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In [4] we defined the Poisson boundaries for semisimple Lie groups. 
These spaces play a role in the theory of generalized harmonic func
tions on the Lie group similar to that played by the boundary of the 
unit disc in the classical theory of harmonic functions on the unit 
disc. I t is not hard to extend these notions to all separable, locally 
compact groups, and, in particular, they make sense for countable 
discrete groups. In this form we shall show that these ideas provide 
a useful tool for answering certain purely algebraic questions. Namely, 
we raise the following question. Let G be a connected Lie group, Y 
a discrete subgroup for which G/Y has finite (left-) invariant mea
sure. To what extent is G determined by a knowledge of Y as an ab
stract group, and conversely, what is the influence of G on the struc
ture of T? 

To make this question precise, let us say that G is an envelope of 
r if an isomorphic copy Y' of Y occurs as a discrete subgroup of G, 
and G = DY', where D is a subset of G with finite left-invariant Haar 
measure. Our question may now be stated in this way. How different 
can two connected Lie groups G\ and G2 be if they both envelop the 
same countable group T? 

We shall be discussing a rather restricted version of this question. 
We suppose that G\ and G% are semisimple and have no compact 
components, and that G\ and G2 envelop the same group Y. Does it 
follow that Gi and G2 are isomorphic? (Without the hypothesis that 
Gi and G2 have no compact components we could always take 
G2 = GiXa compact group.) Our guess is that this is the case. How
ever all we can prove is the following: 

THEOREM. Let Hr, r = î, 2, 3, • • • , denote the hyperbolic group of 
motions of the r-sphere Sr: Hr consists of the ( r+2) X (r+2) real matri
ces that leave the form %l+x\+ • • • +#;? — t2 invariant. SL(s, R) de
notes the group of sXs real unimodular matrices. If & is one of the 
groups Hrj r^z 1 and G2 is one of the groups SL(s> R), s ̂  3, then G\ and 
G2 cannot simultaneously envelop the same countable group. 

1 This research was partially supported by the Office of Scientific Research of the 
Office of Aerospace Research of the USAF under Grant #AF-AFOSR-381-63. 
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Note that SL(2, R) is exceptional here. This is because SL(2, R) 
is isomorphic to the hyperbolic group Hi. (Consider the adjoint 
representation of SL(2, R).) Thus, as a special case of the theorems, 
5Z(2, R) and SL(s, R) cannot envelop the same countable group, if 

Our theorem is rather special, but it implies, for example, that the 
free group on two generators which occurs with finite index in SL(2, Z)} 

cannot be enveloped by any SL(s, R)t s^3. Actually we can say 
more: SL(s, R), s>3, cannot envelop any free group. In particular, 
no subgroup of SL(s, Z), s ^ 3 , of finite index is free. This last result 
can also be deduced from [ l ] and [6]. 

We present here the main ideas of the proof of this theorem. A 
more detailed discussion of a partial result is given in [5]. 

1. The Poisson boundary. Let G be a separable, locally compact 
group, M a G-space, \x a probability (Borel) measure on G, and v a 
probability measure on M. The application GXM—+M defines the 
convolution fi * v, and we say that v is a \x-stationary measure if 
ix*v*=v. A bounded Borel function/(g) on G is ^harmonic if 

fig) = ff(ss')Mi'). 

If v is a ^-stationary measure on M, <j> a bounded Borel function on M, 
then 

(i) fig) = ƒ *(tf)<MÖ = ƒ *(8<*«KÖ 

defines a ^-harmonic function on G. 

THEOREM 1. Let # be a fixed probability measure on G. There exists 
a G-space B and a ft-stationary measure v on B such that every bounded 
p-harmonic function on G admits the Poisson representation (1) for 
some function <f> on B. The pair (By v) is called the Poisson boundary of 
(G, ix) and we write (B, v) =P(G, /*). 

Let Xi, X2, • • • , Xn, • • • denote a sequence of independent G-
valued random variables, each with distribution /x. If M is a G-space 
and v a /^-stationary measure on M, it may be shown that with 
probability 1, the sequence of measures converges 
weakly on M, as #—> oo. 

DEFINITION 1. The pair (My v) is a boundary of (G, p) if, with proba
bility 1, lim XiX2 • • • Xnv is a point measure (i.e. its support con
sists of a single point). 
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THEOREM 2. Every boundary of (G, /x) is a measurable equivariant 
image of the Poisson boundary P(G, jtx). 

Tha t is, if P(G, jtx) = (£, v0), then there is an equivariant, measura
ble map p: B—>M such that p(*>o) =*'. 

In case G is a semisimple Lie group and fi is an absolutely continu
ous measure on G, we found in [4] that the underlying space B of 
P(G, /x) is a compact homogeneous space of G. In fact, it must be one 
of finitely many covering spaces of the homogeneous space B(G) 
which can be explicitly described: If G = K'A *N is an Iwasawa de
composition of G relative to the maximal compact subgroup K, then 
B(G)=G/T, where T is the normalizer in G of A*N. Note that 
KT = G, so that K is transitive on B(G). 

In certain cases we can be even more specific. We say JU is spherical 
if it is invariant with respect to left and right multiplication by ele
ments of K. If ix is spherical, then P(G, /x) = (J3(G), mB), where mB 

denotes the unique X-invariant probability measure on 5(G). By 
Theorem 1, it follows that all spherical measures /x lead to the same 
class of jx-harmonic functions. We call these simply harmonic func
tions on G. (They do depend, however, on the choice of K.) 

2. Measures on discrete subgroups. 

THEOREM 3. If G is a connected semisimple Lie group, T a countable 
discrete subgroup enveloped by G, then there exists a measure /x whose 
support coincides with Y f or which P(Tf jx) = (B(G), mB). 

According to Theorem 3, the Poisson representation of a /x-harmonic 
function on V coincides with that of a harmonic function on G. In 
fact, the theorem implies that the /x-harmonic functions on V are 
precisely the restrictions of harmonic functions from G to T. 

Theorem 3 provides the main tool for our subsequent analysis. I t 
shows in what form one can obtain information about an envelope 
of T from T itself. For, the possible Poisson boundaries P(T, JX), /x a 
measure on T, depend only on the structure of T. 

3. Dynkin spaces and SD-groups. Let H be a locally compact topo
logical group and M an ü-space which is compact and metrizable. 

DEFINITION 2. M is a Dynkin space of H if, for every e> 0, there 
is a compact subset of H such that each hÇzH outside of this set maps 
all of M except for some «-neighborhood into an e-neighborhood : 

For example, the projective line P 1 is a Dynkin space of SL(2, R), 
More generally, 

PROPOSITION 1. The r-dimensional sphere is a Dynkin space of the 
hyperbolic group Hr, r = 1, 2, 3, • • • . 
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DEFINITION 3. A group H is a 2D-group if it possesses a Dynkin 
space M with the property that no point of I f is a fixed-point of the 
group. 

Hr is a D-group. The same is true of any subgroup of Hr that has 
no fixed-point on the r-sphere. Since the subgroup that leaves a given 
point of Sr fixed is connected, it follows from [2] that a closed sub
group H<Z.Hr for which Hr/H has finite measure cannot have a fixed-
point on Sr. Hence 

PROPOSITION 2. If T is enveloped by a hyperbolic group, then Y is a 
fD-group. 

For example, SL(2, Z) and its subgroups of finite index are £>-
groups. The fundamental groups of compact orientable 2-dimensional 
surfaces of genus ^ 2 are £>-groups. The Picard group of 2X2 uni-
modular matrices whose entries are Gaussian integers is enveloped 
by SL(2, C) which is isomorphic to the Lorentz group üf2. Hence the 
Picard group is a SD-group. We can obtain many other examples using 
the following proposition. 

PROPOSITION 3. His a £>-group if some homomorphic image of H is a 
^-group. 

For example, the commutator subgroup of SL(21 Z) is of finite 
index and is a free group with two generators. Now any free group 
on è 2 generators maps homomorphically onto the latter. This gives 
us 

PROPOSITION 4. The free group on r generators, 2^r^ 00, is a 3> 
group. 

Actually we may construct a Dynkin space for the free group F2 
on 2 generators directly as follows. Denote the generators by a and b. 
Let M be the set of all infinite "words," w = WiW2 • • • wn • • • whose 
letters are chosen from {a, a - 1 , b, &"1} and subject to the condition 
that no consecutive pair (wi, w*+i) is of the form (a, a"1), (6, b"l)y 

(a~l, a), or (J-1, b). M is a F2-space if we define the action of F% by 
juxtaposition, cancelling where necessary. With the usual topology of 
a sequence space, M is compact and metrizable. Moreover one sees 
quite easily that M is a Dynkin space for F2. This construction is 
essentially due to Dynkin and Malyutov [3] who use it to construct 
a Martin boundary for a class of harmonic functions on the free group, 

A similar construction may be applied to other instances of groups 
presented in terms of generators and relations. The following is an 
example of this. 
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PROPOSITION 5. A free product of nontrivial finite groups, 
Gi, G2, • • • , Gm ( 2 g w g 00) is a $)-group unless m~2 and Gi and G2 
are both of order 2. 

Here the Dynkin space consists of words w\W% • • • « ; » • • • where 
the Wi are nontrivial elements of the groups Gy and where neighboring 
Wi never come from the same group. 

4. ju-harmonic functions on a 3>group. Let ju be a measure on a 
3D-group ff whose support coincides with ff, and suppose that M is a 
Dynkin space for ff. Since M is compact, there exists a /^-stationary 
measure v on M. v cannot concentrate on a single point of M, for 
then ff would have a fixed-point in M. Let us assume that, in fact, 
v is entirely nonatomic. Then (M, v) is a boundary of (ff, /*). This 
follows from Definition 2, since, if &wj> converges to a measure on M 
and /&»--> 00 in ff, then lim Anj/ must be a point measure. Now it can 
be shown that, with probability 1, the sequence {X1X2 • • • Xn) 
possesses a subsequence —> 00 unless fx is concentrated on a compact 
subgroup of ff. Thus, in our case, lim X1X2 • • • Xnj> is a point 
measure, and (M, v) is a boundary of (ff, JU). 

Now suppose Ai and ^2 are two disjoint closed subsets of M with 
v(Ai)>i — €9 where e is a positive number. The functions 

fi(h) = vQr\A%)) = hv(Ai) 

are ju-harmonic and /* ( e )> i — €. Now as h—»<*>, the measure fe> tends 
to become a point measure, and since A\ and ^2 are separated by a 
positive distance, we find 

(2) ndn{/i(A),/,(A)}->0 

as h—* 00. This gives us the following result. 

LEMMA 1. If H is a 3D-group and p a probability measure on ff with 
support all of ff, then either there exists an atomic jx-stationary measure 
on the Dynkin space of H, or, for every €>0, there exist \x-harmonicjunc
tions ji(h)f f2(h) on ff with 

(a) 0£A(*)fJr,(ft)£l 
( b ) / l ( * ) > J - € , / 2 ( é O > J - - € 
(c) min {fi(h)f f2(h)} —»0 as &—•> 00. 

5. Boundary behavior of harmonic functions on SL(s> R). Let 
s^3 be fixed, set G = SL(sf R), B=*B(G). B can be explicitly deter-
mined; it is the "flag space" of subspaces of all dimensions of R\ 
K will denote the orthogonal subgroup of G, and mB denotes the K-
invariant measure on B. Let {gn} be a sequence in G such that gnniB 
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converges to a measure w on B. We then have the following version 
of the Fatou theorem. 

PROPOSITION 6. If f(g) is a bounded harmonic function on G cor
responding to a boundary function ƒ on B, then, as f unctions on K, the 
sequence f (kgn) converges in measure to a function ƒ*•(&) which satisfies 

(a) A(*) = yW(*Ö<ftr(öa.e., 
(b) M«(k)dk=f(e). 
If 7T is a point measure, 7r = Ô£0, then Jr simply "lifts" ƒ from B to 

K:fv{k) =/(fe|;o). For s^3 however, there always are limit measures 
7T which are not point measures, and Proposition 6 describes the 
boundary behavior near these points as well. The values of /T are 
averages of values of ƒ(£) ; we may expect, therefore, that even if ƒ 
takes on only the two values 0 and 1, the function fT will take on inter
mediate values as well. This is made precise in the following. 

LEMMA 2. There exist two limit measures w' and w" on B and a posi
tive constant rj such that if f(g) is a harmonic function on G with 
Og/fe) £l,and also 1/4^ƒ(e) g 3 / 4 , then 

fmm(Jr(k),l-Jw(k))dk>i, 

for either ir = 7r' or ic~ir". 

In other words, unless/(e) is close to either 0 or 1, it is not possible 
for both J** and ƒ*•" to approximate characteristic functions. 

A comparison of Lemmas 1 and 2 enables us to prove our main re
sult. 

THEOREM 4. A unimodular group SL(s, R), s ^ 3 , cannot envelop a 
ID-group. 

Suppose G = SL(s, R) envelopes the 3>group T. Let /x be a measure 
on T for which PCF, /*) = (B, MB), let M be the Dynkin space of V and 
let v be a ju-stationary measure on M. Then (M, v) is a boundary, and 
by Theorem 2, there is an equivariant map from (B, % ) to (M, v). 
This may be seen to imply that v is nonatomic. Applying Lemma 1, 
we find that the second alternative takes place, and we may find two 
^-harmonic functions / i , f2 on V satisfying (a), (b), and (c). Since 
P ( r , ju) = (J5, % ) , fi and j \ extend to harmonic functions on G. Now 
we can no longer assert that, in general, min (fi(g), /2(g))—>0 as g—><x> 
in G, but this will be the case if g stays "sufficiently close" to I \ Using 
a result of [7] regarding the ergodicity of flows in G/T, we may show 
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that each of the measures 7r', 7T" is the limit of a sequence of the form 
{gn^is] such that 

(3) m i n ( / 1 f e ) , / 2 t e ) ) - > 0 

in measure (of K) as n—*<x>. But then min(/i,Tt /2fT) = 0 for 7r = 7r/ and 
7r=7r". Now 

fîiAk)dk + ƒƒ,.,(*)<** = /iW + ƒ,(*) > 1 - 2e 

so that / | (1— / I , T ) — / 2 , T | ^ < 2 € . This gives 

ƒ min(/iiir(*), 1 -fiAQ)M < 2* 

for both 7r = 7r', TT". This contradicts Lemma 2 if 2e<?7 and e < l / 4 . 
As a direct consequence of Theorem 4 we have 

THEOREM 5. If T is a countable group enveloped by a unimodular 
group SL(s, R), 5 ^ 3 , then T is not a free group, nor is it a free product 
of finite groups, nor is it enveloped by a hyperbolic group, nor does it 
have a homomorphic image with any of these properties. 

We should remark that whereas free groups cannot occur as dis
crete subgroups of a group SL(s, R), s ^3, in such a way that the 
quotient space has finite measure, if we remove either the finiteness 
condition or the discreteness condition, they certainly do occur. In 
fact, free groups occur as dense subgroups in any connected Lie group. 
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