are employed to demonstrate our PBNP
model. The first system consists of two ion species, K+

and Cl−, or Na+ and Cl−. The other system includes three
ion species, K+, Na+, and Cl−. In our calculations, the
concentrations of one or two ion species are represented by
the Boltzmann distributions. We then compare predictions of
two models.

1. Ion channel transport with two ion species

Assuming that there are two different ion species in the
system, we consider two different combinations, a K+– Cl−

pair and a Na+– Cl− pair. Both the PNP model and the PBNP
model are employed for these systems.

a. K+ and Cl− system. Assuming that K+ and Cl− are the
ion species in the computational system. For the original PNP
model, the concentrations of K+ and Cl− are both governed
by the Nernst–Planck equation (Dbulk

K+ = 1.96 × 10−5cm2/s
and Dchannel

K+ = Dbulk
K+ /21.0, Dbulk

Cl− = 2.03 × 10−5cm2/s, and
Dchannel

Cl− = Dbulk
Cl− /21.0 ). For the PBNP model, we assume that

the concentration of K+ is governed by the Nernst–Planck
equation (use the same diffusion profile as in the PNP
computation), while the concentration of Cl− is represented

by the Boltzmann distribution as shown in Eq. (20). Assume
that U1 is the electrochemical potential of K+ and U2 is the
electrochemical potential of Cl−. As stated in the construction
of the PBNP model, U1 can be obtained once the concen-
tration of K+ is solved by the Nernst–Planck equation, and
since the dominant contribution here is the electrostatics, then
by approximation, U2 is estimated by −U1. To see the
feasibility of this estimation, the PBNP model is solved
self-consistently to obtain the electrostatic potential and
concentration profiles, and then compared to the computa-
tional results of the original PNP model. Figure 7 shows
the computational results of these two models given the
electrical voltage of 50 mV and the bulk concentration of
2 M; whereas Fig. 8 shows the computational results of these
two models given the electrical voltage of 200 mV and the
bulk concentration of 2 M. Obviously, there are excellent
agreements between the results obtained by the PNP model
and those of the PBNP model under the same boundary and
geometry setup. In fact, the agreement is even better when
the applied electrical voltage is smaller.

b. Na+ and Cl− system. Similarly, we assume that Na+

and Cl− are the ion species in the system. In our PBNP
model, we assume that the concentration of Na+ follows
the Nernst-Planck equation (Dbulk

Na+ = 1.33 × 10−5cm2/s and
Dchannel

Na+ = Dbulk
Na+/50.0), while the concentration of Cl− is rep-

resented by the Boltzmann distribution as shown in Eq. (20).
We denote U1 as the electrochemical potential of Na+ and
U2 as the electrochemical potential of Cl−. Similar to the last
case, U1 is obtained once the concentration of Na+ is solved
by the Nernst–Planck equation. We estimate U2 by setting
U2 = −U1. Again, the computational results of the PBNP
model are compared with those of the original PNP model,
in which the concentration of Na+ and Cl− are both governed
by the Nernst–Planck equation. We illustrate our comparison
in Fig. 9, where the given electrical voltage is 100 mV and the
bulk concentration is 0.5 M. Once again, we see an excellent
agreement between the results of the PNP model and those
of the PBNP model under the same boundary and geometry
setup.
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FIG. 8. Comparison of PNP and PBNP models with V0 = 200 mV and n0 = 2 M in the KCl mixture. (a) Electrostatic potential profiles; (b) concentration
profiles.

To further validate the proposed PBNP model, we con-
sider the I–V curves predicted by two models under a number
of external field strengths and bulk ion concentrations. This
is a much more meaningful test because our PBNP model
can be compared directly with experimental measurements.39

We evaluate electric current across the GA channel by the
expression17

I =

Nc∑

α=1

qα

∫

L y

∫

L x

Dα

[
∂nα

∂z
+

qαnα

kB T

∂�

∂z

]
dxdy. (37)

The current is evaluated at each cross section inside the pore
and it is found that the value is not sensitive to the location
of the cross section. The current through the middle of the
pore is shown in the present work. Figure 10 depicts the I–V

curves computed for the GA channel using these two different
models. Our results indicate that the proposed PBNP model is
able to provide the full scale prediction of ion channel trans-
port. Particularly, the comparison with experimental I–V plots
for GA channel from Busath et al.39 confirms the usefulness
and validity of the present PBNP model.

2. Ion channel transport with three ion species

One of our motivations in proposing the PBNP model
is to reduce the number of Nernst–Planck equations needed
for systems with multiple ion species. In this subsection, we
test the ability and the performance of the proposed PBNP
model. The computational setup of the GA channel is shown
in Fig. 5(b), which is the same as that used in the above calcu-
lations. However, in the present calculation, we assume that
there are three different ion species, namely, K+, Na+, and
Cl− in the system. For the implementation of the PBNP model
in the present case, two different treatments are considered. In
our first treatment (called PBNP1), we assume the concentra-
tions of K+ and Na+ are still governed by the Nernst–Planck
equation, while the concentration of Cl− is represented by the
Boltzmann distribution as shown in Eq. (20). Therefore, n1

and n2 are both explicitly solved while n3 is estimated in the
same manner as described in Sec. III. In our second treatment
(called PBNP2), we assume the concentration of one positive
ion species follows the Nernst–Planck equation, while the rest
are represented by the Boltzmann distribution as shown in
Eq. (20). Therefore, μK+ can be obtained after nK+ is

FIG. 9. Comparison of PNP and PBNP models with V0 = 100 mV and n0 = 0.5 M in the NaCl mixture. (a) Electrostatic potential profiles; (b) concentration
profiles.
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FIG. 10. I–V curves for NaCl. (a) The solid lines represent the PNP computational results and the squares represent experimental data;39 (b) The dashed lines
represent the PBNP computational results and the squares represent experimental data.39

computed, and U2 and U3 are approximated by using U1.
Here, since Na+ carries same charge as K+, in the bulk re-
gion, we assume U2 = U1 and for the channel region a smaller
value is given to differentiate two species, i.e., U2 = U1

+ 0.1kB T . One reason is that this provides a good match to
the PNP computation given that K+ : Na+ = 1 : 1. For other
ratios of the mixture, we use the same constants for the es-
timation. For U3, it still takes the opposite sign compared to
U1, i.e., U3 = −U1. As a comparison, we carry out similar

computations with the original PNP model, in which the
concentrations of Na+, K+, and Cl− are all governed by
the Nernst–Planck model, and the corresponding concentra-
tions n1, n2, and n3 are all solved from the Nernst–Planck
equation.

First, we check the consistence among the original PNP
model, the PBNP1 model, and the PBNP2 model. Figure 11
shows the computational results obtained by PNP, PBNP1,
and PBNP2 models. Clearly, there is little deviation between

FIG. 11. Comparison of PNP, PBNP1, and PBNP2 models with V0 = 200 mV, n0 = 1.0 M, and K+:Na+ = 2:8. (a) Electrostatic potential profiles computed
from PNP and PBNP1; (b) Concentration profiles computed from PNP and PBNP1; (c) electrostatic potential profiles computed from PBNP1 and PBNP2; (d)
concentration profiles computed from PBNP1 and PBNP2.
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FIG. 12. Comparison of PNP and PBNP2 models with V0 = 200 mV, n0 = 1.0 M, and K+:Na+ = 1:1. (a) Electrostatic potential profiles; (b) concentration
profiles.

FIG. 13. Comparison of PNP and PBNP2 models with V0 = 200 mV, n0 = 1.0 M, and K+:Na+ = 8:2. (a) Electrostatic potential profiles and (b) concentration
profiles.

FIG. 14. Comparison of PNP and PBNP2 models with V0 = 200 mV, n0 = 1.0 M and K+:Na+ = 8:2. (a) Electrostatic potential profiles; (b) concentration
profiles.
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FIG. 15. Computational time of PNP, PBNP1, and PBNP2 models with different mesh sizes. (a) Mesh size = 1.0 Å; (b) mesh size = 0.5 Å.

the results obtained by PNP and PBNP1 models as shown in
Figs. 11(a) and 11(b). We further examine the consistence
between the PBNP1 and PBNP2 models in Figs. 11(c) and
11(d). Obviously, there is no visible deviation in these two
PBNP models, although two ion species are approximated by
the Boltzmann distribution in the PBNP2 model.

Since two ion species are represented by the PBNP2
model, it is interesting to understand how the ratio of KCl
and NaCl concentrations will affect the performance of the
PBNP2 model. To this end, we consider three cases in which
the concentration ratios of K+ : Na+ are set to 1:1, 8:2, and
2:8, respectively. The results obtained by using the PNP
model and PBNP2 model are depicted in Figs. 12–14. The
electrostatic potentials computed by these two models are al-
most identical in all cases. This is good indication that the
proposed PBNP2 works well for ion mixtures. When the bulk
concentration of Na+ is the same as that of K+, it is interest-
ing to note that the concentration profile of Na+ is slightly
higher than that of K+ in the ion channel as illustrated in
Fig. 12(b). This difference is caused by the difference in their
diffusion coefficients. In the next two cases where the concen-
tration ratios of K+ : Na+ are, respectively, 8:2 and 2:8, we
use the Nernst–Planck equation to represent ion with higher
bulk concentration. The results plotted in Figs. 13 and 14
show an excellent agreement between the PBNP model and
the original PNP model.

Finally, we examine the current values obtained in these
three cases. Table I lists the results obtained from the PNP
model and the present PBNP models under three concentra-
tion ratios. Apparently, for a given total positive ion concen-
tration, the higher molar fraction of K+, the larger current

TABLE I. Current values of PNP, PBNP1, and PBNP2 models with differ-
ent mix ratios

K+:Na+ PNP PBNP1 PBNP2

2:8 3.68 3.71 3.73
1:1 5.41 5.43 5.49
8:2 7.24 7.25 7.23

is, due to the impact of diffusion coefficients. However, in
all calculations, there are very good agreements among three
models.

Furthermore, as fewer equations are solved in the PBNP
models, less CPU time is expected for these models. To exam-
ine the computational efficiency, the above mentioned models
are employed at the same initial and boundary conditions, the
computational time for the uniform grid with the mesh sizes
of 1.0 and 0.5 Å are reported in Table II under different stop-
ping criteria and illustrated in Fig. 15. The computational time
may vary due to the available resource in the shared research
computers, however, a basic time saving pattern can be ob-
served from the figure due to the reduction in the number of
governing equations. Specifically, for the PNP model, four 3D
equations, one for the electrostatic potential and three for the
concentrations, are solved in each iteration, while only three
3D equations are solved for the PBNP1 model, and only two
3D equations are solved for the PBNP2 model in each itera-
tion, which results in the better computational efficiency.

V. CONCLUDING REMARKS

The Poisson–Nernst–Planck model is a well-established
electrodiffusion model for a wide variety of applications in
chemistry, physics, nanoscience, and biology. However, the
PNP model has limited validity due to its mean-field approxi-
mation and its nature of continuum approximation. Addition-
ally, the PNP model may become cumbersome when applied

TABLE II. Computational time of PNP, PBNP1, and PBNP2 models with
different mesh sizes and iteration stopping criteria (ISC)

Mesh size = 1.0 Å Mesh size = 0.5 Å

ISC

Method 10−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

PNP 134 188 287 361 1602 2852 3856 5646
PBNP1 107 131 209 286 1219 1793 2748 3474
PBNP2 65 86 147 184 942 1441 2282 2603



194101-16 Q. Zheng and G. Wei J. Chem. Phys. 134, 194101 (2011)

to a system of multiple ion species. Computationally, it can be
a burden to solve one 3D Nernst–Planck equation for each ion
species in the system, regardless whether it is the ion of inter-
est or not. Moreover, the PNP model requires the diffusion co-
efficients for all ion species. In general, diffusion coefficients
are position dependent functions and are very sensitive to
the biological environment. Unfortunately, there are very lim-
ited experimental data of diffusion coefficients available for
biomolecular systems, such as ion channels, nanopores, and
microchannels. For these reasons, it is desirable to solve as
fewer number of Nernst–Planck equations as possible, while
maintaining the accuracy of the PNP prediction in many real-
istic applications.

We propose a simplified model to address this need.
We use the Boltzmann distribution to represent the 3D ion
concentration profile for certain ion species so as to avoid
solving the Nernst–Planck equation for all the ion species.
In our case, the Boltzmann distribution in terms of the
electrochemical potential, instead of the electrostatic poten-
tial, is required due to the presence of external voltages. As a
result, we obtain coupled Poisson–Boltzmann–Nernst–Planck
equations from the variational principle. The proposed PBNP
model can be used for the prediction of ion transport of
membrane proteins subject to applied external electric fields.
This model is further reduced to the Poisson–Boltzmann
equation when the external voltage is absent. In fact, the
equivalence between the PNP model and the PB model in the
absence of external voltage is well known.8

To implement the proposed PBNP model in an efficient
manner, we design a number of computational techniques.
First, we make use of a Dirichlet to Neumann mapping tech-
nique in which one splits the solution of the PB equation into
a regular part and a singular part so that the singular part can
be solved analytically by the Green’s function.19 The result-
ing regular part is solved numerically, subject to a Neumann
boundary condition. Additionally, we solve regular part of
the PB equation by using the matched interface and bound-
ary technique which achieves the second order accuracy for
realistic molecular surfaces of proteins.25, 26, 36–38 The MIB
technique is also employed to solve the Nernst–Planck equa-
tion in the present work subject to nonflux boundary condi-
tion. Finally, the coupled PNP equations or PBNP equations
are solved by iterative procedures. Both linear and nonlinear
schemes are proposed in solving the PB equation. Appropri-
ate iteration schemes are used to ensure the convergence of
the iterations.

Two proteins, cytochrome c551 and Gramicidin A, are
utilized to validate the proposed PBNP model and to demon-
strate its usefulness. The heme-binding protein, cytochrome
c551, is immersed in a salt solvent to study the electrostatic
potential profile on the protein surface and the distribution of
ion concentrations induced by the electrostatic field. This is
normally done with the PNP model. In the present work, we
show that the Boltzmann distribution obtained from the PB
model delivers essentially the same result as that obtained by
using the PNP model. The Gramicidin A is a transmembrane
channel and has been widely used to test various theoretical
models for ion channel transport subject to external electric
fields. We consider the situations there are two and three ion

species in the system. The goal is to examine the electrostatic
potentials, ion concentration profiles, and current–voltage
(I–V) curves under various bulk concentrations and subject
to a wide range of external voltages. In the case of two ion
species, we show that the concentration of one of the two
species can be represented by the Boltzmann distribution and
the results predicted by using the present PBNP model are
essentially the same as those obtained from the PNP model.
In the case of three ion species, we design two different
settings. In the first setting called PBNP1, the Boltzmann
distribution of an ion concentration is used to substitute one
Nernst–Planck equation. We show that there is an excellent
consistence between the PNP model and PBNP1 model in
terms of electrostatic potentials, ion concentration profiles
and I–V curves. It is interesting to note that the validity of
our I–V curves has also been confirmed by experimental data.
In our second setting called PBNP2, we use two Boltzmann
distributions to replace two Nernst–Planck equations. Again,
excellent consistence between the PNP model and PBNP2
model is found in terms of electrostatic potentials, ion
concentration profiles and current values. The CPU costs of
the PNP and the proposed PBNP models are compared over
two different mesh sizes and a number of iteration stopping
criteria. The present PBNP model is much more efficient than
the PNP model.

We expect that the present PBNP model will play an
important role in other chemical, physical, and biological
systems. One possible application is nanoelectronic devices
where electrons, holes, and other charge carriers are typi-
cally modeled by the PNP model or the Poisson–Schrödinger
equation.43 Another example is microfluidic and nanoflu-
idic systems and electro-osmotic flows in microchannels and
nanochannels.22, 23 Other possible applications are to model
multiple charged ions or charged molecules in the direct sea-
water desalination44 or molecular sieving (i.e., electrostatic
seiving).45

It is noted that the proposed PBNP model inherits limita-
tions from the PB model and PNP model. Therefore, all pre-
vious modifications which are aimed to improve the PB and
PNP models can be similarly applied to the present PBNP
model.18 This aspect is under our investigation.
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