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Abstract

We introduce new invariants associated to collections of compact sub-
sets of a symplectic manifold. They are defined through an elementary-
looking variational problem involving Poisson brackets. The proof of the
non-triviality of these invariants involves various flavors of Floer theory,
including the µ3-operation in Donaldson-Fukaya category. We present ap-
plications to approximation theory on symplectic manifolds and to Hamil-
tonian dynamics.
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1 Introduction and main results

1.1 C0-robustness of the Poisson bracket

Let (M2n, ω) be a symplectic manifold. Consider the space C∞c (M) of
smooth compactly supported functions on M equipped with the uniform norm
‖F‖ := maxx∈M |F (x)| and with the Poisson bracket {F,G}. Most of the action
in the present paper takes place in the space F = C∞c (M) × C∞c (M). It was
established in [16] (cf. [10, 48]) that the functional

F → [0; +∞), (F, G) 7→ ||{F, G}||,
is lower semi-continuous in the uniform norm, meaning that

lim inf
F,G

C0−→F,G

‖{F , G}‖ = ‖{F, G}‖ ∀F,G ∈ F . (1)

This result can be considered as a manifestation of symplectic rigidity in the
function space F . The surprising feature here is that the Poisson bracket in-
volves first derivatives of functions, while the convergence in (1) is only in the
C0-sense.

The main observation of the present paper is that certain variational prob-
lems involving the functional (F, G) 7→ ||{F, G}|| give rise to invariants of (collec-
tions of) compact subsets of symplectic manifolds. Even though their definition
involves only elementary calculus, their study is based on a variety of “hard”
symplectic methods such as Gromov’s pseudo-holomorphic curves, Floer the-
ory, Donaldson-Fukaya category and symplectic field theory. The applications
of these invariants include approximation theory on symplectic manifolds and
Hamiltonian dynamics.

1.2 Introducing the Poisson bracket invariants

We introduce the following two versions of the Poisson bracket invariants.

Invariants of triples: Let X, Y, Z ⊂ M be a triple of compact sets. Put

pb3(X,Y, Z) = inf ||{F,G}||,
where the infimum is taken over the class

F3(X, Y, Z) := {(F, G) | F |X ≤ 0, G|Y ≤ 0, (F + G)|Z ≥ 1 } (2)

of pairs of functions from F . Note that this class is non-empty whenever

X ∩ Y ∩ Z = ∅, (3)

see Figure 1. Indeed, it contains any partition of unity subordinated to the
covering (M \X, M \Y, M \Z) of M . If the latter condition is violated, we put
pb3(X, Y, Z) = +∞.

An easy check shows that pb3(X,Y, Z) is symmetric with respect to X,Y, Z.
The next toy example shows that this variational problem is non-trivial.
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Figure 1: X ∩ Y ∩ Z = ∅

Example 1.1. Consider the sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

with the standard symplectic form. Take three big circles

X = {x = 0}, Y = {y = 0}, Z = {z = 0}.

It turns out that pb3(X, Y, Z) > 0, see Example 1.16 below. Later on we shall
discuss various generalizations of this example to higher dimensions and to sin-
gular subsets which are not necessarily submanifolds.

Invariants of quadruples: Let X0, X1, Y0, Y1 ⊂ M be a quadruple of com-
pact sets. Put

pb4(X0, X1, Y0, Y1) = inf ||{F,G}||,
where the infimum is taken over the class

F4(X0, X1, Y0, Y1) :=
{(F, G) | F |X0 ≤ 0, F |X1 ≥ 1, G|Y0 ≤ 0, G|Y1 ≥ 1 } (4)

of pairs of functions from F . Note that this class is non-empty whenever

X0 ∩X1 = Y0 ∩ Y1 = ∅, (5)

see Figure 2.
If the latter condition is violated, we put pb4(X0, X1, Y0, Y1) = +∞.

Example 1.2. Consider two parallels X0 and X1 and two meridians Y0 and Y1

on a two-dimensional torus T2. They divide T2 into four squares. Pick three
of the squares, attach a handle to each of them and call the resulting genus-
4 surface M . Equip M with an area form ω. We shall see in Remark 1.24
(or, alternatively, in Section 1.7) that pb4(X0, X1, Y0, Y1) > 0. Furthermore,
this example is stable in the following sense. Consider the product M × T ∗S1
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Figure 2: X0 ∩X1 = Y0 ∩ Y1 = ∅

equipped with the symplectic form ω + dp ∧ dq. Let K1, . . . ,K4 be any four
exact sectionsa of T ∗S1. Then pb4(X0 × K1, X1 × K2, Y0 × K3, Y1 × K4) > 0
(see Theorem 5.6 and Remark 5.7). Exactly the same conclusion holds true for
the quadruple of circles X0, X1, Y0, Y1 on the torus T2 (no handles attached) as
well as its stabilization by four exact sections of T ∗S1, see Remark 5.8.

One can easily check that pb4(X0, X1, Y0, Y1) does not change under permu-
tations which switch X0 with X1, Y0 with Y1 or the pair (X0, X1) with the pair
(Y0, Y1).

In what follows we shall often use a slightly different but equivalent definition
of the Poisson bracket invariants. Given a closed subset X ⊂ M , we denote by
Op(X) a sufficiently small neighborhood of X. When we say that F = 0 on
Op(X) we mean that F vanishes on some neighborhood of X. For a triple of
compact subsets X,Y, Z ⊂ M satisfying (3) define a class

F ′3(X,Y, Z) := {(F,G) | F ≥ 0, G ≥ 0, F + G ≤ 1,

F |Op(X) = 0, G|Op(Y ) = 0, (F + G)|Op(Z) = 1 }.
Similarly, for a quadruple of compact sets X0, X1, Y0, Y1 ⊂ M satisfying (5) put

F ′4(X0, X1, Y0, Y1) := {(F,G) | 0 ≤ F ≤ 1, F |Op(X0) = 0, F |Op(X1) = 1,

0 ≤ G ≤ 1, G|Op(Y0) = 0, G|Op(Y1) = 1 }.
Proposition 1.3.

pb3(X,Y, Z) = inf
(F,G)∈F ′3(X,Y,Z)

||{F, G}|| (6)

and
pb4(X0, X1, Y0, Y1) = inf

(F,G)∈F ′4(X0,X1,Y0,Y1)
||{F,G}||. (7)

aHere and further on by an exact section of a cotangent bundle we mean a graph of the
differential of a smooth function on the base.
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The proof will be given in Section 2.3.

1.3 An application to symplectic approximation

Non-vanishing of the Poisson bracket invariants can be interpreted in terms
of geometry in the space F equipped with the uniform distance

d((F, G), (H, K)) = ||F −H||+ ||G−K||

as follows. Consider the family of subsets Ks ⊂ F , s ≥ 0, given by

Ks = {(H, K) ∈ F : ||{H,K}|| ≤ s}.

Define the profile function ρF,G : [0; +∞) → R associated with a pair (F,G) ∈ F
(cf. [18]) as

ρF,G(s) := d((F,G),Ks).

Obviously, ρF,G(||{F, G}||) = 0 and the function ρF,G(s) is non-increasing and
non-negative. The value ρF,G(0) is responsible for the optimal uniform ap-
proximation of (F, G) by a pair of Poisson-commuting functions. Many re-
sults of the function theory on symplectic manifolds can be expressed in terms
of profile functions. For instance, the lower semi-continuity of the functional
(F,G) 7→ ||{F,G}|| discussed in the beginning of this paper means that for any
F, G ∈ C∞c (M) we have that ρF,G(s) > 0 for any s ∈ [0; ||{F, G}||). The study
of the modulus of the lower semi-continuity of this functional performed in [9],
cf. [17], yields a sharp estimate on the convergence rate of ρF,G(s) to zero as
s → ||{F, G}||. Below we focus on behavior of profile functions at and near
s = 0.

Consider a triple (X,Y, Z) or a quadruple (X0, X1, Y0, Y1) of compact sub-
sets of M satisfying intersection conditions (3) and (5) respectively. In both
cases denote by p the Poisson bracket invariant pb3(X, Y, Z) or, respectively,
pb4(X0, X1, Y0, Y1). Define subclasses

F [
3(X, Y, Z) ⊂ F3(X, Y, Z), F [

4(X0, X1, Y0, Y1) ⊂ F4(X0, X1, Y0, Y1)

consisting of all pairs (F, G) such that at least one of the functions F ,G has its
range in [0; 1]. We shall often abbreviate these classes as F [

3 and F [
4.

The main result of this section shows that the profile functions associated to
pairs from F [

k exhibit quite different patterns of behavior depending on whether
p = 0 or p > 0. Furthermore, when p > 0, there is a difference between the
cases k = 3 and k = 4.

Theorem 1.4. [Dichotomy]

(i) Assume that p = 0. In this case for every s > 0 there exists (F, G) ∈ F [
k

(where k = 3, 4) with ρF,G(s) = 0.
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(ii) Assume that p > 0. Then for every (F,G) ∈ F [
k (where k = 3, 4) the

profile function ρF,G is continuous, ρF,G(0) = 1/2 and

1
2
− 1

2||{F, G}|| · s ≥ ρF,G(s) ∀s ∈ [0; ||{F, G}||]. (8)

Furthermore,

ρF,G(s) ≥ 1
2
− 1

2
√

p
· √s ∀(F,G) ∈ F [

3 ∀s ≥ 0, (9)

and
ρF,G(s) ≥ 1

2
− 1

2p
· s ∀(F,G) ∈ F [

4 ∀s ≥ 0. (10)

This result, whose proof is given in Section 3.2, deserves a discussion. The
appearance of the class F [

k in our story is quite natural: it follows from Proposi-
tion 1.3 that p = inf ||{F, G}||, where the infimum is taken over all (F, G) ∈ F [

k.
This immediately yields part (i) of the dichotomy.

A comparison between estimates (8) and (10) shows that for (F,G) ∈ F [
4

and p > 0
1/2− ρF,G(s) ∼ s

for small s, and thus we have captured a sharp rate, in terms of the power of s,
of the profile function near 0. (Here and below we write a(s) ∼ b(s) whenever
for all sufficiently small s > 0 the ratio a(s)/b(s) of non-negative functions a
and b is bounded away from 0 and +∞.)

In contrast to this, when (F, G) ∈ F [
3, there is a discrepancy in the powers

of s in upper bound (8) and lower bound (9). Interestingly enough, for a certain
triple of closed subsets X, Y, Z with a positive Poisson bracket invariant pb3,
both rates 1/2 − ρF,G(s) ∼ s and 1/2 − ρF,G(s) ∼ √

s can be achieved by
suitable pairs (F,G) ∈ F [

3(X, Y, Z).
Indeed, consider the sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

with the standard symplectic form ω on it. Define F,G : S2 → R by F (x, y, z) =
x2 and G(x, y, z) = y2. These functions lie in F [

3(X, Y, Z), where X, Y and Z
are the big circles {x = 0}, {y = 0} and {z = 0} respectively. We have seen in
Example 1.1 that p := pb3(X,Y, Z) > 0.

Theorem 1.5. For the functions F, G : S2 → R as above one has

ρF,G(s) ≤ ρF,G(0)− C
√

s (11)

for some C > 0.

In particular, by (9) we get that 1/2−ρF,G(s) ∼ √
s. The proof will be given

in Section 3.4.
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Further, cover the circle Z by two open subsets, U and V so that U∩X = V ∩
Y = ∅. Take any pair of non-negative functions F,G from F [

4(X, U∩Z, Y, V ∩Z).
Observe that (F, G) automatically lies in F [

3(X,Y, Z). By inequality (32) below,

p := pb4(X, U ∩ Z, Y, V ∩ Z) ≥ pb3(X, Y, Z) > 0.

Thus by (10)

ρF,G(s) ≥ 1
2
− 1

2p
· s ,

and hence, by (8), we get that 1/2− ρF,G(s) ∼ s.
It would be interesting to explore further the rates of 1/2−ρF,G(s) as s → 0

for (F, G) ∈ F [
3(X,Y, Z): Are there intermediate rates between ∼ s and ∼ √

s?
Is there a generic rate, and if yes, what is it?

Let us continue the discussion on the Dichotomy Theorem. The continuity
of ρF,G(s) for s > 0 holds, in fact, for any pair (F, G) ∈ F (which does not
necessarily lie in F [

k):

Proposition 1.6. For every (F, G) ∈ F , the profile function sρF,G is Lipschitz
on (0; +∞) with the Lipschitz constant 3min(||F ||, ||G||).

In particular, ρF,G is continuous on (0; +∞). Let us mention also that the
Lipschitz constant of sρF,G(s) is uniformly bounded by 3 for all (F, G) ∈ F [

k.
The proposition is proved in Section 3.1.

The Dichotomy Theorem leaves unanswered the following natural and closely
related questions on the behavior of profile functions at s = 0 which, in general,
are currently out of reach. The first one deals with part (i) of the Dichotomy
Theorem:

Question 1.7. Assume that the Poisson bracket invariant p vanishes. Is it true
that

inf
(F,G)∈F[

k

ρF,G(0) = 0 ?

Or, even stronger, does there exist a pair (F, G) in F [
k or in its closure in C(M)

with ||{F, G}|| = 0? In the last question we assume for simplicity that M is
compact, and we define ||{F, G}|| for continuous F and G by formula (1).

The second question is as follows:

Question 1.8. Is the function ρF,G continuous at 0 for any pair of functions
(F,G) ∈ F?

It turns out that for closed manifolds of dimension two the answers to both
questions are affirmative. This readily follows from a recent result by Zapolsky
[49] which states that every pair of functions F, G on a surface with ||{F, G}|| ∼ s
lies at the distance ∼ √

s from a Poisson-commuting pair. In fact this yields the
following more detailed answer to Question 1.8, compare with inequality (9):
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Proposition 1.9. Suppose (M,ω) is a closed connected 2-dimensional symplec-
tic manifold. For any (F, G) the profile function ρF,G satisfies the inequality

ρF,G(s) > ρF,G(0)− C
√

s, (12)

for some constant C = C(M, ω) > 0. In particular, ρF,G is continuous at 0.

We refer to Section 3.3 for the proofs and further discussion.

1.4 An application to dynamics: Hamiltonian chords

Theorem 1.10. Let X0, X1, Y0, Y1 ⊂ M be a quadruple of compact sets with
X0 ∩ X1 = Y0 ∩ Y1 = ∅ and pb4(X0, X1, Y0, Y1) = p > 0. Let G ∈ C∞c (M) be
a Hamiltonian function with G|Y0 ≤ 0 and G|Y1 ≥ 1 generating a Hamiltonian
flow gt. Then gT x ∈ X1 for some point x ∈ X0 and some time moment T ∈
[−1/p; 1/p].

We refer to the curve {gtx}t∈[0;T ] as to a Hamiltonian chord of gt (or, for
brevity, of the Hamiltonian G) of time-length |T | connecting X0 and X1.

Hamiltonian chords joining two disjoint subsets (notably, Lagrangian sub-
manifolds) of a symplectic manifold arise in several interesting contexts such
as Arnold diffusion (see e.g. [30],[5, Question 0.1]) or optimal control (see e.g.
[38], [35, Ch.12], [29]). Furthermore, Hamiltonian chords had been studied on
various occasions in symplectic topology (see e.g. [2, 33]).

Theorem 1.10 has a flavor of the following well-known phenomenon in sym-
plectic dynamics: For a suitably chosen pair of subsets Y0 and Y1 of a symplectic
manifold the condition minY1 F − maxY0 F ≥ C yields existence of a periodic
orbit of the Hamiltonian flow of F with some interesting properties provided C
is large enough, see [28, 24, 7]. Theorem 1.10 extends this phenomenon to the
case of non-closed orbits, i.e. Hamiltonian chords.

It turns out that the bound on the time-length of a Hamiltonian chord given
in Theorem 1.10 is sharp in the following sense. Given two disjoint compact
subsets X0, X1 of M and a Hamiltonian G ∈ C∞c (M), denote by T (X0, X1;G)
the minimal time-length of a Hamiltonian chord of G which connects X0 and
X1. (Here we set inf ∅ := +∞.) Put

T (X0, X1, Y0, Y1) = sup { T (X0, X1; G) : G ∈ C∞c (M), G|Y0 ≤ 0, G|Y1 ≥ 1 }.

Theorem 1.11.

pb4(X0, X1, Y0, Y1) = T (X0, X1, Y0, Y1)−1.

The proof will be given in Section 4. This result can be considered as a dy-
namical interpretation of the invariant pb4. It immediately yields Theorem 1.10.

Let us pass to the case of Hamiltonian chords for non-autonomous flows. We
shall need the following notion.
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Stabilization: Identify the cotangent bundle T ∗S1 with the cylinder R × S1

equipped with the coordinates r and θ (mod 1) and the standard symplectic form
dr ∧ dθ. Denote by AR ⊂ T ∗S1, 0 < R ≤ ∞, the annulus {|r| < R}. Given a
compact subset X of a symplectic manifold (M, ω), define its R-stabilization

stabRX := X × S1 ⊂ (M × AR, ω + dr ∧ dθ),

where S1 is identified with the zero section {r = 0}. We shall abbreviate stabX
for stab∞X.

Theorem 1.12. Let X0, X1, Y0, Y1 ⊂ M be a quadruple of compact sets with
X0 ∩X1 = Y0 ∩ Y1 = ∅ and

pb4(stabRX0, stabRX1, stabRY0, stabRY1) = p > 0

for some R ∈ (1; +∞]. Let G ∈ C∞c (M ×S1) be a (non-autonomous) 1-periodic
Hamiltonian with Gt|Y0 ≤ 0, Gt|Y1 ≥ 1 for all t ∈ S1 and

max G−min G < R (13)

generating a Hamiltonian flow gt. Then there exists a point x ∈ M and time
moments t0, t1 ∈ R with |t0 − t1| ≤ 1/p such that gt0x ∈ X0 and gt1x ∈ X1.

The proof will be given in Section 4. Exactly as in the autonomous case,
the curve {gtx}, t ∈ [t0; t1], is called a Hamiltonian chord passing through X0

and X1. We refer to Remark 4.7 below for a comparison of the bounds on
the time-length of Hamiltonian chords given by Theorem 1.10 (the autonomous
case) and Theorem 1.12 (the non-autonomous case).

Here is a sample application of our theory. Consider a compact domain
V ⊂ T ∗Tn whose interior contains the zero section Tn. Fix a pair of distinct
points q0, q1 ∈ Tn and put Di = T ∗qi

Tn ∩ V .

Theorem 1.13. Let G : V × S1 → R be a Hamiltonian which vanishes near
∂V × S1 and which is ≥ 1 on Tn × S1. Then there exists a Hamiltonian chord
of the Hamiltonian flow of G passing through D0 and D1.

The proof is given in Section 1.5 below. As an illustration, assume that the
torus Tn is equipped with a Riemannian metric and V = {|p| ≤ 1}, where (p, q)
are canonical coordinates on T ∗Tn. Suppose that the Hamiltonian G has the
form u(|p|), where u(s) vanishes for s close to 1 and u(0) = 1. Then the projec-
tion of the Hamiltonian chord provided by Theorem 1.13 is a (reparameterized)
Riemannian geodesic segment joining the points q0 and q1. Theorem 1.13 re-
sembles the one of [7] where under similar assumptions the authors proved the
existence of closed trajectories imitating closed geodesics on the torus. The ap-
proach of [7] was based on relative symplectic homology. It would be interesting
to find its footprints in our context. It would be also interesting to compare our
approach with the one of Merry [33] who detects Hamiltonian chords by using
a Lagrangian version of Rabinowitz Floer homology.
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1.5 Poisson bracket invariants and symplectic quasi-states

Now we turn to a discussion of methods for establishing lower bounds (and,
in particular, the positivity) for the Poisson bracket invariants of certain triples
and quadruples of compact subsets of a symplectic manifold. The first method
is based on the theory of symplectic quasi-states and quasi-measures.
In this section we assume that (M2n, ω) is a closed connected sym-
plectic manifold.

Denote by C(M) the space of the continuous functions on M . A symplectic
quasi-state [13] is a functional ζ : C(M) → R which satisfies the following
axioms:

(Normalization) ζ(1) = 1;

(Positivity) ζ(F ) ≥ 0 provided F ≥ 0;

(Quasi-linearity) ζ is linear on every Poisson-commutative subspace of C(M).

Here we say that two continuous functions F, G ∈ C(M) Poisson-commute if
there exist sequences of smooth functions {Fi} and {Gi} which uniformly con-
verge to F and G respectively so that ||{Fi, Gi}|| → 0 as i → +∞. This notion
is well-defined due to the C0-robustness of the Poisson bracket, see Section 1.1
above.

Recall that a quasi-measure associated to a quasi-state ζ is a set-function
whose value on a closed subset X equals, roughly speaking, ζ(χX), where χX

is the indicator function of X (see e.g. [13]). A closed subset X ⊂ M is
called superheavy with respect to ζ if τ(X) = 1. Equivalently, X is superheavy
whenever ζ(F ) ≥ c for any F with F |X ≥ c, and hence automatically ζ(F ) ≤ c
for any F with F |X ≤ c, see [15].

We say that a symplectic quasi-state ζ satisfies the PB-inequality (with “PB”
standing for the “Poisson brackets”), if there exists K = K(M, ω) > 0 so that

|ζ(F + G)− ζ(F )− ζ(G)| ≤
√

K||{F,G}|| ∀F, G ∈ C(M). (14)

Here ||{F,G}|| for continuous functions F, G ∈ C(M) is understood in the sense
of (1).

At present we know a variety of examples of symplectic manifolds admitting
symplectic quasi-states which satisfy the PB-inequality, as well as plenty of
examples of superheavy subsets [15], [19], [36], [45], [46].

Example 1.14. The complex projective space CPn equipped with the stan-
dard Fubini-Study symplectic form admits a symplectic quasi-state satisfying
PB-inequality. Its superheavy subsets include certain monotone Lagrangian sub-
manifolds such as the Clifford torus and the real projective space RPn, as well
as certain singular subsets such as a codimension-1 skeleton of a sufficiently fine
triangulation. Any product of CPn’s with the split symplectic form also admits
such a quasi-state, and the product of superheavy sets is again superheavy.
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For M of dimension higher than 2 the only currently known construction
of such quasi-states is based on the Hamiltonian Floer theory and works under
the assumption that the quantum homology algebra QH∗(M) of M splits as an
algebra into a direct sum so that one of the summands is a field (see [14], [46]).
Such quasi-states automatically satisfy the PB-inequality (see [19]).

Theorem 1.15. Assume that a closed symplectic manifold (M, ω) admits a
symplectic quasi-state ζ which satisfies PB-inequality (14) with a constant K.

(i) Let X, Y, Z ⊂ M be a triple of superheavy closed sets with X ∩Y ∩Z = ∅.
Then

pb3(X,Y, Z) ≥ 1
K

. (15)

(ii) Let X0, X1, Y0, Y1 ⊂ M be a quadruple of closed subsets such that

X0 ∩X1 = Y0 ∩ Y1 = ∅.

If X0 ∪ Y0, Y0 ∪X1, X1 ∪ Y1, Y1 ∪X0 are all superheavy, then

pb4(X0, X1, Y0, Y1) ≥ 1
4K

. (16)

If X0 ∪ Y0, Y0 ∪X1, Y1 are all superheavy (this condition is stronger than
the previous one), then

pb4(X0, X1, Y0, Y1) ≥ 1
K

. (17)

Proof. The theorem follows immediately from the formalism described above
(cf. [19], Theorem 1.7): To prove (i), assume that F |X ≤ 0, G|Y ≤ 0, F +G|Z ≥
1. By the superheaviness, ζ(F ) ≤ 0, ζ(G) ≤ 0 and ζ(F + G) ≥ 1. Applying
PB-inequality (14) we get (15).

Let us pass to the proof of (ii). Assume X0 ∪ Y0, Y0 ∪X1, X1 ∪ Y1, Y1 ∪X0

are all superheavy. By Proposition 1.3(ii), it suffices to find a lower bound on
a := ||{F,G}|| for pairs (F,G) ∈ F ′4(X0, X1, Y0, Y1). Put

u1 = FG, u2 = G(1− F ), u3 = (1− F )(1−G), u4 = F (1−G).

These functions vanish on the superheavy sets X0∪Y0, Y0∪X1, X1∪Y1, Y1∪X0

respectively and hence ζ(ui) = 0 for all i. Also note that
∑

i ui = 1. On the
other hand,

||{u2, u3}|| = ||{G(1− F ), (1−G)(1− F )}|| = ||(1− F ){F, G}|| ≤ a,

||{u2 + u3, u4}|| = ||{1− F, F (1−G)}|| = ||F{F, G}|| ≤ a.

Together with PB-inequality (14) this yields

|ζ(u2 + u3)| = |ζ(u2 + u3)− ζ(u2)− ζ(u3)| ≤
√

K
√
||{u2, u3}|| ≤

√
aK,
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|ζ(u2 + u3 + u4)− ζ(u2 + u3)− ζ(u4)| ≤
√

K
√
||{u2 + u3, u4}|| ≤

√
aK.

Using the equality {u1, u2 + u3 + u4} = {u1, 1− u1} = 0 we get

1 = |ζ(u1 + (u2 + u3 + u4))| = |ζ(u2 + u3 + u4)| ≤

≤ |ζ(u2 + u3)|+
√

K||{u2 + u3, u4}|| ≤ 2
√

aK.

Thus a ≥ 1/(4K) which proves (16).
Now assume X0 ∪Y0, Y0 ∪X1, Y1 are all superheavy. Then part (i), together

with inequality (31) below comparing pb3 and pb4, imply

pb4(X0, X1, Y0, Y1) ≥ pb3(X0 ∪ Y0, X1 ∪ Y0, Y1) ≥ 1/K,

that is (17).

Example 1.16. A big circle of S2 (or, in other words, a Clifford torus of CP 1)
is superheavy. This yields the positivity of pb3 in Example 1.1 above.

Let us discuss some applications of Theorem 1.15 to the existence of Hamil-
tonian chords. In order to formulate them we need the following notion. Con-
sider the sphere S2 equipped with an area form σ of total area 1. Denote by
E the equator of S2. Let ζ be a symplectic quasi-state on M satisfying PB-
inequality. We say that ζ is S2-stable if for every c > 0 the symplectic manifold
(M×S2, ω+cσ) admits a symplectic quasi-state ζ̃c which satisfies PB-inequality
and such that Z×E is ζ̃c-superheavy for every superheavy subset Z ⊂ M . The
quasi-states associated to field factors of quantum homology are known to be
S2-stable [15]. In part (ii) of the next corollary superheaviness is con-
sidered with respect to a S2-stable quasi-state on (M, ω).

Corollary 1.17. Let X0, X1, Y0, Y1 ⊂ M be a quadruple of compact sets such
that X0∩X1 = Y0∩Y1 = ∅ and the sets X0∪Y0, Y0∪X1, X1∪Y1, Y1∪X0 are all
superheavy. Let G ∈ C∞c (M × S1) be a 1-periodic Hamiltonian with Gt|Y0 ≤ 0,
Gt|Y1 ≥ 1 for all t ∈ S1. Then there exists a point x ∈ M and time moments
t0, t1 ∈ R so that gt0x ∈ X0 and gt1x ∈ X1. Furthermore,

(i) If G is autonomous, |t0 − t1| ≤ 4K. If in addition Y1 is super-heavy,
|t0 − t1| ≤ K.

(ii) If G is non-autonomous, |t0− t1| ≤ C, where the constant C depends only
on the symplectic quasi-state ζ and on the oscillation max G − min G of
the Hamiltonian G.

Part (i) is an immediate consequence of Theorem 1.15(ii) combined with
Theorem 1.10. Part (ii) can be deduced from Theorems 1.15(ii) and 1.12, see
Section 4 below for the proof and for more information on C.
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Example 1.18. Let M = S2×. . .×S2 be the product of n copies of S2 equipped
with the split symplectic structure ω = σ⊕ . . .⊕σ, where

∫
S2 σ = 1. Denote by

(xi, yi, zi) the Euclidean coordinates and by (zi, φi) the cylindrical coordinates
on the i-th copy of the sphere (i = 1, 2), where φi is the polar angle in the
(xi, yi)-plane. Define the following subsets in the i-th factor: Fix a ∈ (0; 1/2) so
that the σ-area of the set Bi = {|zi| ≥ a} is greater than 1/2. Define an annulus
Ai = {|zi| ≤ a}. Write Ei for the equator {zi = 0} and Cθ

i for the segment

{φi = θ} ∩Ai.

Define the following subsets of M :

Y0 = M \
∏

Interior(Ai), Y1 =
∏

Ei.

For v = (θ1, . . . , θn) ∈ Rn/2πZn denote Cv =
∏

Cθi
i . Put X0 = Cv, X1 = Cw,

where v, w are two distinct points in Rn/2πZn.
We claim that the quadruple X0, Y0, X1, Y1 satisfies the assumptions of The-

orem 1.15. The argument uses basic criteria of superheaviness for which we
refer to [15]. The set Y1 is the Clifford torus in M and thus superheavy. Let us
check that X0 ∪ Y0 is superheavy. Note that

∏
(Bi ∪ Cθi

i ) ⊂ Y0 ∪X0.

But Bi ∪ Cθ
i is the complement to an open disc of area < 1/2 and hence su-

perheavy in S2. Since the product of superheavy sets is again superheavy, we
conclude that X0∪Y0 is superheavy. Analogously, X1∪Y0 is superheavy. Thus,
X0 ∪ Y0, X1 ∪ Y0 and Y1 are superheavy and therefore, by Theorem 1.15(ii),
pb4(X0, X1, Y0, Y1) ≥ 1/K.

As we shall see right now, Theorem 1.13 can be easily reduced to the situation
analyzed in the previous example.

Proof of Theorem 1.13. We use the notations of Example 1.18. Identify the
interior of

∏
Ai with a neighborhood W of the zero section in T ∗Tn so that the

zero section corresponds to the Lagrangian torus Y1 and every cotangent fiber
intersects W along the cube Cu \ ∂Cu for some u ∈ Tn. Making, if necessary,
the rescaling (p, q) → (µp, q) with a sufficiently small µ > 0, we can assume that
the domain V from the formulation of the theorem is contained in W . Then the
sets D0 and D1 are identified with X0 ∩ V and X1 ∩ V respectively.

Let Z be the closure of M \ V . Observe that Z ∪Di contains Y0 ∪Xi and
hence is superheavy.

Take any function G : V × S1 → R which vanishes near ∂V × S1 and is ≥ 1
on Y1×S1. Extend it by zero to the whole M×S1. By Corollary 1.17 applied to
the quadruple (D0, D1, Z, Y1), the Hamiltonian flow gt of G has a chord passing
through D0 and D1. Since gt is the identity outside V , this chord is entirely
contained in V . The time-length of this chord admits an upper bound provided
by Corollary 1.17.
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1.6 Poisson bracket and deformations of the symplectic
form

In this section we present yet another approach to the positivity of the
Poisson bracket invariants which is applicable to certain triples and quadruples
of (sometimes singular) Lagrangian submanifolds. Our method is based on a
special deformation of the symplectic form on M2n combined with the study of
“persistent” pseudo-holomorphic curves with Lagrangian boundary conditions
(cf. [1]).

1.6.1 A lower bound

Given two functions F,G ∈ C∞c (M), consider the family of forms

ωs := ω − sdF ∧ dG.

Note that
dF ∧ dG ∧ ωn−1 =

1
n
{F, G} · ωn.

Thus
ωn

s = (1− s{F, G})ωn.

Therefore the form ωs is symplectic for all

s ∈ I := [0; 1/||{F, G}||).
(We set 1/||{F, G}|| = +∞ if {F, G} ≡ 0.)

Recall that an almost complex structure J on M is said to be compatible
with ω if ω(ξ, Jη) is a Riemannian metric on M . Choose a generic family of
almost complex structures Js, s ∈ I, compatible with ωs.

The next elementary proposition allows to relate Poisson brackets to pseudo-
holomorphic curves:

Proposition 1.19. Let F, G ∈ C∞c (M). Assume that there exist

• a family of almost complex structures Js, s ∈ I, such that each Js is
compatible with the symplectic form ωs = ω − sdF ∧ dG,

• a family of Js-holomorphic maps us : Σs → M , s ∈ I, where each Σs is a
compact Riemann surface with boundary and possibly with corners,

• positive constants C1, C2,

so that for all s ∈ I ∫

Σs

u∗sω ≤ C1 (18)

and ∫

∂Σs

u∗s(FdG) ≥ C2. (19)

Then ||{F, G}|| ≥ C2/C1.
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Proof. Applying the Stokes theorem together with (18) and (19) we get

0 ≤
∫

Σs

u∗sωs =
∫

Σs

u∗sω − s

∫

∂Σs

u∗s(FdG) ≤ C1 − s

∫

∂Σs

u∗s(FdG).

Hence
C2s ≤ s

∫

∂Σs

u∗s(FdG) ≤ C1

and thus C2s ≤ C1 for any s ∈ I = [0; 1/||{F, G}||). Note that ||{F, G}|| 6= 0
(since C2 is assumed to be positive) and therefore C2/||{F, G}|| ≤ C1 and thus
C2/C1 ≤ ||{F, G}||.

We always apply Proposition 1.19 in the following situation. First, assume the
pair of functions (F, G) lies in F ′3(X, Y, Z) (respectively in F ′4(X0, X1, Y0, Y1)),
where X ∩Y ∩Z = ∅ (respectively X0∩X1 = Y0∩Y1 = ∅.) Put W = X ∪Y ∪Z
(resp. W = X0 ∪ X1 ∪ Y0 ∪ Y1). Observe that the 1-form FdG is necessarily
closed in a sufficiently small neighborhood U of W . Moreover, the image of
[FdG] in H1(W,R) under the natural morphism H1(U,R) → H1(W,R) does
not depend on the specific choice of (F, G). Second, assume that the boundaries
of the curves u(Σs) lie on W . In view of this discussion,

∫
∂Σs

u∗s(FdG) is fully
determined by the homology class of us(∂Σs) in H1(W,Z). Similarly,

∫
Σs

u∗sω
is determined by the relative homology class of us(Σs) in H2(M, W,Z). The
conclusion of this discussion is that under these two assumptions inequalities
(18) and (19) have purely topological nature, and hence can be easily verified.

We will now discuss various specific cases where Proposition 1.19 can be
applied. Before moving further let us illustrate our main idea by the following
elementary example which does not involve any advanced machinery.

1.6.2 Case study: quadrilaterals on surfaces

Let (M, ω) be a symplectic surface of area B ∈ (0; +∞]. Consider a curvi-
linear quadrilateral Π ⊂ M of area A with sides denoted in the cyclic order
by a1, a2, a3, a4 – that is Π is a topological disc bounded by the union of four
smooth embedded curves a1, a2, a3, a4 connecting four distinct points in M in
the cyclic order as listed here and (transversally) intersecting each other only
at their common end-points. Our objective is to calculate/estimate the value of
pb4(a1, a3, a2, a4). Recall from Section 1.2 that

pb4(a1, a3, a2, a4) = pb4(a1, a3, a4, a2). (20)

Thus without loss of generality we can assume that the orientation of ∂Π induced
by the cyclic order of ai’s coincides with the boundary orientation.

Theorem 1.20. pb4(a1, a3, a2, a4) = max(1/A, 1/(B −A)).
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Proof.

Lower bound: Pick any (F,G) ∈ F ′4(a1, a3, a2, a4). Note that the quadrilat-
eral Π is J-holomorphic for any (almost) complex structure J on M compatible
with the orientation. Also note that, by a direct calculation,

∫
∂Π

FdG = 1.
Thus one can apply Proposition 1.19 with Σ = Π and get that

||{F, G}|| ≥ 1/A.

Since this is true for any (F, G) ∈ F ′4(a1, a3, a2, a4), we get that

pb4(a1, a3, a2, a4) ≥ 1/A. (21)

Further, if M is a closed surface apply Proposition 1.19 with Σ = M \Π.
We get that (mind the order of sides)

pb4(a1, a3, a4, a2) ≥ 1/(B −A). (22)

If M is open, the surface Σ is not compact. However, since Σ is properly
embedded and the functions F and G are compactly supported, Proposition 1.19
is still applicable (after an obvious modification) and yields inequality (22).

Combining inequalities (21) and (22) with (20) we get that

pb4(a1, a3, a2, a4) ≥ max(1/A, 1/(B −A)). (23)

Upper bound: Put α =
√

A and choose any β ∈ (α;
√

B). By Moser’s theorem
[34], we can assume that for ε > 0 small enough M contains a square K =
[−ε;β + ε]2 equipped with coordinates (p, q) so that the symplectic form ω is
given by dp∧ dq and the quadrilateral Π is given by [0;α]2. Define a piece-wise
linear function u(t) so that u(t) = 0 for t < 0 and t > β, u(t) = t/α for t ∈ [0;α]
and u(t) = (β − t)/(β − α) for t ∈ [α; β]. For δ > 0 denote by uδ a smoothing
of u with uδ = 0 outside (0; β), uδ(α) = 1 and

|u′δ(t)| ≤ γ := max(1/α, 1/(β − α)) + δ.

Take any cut-off function v on K which is supported in the interior of K
and equals 1 on [0;β]2. Consider the functions F := v(p, q)uδ(p) and G =
v(p, q)uδ(q) which we extend by 0 to the whole M . Note that (after an appropri-
ate labelling of the sides of Π) (F, G) ∈ F4(a1, a3, a2, a4) and a straightforward
calculation shows that ||{F,G}|| ≤ γ2. Since such F and G exist for all β, δ,
we get that pb4(a1, a3, a2, a4) ≤ max(1/A, 1/(B −A)). Together with (23), this
yields the theorem.

Let us discuss now what happens with the pb4-invariant for stabilizations
of the sets a1, a2, a3, a4. Interestingly enough, the situation is quite subtle.
Suppose that M 6= S2. Let K be any exact section of T ∗S1. We claim that

pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) ≥ 1/A. (24)
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Indeed, after a C0-perturbation aε
1, a

ε
2, a

ε
3, a

ε
4 of a1, a2, a3, a4 we can assume

that
L = aε

1 ∪ aε
2 ∪ aε

3 ∪ aε
4

is a smooth embedded circle in M enclosing area Aε. Take a split complex
structure J on M × T ∗S1. Observe that L̂ = L ×K is a Lagrangian torus in
M × T ∗S1. As the deformation parameter s changes, L̂ remains Lagrangian
for the deformed symplectic structure ωs = ω − sdF ∧ dG, provided (F, G) ∈
F ′4(aε

1, a
ε
3, a

ε
2, a

ε
4), but its symplectic area class alters. (By Moser’s theorem [34],

an equivalent viewpoint is that the symplectic form on M × T ∗S1 is fixed,
but L̂ undergoes the process of a non-exact Lagrangian isotopy.) The class α :=
[Π×point] is the generator of π2(M×T ∗S1, L×K). Thus the standard Gromov’s
theory [25] yields that for a generic deformation Js of J as in Proposition 1.19
there exists a pseudo-holomorphic disc Σs in the class α (this argument breaks
down for M = S2 due to possible bubbling). Therefore Proposition 1.19 with
C1 = Aε and C2 = 1 (the latter readily follows from the Stokes theorem) yields

pb4(aε
1 ×K, aε

3 ×K, aε
2 ×K, aε

4 ×K) ≥ 1/Aε.

Passing to the limit as the size of perturbation ε goes to 0 (this procedure is
justified in Proposition 2.1 below) we get inequality (24).

Let us emphasize that the Gromov-theoretical argument as above does not
work for surfaces Σ other than discs, and, in particular, it is not applicable
to M \Π. Thus we are unable to find the lower bound for pb4 in terms of
1/(B − A) as it was done in the proof of Theorem 1.20 in the two-dimensional
case. Therefore in general we do not know the exact value of pb4 in this situation.
However, we have the following partial result.

Proposition 1.21. Assume that M 6= S2 and 2A ≤ B. Then

pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) = 1/A.

Proof. This follows from

1/A = pb4(a1, a3, a2, a4) ≥ pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) ≥ 1/A.

The equality on the left is guaranteed by Theorem 1.20 and the inequality on
the right follows from (24). For the inequality in the middle which deals with
the behavior of the Poisson bracket invariants under stabilizations we refer to
(30) below.

The previous argument does not work for M = S2. However, in this case we
have a stronger result:

Proposition 1.22. Assume that M = S2. Then

pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) = max(1/A, 1/(B −A)).
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The proof based on a method of symplectic field theory is given in Section
6 below.

In contrast to the previous situation, if one stabilizes each of the sets a1, a2,
a3, a4 by its own exact Lagrangian section of T ∗S1, a transition from rigidity
to flexibility takes place:

Proposition 1.23. Let K1, . . . , K4 be a generic quadruple of sections of T ∗S1.
Then

pb4(a1 ×K1, a3 ×K3, a2 ×K2, a4 ×K4) = 0.

The proof will be given in Section 7.

Remark 1.24. Let us compare the situations considered in Proposition 1.23
and Example 1.2. Namely, just as in Example 1.2, consider two parallels X0

and X1 and two meridians Y0 and Y1 on a two-dimensional torus T2. They
divide T2 into four squares. Pick three of the squares, attach a handle to each
of them and call the obtained genus-4 surface M . Denote the remaining 4-th
square by Π, its area by A and its sides by a1 ⊂ X0, a2 ⊂ Y0, a3 ⊂ X1, a4 ⊂ Y1

(similarly to Example 1.6.2). Equip M with an area form ω. Theorem 1.20 and
monotonicity of pb4 with respect to inclusions of sets (see (29) below) yield

pb4(X0, X1, Y0, Y1) ≥ pb4(a1, a3, a2, a4) ≥ 1/A > 0.

Furthermore, if K is an exact section of T ∗S1 then by (24)

pb4(X0×K, X1×K, Y0×K, Y1×K) ≥ pb4(a1×K, a3×K, a2×K, a4×K) ≥ 1/A.

However, if K1, . . . , K4 a generic quadruple of exact sections of T ∗S1, then,
according to Proposition 1.23,

pb4(a1 ×K1, a3 ×K3, a2 ×K2, a4 ×K4) = 0,

while, on the other hand,

pb4(X0 ×K1, X1 ×K3, Y0 ×K2, Y1 ×K4) > 0.

The latter claim follows from Remark 5.7 below which will be proved by means
of “persistent” pseudo-holomorphic curves coming from operations in Donald-
son-Fukaya category. We present this technique right away in the next section.

1.7 Poisson bracket invariants and Lagrangian Floer ho-
mology

Recall that a Lagrangian submanifold L ⊂ M is called monotone if there
exists a positive monotonicity constant κ > 0 so that ω(A) = κ · mL(A) for
every A ∈ π2(M, L). Here mL : π2(M, L) → Z is the Maslov class of L.
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Suppose for a moment that ω(B) 6= 0 for some B ∈ π2(M). Write B′ for
the image of B in π2(M, L). Then

ω(B) = ω(B′) = κmL(B′) = 2κc1(B) ,

where c1 is the first Chern class of TM . Thus κ = ω(B)/(2c1(B)). In particular,
in this case the monotonicity constant κ does not depend on the monotone
Lagrangian submanifold L.

When c1 and ω vanish on π2(M) but mL and ω do not vanish on π2(M, L)
and are positively proportional, the monotonicity constant κ of L may depend
on L (think of circles of different radii in the plane).

Finally, if both mL and ω vanish on π2(M, L), the monotonicity constant of
L is not defined uniquely: every κ > 0 does the job (think of a meridian of the
two-torus).

In what follows we deal with monotone Lagrangian submanifolds of a sym-
plectic manifold (M, ω). We shall study collections L = (L0, L1, . . . , Lk−1) of
Lagrangian submanifolds in M in general position satisfying the following topo-
logical condition. Consider the set Tk of homotopy classes of k-gons in M whose
sides (in the natural cyclic order) lie, respectively, in L0, L1, . . . , Lk−1. For every
class α ∈ Tk denote by m(α) its Maslov index and by ω(α) its symplectic area.
We say that L is of finite type if for every N ∈ Z

A(L0, . . . , Lk−1; N) := sup{ω(α) : α ∈ Tk,m(α) = N} < +∞. (25)

Here we put sup ∅ := −∞.

Example 1.25. Four curves on a genus-4 surface M as in Example 1.2 form
a collection of finite type (cf. [11]). Indeed, recall that M was obtained by
attaching three handles to the torus T2. Passing to the abelian cover M̃ of M
associated to the universal cover of T2, we see that up to the action of the group
of deck transformations Z2 and, up to a change of the orientation, there is a
unique homotopy class of quadrilaterals in M̃ with boundaries on the lifts of
our curves. This yields the finite type condition for the curves. At the same
time the quadruple of circles on the torus (see Example 1.2) is not of finite type:
passing to the universal cover R2 of T2 we see that there exist index-2 squares of
arbitrarily large area with boundaries on the lifts of our curves (see Remark 5.8
for a further discussion).

Another class of examples is as follows.

Proposition 1.26. Assume that all Li’s have the same monotonicity constant
and the morphism π1(Li) → π1(M) has a finite image for every i. Then the
collection L is of finite type.

The proof is given in Section 5.4. In what follows we deal only with collec-
tions of finite type.
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The main results of this section involve Floer theory of monotone Lagrangian
submanifolds. We write HF (L0, L1) for the Lagrangian Floer homology and de-
note by µk the operations in (Donaldson-)Fukaya category. We refer to Section 5
for preliminaries.

Theorem 1.27. Let L0, L1, L2, L0 ∩ L1 ∩ L2 = ∅, be a finite type collection of
closed Lagrangian submanifolds of M2n. Assume that the product

µ2 : HF (L0, L1)⊗HF (L1, L2) → HF (L0, L2)

is well-defined, invariant under exact Lagrangian isotopies and does not vanish.
Then

pb3(L0, L1, L2) >
1

2A(L0, L1, L2; 2n)
.

The proof will be given further in this section.

Example 1.28. Let L be a closed connected manifold with a finite fundamental
group and let M := T ∗L be equipped with the standard symplectic structure.
Identify L with the zero section of T ∗L. The group HF (L,L) and the product
µ2 on it are non-trivial: HF (L,L) is isomorphic to the singular homology of L
[20]. Under this isomorphism the product in the Floer homology corresponds
to the classical intersection product in the singular homology of L [22]. Thus
pb3(L0, L1, L2) > 0 for three exact sections of T ∗L in general position.

Example 1.29. Let M := S2 × S2 be equipped with the symplectic structure
ω⊕ω, where ω is an area form on S2. Let L := {(x,−x) ∈ S2×S2} be the anti-
diagonal. It is a Lagrangian sphere. The group HF (L,L) and the product on it
are non-trivial – one should just recall that (S2×S2, ω⊕ω) is symplectomorphic
to a quadric in CP 3 with the symplectic structure induced by the Fubini-Study
form and apply [6], Theorem 2.3.4 and Remark 2.2.1. Thus pb3(L0, L1, L2) > 0
for three generic images of L under Hamiltonian isotopies.

A more sophisticated example where Li’s are Lagrangian spheres and the
triangle product is non-trivial is given in Section 5.8 below.

Assume now that we have a finite type collection L0, L1, L2, L3 ⊂ M2n of
Lagrangian submanifolds such that

L0 ∩ L2 = L1 ∩ L3 = ∅. (26)

Assuming that the Lagrangian Floer homology groups HF (Li, Lj) are well-
defined, one can define the µ3-operation in the Donaldson-Fukaya category:

µ3 : HF (L0, L1)⊗HF (L1, L2)⊗HF (L2, L3) → HF (L0, L3),

provided it is well-defined on the chain level. For such a collection of Lagrangian
submanifolds we have the following result.
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Theorem 1.30. Assume that the operation µ3 is well-defined, invariant under
exact Lagrangian isotopies preserving the intersection condition (26) and does
not vanish. Then

pb4(L0, L2, L1, L3) ≥ 1/A(L0, L1, L2, L3; 3n− 1). (27)

For the proof see Section 5.7. This theorem is applicable, for instance, to
the quadruple of curves on the genus-4 surface from Example 1.2 and their
stabilizations. More sophisticated examples in which µ3 does not vanish were
found by Smith in [43].

In Section 5.7 below we discuss an extension of the lower bounds on the
Poisson bracket invariants provided by Theorems 1.27 and 1.30 to stabilizations
of collections of Lagrangian submanifolds. In view of Theorem 1.12, such non-
trivial lower bounds on pb4 for the stabilized Lagrangian submanifolds yield the
existence of Hamiltonian chords for non-autonomous Hamiltonian flows.

Let us prove Theorem 1.27 skipping some technicalities and preliminaries on
the operations in Lagrangian Floer homology which will be given in Section 5.7
below.

Proof of Theorem 1.27. We follow the strategy described in Section 1.6
above: Take a pair of functions (F, G) ∈ F ′3(L0, L1, L2) and consider the defor-
mation of the symplectic form ω given by

ωs := ω − sdF ∧ dG,

where s ∈ I := [0; 1/||{F, G}||). Observe that ωs is cohomologous to ω and,
moreover, ωs and ω represent the same relative cohomology classes in H2(M, Li),
i = 0, 1, 2. Thus, by Moser’s theorem [34], there exists an ambient isotopy
fs : M → M with f∗s ωs = ω. Furthermoreb, Ls

i := f−1
s (Li) is an exact iso-

topy of L0
i = Li. Thus the product in the Lagrangian Floer homology does not

change with s.
Choose a generic family of almost complex structures Js, s ∈ I, compatible

with ωs. The non-vanishing of the product in the Lagrangian Floer homology
guarantees that for every s ∈ I there exists a Js-holomorphic triangle, say Σ,
whose i-th side lies on Li for i = 0, 1, 2. The dimension of the moduli space of
such triangles equals m(Σ) − 2n = 0 (see (43) below) and thus the finite type
condition (25) guarantees that ω(Σ) ≤ A with A = A(L0, L1, L2; 2n). Observe
that, by the Stokes formula,

∫
∂Σ

FdG = 1/2. Hence Proposition 1.19 yields

||{F, G}|| ≥ 1
2A

and therefore
pb3(L0, L1, L3) ≥ 1

2A
.

bWarning: in general there is no ambient Hamiltonian isotopy of M taking Li to Ls
i for all

i simultaneously!
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Organization of the paper. In Section 2 we discuss basic properties of the
Poisson bracket invariants.

In Section 3 we prove the results on symplectic approximation stated in
Section 1.3 above and discuss a generalization of Theorem 1.4 (ii) to the case of
iterated Poisson brackets.

In Section 4 we establish the existence of Hamiltonian chords (see Sec-
tion 1.4) and discuss more examples and applications.

In Section 5 we give preliminaries on Lagrangian Floer homology and oper-
ations in Donaldson-Fukaya category. We use them for the proof of the results
stated in Section 1.7 above.

In Section 6 we apply symplectic field theory to calculation of the Poisson
bracket invariant for a stabilized quadrilateral on the two-sphere.

In Section 7 we present a sufficient condition for the vanishing of the Poisson
bracket invariants.

In Section 8 we formulate various open problems and outline directions of
further study. We present connections to control theory, speculate on an exten-
sion of the Poisson bracket invariants to k-tuples of sets for k > 4 and continue
the discussion on vanishing of pb3 and pb4.

2 Preliminaries on Poisson bracket invariants

2.1 Definitions and notations

Let (M2n, ω) be a connected symplectic manifold (either open or closed).
We use the following sign conventions in the definitions of a Hamiltonian vector
field and the Poisson bracket on M : the Hamiltonian vector field sgradF of a
Hamiltonian F is defined by

isgrad F ω = −dF

and the Poisson bracket of two Hamiltonians F , G is given by

{F, G} := ω(sgrad G, sgrad F ) = dF (sgradG) = −dG(sgrad F ) =

= Lsgrad GF = −Lsgrad F G.

Let X = (X1, . . . , Xk) be an ordered collection of k compact subsets of a
symplectic manifold (M,ω). In what follows pb(X ) stands for pb3(X1, X2, X3)
if k = 3 and for pb4(X1, X2, X3, X4) if k = 4. Furthermore, we write pb(X ; M)
whenever we wish to emphasize dependence of the Poisson bracket invariants
on the ambient symplectic manifold M .

Let X and Y be two collections as above (with the same k). We say that
X ⊂ Y if Xi ⊂ Yi for all i. Given a compact subset Y of a manifold N , we put

X × Y := (X1 × Y, . . . , Xk × Y ).
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Let us say that a sequence of subsets X(j) of M converges to a limit set Y
if every open neighborhood of Y contains all but a finite number of sets from
the sequence. This is denoted by X(j) → Y . Given collections X (j) and Y, we
write X (j) → Y if X

(j)
i → Yi for all i = 1, . . . , k.

2.2 Basic properties of Poisson bracket invariants

All the properties listed below (except the last one) readily follow from the
definitions and Proposition 1.3.

Semi-continuity:

Proposition 2.1. Suppose that a sequence of collections X (j) of k = 3 or 4
ordered subsets of a symplectic manifold converges to a collection Y. Then

lim sup
j→+∞

pb(X (j)) ≤ pb(Y).

Behavior under symplectic embeddings: Assume that (M, ω) and (N, σ)
are symplectic manifolds of the same dimension. Let φ : M → N be a symplectic
embedding. Let X and Y be collections of k ordered subsets of M and N
respectively with φ(X ) ⊃ Y. Then

pb(X ; M) ≥ pb(Y; N). (28)

In particular, if X ,Y are collections of k ordered subsets of M , then

X ⊃ Y =⇒ pb(X ) ≥ pb(Y). (29)

Behavior under products: Suppose that M and N are connected symplectic
manifolds. Equip M × N with the product symplectic form. Let A ⊂ N be a
compact subset. Then for every collection X of k = 3 or 4 compact subsets of
M

pb(X ,M) ≥ pb(X ×A,M ×N). (30)

Comparing pb3 and pb4: The invariants pb3 and pb4 are related by the follow-
ing inequality.

Proposition 2.2. Let X0, X1, X2, X3 ⊂ M be compact subsets such that

X0 ∩X2 = X1 ∩X3 = ∅.

Then

pb4(X0, X2, X1, X3) ≥ max
i=0,1,2,3

pb3(Xi ∪Xi+1, Xi+1 ∪Xi+2, Xi+3), (31)

where all the indices are taken modulo 4.
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Combining inequality (31) with monotonicity property (29) we get that

pb4(X0, X2, X1, X3) ≥ pb3(X0, X1, X2 ∪X3). (32)

Expansion property:

Proposition 2.3. Consider a quadruple of compact subsets X0, X1, Y0, Y1 ⊂ M
such that X0 ∩X1 = Y0 ∩ Y1 = ∅. Let A ⊂ Y0 be a compact subset disjoint from
X1. Then

pb4(X0 ∪A,X1, Y0, Y1) = pb4(X0, X1, Y0, Y1). (33)

The proof is given below in Section 2.3.

2.3 Proofs of the basic properties of pb3 and pb4

Proof of Proposition 1.3(i).

Lemma 2.4. Denote by ∆ ⊂ R2(s, t) the triangle s ≥ 0, t ≥ 0, s + t ≤ 1. Then
for every κ > 0 there exists a smooth map T = (T1, T2) : R2(s, t) → ∆ and
δ = δ(κ) > 0 so that

• limκ→0 δ(κ) = 0,

• T maps {s ≤ δ} to {s = 0}, {t ≤ δ} to {t = 0}, {s + t ≥ 1 − δ} to
{s + t = 1},

• ||{T1, T2}|| ≤ 1 + κ. (The Poisson bracket {T1, T2} is taken with respect
to the standard area form on R2).

Proof. Take K > 1. Set δ = 1− 1
K . Let ∆′ be the triangle bounded by the lines

l′1 = {s = δ}, l′2 = {t = δ} and l′3 = {s + t = 1− δ}. The desired map T will be
obtained as a perturbation of a piece-wise projective map R2 → ∆′ presented
on Figure 3. Denote by a′1, a

′
2, a

′
3 the sides of ∆′ lying on l′1, l

′
2, l

′
3 respectively,

and by v′1, v
′
2, v

′
3 the opposite vertices. The lines l′1, l

′
2, l

′
3 divide the plane into

7 closed domains: ∆′, 3 exterior angles A(v′i) corresponding to the vertices v′i
and 3 unbounded domains D(a′i), so that D(a′i) has the side a′i as a part of its
boundary.

Pick a vertex v′i. Introduce polar coordinates (r, θ) on the plane so that
v′i is the center of the coordinate system. When a point x runs through the
straight line l′i, the value of θ(x) runs through an open interval in S1 – denote
it by Ji ⊂ S1. For any θ ∈ Ji denote by Ri(θ) the distance between v′i and
the intersection point of l′i with the ray from v′i having the angle θ (note that
Ri(θ) → +∞ as θ approaches an end-point of Ji). Let ψ : (0; +∞) → R
be a smooth function so that 0 ≤ ψ′(t) < K for t ∈ (0;+∞), ψ(t) = t for
t ∈ (0; 1/2), ψ(t) = 1 for t ∈ [1;+∞). In particular, ψ(t) < Kt. Define
φi : (0; +∞)× S1 → (0;+∞) by

φi(r, θ) =

{
Ri(θ)ψ( r

Ri(θ) ), if θ ∈ Ji,

r, if θ /∈ Ji.
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∆
′

Figure 3: A piece-wise projective approximation to T
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An easy check shows that φi is a smooth function. We have ∂φi

∂r (r, θ) < K and
φi(r, θ) < Kr for (r, θ) ∈ (0; +∞) × S1. Define Φi : R2 → R2 by Φi(r, θ) =
(φi(r, θ), θ) for (r, θ) ∈ (0;+∞)× S1, and Φi(v′i) = v′i. Then at the point (r, θ)
we have

Φ∗i ω =
φi(r, θ)

r

∂φi

∂r
(r, θ)ω

and hence

|dΦi| = φi(r, θ)
r

∂φi

∂r
(r, θ) < K2,

since we know that ∂φi

∂r (r, θ) < K and φi(r, θ) < Kr for (r, θ) ∈ (0;+∞) × S1.
The map Φi maps the region D(a′i) onto a′i. Moreover, it maps the region
A(v′i+1) (we use the cyclic numbering of vertices modulo 3) onto the ray starting
at v′i+1 and going outwards from ∆′ along l′i. Similarly, Φi maps the region
A(v′i+2) onto the ray starting at v′i+2 and going outwards from ∆′ along l′i.

Consider an affine map Ψ : R2 → R2 defined by

Ψ(s, t) =
(

s− δ

1− δ
,
t− δ

1− δ

)

in the standard coordinates (s, t). Then ‖dΨ‖ = K2. Now define T : R2 → R2

by T = Ψ ◦Φ1 ◦Φ2 ◦Φ3. We have |dT | 6 K8, and it is easy to see that T maps
{s ≤ δ} to {s = 0}, {t ≤ δ} to {t = 0}, {s + t ≥ 1− δ} to {s + t = 1}. Finally
it remains to take K = 8

√
1 + κ.

Put
pb′3 := inf

(F ′,G′)∈F ′3(X,Y,Z)
||{F ′, G′}||.

Clearly, pb3 ≤ pb′3. Thus it is enough to show that pb3 ≥ pb′3.
Indeed, let (F, G) ∈ F3(X,Y, Z), that is

F |X ≤ 0, G|Y ≤ 0, (F + G)|Z ≥ 1.

Take T from Lemma 2.4 (with a small enough κ > 0) and put

F ′ = T1(F, G), G′ = T2(F,G).

An immediate check shows that (F ′, G′) ∈ F ′3(X, Y, Z) and

||{F ′, G′}|| ≤ ||{F, G}||(1 + κ).

Choosing κ arbitrarily small and taking the infimums over (F ′, G′) and (F,G)
in both sides of the inequality we get that

pb′3 ≤ pb3,

and hence pb3 = pb′3, as required.
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Proof of Proposition 1.3(ii). Set

pb4 := pb4(X0, X1, Y0, Y1),

pb′4 := inf
(F,G)∈F ′4(X0,X1,Y0,Y1)

||{F,G}||.

Clearly,
pb4 ≤ pb′4,

so it suffices to prove that
pb4 ≥ pb′4. (34)

Fix ε > 0. Choose (F,G) ∈ F4(X0, X1, Y0, Y1) so that

pb4 ≥ ||{F,G}|| − ε.

Fix a small enough δ > 0 and choose a smooth non-decreasing function u : R→
[0; 1] so that u(s) = 0 for s ≤ δ, u(s) = 1 for s ≥ 1 − δ and u′(s) ≤ 1 + 2δ.
Put φ = u ◦ F and ψ = u ◦ G. An immediate check shows that (φ, ψ) ∈
F ′4(X0, X1, Y0, Y1). Now note that

pb′4 ≤ ||{φ, ψ}|| ≤
≤ (1 + 2δ)2 · ||{F, G}|| ≤ (1 + 2δ)2(pb4 + ε).

Choosing ε and δ arbitrarily small, we get (34) which completes the proof.

Proof of Proposition 2.3. By monotonicity,

pb4(X0 ∪A,X1, Y0, Y1) ≥ pb4(X0, X1, Y0, Y1).

Let us prove the reverse inequality. Fix ε > 0. By Proposition 1.3(ii), there exist
functions F, G ∈ C∞(M) with F = 0 on Op(X0), F = 1 on Op(X1), G = 0 on
Op(Y0), G = 1 on Op(Y1), and

pb4(X0, X1, Y0, Y1) ≥ ||{F, G}|| − ε.

Let U ⊂ Op(Y0) be a neighborhood of A, U ∩X1 = ∅. Choose a smooth cut-
off function u : M → [0; 1] which vanishes on A and equals 1 outside U . Put
F ′ = uF . Note that

{F ′, G} = u{F, G}+ F{u,G}.
If x ∈ U , the function G is constant near x and hence {F ′, G} = {F, G} = 0.
If x /∈ U , we have u = 1 near x and hence again {F ′, G} = {F,G}. Thus
{F ′, G} = {F, G} everywhere and therefore, since F ′ = 0 on X0 ∪A and F ′ = 1
on X1, we get that

pb4(X0 ∪A,X1, Y0, Y1) ≤ ||{F ′, G}|| = ||{F, G}|| ≤ pb4(X0, X1, Y0, Y1) + ε.

Since this holds for every ε > 0, we get that

pb4(X0 ∪A, X1, Y0, Y1) ≤ pb4(X0, X1, Y0, Y1)

which completes the proof.
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3 Symplectic approximation

In this section we prove the results on symplectic approximation stated in
Section 1.3.

3.1 The Lipschitz property of the function sρF,G

Proof of Proposition 1.6: Fix c > 0. Then for any ε > 0 there exist F ′, G′

such that ‖{F ′, G′}‖ 6 c and ‖F − F ′‖ + ‖G − G′‖ < ρF,G(c) + ε. Take any
0 < λ < 1 and denote F1 = λF ′, G1 = G′. Then (F1, G1) ∈ Kλc, and we have

‖F − F1‖+ ‖G−G1‖ = ‖F − λF ′‖+ ‖G−G′‖ 6

6 ‖F − F ′‖+ (1− λ)‖F ′‖+ ‖G−G′‖ 6 ρF,G(c) + ε + (1− λ)‖F ′‖ 6
6 ρF,G(c) + ε + (1− λ)‖F ′ − F‖+ (1− λ)‖F‖ 6

6 ρF,G(c) + ε + (1− λ)ρF,G(c) + (1− λ)ε + (1− λ)‖F‖ 6
6 ρF,G(c) + ε + (1− λ)‖F‖+ (1− λ)ε + (1− λ)‖F‖ =

= ρF,G(c) + 2‖F‖(1− λ) + (2− λ)ε.

Therefore ρF,G(λc) 6 ρF,G(c) + 2‖F‖(1 − λ) + (2 − λ)ε. This is true for any
ε > 0, hence ρF,G(λc) 6 ρF,G(c) + 2‖F‖(1− λ). Therefore

|λcρF,G(λc)− cρF,G(c)| 6 |λcρF,G(λc)− cρF,G(λc)|+ |cρF,G(λc)− cρF,G(c)| =

= ρF,G(λc)|λc− c|+ c(ρF,G(λc)− ρF,G(c)) 6
6 ‖F‖(c− λc) + 2c‖F‖(1− λ) =

= 3‖F‖(c− λc).

This is true for any c > 0, 1 > λ > 0. Therefore the function s 7→ sρF,G(s)
is Lipschitz on (0; +∞) with the Lipschitz constant 3‖F‖. Since ρF,G = ρG,F ,
the same property is true with the Lipschitz constant 3||G|| which finishes the
proof.

3.2 The profile function and Poisson bracket invariants

Proof of Theorem 1.4(ii). Assume, without loss of generality, that 0 ≤ F ≤
1. Choose H ∈ C∞c (M) such that H = 1/2 on the union of the supports of F
and G and 0 ≤ H ≤ 1/2. Then {H, G} = 0 and

ρF,G(0) ≤ d((F, G), (H, G)) = ||F −H|| ≤ 1/2.

Therefore, as soon as we prove (9) and (10), we would get ρF,G(0) = 1/2.
Furthermore, for any t ∈ [0, 1] we have ||{tF + (1− t)H, G}|| = ||{tF,G}|| and
therefore the pair (tF +(1− t)H, G) lies in Kt||{F,G}||. Thus ρF,G(t||{F, G}||) ≤
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d((F, G), (tF+(1−t)H, G)) = (1−t)||F−H|| ≤ 1/2−t/2. Setting s := t||{F,G}||
we get ρF,G(s) ≤ 1/2− s/(2||{F, G}||), that is (8).

Thus it remains to prove inequalities (9) and (10).

The case (F, G) ∈ F [
3(X, Y, Z):

Fix s ∈ [0; p). Suppose that ρF,G(s) < 1/2 (otherwise (9) follows automatically).
Take any δ ∈ (ρF,G(s), 1/2). Take (H, K) ∈ F = C∞c (M) × C∞c (M) with
d((F, G), (H,K)) ≤ δ and

||{H,K}|| ≤ s.

Put
α := ||F −H||, β := ||G−K||.

Thus α + β ≤ δ. Furthermore,

H|X ≤ α, K|Y ≤ β, (H + K)|Z ≥ 1− δ.

Set
H1 :=

H − α

1− 2δ
, K1 :=

K − β

1− 2δ
.

Then
H1|X ≤ 0, K1|Y ≤ 0, (H1 + K1)|Z ≥ 1.

Note that, unlike H and K, the functions H1,K1 are not necessarily compactly
supported but are constant outside a compact set (if M is not closed). Pick a
smooth compactly supported function u : M → [0; 1] so that u ≡ 1 on an open
neighborhood of X ∪Y ∪Z ∪ supp H ∪ supp K. Set H2 := uH1, K2 := uK1. An
easy check shows that

||{H2,K2}|| = ||{H1,K1}||.

On the other hand, (H2,K2) ∈ F and

H2|X ≤ 0, K2|Y ≤ 0, (H2 + K2)|Z ≥ 1.

Therefore, by the definition of pb3, we have

||{H2,K2}|| ≥ p = pb3(X,Y, Z).

Note that

||{H2,K2}|| = ||{H1,K1}|| = 1
(1− 2δ)2

· ||{H,K}|| ≤ s

(1− 2δ)2
.

Thus
s

(1− 2δ)2
≥ p

and therefore
δ ≥ 1

2
− 1

2
√

p
· √s.
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Since this is true for every δ ∈ (ρF,G(s), 1/2) we get that

ρF,G(s) ≥ 1
2
− 1

2
√

p
· √s,

as required.

The case (F, G) ∈ F [
4(X0, X1, Y0, Y1):

Fix s ∈ [0; p). Suppose that ρF,G(s) < 1/2 (otherwise (10) follows automati-
cally). Take any δ ∈ (ρF,G(s), 1/2). Take (H,K) ∈ F = C∞c (M) × C∞c (M)
with d((F, G), (H, K)) ≤ δ and

||{H,K}|| ≤ s.

Put
α := ||F −H||, β := ||G−K||.

Thus α + β ≤ δ and, in particular, 0 ≤ α, β ≤ δ < 1/2. Furthermore,

H|X0 ≤ α, H|X1 ≥ 1− α, K|Y0 ≤ β, K|Y1 ≥ 1− β.

Set
H1 :=

H − α

1− 2α
, K1 :=

K − β

1− 2β
.

Then
H1|X0 ≤ 0,H1|X1 ≥ 1,K1|Y0 ≤ 0,K1|Y1 ≥ 1.

Note that, unlike H and K, the functions H1,K1 are not necessarily compactly
supported but are constant outside a compact set (if M is not closed). Pick
a smooth compactly supported function u : M → [0; 1] so that u ≡ 1 on an
open neighborhood of X0 ∪ X1 ∪ Y0 ∪ Y1 ∪ supp H ∪ suppK. Set H2 := uH1,
K2 := uK1. An easy check shows that

||{H2,K2}|| = ||{H1,K1}||.
On the other hand, (H2,K2) ∈ F and

H2|X0 ≤ 0,H2|X1 ≥ 1,K2|Y0 ≤ 0,K2|Y1 ≥ 1.

Therefore, by the definition of pb4, we have

||{H1, K1}|| = ||{H2,K2}|| ≥ p = pb4(X0, X1, Y0, Y1).

Note that
||{H1,K1}|| = 1

(1− 2α)(1− 2β)
· ||{H, K}||.

Since α, β ≥ 0 and α + β ≤ δ,

(1− 2α)(1− 2β) ≥ 1− 2(α + β) + 4αβ ≥ 1− 2δ.

Thus s/(1− 2δ) ≥ p and therefore δ ≥ 1/2− s/(2p). Since this is true for every
δ ∈ (ρF,G(s), 1/2), we get that ρF,G(s) ≥ 1/2− s/(2p) as required.
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Remark 3.1. Theorem 1.4(ii) has the following generalization concerning iter-
ated Poisson brackets of two functions.

Namely, denote by PN , N ≥ 2, the set of Lie monomials in two variables
of degree N (i.e. if the Lie brackets are denoted by {·, ·}, the set P2 con-
sists of {A,B}, P3 of {{A,B}, A} and {{A,B}, B}, and so on). For F,G ∈
(C∞c (M), {·, ·}) set

QN (F, G) :=
∑

p∈PN

||p(F, G)||,

K(N)
s := {(F,G) ∈ F : QN (F, G) ≤ s}.

In particular, for N = 2 we get the sets Ks defined in Section 1.2: Ks = K(2)
s .

The sets K(N)
s can be viewed as “tubular neighborhoods” of the set of Poisson-

commuting pairs of functions on M : indeed, a symplectic version of the Landau-
Hadamard-Kolmogorov inequality (see [17], [18]) implies that K(N)

0 = K0 for any
N . Now, similarly to ρF,G, define a new profile function (cf. [18]):

ρ
(N)
F,G(s) := d((F, G),K(N)

s ).

In particular, for N = 2 we get the profile function ρF,G studied above: ρ
(2)
F,G =

ρF,G.
It turns out that, similarly to Theorem 1.4(ii), for certain (F, G) one can

estimate ρ
(N)
F,G(s) from below for small s using an analogue of pb3 for iterated

Poisson brackets. Namely, given a triple (X, Y, Z) of compact subsets of M with
X ∩ Y ∩ Z = ∅, define

pb
(N)
3 (X, Y, Z) := inf

(F,G)
QN (F, G),

where the infimum is taken over F3(X,Y, Z).
Then the proof of Theorem 1.4(ii) can be carried over directly to the case of

iterated Poisson brackets yielding the following claim:

Put pN = pb
(N)
3 (X,Y, Z) and let F [

3 be defined as in Section 1.3. Assume
that pN > 0.

Then for every (F, G) ∈ F [
3 the profile function ρ

(N)
F,G is continuous. It satis-

fies ρ
(N)
F,G(0) = 1/2 and

ρ
(N)
F,G(s) ≥ 1

2
− C(N)

p
1/N
N

s1/N ,

for all s ∈ [0; p), where C(N) > 0 is a positive constant depending only on N .

Let us note that a similar result for another class of pairs (F,G) (defined
by means of a symplectic quasi-state) has been proved in [18]. It would be
interesting to find out whether such a lower bound on the profile function is
(asymptotically) exact.
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It follows from [18] that pb
(N)
3 (X, Y, Z) > 0 for all N ≥ 2 provided the sets

X,Y, Z are superheavy (see Section 1.5 above).
One can similarly define the natural analogue pb

(N)
4 of the pb4-invariant in

the context of iterated Poisson brackets, and repeat the proof of Theorem 1.4(ii)
to get a lower bound for the generalized profile function ρ

(N)
F,G. However, at the

moment we have no tools for proving the positivity of pb
(N)
4 in any example.

3.3 The two-dimensional case

In the two-dimensional case, the continuity of the profile function at 0 readily
follows from the following result by Zapolsky.

Proposition 3.2 ([49]). Let (M,ω) be a closed connected 2-dimensional sym-
plectic manifold. Let (F,G) ∈ F be a pair of functions with ‖{F, G}‖ 6 s.
Then there exist a pair of Poisson-commuting functions (F ′, G′) ∈ F with
‖F − F ′‖+ ‖G−G′‖ 6 C

√
s, where the constant C depends only on (M,ω).

In other words, every almost commuting pair of functions is nearly commut-
ing, that is it can be approximated by a commuting pair. Similar statements
for various types of matrices and, more generally, elements of C∗-algebras have
been extensively studied – see e.g. [37, 27] and the references therein. How-
ever, no analogue of Proposition 3.2 is known for higher-dimensional symplectic
manifolds and there might be a counterexample.

Proof of Proposition 1.9. Fix δ > 0 small enough. Take (F1, G1) ∈ Ks with

d((F,G), (F1, G1)) ≤ ρF,G(s) + δ.

By Proposition 3.2, there exist Poisson-commuting functions F2 and G2 with

d((F1, G1), (F2, G2)) ≤ C
√

s.

By the triangle inequality,

ρF,G(0) ≤ d((F, G), (F2, G2)) ≤ ρF,G(s) + C
√

s + δ

for every δ > 0. This yields inequality (12).

3.4 Sharpness of the convergence rate: an example

Proof of Theorem 1.5:
We need to show that

ρF,G(ε) ≤ ρF,G(0)− C
√

ε

for some C > 0 and any sufficiently small ε (since ρF,G is non-increasing, by
choosing a smaller C we can get the inequality for any ε).
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The standard symplectic form on the upper hemi-sphere can be expressed
as ω = dx∧dy√

1−x2−y2
, while on the lower hemi-sphere we have ω = − dx∧dy√

1−x2−y2
.

Therefore, for a given pair of functions f, g : S2 → R, on the upper hemi-sphere
we have

{f(x, y), g(x, y)}S2 =
√

1− x2 − y2{f(x, y), g(x, y)}R2(x,y),

while on the lower hemi-sphere we have

{f(x, y), g(x, y)}S2 = −
√

1− x2 − y2{f(x, y), g(x, y)}R2(x,y).

In any case we have

|{f(x, y), g(x, y)}S2 | =
√

1− x2 − y2 |{f(x, y), g(x, y)}R2(x,y)|.

Our purpose is to find smooth functions F1, G1 : S2 → R, depending on
a small parameter ε > 0, such that ‖F1 − F‖ + ‖G1 − G‖ 6 1/2 − O(ε),
while ‖{F1, G1}‖ 6 O(ε2). We will search for functions F1, G1 of the form
F1 = f(x2, y2), G1 = g(x2, y2), where f, g : 4 = {(t, s)|t, s > 0, t + s 6 1} → R
are smooth functions. Further on we use the notation t = x2, s = y2. We have

‖F1 − F‖+ ‖G1 −G‖ = ‖f(t, s)− t‖4 + ‖g(t, s)− s‖4,

while
|{F1, G1}S2 | = |{f(x2, y2), g(x2, y2)}S2 |

=
√

1− x4 − y4 |{f(x2, y2), g(x2, y2)}R2(x,y)|
= 4

√
1− x4 − y4 |xy||{f(t, s), g(t, s)}R2(t,s)|

= 4
√

(1− t2 − s2)ts |{f(t, s), g(t, s)}R2(t,s)|.
For our purposes it is enough to find smooth f, g : 4→ R that satisfy

‖f(t, s)− t‖4 + ‖g(t, s)− s‖4 6 1/2−O(ε),

‖{f(t, s), g(t, s)}R2(t,s)‖ 6 O(ε2).

Consider new coordinates u = t − s, v = t + s. In these coordinates we have
4 = {(u, v)|0 6 v 6 1,−v 6 u 6 v}. We take the functions f, g to be of the
form

f(u, v) = φ(v) + uψ(v),

g(u, v) = φ(v)− uψ(v),

for some φ, ψ : [0, 1] → R, or, in regular coordinates (t, s),

f(t, s) = φ(t + s) + (t− s)ψ(t + s),

g(t, s) = φ(t + s)− (t− s)ψ(t + s).
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We have

{f, g}R2(t,s) = 2{f, g}R2(u,v) = 2{φ(v) + uψ(v), φ(v)− uψ(v)}R2(u,v)

= −4{φ(v), uψ(v)}R2(u,v) = −4ψ(v){φ(v), u}R2(u,v) = 4ψ(v)φ′(v).

First, let us find a pair of continuous functions φ, ψ, such that

‖f(t, s)− t‖4, ‖g(t, s)− s‖4 6 1/4− ε. (35)

The image of the corresponding map T : (s, t) 7→ (f(s, t), g(s, t)) consists of the
union of a segment and a triangle attached to it, see Figure 4. Because of the
symmetry, in order to verify (35) it is enough to check only that ‖f(t, s)−t‖4 6
1/4−ε. We have f(t, s)−t = f(u, v)−(u+v)/2 = φ(v)+uψ(v)−u/2−v/2. For a
fixed v this is a linear function of u. Recall that4 = {(u, v)|0 6 v 6 1,−v 6 u 6
v}. As a conclusion, it is enough to check the inequality |f(u, v)− (u + v)/2| =
|φ(v) + uψ(v)− u/2− v/2| 6 1/4− ε only for the cases u = v and u = −v while
0 6 v 6 1. Substituting u = v, u = −v we see that it is enough to check that

|φ(v) + vψ(v)− v| 6 1/4− ε,

|φ(v)− vψ(v)| 6 1/4− ε

for 0 6 v 6 1. We define our continuous φ, ψ to be

φ(v) = (1/4− ε) + 4εv for v ∈ [0; 1/2],

φ(v) = 1/4 + ε for v ∈ [1/2; 1],

and
ψ(v) = 4ε for v ∈ [0; 1/2],

ψ(v) = (1− 4ε) +
1
v
(−1/2 + 4ε) for v ∈ [1/2; 1].

Because of our choice of the functions φ, ψ, the functions φ(v), vψ(v) are linear
on each one of intervals [0; 1/2] and [1/2; 1], and hence the functions φ(v) +
vψ(v) − v, φ(v) − vψ(v) are linear on the intervals [0; 1/2] and [1/2; 1] as well.
Therefore it is enough to check that

|φ(v) + vψ(v)− v| 6 1/4− ε

and
|φ(v)− vψ(v)| 6 1/4− ε

only for v = 0, 1/2, 1. We have

φ(0) + 0 · ψ(0)− 0 = φ(0) = 1/4− ε,

φ(1/2) + 1/2ψ(1/2)− 1/2 = (1/4 + ε) + 4ε/2− 1/2 = −1/4 + 3ε,

φ(1) + 1 · ψ(1)− 1 = (1/4 + ε) + 1/2− 1 = −1/4 + ε,
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φ(0)− 0 · ψ(0) = φ(0) = 1/4− ε,

φ(1/2)− ψ(1/2)/2 = (1/4 + ε)− 4ε/2 = 1/4− ε,

φ(1)− 1 · ψ(1) = (1/4 + ε)− 1/2 = −1/4 + ε.

In all the cases the absolute value of the result is not bigger than 1/4− ε.
Hence we have found continuous φ, ψ : [0; 1] → R for which

‖f(t, s)− t‖4, ‖g(t, s)− s‖4 6 1/4− ε.

One can easily make the functions φ, ψ smooth by a sufficiently C0-small per-
turbation so that we will still have ‖f(t, s) − t‖4, ‖g(t, s) − s‖4 6 1/4 − ε/2,
and, moreover,

|φ′(v)| 6 4ε for v ∈ [0; 1/2],

|φ′(v)| 6 32ε2 for v ∈ [1/2; 1],

|ψ(v)| 6 4ε for v ∈ [0; 1/2],

|ψ(v)| 6 1/2 for v ∈ [1/2; 1].

Then for any v ∈ [0; 1] we have |4ψ(v)φ′(v)| 6 64ε2. As a conclusion, we obtain

‖f(t, s)− t‖4 + ‖g(t, s)− s‖4 6 (1/4− ε/2) + (1/4− ε/2) = 1/2− ε,

and
|{f, g}R2(t,s)| = |4ψ(v)φ′(v)| 6 64ε2

at any point (t, s) ∈ 4.

Remark 3.3. At the moment we are unable to decide whether the example con-
structed above has a counterpart in the context of matrix algebras (for instance,
for su(n)).

4 Detecting Hamiltonian chords

4.1 Proofs of the results about Hamiltonian chords

In this section we prove Theorems 1.11,1.12 and part (ii) of Corollary 1.17.

Proof of Theorem 1.11. Let X0, X1 ⊂ M be disjoint compact subsets, and
let G be a function from C∞c (M). Set

Pb(X0, X1; G) := inf ||{F, G}||,

where the infimum is taken over all functions F ∈ C∞c (M) with F |X0 ≤
0, F |X1 ≥ 1, and

Pb′(X0, X1; G) := inf ||{F, G}||,
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where the infimum is taken over all functions F ∈ C∞c (M) with F |X0 =
0, F |X1 = 1.

Put T = T (X0, X1; G) and let F be any smooth compactly supported func-
tion with

F |X0 ≤ 0, F |X1 ≥ 1.

There exist i ∈ {0; 1} and x ∈ Xi so that gT x ∈ X1−i (recall that gt is the
Hamiltonian flow of G). Thus |F (gT x) − F (x)| ≥ 1, which yields ||{F, G}|| ≥
T−1. Therefore

T (X0, X1;G) ≥ 1
Pb(X0, X1; G)

.

Since, obviously, Pb(X0, X1;G) ≤ Pb′(X0, X1; G), it remains to prove that

T (X0, X1; G) ≤ 1
Pb′(X0, X1; G)

.

We shall need the following lemma.

Lemma 4.1. Let v be a smooth compactly supported vector field on M and
X0, X1 be a pair of disjoint compact subsets of M . Denote by gt the flow of
v. Assume that gtX0 ∩ X1 = ∅ for all t ∈ [−a; a] for some a > 0. Then
there exists a smooth compactly supported function F : M → [0; 1] such that
F |X0 = 0, F |X1 = 1 and ||LvF || < 1/a.

Proof of Lemma 4.1. Choose b > a, sufficiently close to a, so that gtX0∩X1 =
∅ for all t ∈ [−b; b]. The sets

X̌0 :=
⋃

t∈[0;b]

gt(X0)

and
X̌1 :=

⋃

t∈[0;b]

gt(X1)

do not intersect. Take any smooth compactly supported function H : M → [0; 1]
so that H = 0 on X̌0 and H = 1 on X̌1. Put

F :=
1
b

∫ b

0

H ◦ gt dt.

Clearly, F has values in [0; 1], is compactly supported, F = 0 on X0, F = 1 on
X1 and

LvF =
1
b

∫ b

0

d

dt
H ◦ gt dt =

1
b
(H ◦ gb −H).

It follows that ||LvF || ≤ 1/b < 1/a, and we are done.

Let us return to the proof of the theorem. Put v = sgrad G. Assume on the
contrary that

T (X0, X1; G) >
1

Pb′(X0, X1; G)
.
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Thus there exists
a >

1
Pb′(X0, X1; G)

so that gtX0 ∩X1 = ∅ for all t ∈ [−a; a]. By Lemma 4.1, there exists a smooth
compactly supported function F : M → [0; 1] so that F |X0 = 0, F |X1 = 1 and
||LvF || < 1/a. But LvF = {F,G} and we conclude that Pb′(X0, X1, Y0, Y1) <
1/a, which means a contradiction. This completes the proof.

Proof of Theorem 1.12. Choose a > 0 so that

max G−min G < R− a. (36)

Let u : R → [0; +∞) be a cut-off function which is equal to 1 on the interval
[−(R−a); R−a] and whose support lies in (−R; R). Consider a new autonomous
compactly supported Hamiltonian

H : M × AR → R, (x, r, θ) → u(r)(G(x, θ) + r)

generating a Hamiltonian flow ht. Since H ≤ 0 on stabRY0 and H ≥ 1 on
stabRY1, Theorem 1.10 guarantees existence of a point z = (y, 0, θ0) ∈ stabRX0

and T ∈ [−1/p; 1/p] so that hT z ∈ stabRX1.
We claim that the piece of trajectory z(t) = {htz}, t ∈ [0; T ] is entirely

contained in the domain V = {|r| < R − a} ⊂ M × AR. Indeed, assuming the
contrary, choose τ ∈ [0;T ] so that hτz ∈ ∂V . Write z(t) = (x(t), r(t), θ(t)).
We have that r(0) = 0 and r(τ) = ±(R − a). By the energy conservation law,
H(z(0)) = H(z(τ)) and hence

G(z(0), θ(0)) = G(z(τ), θ(τ))± (R− a).

This contradicts assumption (36) and the claim follows.
It follows that u(r(t)) = 1 for all t ∈ [0;T ]. Hence the projection of z(t) to

M is a curve α of the form {gθ0+tg
−1
θ0

y}, t ∈ [0;T ]. Put x = g−1
θ0

y, t0 = θ0 and
t1 = θ0 + T . We see that gt0x = y ∈ X0 and gt1x = x(T ) ∈ X1. Thus α is a
required Hamiltonian chord.

Proof of Corollary 1.17, part (ii). Choose R > maxG − min G. Identify
the annulus AR with the sphere S2 of area 2R with punctured the North and
the South Poles. Under this identification the zero section {r = 0} corresponds
to the equator, say E, of the sphere. Thus we consider M × AR as a domain
in M × S2. The latter manifold is equipped with the symplectic form ω + 2Rσ,
where σ is the standard area form on S2 of the total area 1. The S2-stability
of the quasi-state ζ on (M,ω) yields a quasi-state ζ̃2R on (M × S2, ω + 2Rσ).
Denote by K2R the constant from the PB-inequality for ζ̃2R.

Assume that the sets X0∪Y0, Y0∪X1, X1∪Y1, Y1∪X0 are superheavy. Due
to the S2-stability of ζ, the sets

(X0 ∪ Y0)× E, (Y0 ∪X1)× E, (X1 ∪ Y1)× E, (Y1 ∪X0)× E
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are all superheavy with respect to the quasi-state ζ̃2R. By inequality (28) and
Theorem 1.15,

pb4(stabRX0, stabRX1, stabRY0, stabRY1)

≥ pb4(X0 × E, X1 × E, Y0 × E, Y1 × E) ≥ 1
4K2R

.

Finally, the existence of the required Hamiltonian chord follows now from
Theorem 1.12. This finishes the proof.

Remark 4.2. Note that if we assume that Y1 is superheavy (and so are X0∪Y0

and X1∪Y0), then the constant appearing in the previous proof can be improved
from 1/(4K2R) to 1/K2R. Indeed, by the S2-stability of the quasi-state on
(M, ω), the sets (X0 ∪ Y0) × E, (X1 ∪ Y0) × E, Y1 × E are superheavy with
respect to ζ̃2R. Then, by (17),

pb4(stabRX0, stabRX1, stabRY0, stabRY1) ≥ 1
K2R

.

4.2 Miscellaneous remarks

Let us make a few more remarks on the interplay between superheaviness
and Hamiltonian chords for autonomous Hamiltonians. In this section we
assume that M is closed.

Remark 4.3 (Recurrence of Hamiltonian chords). Let F be a smooth function
on M . Denote its Hamiltonian flow by ft. Put Y0 = {F ≤ 0} and Y1 = {F ≥ 1}.
A subset X is called a ballast if X ∪ Yi is superheavy for i = 0, 1. For instance,
in Example 1.18 above the role of ballasts is played by the Lagrangian discs Cv.

Given two ballasts X0, X1, denote by P ⊂ R the set of all τ such that
fτX0 ∩X1 6= ∅. We claim that Hamiltonian chords between X0 and X1 exhibit
a recurrent behavior in the following sense: The set P intersects every interval
of time-length 8K. Indeed, since Yi are invariant under ft, the image of a ballast
under ft is again a ballast. Take any s /∈ P so that fsX0 ∩X1 = ∅. Thus the
quadruple (fsX0, X1, Y0, Y1) satisfies the assumptions of Corollary 1.17. Hence
there exists t ∈ [−4K; 4K] so that ft+sX0 = ftfsX0 intersects X1, and the
claim follows.

Remark 4.4 (Energy control). Let us follow the notations and the set-up of
the previous example. Fix an interval I = [a; b] with 0 ≤ a < b ≤ 1 and put
XI

i = Xi ∩ F−1(I), i = 0, 1, where Xi, i = 0, 1, are disjoint ballasts.
We claim there exists a Hamiltonian chord of ft of time-length 8K/(b − a)

which touches both XI
0 and XI

1 .
Interestingly enough, this statement has a flavor of time-energy uncertainty:

we have to pay for the precision of our knowledge of the energy level carrying
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a chord by an uncertainty in our knowledge of the time interval on which the
chord is defined.

To prove the claim put Y ′
0 = {F ≤ a}, Y ′

1 = {F ≥ b}. One can deduce from
Proposition 2.3 that

pb4(XI
0 , XI

1 , Y ′
0 , Y ′

1) = pb4(X0, X1, Y
′
0 , Y ′

1) ≥ 1
4K

.

Put F ′ = (F − a)/(b − a). Then F ′ ≤ 0 on Y ′
0 and F ′ ≥ 1 on Y ′

1 . Therefore,
by Theorem 1.10, the Hamiltonian flow f ′t of F ′ admits a chord of time-length
at most 8K touching both XI

0 and XI
1 . The claim follows from the fact that

ft = f ′t(b−a).

Remark 4.5 (Producing rigid subsets from flexible ones). Let X0, Y0, Y1 be
subsets of M so that Y0 and Y1 are disjoint, and X0∪Y0, Y1∪X0 are superheavy.
Take any Hamiltonian G such that G|Y0 ≤ 0, G|Y1 ≥ 1 and denote by gt its
Hamiltonian flow. Put

Z :=
⋃

t∈[−4K;4K]

gtX0.

Theorem 1.15 implies that Z intersects every superheavy subset X1 ⊂ M and
hence exhibits a “symplectically rigid” behavior. To illustrate this, assume in
addition that the quasi-state ζ is invariant under the identity component Symp0

of the symplectomorphism group of (M, ω): this happens in all known higher-
dimensional examples. Let r0(M, ω) := sup r(B), where r(B) is the radius of
a symplectically embedded open ball B ⊂ M and the supremum is taken over
all balls B whose complement contains a superheavy subset. It follows that
Z cannot be mapped into any symplectically embedded ball B ⊂ M of radius
r < r0(M, ω) by a diffeomorphism from Symp0. A somewhat paradoxical point
here is that X0 itself could be absolutely “flexible”, e.g. a closed Lagrangian
disc. Of course, the Hamiltonian function G as above is quite special, hence
there is no contradiction.

Example 4.6. Here we present a construction of subsets X0, X1, Y0, Y1 satis-
fying the assumptions of Theorem 1.15 (ii). Let Ai, i = 1, 2, 3, 4, be four closed
superheavy subsets such that no three of them have a common point. Put
Aij := Ai ∩ Aj . Present each Ai as a union of closed subsets, Ai = Bi ∪ Ci, so
that

Bi ∩ Ci ∩Aij = ∅ ∀i, j,
and

• A12 ∪A13 ⊂ B1, A14 ⊂ C1;

• A23 ∪A24 ⊂ B2, A21 ⊂ C2;

• A34 ⊂ B3, A31 ∪A32 ⊂ C3;
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• A41 ⊂ B4, A42 ∪A43 ⊂ C4.

Put
X0 := B1 ∪ C2, Y0 := B2 ∪ C3, X1 := B3 ∪ C4, Y1 := B4 ∪ C1.

Obviously, the sets X0 ∪ Y0, Y0 ∪X1, X1 ∪ Y1, Y1 ∪X0 contain superheavy sets
A2, A3, A4, A1 respectively. At the same time it is straightforward to check
that

X0 ∩X1 = Y0 ∩ Y1 = ∅,
as required.

One can also construct a quadruple of sets satisfying the assumptions of
Theorem 1.15 from a triple of superheavy sets. Namely, assume A,B, C ⊂ M
are closed superheavy sets with A ∩ B ∩ C = ∅. Let U be an open neigh-
borhood of A ∩ B such that U is disjoint from C. Set X0 := U ∩ (A ∪ B),
X1 := C, Y0 := A \ U , Y1 := B \ U . Then X0, X1, Y0, Y1 satisfy the assump-
tions of Theorem 1.15. By Proposition 2.3, formula (32) and monotonicity,
pb4(X0, X1, Y0, Y1) ≥ pb3(A,B, C). Note that if A,B, C are, for instance, su-
perheavy Lagrangian submanifolds intersecting transversally and U is the com-
plement of a sufficiently small closed tubular neighborhood of C, the sets Y0

and Y1 given by this construction are finite unions of small Lagrangian discs.

Remark 4.7. Let us compare the bounds on the time-length of Hamiltonian
chords given by Theorem 1.10 (the autonomous case) and Theorem 1.12 (the
non-autonomous case). We will compare the bounds for the case of an au-
tonomous Hamiltonian and for R = +∞ (i.e. when both estimates are appli-
cable and there are no restrictions on the oscillation of the Hamiltonian). We
have seen in (30) above that

1/pb4(X0, X1, Y0, Y1) ≤ 1/pb4(stabX0, stabX1, stabY0, stabY1). (37)

Thus for Hamiltonian chords of autonomous Hamiltonians the “autonomous”
bound from Theorem 1.10 is a priori better than the “non-autonomous” one
from Theorem 1.12. As it was mentioned above, the “autonomous” bound is
sharp and therefore whenever one has the equality in (37) the “non-autonomous”
bound is sharp as well (see Theorem 1.20 and Proposition 1.21 above for an
example where the equality in (37) is actually reached). It would be inter-
esting to find out whether the bound on the time-length of the Hamiltonian
chord given by Theorem 1.12 is always sharp. In other words, the question is
whether for any compact X0, X1, Y0, Y1 ⊂ M , X0 ∩ X1 = Y0 ∩ Y1 = ∅, one
can find time-dependent Hamiltonians as in Theorem 1.12 admitting Hamilto-
nian chords that connect X0 and X1 and have time-lengths arbitrarily close to
1/pb4(stabX0, stabX1, stabY0, stabY1).
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5 Poisson brackets and pseudo-holomorphic po-
lygons

5.1 Defining polygons

Let D ⊂ C be the unit disc. Take k ≥ 2 pairwise distinct points z0, . . . , zk−1

on the unit circle in ∂D in the counter-clockwise cyclic order (thus further on
we use the convention (k − 1) + 1 = 0 for the indices). They divide the circle
into k arcs

a0 = [zk−1; z0], a1 = [z0; z1], . . . , ak−1 = [zk−2; zk−1].

Let L = (L0, . . . , Lk−1) be a collection of Lagrangian submanifolds in a sym-
plectic manifold (M, ω). A parameterized k-gon with boundary on L is a smooth
map φ : D→ M such that φ(ai) ⊂ Li for all i. For the sake of brevity we shall
often refer to the image φ(D) as to a k-gon with boundary on L with edges
φ(ai) and (cyclically oriented) vertices φ(zi). The k-gons are called triangles for
k = 3 and quadrilaterals for k = 4.

Denote by D(z0, . . . , zk−1) the unit disc in C with k counter-clockwise cycli-
cally ordered marked points z0, . . . , zk−1 on the boundary. The space Pk of all
such discs is naturally identified with a subset of (∂D)k. The group PU(1, 1)
acts on D by holomorphic automorphisms, and hence acts on Pk. Given an
almost complex structure J on (M,ω) consider the set of all pairs (z, φ) where
z = (z0, . . . , zk−1) ∈ Pk and φ : D(z0, . . . , zk−1) → M is a J-holomorphic pa-
rameterized k-gon with boundary on L. Its quotient by the natural action of
the group PU(1, 1) is called the moduli space of J-holomorphic k-gons with
boundary on L and is denoted by M (with some extra decorations which will
be introduced later).

5.2 A reminder on the Maslov class

Let `1, `2 be a pair of Lagrangian subspaces in a symplectic vector space V .
Pick any compatible almost complex structure J on V with J`1 = `2. Denote
by γJ(L1, L2) the path etJ`1, t ∈ [0; π/2], of Lagrangian subspaces joining `1
with `2.

Let now L0, . . . , Lk−1 be a collection of Lagrangian submanifolds of a sym-
plectic manifold (M2n, ω) in general position: every pair from this collection
intersects transversally and there are no triple intersections. Let P be a k-gon
whose edges ei lie on Li. Choose a parametrization ei(t) of the edges yielding
the cyclic orientation of the boundary of the polygon. Denote by vi,i+1 the
vertex lying on Li ∩ Li+1, where the indices are taken modulo k.

Let ΛM → M be a canonical fibration whose fiber over a point x ∈ M is the
Lagrangian Grassmannian Λn(TxM). For every edge ei consider its canonical
lift êi(t) = Tei(t)Li to ΛM . Fix an ω-compatible almost complex structure J on
M . The curves

ê0, γJ(Tv0,1L0, Tv0,1L1), ê1, γJ (Tv1,2L1, Tv1,2L2), . . . ,
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. . . êk−1, γJ(Tvk−1,0Lk−1, Tvk−1,0L0)

form a loop, say θ, in ΛM .
Take a symplectic trivialization of the tangent bundle TM over P so that

the restriction of ΛM to P splits as P ×Λn, where Λn is the Lagrangian Grass-
mannian (the space of Lagrangian planes in the symplectic vector space R2n).
Write θ′ for the projection of θ to Λn.

Recall that Tk is the set of homotopy classes of k-gons in M whose sides (in
the natural cyclic order) lie, respectively, in L0, L1, . . . , Lk−1. Let α = [P ] ∈ Tk

be the homotopy class of a k-gon P . By definition, the Maslov index m(α)
is the Maslov index of θ′ in Λn. This definition is independent of the choices
of J , the specific polygon P inside the homotopy class α and the symplectic
trivialization. We refer to [23, 47] for the details.

5.3 Gluing polygons

Let L = (L0, . . . , Lk−1) be a collection of Lagrangian submanifolds of a
symplectic manifold (M2n, ω) in general position. Given a homotopy class α of
polygons with boundary on L, we can perform two operations on it:

• Take a representative P of α and attach a disc with the boundary on some
Li at a point lying on the i-th edge of P ;

• Attach a sphere at a point of P .

We say that two homotopy classes α and β of the polygons are equivalent if β
can be obtained from α by a sequence of such operations. For brevity we shall
write

β = α +
k−1∑

i=0

Di + S,

where Di ∈ π2(M, Li) and S ∈ π2(M). Observe that this representation is not
unique: for instance, S ∈ π2(M,Li) for all i. The Maslov indices of α and β are
related by the standard formula (cf. [47])

m(β) = m(α) +
∑

mLi(Di) + 2c1(S), (38)

where mLi is the Maslov class of L1 and c1 is the first Chern class of (M, ω).
We shall need also another gluing operation. Let P be a k-gon with vertices

pj ∈ Lj ∩ Lj+1, j = 0, . . . , k − 1, with boundary on L and let α be a digon
with vertices v, pi and boundaries on (Li, Li+1) (the marked points z0, z1 ∈ ∂D
are mapped, respectively, to v and pi; accordingly, the arcs a0, a1 ⊂ ∂D are
mapped, respectively, into Li+1 and Li). Attaching α to P along pi we get in a
natural way a new k-gon P ′ with boundary on L and the vertices

p0, . . . , pi−1, v, pi+1, . . . , pk−1.
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We shall write P ′ = α ] P . The homotopy class of P ′ in Tk does not depend on
the specific choice of P and α within their homotopy classes. It will be denoted
by [α] ] [P ]. It is easy to check that

m([α] ] P ) = m([P ]) + m([α])− n. (39)

Proposition 5.1. Let (L,K) be a finite type collection of Lagrangian subman-
ifolds. Let α be a digon with boundaries on (L,K) with the same vertices:
α ∈ T2(a, a). Suppose that m(α) = n. Then ω(α) = 0.

Proof. Changing, if necessary, the orientation of α we can assume that ω(α) =
c ≥ 0. Put αd := α ] . . . ] α taken d times. Then, by (39), we have that
m(αd) = n while ω(αd) = dc. Thus, by the finite type condition, dc is bounded
as d →∞, and hence c = 0.

5.4 Finite type collections of Lagrangian submanifolds

Here we discuss examples of finite type collections of Lagrangian submani-
folds.

Proof of Proposition 1.26. Let L = (L0, . . . , Lk−1) be a collection of mono-
tone Lagrangian submanifolds in general position with the same monotonicity
constant. Assume that for every i the morphism π1(Li) → π1(M) has a finite
image. We have to show that the collection L is of finite type. The latter as-
sumption guarantees that there exists only finite number of equivalence classes
(in the sense of Section 5.3 above) of homotopy classes of polygons with bound-
ary on L. Suppose that P ∼ Q and m(P ) = m(Q). Since all Li have the same
monotonicity constant, formula (38) readily yields ω(P ) = ω(Q). This, in turn,
implies that L is of finite type.

Consider now the cotangent bundle T ∗X of a closed manifold X l equipped
with the standard symplectic form σ. Let K = (K0, . . . , Kk−1) be a collection of
Lagrangian sections of T ∗X of the form Ki = graph dFi, where Fi is a smooth
function on X. Suppose that K is in general position – in particular, all functions
Fi+1 − Fi are Morse. Each intersection point p ∈ Ki ∩Ki+1 is a critical point
of Fi+1 − Fi. Denote by ν(p) its Morse index. One can readily check that for
every polygon P with vertices p0, . . . , pk−1 and boundary in K one has

m(P ) =
∑

i

ν(pi), σ(P ) =
∑

i

(Fi(pi)− Fi+1(pi)).

In particular,

0 ≤ m(P ) ≤ kl, |σ(P )| ≤ C(K) := 2k ·max
i
||Fi|| (40)

for every polygon P with boundaries on K. This is a considerable strengthening
of the finite type property for the collection K. In particular, it immediately
yields the following proposition.
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Proposition 5.2. Let (L0, . . . , Lk−1) be any finite type collection of Lagrangian
submanifolds in a symplectic manifold (M,ω). Let Ki ⊂ T ∗X, i = 0, . . . , k − 1
be sections as above. Then the collection (Li×Ki)i=0,...,k−1 in (M×T ∗X, ω⊕σ)
is of finite type with

A(L0 ×K0, . . . , Lk−1 ×Kk−1;N) ≤
≤ max{A(L0, . . . , Lk; j) : j ∈ [N − kl; N ]}+ C(K). (41)

Proof. Put Ω = ω ⊕ σ. Given a k-gon P with boundary on M × T ∗X and
m(P ) = N , look at its projections P1 and P2 to M and to T ∗X respectively.
Then m(P ) = m(P1) + m(P2) and Ω(P ) = ω(P1) + σ(P2). By (40),

−kl ≤ m(P1)−N ≤ 0, |ω(P1)− Ω(P )| ≤ C(K).

Thus
|Ω(P )| ≤ max

j
A(L0, . . . , Lk; j) + C(K),

where j runs over [N − kl; N ]. Therefore the collection (Li × Ki) is of finite
type and (41) holds.

5.5 Preliminaries on Lagrangian Floer homology

Here we sketch a definition of operations in Lagrangian Floer homology (over
Z2) – the reader is referred to [11], [42], [23] for more details.

Let (M2n, ω) be a spherically monotone symplectic manifold with a “nice”
behavior at infinity (e.g. geometrically bounded [4]). Let L = (L0, . . . , Lk−1)
be a collection of k closed connected monotone Lagrangian submanifolds, k =
2, 3, 4. Our convention is that the indices of Li’s are taken modulo k, that is
Lk = L0, etc. Recall that the minimal Maslov number NL of a Lagrangian
submanifold is the minimal positive generator of the image of π2(M,L) under
the Maslov class. We put NL = +∞ if π2(M,L) = 0.

Throughout this section we shall assume that the following conditions hold:

(F1) The whole collection L is of finite type.

(F2) Every pair (Li, Li+1) forms a collection of finite type.

(F3) The minimal Maslov number NLi of each Li is ≥ 2.

(F4) In case NLi = 2, the number of pseudo-holomorphic discs of the Maslov
index 2 passing through a generic point of Li is even. In the terminology
of [23] this means that the obstruction class (over Z2) of each Li vanishes.

In addition we assume that Li’s are in general position, meaning that they
intersect pairwise transversally and there are no triple intersections, and if k = 4,
then

L0 ∩ L2 = L1 ∩ L3 = ∅. (42)
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Consider the vector space CF (Li, Li+1) := SpanZ2
(Li ∩ Li+1). Fix an ω-

compatible almost complex structure J on M . Given points pi ∈ Li−1 ∩ Li,
i = 1, . . . , k, and a homotopy class A ∈ Tk of k-gons with boundary on L and the
vertices p1, . . . , pk, consider the moduli space MA(p1, . . . , pk) of J-holomorphic
k-gons representing class A. A standard transversality argument yields that for
a generic J this space is a smooth manifold of the dimension

dimMA(p1, . . . , pk) = m(A) + n(1− k) + k − 3. (43)

Remark 5.3. To make the transversality argument actually work one needs to
deal with a more involved version of the ∂̄-equation (see [42]). We shall ignore
this point in our sketch. Furthermore, under certain assumptions there is a way
to associate an index, say I(p), to each intersection point from Li ∩ Li+1 after
equipping the Lagrangian submanifolds (and hence the intersection points) with
an additional structure of a Lagrangian brane. In this case the dimension of the
moduli space MA(p1, . . . , pk) is given by a more standard expression

I(pk)−
k−1∑

i=1

I(pi) + k − 3

(see e.g. [42], formula (12.8) ). One can verify that it coincides with (43). We
shall not enter the issue of grading.

We shall write |Y | for the cardinality – modulo 2 – of a finite set Y . Define
a Z2-multi-linear map

µk−1 : CF (L0, L1)⊗ . . .⊗ CF (Lk−2, Lk−1) → CF (L0, Lk−1)

by
µk−1(p1, . . . , pk−1) =

∑

A

∣∣MA(p1, . . . , pk)
∣∣ · pk, (44)

where the sum is taken over all 0-dimensional moduli spaces. Note that the mod-
uli spaces MA(p1, . . . , pk) are zero-dimensional (or empty) whenever m(A) =
n(k−1)−k +3. Since our collection is of finite type, the symplectic areas of all
polygons from such moduli spaces are bounded away from infinity. Thus a com-
pactness argument yields that the 0-dimensional moduli spaces are necessarily
finite sets and that the sum in the right-hand side of (44) is finite.

The operation µ1 : CF (L0, L1) → CF (L0, L1) is a differential: µ1 ◦ µ1 = 0:
this is guaranteed by Floer gluing/compactness theorems and by the vanishing
of the obstruction class. For convenience we denote µ1 by d. The corresponding
homology Ker d/Im d is called the Lagrangian Floer homology HF (L0, L1) of
L0 and L1. It is a Z2-module. In the same way we define Floer homology
HF (Li, Lj) for all i, j, and for the sake of brevity use the same notation d
for the Floer differentials for all i, j. Note that when k = 4, the intersection
condition (42) guarantees that HF (L0, L2) = HF (L1, L3) = 0.
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Consider the operation

µ2 : CF (L0, L1)⊗ CF (L1, L2) → CF (L0, L2).

We shall abbreviate µ2(a1, a2) = a1a2. This operation satisfies the Leibnitz rule

d(a1a2) = a1 · da2 + da1 · a2

and hence descends to an operation in homology:

HF (L0, L1)⊗HF (L1, L2) → HF (L0, L2).

The latter is called the triangle (or Donaldson) product in Lagrangian Floer
homology. If k = 4, we define the triangle product for the triple L1, L2, L3

in the same way and keep for it the same notation. Note that for k = 4 the
intersection condition (42) guarantees that for pairwise distinct i, j, l the triangle
product

CF (Li, Lj)⊗ CF (Lj , Ll) → CF (Li, Ll)

vanishes already on the chain level. The operation

µ3 : CF (L0, L1)⊗ CF (L1, L2)⊗ CF (L2, L3) → CF (L0, L2)

satisfies the A∞-relation

dµ3(a1, a2, a3) = µ3(da1, a2, a3) + µ3(a1, da2, a3) + µ3(a1, a2, da3)
+ a1(a2a3) + (a1a2)a3. (45)

This formula yields two useful facts. First, assume that µ3 = 0. Then the
triangle product is associative: a1(a2a3) = (a1a2)a3. Second, we have the
following proposition:

Proposition 5.4. Assume that L0 ∩ L2 = L1 ∩ L3 = ∅. Then µ3 descends to
an operation in Lagrangian Floer homology

HF (L0, L1)⊗HF (L1, L2)⊗HF (L2, L3) → HF (L0, L2).

By a slight abuse of notation, we shall still denote the homological operation
by µ3.

Proof. The assumption on intersections yields that the product µ2 vanishes
for every triple Li, Li+1, Li+2. Thus the terms a1(a2a3) and (a1a2)a3 in (45)
vanish, which immediately yields the statement of the proposition.

It is a folkloric fact that the Lagrangian Floer homology and the operations
introduced above remain invariant under exact Lagrangian isotopies of the sub-
manifolds Li (of course, in case of the µ3-operation on homology one needs
the intersection assumption L0 ∩ L2 = L1 ∩ L3 = ∅ to remain valid during
the isotopies). We are going to discuss a particular case of this statement in
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a slightly different language: instead of deforming Lagrangian submanifolds we
shall deform the symplectic form on M . A crucial feature of this setting which
significantly simplifies the analysis is that the intersection points from Li∩Li+1

remain fixed and transversal in the process of the deformation.
Consider a deformation ωs, s ∈ [0; 1], ω0 = ω, of the symplectic form ω

through symplectic forms on M which satisfy the following conditions:

(D1) ωs = ω near each Li for all s;

(D2) ωs is cohomologous to ω for all s;

(D3) for any s ∈ [0; 1] and any i = 0, . . . , k−1 the integrals of the forms ωs and
ω over discs define the same functional π2(M, Li ∪ Li+1) → R.

Note that Li is a monotone Lagrangian submanifold of (M, ωs) and its mono-
tonicity constant does not depend on s. Furthermore, assumptions (F2)-(F4)
hold automatically for all s. We shall assume in addition that

(D4) the collection L is of finite type with respect to ωs for all s ∈ [0; 1].

Choose a generic 1-parametric family Js, s ∈ [0; 1], of ωs-compatible almost
complex structures. Note that the vector spaces CF (Li, Li+1) do not depend
on s. Write ds for the Floer differential on CF (Li, Lj) with i 6= j. Denote
by HFs(Li, Lj) the Lagrangian Floer homology, and by µk−1

s the operations
associated to the collection L. We shall write Ms for the moduli space of Js-
holomorphic polygons with boundaries on L and Ms

B(p1, . . . , pk) ⊂ Ms for
the space of Js-holomorphic polygons in a homotopy class B with the vertices
p1, . . . , pk.

Proposition 5.5. Let k = 3 or 4. There exist isomorphisms

φi : HF0(Li, Li+1) → HF1(Li, Li+1), i = 0, . . . , k − 2,

and φ̄k−1 : HF0(L0, Lk−1) → HF1(L0, Lk−1) which send µk−1
0 to µk−1

1 , i.e.

µk−1
1 (φ0(x0), . . . , φk−2(xk−2)) = φ̄k−1(µk−1

0 (x0, . . . , xk−2)) (46)

for all xi ∈ HF0(Li, Li+1), i = 0, . . . , k − 2.

Proof. Note that the differential ds and the operations µk−1
s can change in the

process of deformation only due to bubbling-off. Since Li’s are monotone with
the minimal Maslov number ≥ 2, for a generic 1-parametric family Js there
is no bubbling-off of Js-holomorphic discs and spheres (and we assume that
our 1-parametric family is chosen to have this property). By the Gromov-Floer
compactness result, other possible degenerations of Js-holomorphic polygons can
be analyzed by looking at possible degenerations of the disc D with the marked
points on the boundary into tree-like connected cusp-curves with the marked
points on them. Such an analysis, together with the intersection assumptions
L0∩L1∩L2 = ∅ for k = 3 and (42) for k = 4, shows that the only possible pattern
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of the bubbling-off is as follows: a Js-holomorphic digon β with boundaries on
some pair (Li, Lj) of index m(β) = n + 1 splits into the sum of two digons
β = β′ ] α where m(α) = n. This splitting can take place for a finite set
T = {0 < t1 < . . . < tN < 1} of the parameter s which we will call the critical
values. Thus on the intervals

[0; t1), . . . , (tl−1; tl), . . . , (tN ; 1]

the Floer homology and the operations do not change and their realizations
for different values of the parameter (within such an interval) will be identified.
Without loss of generality, we can assume that for every critical parameter t ∈ T
there is a unique digon α with m(α) = n. We shall call α an exceptional digon.

Fix a pair (L,K) of distinct Lagrangian submanifolds from our collection.
Suppose that for t ∈ T there exists an exceptional digon α ∈ Mt

A(a, b), where
a, b ∈ L ∩ K. Note that ωt(α) > 0 and hence Proposition 5.1 above yields
that a 6= b. Following Floer [21, Lemma 3.5], define an endomorphism ψt of
CF (L, K) by

ψt(x) = x + (x, a)b, (47)

where (x, a) is the coefficient at a in the expansion of x with respect to the basis
L ∩ K of CF (L,K). Observe that ψt ◦ ψt is the identity map (recall that we
work over Z2) and hence ψt is an isomorphism. By using a gluing/compactness
argument Floer showed in [21] that for a sufficiently small ε > 0

ψt ◦ dt−ε = dt+ε ◦ ψt.

Thus ψt induces an isomorphism

φt : HFt−ε(L,K) → HFt+ε(L,K).

Taking the composition of isomorphisms φt over all critical parameters t ∈ T
we get an isomorphism

φ(L, K) : HF0(L,K) → HF1(L,K). (48)

We claim that these isomorphisms send µk−1
0 to µk−1

1 . The proof is based on
the very same Floer’s argument. Let us elaborate it in the case k = 4 (the case
k = 3 is analogous).

Let us study what happens with the operation µ3
s when the parameter s

passes a critical value t ∈ T . Let α ∈ Mt(a, b) be the exceptional digon, and
A be its homotopy class. We denote by M+ and M− the moduli spaces of
Js-holomorphic k-gons for s ∈ (t; t+ ε) and s ∈ (t− ε; t) respectively, and by µ3

±
the corresponding µ3-operations.

Case 1: a, b ∈ L0 ∩ L1. Consider a 0-dimensional moduli space of the form
Ms

B(b, p2, p3), where s ∈ (t− ε, t + ε), p2 ∈ L1 ∩ L2, p3 ∈ L2 ∩ L3. It does not
change when s passes through the critical value t. Take a Jt-holomorphic quadri-
lateral P ∈ Mt

B(b, p2, p3, q), q ∈ L0 ∩ L3, and look at the quadrilateral α ] P .
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A parametric version of the standard compactness/gluing argument for pseudo-
holomorphic polygons yields that the following bifurcation takes place: there
exists a unique family of pseudo-holomorphic polygons fromMs

A ] B(a, p2, p3, q),
where either s ∈ (t − ε; t) or s ∈ (t; t + ε) but not both, which bubbles off to
α ] P as s = t and which disappears as s enters the other half of the interval
(t− ε; t + ε). In other words, each P contributes ±1 to the difference

∣∣M+
A ] B(a, p2, p3, q)

∣∣− ∣∣M−
A ] B(a, p2, p3, q)

∣∣.
It follows that

(µ3
+(a, p2, p3), q)− (µ3

−(a, p2, p3), q) = (µ3
+(b, p2, p3), q),

(recall that we are counting modulo 2), and hence

µ3
+(a, p2, p3) + µ3

+(b, p2, p3) = µ3
−(a, p2, p3). (49)

The cases when a, b lie in L1 ∩L2 (respectively, in L2 ∩L3) yield similar equal-
ities. The only difference with (49) is that the points a, b appear at the second
(respectively, at the third) position in µ3

±.

Case 2: a, b ∈ L0 ∩ L3. Similarly, we look at the broken quadrilateral P ] α,
where P lies in the 0-dimensional moduli space Mt

B(p1, p2, p3, a), and conclude
that P contributes ±1 to the difference

∣∣M+
B ] A(p1, p2, p3, b)

∣∣−
∣∣M−

B ] A(p1, p2, p3, b)
∣∣.

This yields (modulo 2)

(µ3
+(p1, p2, p3), b)− (µ3

−(p1, p2, p3), b) = (µ3
−(p1, p2, p3), a).

For every q 6= b
(µ3

+(p1, p2, p3), q) = (µ3
−(p1, p2, p3), q) ,

and hence (modulo 2)

µ3
+(p1, p2, p3) = µ3

−(p1, p2, p3) + (µ3
−(p1, p2, p3), a)b. (50)

Suppose that the exceptional digon α is associated to the pair (Lu, Lv), where
(u, v) = (0, 1), (1, 2), (2, 3) or (0, 3). Define an isomorphism ψt

ij of CF (Li, Lj) by
formula (47) if (i, j) = (u, v) and as the identity map otherwise. Using formulas
(47),(49) and (50) we conclude that

µ3
+(ψt

01(x0), ψt
12(x1), ψt

23(x2)) = ψt
03(µ

3
−(x0, x1, x2)) (51)

for all
x0 ∈ L0 ∩ L1, x1 ∈ L1 ∩ L2, x2 ∈ L2 ∩ L3.

The composition of ψt
ij ’s over all t ∈ T is exactly the isomorphism φ(Li, Lj)

introduced in (48) above. Put

φ(L0, L1) := φ0, φ(L1, L2) := φ1, φ(L2, L3) := φ2, φ(L0, L3) = φ̄3.

With this notation formula (51) readily yields (46). This completes the proof
of the proposition.
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5.6 The product formula

Let L = (L0, . . . , Lk−1) be a generic collection of Lagrangian submanifolds
of a symplectic manifold (M, ω) satisfying assumptions (F1)-(F4) of Section 5.5
above and the intersection condition (42). Choose a generic collection of k
sections K = (K0, . . . , Kk−1) of T ∗S1. Assume that all Ki are exact, that is of
the form Ki = graph dFi for some functions Fi : S1 → R. Consider a collection
L̂ := (L̂i := Li ×Ki). It also satisfies properties (F1) -(F4) and (42). Indeed,
(F1) and (F2) follow from Proposition 5.2 and the remaining properties readily
follow from the definitions.

The Künneth formula in Floer homology (which can be obtained by consid-
ering the Floer complexes for a split almost complex structure on M × T ∗S1)
yields

HF (L̂i, L̂j) = HF (Li, Lj)⊗HF (Ki,Kj).

With this identification we have that

(a⊗A) · (b⊗B) = (ab)⊗ (AB) (52)

and
µ3(a⊗A, b⊗B, c⊗ C) = µ3(a, b, c)⊗ (ABC). (53)

It is well-known [22] that the Z2-module HF (Ki,Kj) is canonically identified
with H1(S1,Z2) so that the product µ2 for K corresponds to the cup-product
and the µ3-operation for K vanishes. Let us mention that the product µ2 for K
is associative and hence the expression ABC is well-defined.

The conclusion of this discussion is that the operations µ2 and µ3 for L̂ do
not vanish, provided they do not vanish for L.

The proof of (52) is straightforward and will be omitted. The proof of (53)
is a bit more delicate and will be sketched below. For more information on the
product formulae see [3].

Sketch of the proof of formula (53): Consider the space P4 of all discs with
four counterclockwise cyclically ordered boundary points, and denote by P̃4 its
quotient by the natural action of PU(1, 1). We shall denote by P̃ ∈ P̃4 the
image of P ∈ P4 in P̃4.

Step 1: Fix the standard complex structure I on T ∗S1. Fix a generic almost
complex structure J on M . We are studying J ⊕ I-holomorphic maps u from
P ∈ P to M × T ∗S1 with boundary on L̂. (In this sketch we will not discuss
the regularity of these almost complex structures.)

Each such map has the form u = (φ, ψ), where φ : P → M and ψ : P →
T ∗S1. Using the dimension formula (43) and the fact that the Maslov class
is additive with respect to direct sums, we get that the 0-dimensional moduli
space of such maps can arise from two sources:

(i) The map φ lies in the 0-dimensional moduli space of J-holomorphic quadri-
laterals with boundary on L. This picks a finite subset, say Z, of possible
classes P̃ in the space P̃4. To get a generic existence of an I-holomorphic
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Figure 5: Non-convex quadrilateral ABCD

map ψ : P → T ∗S1 with boundary on K so that [P ] ∈ Z, the map ψ must
lie in a 1-dimensional component of the moduli space of I-holomorphic
quadrilaterals with boundary on K – in this case by varying ψ we can
“tune in” its source to be in Z.

(ii) The same, but with φ lying in the 1-dimensional moduli space and ψ lying
in the 0-dimensional moduli space.

Note that the count of 0-dimensional moduli spaces of pseudo-holomorphic
quadrilaterals yields the µ3-operation. Since the latter vanishes for K, the sce-
nario (ii) can be disregarded. Thus we shall focus on (i) and study 1-dimensional
components of the moduli space of I-holomorphic quadrilaterals with boundary
on K.

Step 2: Pass to the universal cover R2 := C → T ∗S1 and lift the sections Ki

(we keep the same notation for the lifts). Look at the holomorphic quadrilat-
erals formed by K0,K1,K2,K3. The holomorphic quadrilaterals of expected
dimension 1 correspond to embedded quadrilaterals with boundary on K which
have a unique interior angle > π. Fix such a quadrilateral and, to make fur-
ther analysis more transparent, draw it as a non-convex Euclidean quadrilateral
ABCD in R2, where the vertices are written in the counter-clockwise order and
the angle at C is > π. Introduce also the points E, which is the intersection of
the edge AD with the ray [BC), and F , which is the intersection of the edge
AB with the ray [DC), see Figure 5. Suppose that

AB ⊂ K1, BE ⊂ K2, FD ⊂ K3, DA ⊂ K0.
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Introduce a parameter t ∈ [0; 1] on the broken line ECF so that E corresponds
to t = 0, C corresponds to t = 1/2, F corresponds to t = 1. Denote by Xt the
point on the broken line ECF corresponding to the value t of the parameter.
Look at the following family of closed broken lines which depends on a parameter
t ∈ (0, 1):

• the line formed by the segments AB ⊂ K1, BXt ⊂ K2, XtC ⊂ K2,
CD ⊂ K3, DA ⊂ K0 for t ∈ (0; 1/2);

• the line formed by the segments AB ⊂ K1, BC ⊂ K2, CD ⊂ K3, DA ⊂
K0 for t = 1/2;

• the line formed by the segments AB ⊂ K1, BC ⊂ K2, CXt ⊂ K3, XtD ⊂
K3, DA ⊂ K0 for t ∈ (1/2; 1).

For every t ∈ (0; 1) this broken line bounds a holomorphic polygon, say
ψt : Pt → C, where Pt = D(z0, z1, z2, z3), so that

ψt(z0) = A, ψt(z1) = B, ψt(z2) = C, ψt(z3) = D.

Note that for t 6= 1/2 the map ψt|S1 hits C twice, so z2 corresponds to the
second hit for t < 1/2 and to the first hit for t > 1/2. By applying a Möbius
transformation we can assume that z0 = −i, z1 = 1, z3 = −1 and z2 varies with
t ∈ (0; 1) between 1 and −1 (excluding the endpoints themselves) in the upper
half-circle.

Next, we wish to analyze the behavior of these holomorphic quadrilaterals
when t ↘ 0 and t ↗ 1. For this purpose let us recall (see [22]) that the
Deligne-Mumford compactification of P̃4 can be identified with [0; 1], where the
boundary point 0 corresponds to the stable curve

Σ0 := D−(z0, z1, z∗) ] D+(z∗, z2, z3)

and the boundary point 1 corresponds to the stable curve

Σ1 := D−(z0, z∗, z3) ] D+(z∗, z1, z2).

Here we denote by D± two copies of the unit disc.
When t ↘ 0, the bubbling-off happens: The map ψt converges to a map

ψ0 = ψ−0 ] ψ+
0 from Σ0 to C. Here ψ−0 : D− → C is a holomorphic triangle with

the three sides, respectively, on K0,K1,K2 and the vertices

ψ−0 (z0) = A,ψ−0 (z1) = B, ψ−0 (z∗) = E,

and ψ+
0 : D+ → C is a holomorphic triangle with the three sides, respectively,

on K0,K2,K3 and the vertices

ψ+
0 (z∗) = E, ψ+

0 (z2) = C, ψ+
0 (z3) = D.
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Similarly, when t ↗ 1, the map ψt converges to a map ψ1 = ψ−1 ] ψ+
1 from

Σ1 to C. Here ψ−1 : D− → C is a holomorphic triangle with the three sides,
respectively, on K0,K1,K3 and the vertices

ψ−1 (z0) = A,ψ−1 (z∗) = F, ψ−1 (z3) = D,

and ψ+
1 : D+ → C is a holomorphic triangle with the three sides, respectively,

on K1,K2,K3 and the vertices

ψ+
1 (z∗) = F, ψ+

1 (z1) = B, ψ+
1 (z2) = C.

The bubbling pattern shows that z2 → z3 = −1 as t → 0 and z2 → z1 = 1 as
t → 1. This shows that the map

Φ : [0; 1] → Compactification(P̃4), t → P̃t,

has degree 1 (modulo 2). Thus, generically, for every P̃ ∈ Z (where the finite
set Z was defined in Step 1) there exists an odd number of values of t with
P̃t = P̃ .

Step 3: We use the notations of Steps 1 and 2. Consider all pairs (P ∈
P4, φ : P → M) such that the image of φ is a polygon with vertices a, b, c, d.
The moduli space of such pairs consists of (µ3(a, b, c), d) points. We have seen
that each such point and every quadrilateral ABCD ⊂ T ∗S1 as above together
contribute 1 (modulo 2) to the coefficient

(µ3(a⊗A, b⊗B, c⊗ C), d⊗D).

The analysis in Step 2 shows that the number of such quadrilaterals ABCD
equals (A ·B · C, D). We conclude that

(µ3(a⊗A, b⊗B, c⊗ C), d⊗D) = (µ3(a, b, c), d) · (A ·B · C, D),

which immediately yields formula (53).

We refer to [31] and references therein for an algebraic discussion on A∞-
operations for a tensor product of A∞-algebras.

5.7 Application to Poisson brackets invariants

The next result is a more precise version of Theorems 1.27 and 1.30 stated
in the introduction. Let L = (L0, . . . , Lk−1), k = 3 or 4, be a collection of
Lagrangian submanifolds of a geometrically bounded symplectic manifold. As-
sume that Li’s are in general position, satisfy conditions (F1)-(F4) and for k = 4
satisfy the intersection condition (42). Put

A3 = A(L0, L1, L2; 2n), A4 = A(L0, L1, L2, L3; 3n− 1),

A′3 = max{A(L0, L1, L2; j) : j ∈ [2n− 3; 2n]},
A′4 = max{A(L0, L1, L2, L3; j) : j ∈ [3n− 5; 3n− 1]}.
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Theorem 5.6. Assume that the operation µk−1 in the Lagrangian Floer homol-
ogy of L does not vanish. Then

(i) If k = 3, then

pb3(L0, L1, L2) ≥ 1
2A3

(54)

and
pb3(stabL0, stabL1, stabL2) ≥ 1

2A′3
. (55)

(ii) If k = 4, then
pb4(L0, L2, L1, L3) ≥ 1/A4 (56)

and
pb4(stabL0, stabL2, stabL1, stabL3) ≥ 1/A′4. (57)

Proof. We shall prove part (ii) (the proof of (i) is analogous). By Proposi-
tion 1.3, pb4(L0, L2, L1, L3) = inf ||{F, G}||, where F = 0 in a neighborhood of
L0, F = 1 in a neighborhood of L2, G = 0 in a neighborhood of L1, G = 1 in a
neighborhood of L3. Given such functions F,G ∈ C∞c (M), consider the family
of forms

ωs := ω − sdF ∧ dG.

Note that
dF ∧ dG ∧ ωn−1 =

1
n
{F, G} · ωn.

Thus
ωn

s = (1− s{F, G})ωn.

Therefore the form ωs is symplectic for all

s ∈ I := [0; 1/||{F, G}||).

A straightforward application of the Stokes formula shows that the deformation
ωs, s ∈ I, satisfies the assumptions (D1)-(D4) of Section 5.5 above. For instance,
in order to verify that the collection L is of finite type for every s, observe that∫

α
dF ∧ dG = 1 for every quadrilateral α with the boundary on L and hence

ωs(α) ≤ ω(α)− s. (58)

At the same time the Maslov class m(α) does not change in the process of
deformation and hence the finite type condition for ωs follows from the one for
ω.

Choose a generic family of almost complex structures Js compatible with
ωs. By Proposition 5.5, the operation µ3 in the Lagrangian Floer homology
of L with respect to ωs does not vanish. Thus for every s ∈ I there exists a
Js-holomorphic quadrilateral, say α, with boundary on L. The dimension of the
moduli space of such quadrilaterals equals m(α)−3n+1 = 0 and thus the finite
type condition (25) guarantees that ω(α) ≤ A4. Thus, by (58), ωs(α) ≤ A4− s.
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At the same time ωs(α) > 0 and hence s ≤ A4 for every s ∈ I = [0; 1/||{F,G}||).
This yields ||{F,G}|| ≥ 1/A4, and inequality (56) follows.

Let us pass to inequality (57). Choose a collection K = (K0,K1,K2,K3)
of four generic sections of T ∗S1 and take ε > 0. Applying Proposition 5.2 and
using the product formula (53) we get that the collection (Li× εKi)i=0,1,2,3 also
satisfies the assumptions of the theorem and hence, by (56),

pb4(L0 × εK0, L2 × εK2, L1 × εK1, L3 × εK3) ≥ 1
A′4 − εC(K)

.

Note that Li × εKi converges (in the sense of Section 2.1) to stabLi as ε → 0.
Thus inequality (57) immediately follows from Corollary 2.1. This completes
the proof.

Remark 5.7. Let K0, . . . , Kk−1 be arbitrary exact sections of T ∗S1 (not nec-
essarily in general position). Put L′i := Li × Ki. The same proof as above
shows that under the assumptions of the theorem the Poisson bracket invari-
ants pb3(L′0, L

′
1, L

′
2) (when k = 3) and pb4(L′0, L

′
2, L

′
1, L

′
3) (when k = 4) are

positive.

Remark 5.8. The results of Section 5 extend verbatim to the case when La-
grangian submanifolds from our collections are not necessarily compact, but
rather geometrically bounded (see [4, p.286]), that is properly embedded with
“nice behavior” at infinity. In this case we should also assume that the number
of intersection points of each pair of submanifolds is finite. Let us apply this
remark to the quadruple of circles X0, X1, Y0, Y1 on the torus T2 considered at
the end of Example 1.2. Fix a square Π on T2 whose edges (in counter-clockwise
cyclic order) lie on X0, Y0, X1, Y1. Take any lift of the contractible curve ∂Π
to the universal cover R2 → T2. Its edges lie on some lifts X̃0, Ỹ0, X̃1, Ỹ1 of
X0, Y0, X1, Y1 respectively. The quadruple L of lines X̃0, Ỹ0, X̃1, Ỹ1 on R2 forms
a collection of finite type. Take a generic quadruple K = (K1,K2, K3,K4) of
exact Lagrangian sections of T ∗S1 and put

X̂0 = X̃0 ×K1, X̂1 = X̃1 ×K2, Ŷ0 = Ỹ0 ×K3, Ŷ1 = Ỹ1 ×K4.

Consider a pair (F, G) ∈ F ′4(X0 × K1, X1 × K2, Y0 × K3, Y1 × K4). Consider
the deformation ωs = ω − sdF ∧ dG of the symplectic form ω on T2 × T ∗S1.
Let Js be an ωs-compatible family of almost complex structures on T2 × T ∗S1.
Denote by ω̃s and J̃s the lifts of ωs and Js to R2 × T ∗S1. The periodicity
of ω̃s and J̃s with respect to the group Z2 acting on the R2-factor guarantees
that Lagrangian submanifolds X̂0, Ŷ0, X̂1, Ŷ1 remain geometrically bounded for
every s whenever ωs is symplectic. Moreover, the µ3 operation is well defined
and does not vanish: indeed, it does not vanish for the quadruple of lines L on
R2 due to the contribution of the square Π, and it survives the stabilization by
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the product formula (53). Thus we get a J̃s-holomorphic quadrilateral Σ̃s with
the edges on X̂0, Ŷ0, X̂1, Ŷ1. Its projection Σs to T2 × T ∗S1 satisfies

∫

Σs

ω ≤ Area(Π) + const(K),
∫

∂Σs

FdG = 1.

Applying Proposition 1.19 as in the proof of Theorem 5.6 above we readily get
that pb4(X0 × K1, X1 × K2, Y0 × K3, Y1 × K4) > 0. This confirms the claim
made in the end of Example 1.2.

5.8 Lagrangian spheres and the triangle product

Let (M2n, ω), n ≥ 2, be an exact convex symplectic manifold, meaning
there exists a 1-form θ on M and an exhausting sequence of compact manifolds
with boundary M1 ⊂ M2 ⊂ . . . ⊂ M such that ω = dθ and for any i the 1-
form θ|∂Mi

is contact. Let L0, L2 be exact Lagrangian submanifolds of (M,ω)
(meaning that the restrictions of θ on them are exact 1-forms). Let L1 ⊂ M be
a Lagrangian sphere. Assume L0 ∩ L1 ∩ L2 = ∅ and all the Li intersect each
other transversally – thus the collection L0, L1, L2 ⊂ M is of finite type.

Fix a diffeomorphism f : Sn → L1. This data allows to associate to L1 a
compactly supported symplectomorphism τL1 : M → M , called the Dehn twist
in L1. It maps L1 to itself. Therefore there is a canonical isomorphism

HF (τ−1
L1

(L0), L1) ∼= HF (L0, L1). (59)

Seidel showed [41] that there is an exact sequence:

HF (L0, L2) // HF (τ−1
L1

(L0), L2)

ttiiiiiiiiiiiiiiiii

HF (τ−1
L1

(L0), L1)⊗HF (L1, L2)

F

jjTTTTTTTTTTTTTTTT

where the map

F : HF (τ−1
L1

(L0), L1)⊗HF (L1, L2) → HF (L0, L2)

is the composition of the isomorphism (59) and the triangle product

µ2 : HF (L0, L1)⊗HF (L1, L2) → HF (L0, L2).

Therefore Seidel’s exact sequence implies that if

HF (L0, L2) 6= 0, HF (τ−1
L1

(L0), L2) = 0, (60)

then the product µ2 is non-trivial.
We learned the following specific example of such a situation from Ivan Smith

[44] – we thank him for explaining it to us.
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Consider C3 with the complex coordinates x, y, z. Take a smooth complex
hypersurface M in C3 given by the equation x2 + y2 + p(z) = 1, where p is
a complex polynomial of degree 5 with 4 non-degenerate critical points, say
z0 = 0, z1 = −1, z2 = i, z3 = 1. The symplectic structure on C3 induces
the structure of an exact convex symplectic manifold on M . The projection
π : M → C to the complex z-plane is a Lefschetz fibration with the critical
values zi, i = 0, 1, 2, 3.

A smooth embedded path γ : [0; 1] → C, which connects two distinct critical
values zi = γ(0) and zj = γ(1) and does not pass through the other critical
values, is called a matching path. To a matching path γ one can associate a
Lagrangian sphere S ⊂ π−1(γ) ⊂ M , called a matching cycle. (The construction
is due to Donaldson, for details see e.g. [42], pp. 230-231. The sphere is glued
from two Lagrangian discs, called Lefschetz thimbles, coming out of the critical
points (0, 0, zi) and (0, 0, zj) of π and having a common boundary which is a
vanishing cycle in a fiber of π).

Consider the matching paths γ01, γ02, γ03, γ23 which are straight segments
in C connecting, respectively, z0 with z1, z2, z3, and z2 with z3. Denote the
corresponding matching cycles S01, S02, S03, S23. An exact Lagrangian isotopy
identifies the matching cycle S23 with τ−1

S03
(S02) (under an appropriate identifi-

cation of S03 with S2) – see [42], p.232. We can perturb the matching cycles
by C∞-small exact Lagrangian isotopies so that those of them that correspond
to intersecting matching paths intersect each other transversally at exactly one
point and all the triple intersections are empty. (Obviously, matching cycles
corresponding to disjoint matching paths do not intersect each other).

Thus setting L0 := S02, L1 := S03, L2 := S01, we see that L0, L1 and L2

are Lagrangian spheres in M such that L0∩L1∩L2 = ∅ and which satisfy (60).
Therefore the triangle product

µ2 : HF (L0, L1)⊗HF (L1, L2) → HF (L0, L2)

is non-trivial.

6 Poisson bracket invariants and SFT

In this section we prove Proposition 1.22 by using a method of Symplectic
Field Theory [12].

6.1 Lagrangian tori in S2 × T ∗S1

Consider a symplectic manifold V = S2 × T ∗S1 equipped with the split
symplectic form ω0 so that the area of γ := [S2 × point] equals 1. Let Π ⊂ S2

be a disc with smooth boundary. Consider a Lagrangian torus L = ∂Π× S1 in
V . The relative Hurewicz morphism π2(V, L) → H2(V, L,Z) is an isomorphism.
Denote by α and β the elements in H2(V,L,Z) generated by Π × {point} and
S2 \Π× {point} respectively so that α + β = γ.
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Theorem 6.1. Let ωτ , τ ∈ [0; 1], be a smooth deformation of ω0 through sym-
plectic forms such that L remains ωτ -Lagrangian for all τ . Then

ω1(α) > 0 and ω1(β) > 0. (61)

Proof: c

Given a Riemann surface with boundary, say C, attach a punctured disc to
each of its boundary components. The resulting Riemann surface is denoted by
Ĉ.

Assume on the contrary that ω1(α) ≤ 0. Since ω0(α) > 0, there exists
t ∈ (0; 1] such that ωt(α) = 0.

We equip the torus L with the Euclidean metric, make an appropriate
choice of an ωt-compatible almost complex structure J on V and perform the
stretching-the-neck procedure near L as in [12]. As a result of the stretching,
we get an almost complex structure Jb with a negative cylindrical end on V \L
and an almost complex structure Jw on T ∗L with a positive cylindrical end.
Let us emphasize that the structure Jb is tamed by ωt.

The manifold V is foliated by J-holomorphic spheres in the class γ [25]. The
compactness theorem of [8] guarantees that after stretching the neck some of
these spheres split into a collection of multi-level pseudo-holomorphic curves
asymptotic to closed orbits of the Euclidean geodesic flow on L. Without loss
of generality we shall assume that there are just two levels. Thus there exists

• a partition of the sphere S2 (equipped with the standard complex struc-
ture) by K > 0 boundary circles into blue and white domains B1, . . . , BN

and W1, . . . ,WM so that any two domains with a common boundary com-
ponent have different colors;

• pseudo-holomorphic maps φi : B̂i → (V \ L, Jb) and ψi : Ŵi → (T ∗L, Jw)
whose negative (resp. positive) asymptotic ends are closed orbits of the
Euclidean geodesic flow on L.

By obvious topological reasons, there are at least two discs among the do-
mains of our partition. Since all Euclidean geodesics on the two-torus are non-
contractible, no white domain can be a disc. Thus there are N ≥ 2 blue domains.

Persistence of the fibration by J-holomorphic spheres in the class γ yields
that ωt(γ) > 0. Write the relative homology class of φi(B̂i) as piα + qiγ. Since
the relative homology class of each ψi(Ŵi) is zero (because π2(T ∗L,L) ∼= 0),
the classes φi(B̂i) = piα + qiγ add up to γ and we get

N∑

i=1

qi = 1. (62)

Since ωt tames Jb, we have that ωt(piα + qiγ) > 0. Since ωt(α) = 0 and
ωt(γ) > 0, we necessarily have that qi > 0 for all i. In view of (62), this
contradicts N ≥ 2. Therefore ω1(α) > 0. Similarly, ω1(β) > 0.

cThis proof is due to Richard Hind. We thank him for his help and a considerable shortening
of our original argument.
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6.2 An application to Poisson bracket invariants

Proof of Proposition 1.22: Arguing as in Section 1.6.2 we see that it suffices
to prove the lower bound

pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) ≥ max(1/A, 1/(B −A)) (63)

assuming that the boundary ∂Π is smooth. Without loss of generality, let
K = S1 be the zero section of T ∗S1 and B = Area(S2) = 1. Pick two functions
F, G ∈ F ′4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) and consider the deformation ωs :=
ω0 − sdF ∧ dG of the split symplectic form ω0 on V = S2 × T ∗S1. As we have
seen in Section 1.6.1, ωs is symplectic for all s < 1/||{F, G} and (in the notations
of Section 6.1 above) ωs(α) = A− s (because

∫
α

dF ∧ dG =
∫

∂Π
FdG = 1). By

Theorem 6.1, ωs(α) > 0 and hence s < A. Therefore

p := pb4(a1 ×K, a3 ×K, a2 ×K, a4 ×K) ≥ 1/A.

Applying the same argument to the quadrilateral Π′ := S2 \Π we get that

p′ := pb4(a1 ×K, a4 ×K, a2 ×K, a1 ×K) ≥ 1/(1−A).

By the symmetry of the Poisson bracket invariants, p = p′ and hence we get
inequality (63).

7 A vanishing result for pb4

In this section we prove Proposition 1.23. Let us introduce the following
terminology: Assume that S is a finite simplicial complex and M is a manifold.
Let φ : S → M be a homeomorphism from S to its image φ(S) so that the
restriction of φ to every simplex is a smooth embedding. We refer to the image
X := φ(S) as to an embedded simplicial complex in M . We denote by dimX
the maximal dimension of a simplex from S.

Proposition 7.1. Let X0, X1 be disjoint embedded simplicial complexes in a
symplectic manifold (M, ω). Assume that

dim X0 + dim X1 ≤ 2n− 2. (64)

Then for every pair of disjoint compact subsets Y0, Y1 of M

pb4(X0, X1, Y0, Y1) = 0.

Proof. Assume on the contrary that pb4(X0, X1, Y0, Y1) = p > 0. Fix neigh-
borhoods Ui of Yi, i = 0, 1. Take any function H ∈ C∞c (M) so that H = 0
on U0 and H = 1 on U1. Denote by ht the Hamiltonian flow generated by H.
Put T = 2/p and set Z :=

⋃
|t|≤T ht(X0). The dimension formula (64) and a
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standard transversality argument yield the existence of an arbitrary C0-small
Hamiltonian diffeomorphism f of M supported near X1 such that

f(X1) ∩ Z = ∅. (65)

Since f is C0-small, we can assume that f(Yi) ⊂ Ui for i = 0, 1. Moreover, since
f is supported near X1 and X0 ∩X1 = ∅, we have f(X0) = X0. By symplectic
invariance of pb4,

pb4(f(X0), f(X1), f(Y0), f(Y1)) = p.

Theorem 1.10 guarantees that there exists a Hamiltonian chord of ht joining
f(X0) = X0 and f(X1) of time-length ≤ 1/p. This contradicts property (65),
and hence p = 0.

Before proceeding further, let us introduce the following notation. Consider
the annulus A = [−1; 1] × S1. Let x1, . . . , xk, y1, . . . , yl be pairwise distinct
points in S1. Consider a 1-dimensional simplicial complex

A(x1, . . . , xk, y1, . . . , yl) ⊂ A

defined by

A(x1, . . . , xk, y1, . . . , yl) = ({0} × S1) ∪
k⋃

i=1

([0; 1]× {xi}) ∪
l⋃

j=1

([−1; 0]× {yj}).

Proof of Proposition 1.23. Recall that M is a closed symplectic surface, Π ⊂
M is a quadrilateral with edges denoted (in the cyclic order) by a1, a2, a3, a4 and
K1, . . . , K4 is a generic quadruple of exact sections of T ∗S1. Put Pi = ai ×Ki.
We have to show that

p := pb4(P1, P3, P2, P4) = 0.

We will use the cyclic convention for the indices i = 1, 2, 3, 4 (that is 4+1 = 1,
1− 1 = 4).

Choose in the obvious way parameterizations φi : A → Pi, i = 1, 2, 3, 4, such
that Pi ∩ Pi+1 consists of a finite number of points of the form

φi(1, xj) = φi+1(−1, yj), j = 1, . . . , N(i),

for some N(i) ∈ N. Put

Si = A(x1, . . . , xN(i), y1, . . . , yN(i−1)).

Fix ε > 0 and observe that one can “collapse” the annulus A to an ε-neighbor-
hood Sε

i of Si. More precisely, there exists a family of embeddings ψt
i : A → A,

t ∈ [0; 1], such that ψ0 = 1l, ψ1
i (A) = Sε

i and ψt
i = 1l near Si for all t.
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Put Qi = φi(Si) and Qε
i = φi(Sε

i ). Observe that Pi ∩ Pi+1 = Qi ∩Qi+1 and
therefore the isotopies

θt
i := φi ◦ ψt

i : A → Pi

have disjoint supports for distinct i. Since each Pi is a Lagrangian submanifold
of M × T ∗S1, the isotopies θt

i , i = 1, 2, 3, 4, extend simultaneously to an
ambient Hamiltonian isotopy θt of M × T ∗S1. By the symplectic invariance of
pb4,

pb4(Qε
1, Q

ε
3, Q

ε
2, Q

ε
4) = p (66)

for all ε. Note that Qε
i → Qi as ε → 0, where the convergence is understood in

the sense of Section 2.1. Thus, by Proposition 2.1,

p ≤ q := pb4(Q1, Q3, Q2, Q4).

Since each Qi is a one-dimensional embedded simplicial complex in M × T ∗S1,
Proposition 7.1 yields q = 0. Hence p = 0. This completes the proof.

Remark 7.2. Let X, Y, Z be compact subsets of a symplectic manifold (M,ω)
with X ∩Y ∩Z = ∅. Assume that X and Z are embedded simplicial complexes
with dim X + dim Z ≤ 2n − 2. We claim that pb3(X, Y, Z) = 0. Indeed,
represent Z as the union Z1 ∪ Z2 of two compact embedded complexes of the
same dimension so that X ∩Z1 = Y ∩Z2 = ∅. Combining Proposition 7.1 with
inequality (32) we get that

0 = pb4(X, Z1, Y, Z2) ≥ pb3(X, Y, Z),

and the claim follows.

8 Discussion and further directions

8.1 Hamiltonian chords and optimal control

Hamiltonian chords joining two disjoint subsets of a symplectic manifold
appear in the mathematical theory of optimal control. For instance, the shortest
geodesic between two closed submanifolds of a Riemannian manifold can be
interpreted as a chord of the geodesic flow joining their Lagrangian co-normals
in the cotangent bundle. As we have mentioned above (see discussion after
Theorem 1.13), in some situations such chords can be captured by the Poisson
brackets invariants.

A similar interpretation can be given to the extremals provided by Pon-
tryagin’s maximum principle for an optimal-time control problem with variable
end-points [38]. The Hamiltonian functions appearing in this context are degree-
one homogeneous in the momenta and in general are not proper. It would be
interesting to understand whether methods of symplectic and contact topology
can detect Hamiltonian chords in this context.
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The minimal time-length T (X0, X1, G) introduced in Section 1.4 has the
following counterpart in control theory. Let (M,ω) be a symplectic manifold
(the so-called state space), U be the input space and G : M × U → R be a
controlled Hamiltonian (see e.g. [35, Ch. 12] or [29, Section 4.9.5]). For any
path u(t), t ∈ R, in U the function (x, t) 7→ G(x, u(t)) can and will be viewed
as a time-dependent Hamiltonian on M . The optimal-time control problem
with the initial set X0 and the terminal set X1 is to find the minimal possible
time T := Tmin(X0, X1, G) and a sufficiently regular control u : [0; T ] → U so
that the Hamiltonian flow generated by G(x, u(t)) admits a trajectory x(t) with
x(0) ∈ X0 and x(T ) ∈ X1.

In general, even if the minimal time Tmin(X0, X1, G) is finite, there is no
reason for it to remain uniformly bounded under C0-small perturbations of
the controlled Hamiltonian G: such perturbations may drastically change the
dynamics. Suppose now that pb4(X0, X1, Y0, Y1) = p > 0 for some subsets
Y0, Y1 ⊂ M , and in addition

min
Y1

G(x, u∗)−max
Y0

G(x, u∗) = a > 0

for some input u∗ ∈ U . Taking the constant control u(t) ≡ u∗ and applying
Theorem 1.10 we get that

Tmin(X0, X1, G) ≤ (ap)−1. (67)

This upper bound for Tmin(X0, X1, G) is robust under C0-small perturbations
of the controlled Hamiltonian G.

The methods of proving the bound (67) developed in the present paper
are very much disjoint from the standard tools of control theory. It would be
interesting to explore their possible interrelations. As a starting point one may
consider the simplest case of an affine Hamiltonian control system. Here the
controlled Hamiltonian G is of the form

G(x, u) = G0(x) +
k∑

i=1

uiGi(x),

and the input space U is the cube

{|ui| ≤ 1, i = 1, . . . , k}.

Suppose also that X0, X1, Y0, Y1 are closed Lagrangian submanifolds in M as
in the setting of Section 1.7 above. The maximum principle with transversality
conditions at X0 and X1 provides a wealth of information about time-optimal
trajectories joining X0 and X1 (note that these extremals may possess switches
of the control parameters which manifest the so-called “bang-bang” control). It
would be interesting to design specific examples where the upper bound (67)
can be deduced from the maximum principle.
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Figure 6: Condition ♦

8.2 Higher Poisson bracket invariants

In this section we suggest a generalization of the Poisson brackets invariants
to ordered collections X = (X1, . . . , XN ) of compact subsets of a symplectic
manifold (M,ω). We start with the following data.

Let ai(s, t) = αis+βit+γi, i = 1, . . . , N , be a collection of N affine functions
on the plane R2 defining a convex Euclidean polygon P =

⋃
i{ai ≥ 0}. Let

Li = {ai = 0} be the line containing i-th edge of P . Fix a convex open domain
Ω ⊂ R2 containing P with the following property:

Condition ♦: For every i 6= j the set Li ∩ Lj ∩ Closure(Ω) is either empty or
consists of a vertex of P (i.e. the closure of Ω does not contain the intersection
points of the lines Li that are not vertices of P ), see Figure 6. In addition, we
assume that 0 ∈ Ω if M is an open manifold.

A collection X = {X1, . . . , XN} of N ≥ 3 compact subsets of M is called cyclic
if Xi ∩ Xj = ∅ unless i and j are equal or differ by 1 (the indices are taken
modulo N). Given a cyclic collection X , denote by FN (X , P, Ω) the class of
pairs of functions (F,G) ∈ F which satisfy

(F (x), G(x)) ∈ Ω ∀x ∈ M

and
ai(F (x), G(x)) ≤ 0 ∀i = 1, . . . , N, ∀x ∈ Xi.

It is easy to see that this class is non-empty: First, we define F and G near
Xi ∩Xi+1 as the s− and t−coordinates of the corresponding vertex of P , then
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we extend F, G to a neighborhood of Xi so that αiF (x) + βiG(x) + γi = 0 and
(F (x), G(x)) ∈ Ω, and finally we cut off (F, G) outside the union of Xi’s.

Define the Poisson bracket invariant pbN of a cyclic collection X by

pbN (X , P, Ω) := inf ||{F, G}||,
where the infimum is taken over all (F, G) ∈ FN (X , P, Ω). The previously
defined invariants pb3 and pb4 are particular cases of this construction: the
invariant pb3(X1, X2, X3) corresponds to the case when N = 3, Ω = R2 and
P = {s ≥ 0, t ≥ 0, s + t ≤ 1}, while pb4(X1, X3, X2, X4) (mind the order of the
subsets) corresponds to the case when N = 4, Ω = R2 and P = {0 ≤ s ≤ 1, 0 ≤
t ≤ 1}.

Higher Poisson bracket invariants can be studied along the lines of the
present paper. Denote by F ′N (X , P, Ω) the class of pairs of functions (F,G) ∈
FN (X , P, Ω) which satisfy

(F (x), G(x)) ∈ P ∀x ∈ M.

We claim that
pbN (X , P, Ω) = inf ||{F, G}||,

where the infimum is taken over all (F, G) ∈ F ′N (X , P, Ω). Indeed, condition ♦
yields (cf. the proof of Lemma 2.4 above) the following fact: for every κ > 0
there exists δ(κ) > 0, with δ(κ) → 0 as κ → 0, and a map T = (T1, T2) : Ω → P
which takes {ai ≤ δ} to the edge {ai = 0} ∩ P for all i = 1, . . . , N and which
satisfies

||{T1, T2}R2 || ≤ 1 + κ.

The claim readily follows from this fact (cf. the proof of Proposition 1.3 above).
Suppose now that the symplectic manifold (M, ω) is closed and admits a sym-

plectic quasi-state satisfying the PB-inequality (see (14) above). We have then
the following analogue of Theorem 1.15: Assume that the sets Yi :=

⋃i+N−3
j=i Xj

are superheavy for all i (we use the cyclic convention for the indices with
N + 1 = 1). Then pbN (X , P, Ω) ≥ c > 0, where the constant c depends only on
the polygon P and on the constant K entering the PB-inequality (14).

Let us sketch a proof. Put Ai =
∏i+N−3

k=i ai and A =
∑

i Ai. Observe
that the function A is strictly positive on the polygon P . Indeed, the functions
Ai are non-negative, while the intersection of their zero sets is empty. Put
c′ = minP A > 0. Take a pair (F,G) ∈ F ′N (X , P, Ω). Define functions Hi :=
Ai(F, G) and H := A(F, G) on M . It follows that ζ(H) ≥ c′. At the same time
Hi vanishes on Yi, and hence the superheaviness of Yi yields ζ(Hi) = 0. Thus if
||{F,G}|| is sufficiently small, the functions Hi “almost commute”, and hence,
by the PB-inequality, |ζ(H)| should be strictly smaller than c′ (which does not
depend on F,G) yielding a contradiction. Therefore ||{F,G}|| cannot be small
which yields a lower bound on pbN .

In case when Xi’s are Lagrangian submanifolds, one can pursue the second
approach to the positivity of pbN : deform the symplectic form and study per-
sistent pseudo-holomorphic polygons coming from Donaldson-Fukaya category.
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Similarly to pseudo-holomorphic triangles and quadrilaterals used for the study
of pb3 and pb4, pseudo-holomorphic polygons with a higher number of vertices
can be used to give a positive lower bound on pbN (X , P, Ω). The existence
of persistent pseudo-holomorphic polygons can be extracted from the higher
(Massey-type) product

µN : HF (X1, X2)⊗ . . .⊗HF (XN−1, XN ) → HF (X1, XN ),

provided it is well-defined and non-trivial.
It would be interesting to explore applications of higher Poisson bracket

invariants beyond the applications of pb3 or pb4 described in this paper.

8.3 Vanishing of Poisson bracket invariants

According to the standard symplectic philosophy, the positivity of the Pois-
son bracket invariant pbk(X1, . . . , Xk) should manifest “symplectic rigidity” of
the collection of compact subsets X1, . . . , Xk. Thus for a “flexible” collection,
pbk should vanish. Proposition 7.1 and Remark 7.2 above confirm this intu-
ition: pb4(X0, X1, Y0, Y1) = 0 provided dim X0 + dim X1 ≤ dim M − 2 and
pb3(X, Y, Z) = 0 provided dimX + dim Z ≤ dim M − 2.

The next natural test is the case when dim M = 4 and our subsets are
two-dimensional surfaces.

Proposition 8.1. Let (M4, ω) be a closed symplectic 4-manifold and let X,Y ⊂
M be closed 2-dimensional submanifolds such that at any intersection point p ∈
X ∩ Y , the tangent spaces TpX, TpY ⊂ TpM are transversal and symplectically
orthogonal. Let Z ⊂ M be any compact set such that X∩Y ∩Z = ∅. Then there
exist smooth functions F, G : M → R such that F = 0 on X, G = 0 on Y and
F + G > 1 on Z, and, moreover, we have {F, G} = 0 on M . As a consequence,
we have pb3(X, Y, Z) = 0.

Proof. For any point p ∈ X ∩ Y there exists a neighborhood Wp of p with
Darboux coordinates (x1, y1, x2, y2), where p = (0, 0, 0, 0), such that X ∩ Wp

coincides with x1 = y1 = 0 and Y ∩ Wp coincides with x2 = y2 = 0. Let
p1, p2, . . . , pk be the intersection points of X and Y . Replacing, if necessary,
the neighborhoods Wpi , i = 1, 2, . . . , k, by smaller ones we may assume that
Wp1 ,Wp2 , . . . , Wpk

are pairwise disjoint and Wpi ∩ Z = ∅ for i = 1, 2, . . . , k.
Take a small a > 0 such that

Pa := {(x1, y1, x2, y2) |x2
1 + y2

1 6 a2, x2
2 + y2

2 6 a2} ⊂ Wpi

for i = 1, 2, . . . , k. Moreover, one can find tubular neighborhoods UX of X and
UY of Y in M such that UX ∩ UY ⊂ ∪k

i=1Wpi , and

UX ∩Wp = {(x1, y1, x2, y2) ∈ Wp |x2
1 + y2

1 < a2},

UY ∩Wp = {(x1, y1, x2, y2) ∈ Wp |x2
2 + y2

2 < a2}
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for any p ∈ X ∩ Y . Consider a smooth function u : [0;+∞) → [0; 1] such that
u(t) = 0 for t ∈ [0; a2/3] and u(t) = 1 for t ∈ [2a2/3;+∞). Define functions

f, g : ∪k
i=1Wpi

→ R

by
f(x1, y1, x2, y2) = u(x2

1 + y2
1),

g(x1, y1, x2, y2) = u(x2
2 + y2

2)

for (x1, y1, x2, y2) ∈ Wp for any p ∈ X∩Y . One can easily find smooth functions
F, G : M → [0; 1], such that F (x) = 0 on X, F (x) = 1 on M \ UX , G(x) = 0
on Y , G(x) = 1 on M \ UY and F (x) = f(x), G(x) = g(x) for x lying in a
neighborhood of Pa ⊂ Wpi , i = 1, 2, . . . , k. Then we will have {F,G} = 0 on
M , F = 0 on X, G = 0 on Y and F + G > 1 on Z.

A similar argument shows that if X0 and Y0 are closed surfaces in a symplec-
tic four-manifold which intersect transversally and are symplectically orthogonal
at each intersection point, pb4(X0, X1, Y0, Y1) = 0 for all X1, Y1 satisfying the
intersection condition (5).

We still do not know the answer to the following basic question.

Question 8.2. Let X, Y, Z ⊂ M4 be closed 2-dimensional non-Lagrangian
submanifolds with X ∩ Y ∩ Z = ∅. Is it true that pb3(X, Y, Z) = 0?

The obvious analogue of this question for pb4 is also open.
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