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POISSON BRACKETS AND TWO-GENERATED SUBALGEBRAS
OF RINGS OF POLYNOMIALS

IVAN P. SHESTAKOV AND UALBAI U. UMIRBAEV

1. Introduction

Let A = F [x1, x2, . . . , xn] be a ring of polynomials over a field F on the variables
x1, x2, . . . , xn. It is well known (see, for example, [11]) that the study of automor-
phisms of the algebra A is closely related with the description of its subalgebras. By
the theorem of P. M. Cohn [4], a subalgebra of the algebra F [x] is free if and only
if it is integrally closed. The theorem of A. Zaks [13] says that the Dedekind sub-
algebras of the algebra A are rings of polynomials in a single variable. A. Nowicki
and M. Nagata [8] proved that the kernel of any nontrivial derivation of the algebra
F [x, y], char(F ) = 0, is also a ring of polynomials in a single generator. An original
solution of the occurrence problem for the algebra A, using the Groebner basis, was
given by D. Shannon and M. Sweedler [9]. However, the method of the Groebner
basis does not give any information about the structure of concrete subalgebras.
Recall that the solubility of the occurrence problem for rings of polynomials over
fields of characteristic 0 was proved earlier by G. Noskov [7].

The present paper is devoted to the investigation of the structure of two-
generated subalgebras of A. In the sequel, we always assume that F is an ar-
bitrary field of characteristic 0. Let us denote by f̄ the highest homogeneous part
of an element f ∈ A, and by 〈f1, f2, . . . , fk〉 the subalgebra of A generated by the
elements f1, f2, . . . , fk ∈ A.

Definition 1. A pair of polynomials f1, f2 ∈ A is called ∗-reduced if they satisfy
the following conditions:

1) f̄1, f̄2 are algebraically dependent;
2) f1, f2 are algebraically independent;
3) f̄1 /∈ 〈f̄2〉, f̄2 /∈ 〈f̄1〉.

Recall that a pair f1, f2 with condition 3) is usually called reduced. Condition 1)
means that we exclude the trivial case when f̄1, f̄2 are algebraically independent.
We do not consider the case when f1, f2 are algebraically dependent. Concerning
this case, recall the well-known theorem of S. S. Abhyankar and T. -T. Moh [1],
which says that if f, g ∈ F [x] and 〈f, g〉 = F [x], then f̄ ∈ 〈ḡ〉 or ḡ ∈ 〈f̄〉.
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The main result of this paper, formulated in Theorem 3, gives a lower bound for
degrees of the elements of the subalgebra 〈f1, f2〉, where f1, f2 is a ∗-reduced pair.
In particular, this estimate yields a new proof of the theorem of H. Jung [5] on
automorphisms of the rings of polynomials in two variables. The estimate involves
a certain invariant of the pair f1, f2 which depends on the degrees of f1, f2 and of
their Poisson bracket.

The paper is structured as follows. In Section 2, we imbed the algebra A into
the free Poisson algebra on the same set of variables. In this way, we introduce a
Poisson bracket on A as a restriction of the bracket in the free Poisson algebra. We
investigate elementary properties of the Poisson bracket in A and prove for it an
analogue of G. M. Bergman’s theorem [3] on centralizers (Theorem 1). In Section
3, the structure of subalgebras of A generated by a ∗-reduced pair f1, f2 with the
condition deg[f1, f2] > min(deg f1, deg f2) is investigated in detail, and a lower
bound for the degrees of the elements of such subalgebras is obtained (Theorem
2). The main result is deduced from Theorem 2 in Section 4, where some relevant
examples of two-generated subalgebras are also given.

2. Poisson brackets

First, we recall the definition of Poisson algebras (see [10]).

Definition 2. A vector space B over a field F endowed with two bilinear operations
x · y (a multiplication) and [x, y] (a Poisson bracket) is called a Poisson algebra, if
B is a commutative associative algebra under x · y, B is a Lie algebra under [x, y],
and B satisfies the following identity (the Leibniz identity):

[x · y, z] = [x, z] · y + x · [y, z].(1)

An important class of Poisson algebras is given by the following construction.
Let L be a Lie algebra with a linear basis l1, l2, . . . , lk, . . . . Denote by P (L) the
ring of polynomials on the variables l1, l2, . . . , lk, . . . . The operation [x, y] of the
algebra L can be uniquely extended to a Poisson bracket [x, y] on the algebra P (L)
by means of formula (1), and P (L) becomes a Poisson algebra [10].

Now let L be a free Lie algebra with free generators x1, x2, . . . , xn. Then P (L)
is a free Poisson algebra on the same set of generators [10]. We will denote this
algebra by PL〈x1, x2, . . . , xn〉. If we choose a homogeneous basis

x1, x2, . . . , xn, [x1, x2], . . . , [x1, xn], . . . , [xn−1, xn], [[x1, x2], x3], . . .(2)

of the algebra L with nondecreasing degrees, then PL〈x1, x2, . . . , xn〉, as a vector
space, coincides with the algebra of polynomials on these elements. Evidently, the
vector space PL〈x1, x2, . . . , xn〉 is graded by degrees on xi, and for every element
f ∈ PL〈x1, x2, . . . , xn〉, the highest homogeneous part f̄ and the degree function
deg f can be defined in an ordinary way. Note that

fg = f̄ ḡ, deg(fg) = deg f + deg g, deg[f, g] ≤ deg f + deg g.

It is natural to identify the ring of polynomials A = F [x1, x2, . . . , xn] with the
subspace of the algebra PL〈x1, x2, . . . , xn〉 generated by the elements

xr11 x
r2
2 . . . xrnn , ri ≥ 0, 1 ≤ i ≤ n.

Put also

C =
⊕

1≤i<j≤n
[xi, xj ]A ⊆ PL〈x1, x2, . . . , xn〉.
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The next lemma follows immediately from identity (1).

Lemma 1. If f, g ∈ A, then

[f, g] =
∑

1≤i<j≤n
[xi, xj ]

(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
∈ C.

Thus, the Poisson bracket on PL〈x1, x2, . . . , xn〉 defines a mapping

[·, ·] : A×A −→ C, (x, y) 7→ [x, y].

It follows immediately from (1) that, for any f ∈ A, the mapping

ad(f) : A −→ C, x 7→ [x, f ],

is a derivation of the algebra A with coefficients in the free A-module C (see [11]).
For any f ∈ A we put also

∂f =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)t
,

where t is the transposition. The statement of the following lemma is well known
for k = n (see [6], [12]).

Lemma 2. Elements f1, f2, . . . , fk of the algebra A are algebraically dependent if
and only if the columns ∂(f1), ∂(f2), . . . , ∂(fk) are linearly dependent over A.

Proof. Let T (y1, y2, . . . , yk) ∈ F [y1, y2, . . . , yk] be a nonzero polynomial of minimal
degree such that T (f1, f2, . . . , fk) = 0. Applying the derivation ∂ to this equality,
we get

∂(f1)
∂T

∂y1
(f1, f2, . . . , fk) + · · ·+ ∂(fk)

∂T

∂yk
(f1, f2, . . . , fk) = 0.

This gives a nontrivial linear dependence of the elements ∂(f1), ∂(f2), . . . , ∂(fk)
over A.

Now let elements f1, f2, . . . , fk ∈ A be algebraically independent. Complete
them to an algebraically independent system f1, . . . , fk, fk+1, . . . , fn of elements
in the quotient field Q(A) = F (x1, x2, . . . , xn). Then, by results of [6], [12], we
have

det(∂(f1), ∂(f2), . . . , ∂(fk), . . . , ∂(fn)) 6= 0.

Therefore, the columns ∂(f1), ∂(f2), . . . , ∂(fk) are linearly independent over A. �

Corollary 1. Elements f1, f2, . . . , fk ∈ A are algebraically dependent if and only
if all the minors of order k of the matrix (∂(f1), ∂(f2), . . . , ∂(fk)) are equal to 0.

Corollary 2. Elements f, g ∈ A are algebraically dependent if and only if

∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj
= 0, 1 ≤ i < j ≤ n.

Corollary 3. Elements f, g ∈ A are algebraically dependent if and only if [f, g] = 0.

Of course, the Poisson bracket [f, g] can be defined without using free Poisson
algebras, just as the vector

(γ1,2, γ1,3, . . . , γ1,n, γ2,3, . . . , γn−1,n),
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where

γi,j =
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj
, 1 ≤ i < j ≤ n.

But our definition of Poisson bracket via free Poisson algebras has certain advan-
tages for working with degrees and highest homogeneous parts. In particular,

deg[f, g] = deg f + deg g

iff f̄ , ḡ are algebraically independent.
The statement of the following lemma is well known (see [4]).

Lemma 3. If homogeneous polynomials f, g ∈ A are algebraically dependent, then
there exists an element a ∈ A such that f = αak, g = βar, where α, β ∈ F, k, r ≥ 0.

Definition 3. For every f ∈ A, the set of elements

C(f) = {g ∈ A | [f, g] = 0}

is called a centralizer of f in A.

It follows immediately from (1) that C(f) is a subalgebra of A.
The next theorem presents an analogue of the theorem of G. Bergman [3] on

centralizers in free associative algebras.

Theorem 1. For every f ∈ A \F , the centralizer C(f) is a ring of polynomials on
a single variable.

Proof. Let f̄ = αak, where α ∈ F, k ≥ 1, and a is an element that is not a proper
power. If [f̄ , ḡ] 6= 0, then [f, g] = [f̄ , ḡ] 6= 0. Consequently, if g ∈ C(f), then
[f̄ , ḡ] = 0. Therefore, by Corollary 3 and Lemma 3, we get ḡ = βar. Repeating the
arguments of Bergman’s proof in [3], one can easily show that the algebra C(f) is
finitely generated. Furthermore, by Corollary 3, C(f) has transcendent degree one
over F . Therefore, the Krull dimension of C(f) is equal to 1.

Suppose that g ∈ Q(C(f)) is integral over C(f). Since C(f) ⊆ A and A is
integrally closed in Q(A), then g ∈ A. Let

gk + g1g
k−1 + · · ·+ gk−1g + gk = 0, gi ∈ C(f), 1 ≤ i ≤ k,

be an integral equation of minimal degree for g over C(f). Applying the derivation
ad(f) to this equation, we get

[g, f ](kgk−1 + (k − 1)g1g
k−2 + · · ·+ gk−1) = 0.

Hence [f, g] = 0, i.e., g ∈ C(f) and C(f) is integrally closed.
Thus, we have proved that C(f) is a Dedekind domain. Since F ⊂ C(f) ⊆ A, by

a theorem of A. Zaks [13], C(f) is a ring of polynomials on a single variable. �

Problem 1. Is an analogue of Bergman’s theorem true for centralizers of free Poisson
algebras?

Now we will give two lemmas which will be useful for the calculation of Pois-
son brackets. Note that calculation of Poisson brackets is strongly related to the
Jacobian conjecture (see [2]).

Lemma 4. Let a ∈ A \ F, c ∈ C \ {0}. Then [a, c] 6= 0.
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Proof. It is sufficient to prove the statement of the lemma for homogeneous elements
a, c. Without loss of generality, we may also assume that the field F is algebraically
closed. We will use induction on the number of variables on which a depends. If
a ∈ F [x1], then the equality [a, c] = 0 is equivalent to [x1, c] = 0. Let us write

c =
∑
i<j

cij [xi, xj ], cij ∈ A.

Then we have the equality

[c, x1] =
∑
i<j

∑
k>1

∂cij
∂xk

[xk, x1][xi, xj ] +
∑
i<j

cij [[xi, xj ], x1] = 0.

The vector space PL〈x1, x2, . . . , xn〉 coincides with the space of polynomials on the
variables (2). Therefore, the last equality implies∑

i<j

cij [[xi, xj ], x1] = 0.

Moreover, since [[xi, xj ], x1], 1 ≤ i < j ≤ n, are linearly independent elements of
the free Lie algebra L, we get cij = 0, 1 ≤ i < j ≤ n.

Now let a = f(x1, x2, . . . , xn), n > 1, and deg a = k. Consider the linear
automorphism ϕ of A such that ϕ(x1) = x1, ϕ(xi) = xi + αix1, 2 ≤ i ≤ n. Then
ϕ(a) = xk1f(1, α2, . . . , αn) + g, where degx1

(g) < k. Choose α2, . . . , αn such that
f(1, α2, . . . , αn) = 0. If this is impossible, then a = αxk1 ∈ F [x1], and in this case
the lemma has already been proved. So, we can assume that degx1

(a) = s < k and

a = a0 + a1x1 + · · ·+ asx
s
1,

where ai ∈ F [x2, . . . , xn], deg(ai) = k − i, 0 ≤ i ≤ s.
Analogously, the element c, as a polynomial in the variables (2), can be repre-

sented in the form

c = c0 + c1x1 + · · ·+ crx
r
1,

where ci ∈ C ∩ F [x2, . . . , xn, [x1, x2], . . . ], 0 ≤ i ≤ r. Then

[a, c] = [as, cr]xs+r1 + h,

where h has degree < s + r on x1, as a polynomial on variables (2). Since as ∈
F [x2, . . . , xn] and deg(as) = k−s > 0, by the induction assumption we get [as, cr] 6=
0. Consequently, [a, c] 6= 0. �

Corollary 4. Let f, g ∈ A, h ∈ A \ F . Then

deg([[f, g], h]) = deg[f, g] + deg h, [[f, g], h] = [[f, g], h̄].

Lemma 5. Let f, g, h ∈ A \ F . Put

m = deg[f, g] + deg h, n = deg[g, h] + deg f, k = deg[h, f ] + deg g.

Then m ≤ max(n, k). If n 6= k, then m = max(n, k).

Proof. Since PL〈x1, x2, . . . , xn〉 is a Lie algebra under the Poisson bracket [x, y],
we have

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0.

Now, the simple comparison of the highest parts of the elements [[f, g], h], [[g, h], f ],
and [[h, f ], g], by Corollary 4, gives the statement of the lemma. �
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3. Subalgebras with a condition on Poisson brackets

We fix a ∗-reduced pair of polynomials f1, f2 ∈ A with the condition deg[f1, f2] >
min(deg f1, deg f2). For definiteness, we put m1 = deg f1 < deg f2 = m2, then
deg([f1, f2]) = m1 + m0, m0 > 0. By Definition 1, the elements f̄1, f̄2 are alge-
braically dependent, and f̄2 /∈ 〈f̄1〉. Therefore, m1 6 | m2.

This section is devoted to the description of the highest homogeneous parts of
elements of the subalgebra 〈f1, f2〉. The following algorithm forms the main part
of this description.

Algorithm 1. The initial step of algorithm 1 is numbered by 3, for simplicity of
notation.

Step 3. Consider the equation

m1s1 = m2s2, s1, s2 ∈ Z.
We fix a minimal natural number s2 for which this equation has an integer solution,
and fix this solution s1, s2. Observe that in this solution we have

s1 =
m2

(m1,m2)
, s2 =

m1

(m1,m2)
.(3)

Here and in the sequel, (a1, a2, . . . , an) denotes the greatest common divisor of the
elements a1, a2, . . . , an. Since m1 6 | m2, we have s2 > 1.

Lemma 6. The elements of the type

f i11 f
i2
2 , i2 < s2,

have different degrees for different values of i1, i2.

Proof. Keeping in mind the equality

deg(f i11 f
i2
2 ) = m1i1 +m2i2,

suppose that

m1i1 +m2i2 = m1j1 +m2j2, i2, j2 < s2.

Without loss of generality, we can assume that i2 ≥ j2. Then

m1(j1 − i1) = m2(i2 − j2), 0 ≤ i2 − j2 < s2.

By the condition on choosing s2, we have i2 = j2, and, consequently, i1 = j1. �
Since deg(fs11 ) = m1s1 = m2s2 = deg(fs22 ) and f̄1, f̄2 are algebraically depen-

dent, by Lemma 3 we may assume that f̄1
s1 = f̄2

s2 . Hence the element f = fs22 −fs11

has degree less than m2s2.
Assume that f̄ ∈ 〈f̄1, f̄2〉. Since f̄1, f̄2 are algebraically dependent, by Lemma

3 there exists an element a ∈ A such that f̄1 = αak, f̄2 = βas for some α, β ∈ F .
Therefore, the space of elements of type f̄1

i1 f̄2
i2 of fixed degree is one dimensional.

Hence f̄ = αi1,i2 f̄1
i1 f̄2

i2 . Since m1i1 +m2i2 = deg f < m2s2, the element f1
i1f2

i2

is of the type given in Lemma 6. We replace f by f − αi1,i2f i11 f
i2
2 and note that

deg(f − αi1,i2f i11 f
i2
2 ) < deg f . After several such reductions, we get an element

f3 = fs22 − fs11 −
∑
i1,i2

αi1,i2f
i1
1 f

i2
2 ,

where m1i1 +m2i2 < m2s2 and f̄3 /∈ 〈f̄1, f̄2〉. Observe that f3 6= 0 since f1, f2 are
algebraically independent. We put m3 = deg f3.
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Lemma 7. [f1, f3] = s2[f1, f2]f̄2
s2−1.

Proof. A straightforward calculation gives

[f1, f3] = [f1, f2](s2f
s2−1
2 −

∑
i1,i2

i2αi1,i2f
i1
1 f

i2−1
2 ).

Since m1i1 +m2i2 < m2s2, the inequality

deg(f i11 f
i2−1
2 ) = m1i1 +m2(i2 − 1) < m2s2 −m2 = deg(fs2−1

2 )

completes the proof. �

Corollary 5. m0 +m2(s2 − 1) ≤ m3 < m2s2.

Proof. By Lemma 7 we get

m1 +m3 ≥ deg[f1, f3] = m1 +m0 +m2(s2 − 1);

hence m3 ≥ m0 +m2(s2−1). The inequality m3 < m2s2 follows from the definition
of f3. �

Step 3 of algorithm 1 completes its work by testing whether the elements f̄1, f̄3

are algebraically dependent. If they are algebraically independent, algorithm 1
finishes its work too.

Suppose now that, after t ≥ 3 steps, algorithm 1 produces a set of polynomials

f1, f2, . . . , ft, deg fi = mi, 1 ≤ i ≤ t,(4)

which satisfy the following conditions:
C1) Let si, 2 ≤ i ≤ t− 1, be a minimal natural number for which the equation

m1r1 +m2r2 + · · ·+mi−1ri−1 = misi

has an integer solution r1, r2, . . . , ri−1. Then this equation has a solution
satisfying the inequalities 0 < r1, 0 ≤ r2 < s2, . . . , 0 ≤ ri−1 < si−1.

C2) The elements f̄1, f̄2, . . . , f̄t−1 are mutually algebraically dependent, and,
for every j, 2 ≤ j ≤ t, f̄j /∈ 〈f̄1, f̄2, . . . , f̄j−1〉 holds.

C3) [f1, fi] = s2 . . . si−1[f1, f2]f̄2
s2−1

. . . f̄
si−1−1
i−1 , for every i, 3 ≤ i ≤ t.

C4) m0 +m2(s2−1)+ · · ·+mi−1(si−1−1) ≤ mi < mi−1si−1, for all i, 3 ≤ i ≤ t,
and (m1,m2) > (m1,m2,m3) > · · · > (m1,m2, . . . ,mt−1).

If f̄1, f̄t are algebraically independent, then algorithm 1 finishes its work. Oth-
erwise, the next step starts.

Step t+ 1 (t ≥ 3). Denote by st a minimal natural number for which the equa-
tion

m1r1 +m2r2 + · · ·+mt−1rt−1 = mtst(5)

has an integer solution r1, r2, . . . , rt−1.

Lemma 8. Equation (5) has an integer solution r1, r2, . . . , rt−1, satisfying the
inequalities 0 < r1, 0 ≤ r2 < s2, . . . , 0 ≤ rt−1 < st−1.

Proof. Applying successively condition C1), we can substitute ri in equation (5)
by their remainders modulo si, for every i = t − 1, . . . , 2. In this way, we find a
solution of (5) satisfying the inequalities 0 ≤ ri < si, 2 ≤ i ≤ t − 1. By C4), we
have

mt ≥ m0 +m2(s2 − 1) + · · ·+mt−1(st−1 − 1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



188 IVAN P. SHESTAKOV AND UALBAI U. UMIRBAEV

Therefore,

m1r1 +m2r2 + · · ·+mt−1rt−1 = mtst ≥ mt

≥ m0 +m2(s2 − 1) + · · ·+mt−1(st−1 − 1).

Since
m2r2 + · · ·+mt−1rt−1 ≤ m2(s2 − 1) + · · ·+mt−1(st−1 − 1),

we get m1r1 ≥ m0 > 0, i.e., r1 > 0. �

By Lemma 3 and Lemma 8, f̄t ∈ 〈f̄1, . . . , f̄t−1〉 if and only if st = 1. Now
condition C2) gives st > 1. Therefore, (m1,m2, . . . ,mt−1) > (m1,m2, . . . ,mt),
since otherwise (m1,m2, . . . ,mt−1) |mt and equation (5) would admit a solution
with st = 1.

Lemma 9. The elements of the type

f i11 f
i2
2 . . . f itt , i2 < s2, . . . , it < st,

have different degrees for different values of i1, i2, . . . , it.

Proof. Consider the equation

m1i1 +m2i2 + · · ·+mtit = m1j1 +m2j2 + · · ·+mtjt,

where ir, jr < sr, 2 ≤ r ≤ t. By definition of st, we get it = jt, which yields

m1i1 +m2i2 + · · ·+mt−1it−1 = m1j1 +m2j2 + · · ·+mt−1jt−1.

Applying successively condition C1), we get it−1 = jt−1, . . . , i1 = j1. �

In the sequel, we fix a solution r1, r2, . . . , rt−1 of equation (5) satisfying the
conditions of Lemma 8. Then, by Lemma 3,

f̄t
st = αr1,... ,rt−1 f̄1

r1 f̄2
r2 . . . f̄

rt−1
t−1 .

Consider the element

f = fstt − αr1,... ,rt−1f
r1
1 f r22 . . . f

rt−1
t−1 .

We have deg f < mtst. Assume that f̄ ∈ 〈f̄1, f̄2, . . . , f̄t〉. Since the elements
f̄1, f̄2, . . . , f̄t are mutually algebraically dependent, the space spanned by the ele-
ments of the type f̄1

i1 f̄2
i2 . . . f̄t

it with a fixed degree is one dimensional. Therefore,

f̄ = αi1,i2,... ,it f̄1
i1 f̄2

i2 . . . f̄t
it ,

for some i1, i2, . . . , it such that m1i1 + m2i2 + · · · + mtit = deg f . Arguing as
in the proof of Lemma 8, by Lemma 8 and condition C1), we may assume that
i2 < s2, . . . , it < st. Thus the element f i11 f

i2
2 . . . f itt has a form given in Lemma 9,

and we replace f by the element f−αi1,i2,... ,itf i11 f
i2
2 . . . f itt . Repeating, if necessary,

such reductions, eventually we get an element

ft+1 = fstt − αr1,... ,rt−1f
r1
1 f r22 . . . f

rt−1
t−1 −

∑
i1,i2,... ,it

αi1,i2,... ,itf
i1
1 f

i2
2 . . . f itt ,(6)

where m1r1 + · · · + mt−1rt−1 = mtst, m1i1 + · · · + mtit < mtst, and f̄t+1 /∈
〈f̄1, . . . , f̄t〉 or ft+1 = 0. The next lemma shows, in particular, that ft+1 6= 0. We
put mt+1 = deg ft+1.

Lemma 10. [f1, ft+1] = s2 . . . st[f1, f2]f̄2
s2−1

. . . f̄t
st−1.
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Proof. By (1) and (6),

[f1, ft+1] = st[f1, ft]fst−1
t − αr1,... ,rt−1(

∑
j≥2

rj [f1, fj]f r11 . . . f
rj−1
j . . . f

rt−1
t−1 )

−
∑

i1,i2,... ,it

αi1,i2,... ,it(
∑
j≥2

ij[f1, fj ]f i11 . . . f
ij−1
j . . . f itt ).

By condition C3),

deg([f1, ft]fst−1
t ) = m1 +m0 +m2(s2 − 1) + · · ·+mt(st − 1) = d.

Furthermore, equality (5) gives

deg([f1, fj]f r11 . . . f
rj−1
j . . . f

rt−1
t−1 ) = m1 +m0 +m2(s2 − 1) + · · ·+mj−1(sj−1 − 1)

+m1r1 + · · ·+mj(rj − 1) + · · ·+mt−1rt−1

= m1 +m0 +m2(s2 − 1) + · · ·+mj−1(sj−1 − 1) +mtst −mj

= d+mt −mj −mj(sj − 1)− · · · −mt−1(st−1 − 1).

By C4), for every j < t,

mj +mj(sj − 1) + · · ·+mt−1(st−1 − 1) = mjsj + · · ·+mt−1(st−1 − 1)
> mj+1 +mj+1(sj+1 − 1) + · · ·+mt−1(st−1 − 1)
> · · ·
> mt−1 +mt−1(st−1 − 1) = mt−1st−1 > mt.

Hence

deg([f1, fj ]f r11 . . . f
rj−1
j . . . f

rt−1
t−1 ) < d.

Analogously, the condition m1i1 + · · ·+mtit < mtst gives

deg([f1, fj]f i11 . . . f
ij−1
j . . . f itt ) < d.

Now, by condition C3),

[f1, ft+1] = st[f1, ft]f̄t
st−1 = s2 . . . st[f1, f2]f̄2

s2−1
. . . f̄t

st−1
,

which proves the lemma. �

Corollary 6. m0 +m2(s2 − 1) + · · ·+mt(st − 1) ≤ mt+1 < mtst.

Thus, algorithm 1 is described and justified. It will necessarily stop after a finite
number of steps because of the strict decrease of the sequence of greatest common
divisors in C4).

In the sequel, we suppose that algorithm 1 has finished its work and produced a
set of elements (4) which satisfies conditions C1)–C4) and the condition

C5) f̄1, f̄t are algebraically independent.

Lemma 11. The highest homogeneous parts of the elements of the type

f i11 f
i2
2 . . . f itt , i2 < s2, . . . , it−1 < st−1,(7)

are linearly independent.
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Proof. As in Lemma 9, it is easy to see that the elements of the type

f i11 f
i2
2 . . . f

it−1
t−1 , i2 < s2, . . . , it−1 < st−1,

have different degrees for different values of i1, i2, . . . , it−1.
Since the elements f̄1, f̄2, . . . , f̄t−1 are mutually algebraically dependent, by

Lemma 3 there exists an element a ∈ A such that f̄i = αia
ki , 1 ≤ i ≤ t − 1.

The linear dependence of the highest parts of the elements of type (7) would give
the nontrivial equality of the form

F0(a) + F1(a)f̄t + · · ·+ Fs(a)f̄t
s = 0.

This contradicts condition C5). �

Consider now the set of commutative words

f i11 f
i2
2 . . . f itt(8)

on alphabet (4), without the restrictions imposed in (7). Define a degree function
d on these words, by setting

d(f i11 f
i2
2 . . . f itt ) = deg(f i22 . . . f itt ) = m2i2 + · · ·+mtit.

By their construction in the process of algorithm 1 (see (6)), the elements fk+1

satisfy the following relations:

fskk = fk+1 + αr1,... ,rk−1f
r1
1 f r22 . . . f

rk−1
k−1 +

∑
i1,i2,... ,ik

αi1,i2,... ,ikf
i1
1 f

i2
2 . . . f ikk ,(9)

where m1r1 + · · ·+mk−1rk−1 = mksk, m1i1 + · · ·+mkik < mksk, rj , ij < sj for
2 ≤ j ≤ k − 1, and ik < sk, 2 ≤ k ≤ t− 1.

Lemma 12. The set of words of type (7) forms a basis of the algebra 〈f1, f2〉.

Proof. We prove first that the words (8) can be expressed as linear combinations
of words of type (7). The process of reduction consists of substituting the elements
f skk , 2 ≤ k ≤ t− 1, by the right parts of the equalities (9). It suffices to prove that
the d-degree of the right part of (9) is less than d(fskk ); then our statement will
easily follow by induction on the d-degree. By C4), we have

d(fskk ) = mksk > mk+1 = d(fk+1),
d(fk+1) ≥ m0 +m2(s2 − 1) + · · ·+mk(sk − 1).

Since rj , ij < sj for 2 ≤ j ≤ k − 1, and ik < sk, we get

d(f r11 f r22 . . . f
rk−1
k−1 ) = m2r2 + · · ·+mk−1rk−1 < d(fk+1),

d(f i11 f
i2
2 . . . f ikk ) = m2i2 + · · ·+mkik < d(fk+1).

Thus, the linear subspace spanned by the words of type (7) forms a subalgebra
which obviously coincides with 〈f1, f2〉. Now, Lemma 11 completes the proof. �

Define a linear order ≤ on the set of words of type (7), which corresponds to
the inverse lexicographic order on the set of t-tuples (i1, i2, . . . , it). For an element
f ∈ 〈f1, f2〉, we will denote by {f} the leading term of f with respect to ≤ (with
coefficient 1). For a word u = f i11 f

i2
2 . . . f itt , we put also [u] = f i22 . . . f itt .

Lemma 13. Let u, v be words of type (7) and u = f i11 [u], v = f j11 [v]. Then u ≤ v
iff d(u) < d(v) or d(u) = d(v), i1 ≤ j1. Moreover, d(u) = d(v) iff [u] = [v].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POISSON BRACKETS AND TWO-GENERATED SUBALGEBRAS 191

Proof. By definition, we have u ≤ v iff [u] < [v] or [u] = [v], i1 ≤ j1. Therefore, it
is sufficient to prove that if [u] < [v], then d(u) < d(v).

Take [u] = f i22 . . . f itt , [v] = f j22 . . . f jtt , and assume that it = jt, . . . , ik+1 =
jk+1, ik < jk. Then we obtain, by C4),

d(u) = m2i2 + · · ·+mkik +mk+1ik+1 + · · ·+mtit

≤ m2(s2 − 1) + · · ·+mk−1(sk−1 − 1) +mkik +mk+1ik+1 + · · ·+mtit

< mk +mkik +mk+1ik+1 + · · ·+mtit

≤ mkjk +mk+1jk+1 + · · ·+mtjt ≤ d(v).

�
This lemma and the proof of Lemma 12 imply

Corollary 7. The leading term of the right part of equality (9) is equal to fk+1.

Lemma 14. Let u, v, w be arbitrary words of type (7). If u < v, then {uw} < {vw}.
Proof. We will prove the lemma by induction on d(v) + d(w). A base for the
induction is given by the evident case d(v)+d(w) = 0, when u, v, w depend only on
f1. Assume now that for arbitrary words u1, v1, w1 of type (7), with the condition
u1 < v1, d(v1) + d(w1) < d(v) + d(w), the inequality {u1w1} < {v1w1} is true.
With this assumption, it is easy to see that for arbitrary elements f, g ∈ 〈f1, f2〉,
such that d(f) + d(g) < d(v) + d(w), the equality

{fg} = {{f}{g}}(10)

holds.
First, we consider the case w = fr, 1 ≤ r ≤ t. Note that the statement of

the lemma is trivial for w = f1. Moreover, without loss of generality, we can take
u = [u], v = [v]. Now we proceed with the reverse induction on r. If w = ft, then
the statement of the lemma is trivial too. Suppose that it is true for w = fl, l > r.

Denote by k the maximal natural number such that v depends on fk. Since
u < v, then u also does not depend on fk+1, . . . , ft. Consequently, if r > k, we
have

{ufr} = ufr < vfr = {vfr}.
If r = k, then we have u = u1f

ir
r , v = v1f

jr
r , where u1, v1 do not depend on fr

and ir ≤ jr. If jr < sr − 1, then

{ufr} = u1f
ir+1
r < v1f

jr+1
r = {vfr}.

If jr = sr − 1, then the subword fsrr of the word vfr = v1f
sr
r is replaced by the

right part of equality (9), with k = r. By Corollary 7 and equality (10), we obtain

{vfr} = v1fr+1.

In case ir = sr − 1 we have u1 < v1, and analogously

{ufr} = u1fr+1 < v1fr+1.

If ir < sr − 1, then by condition C4) we get

d(ufr) ≤ m2(s2 − 1) + · · ·+mr(sr − 1) < mr+1 ≤ d(v1fr+1).

Now consider the case r < k. If u also depends on fk, then we have u = u1fk,
v = v1fk, u1 < v1. A composition of two inductions gives

{ufr} = {(u1fr)fk} = {{u1fr}fk} < {{v1fr}fk} = {(v1fr)fk} = {vfr}.
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If u does not depend on fk, then v = v1fk and by condition C4) we have
d(u) < mk. Since fk ≤ v, the previous case gives {fkfr} ≤ {vfr}, i.e., fkfr ≤ {vfr}.
Note that

d(ufr) < mk +mr = d(frfk).

Then

{ufr} < frfk ≤ {vfr}.
We now turn to the case w = w1w2, where w1 and w2 are nontrivial words of

type (7). The induction on the length of w relatively to the variables (4) gives

{uw} = {(uw1)w2} = {{uw1}w2} < {{vw1}w2} = {vw}.
�

Corollary 8. Let f, g ∈ 〈f1, f2〉 be arbitrary elements. Then

{fg} = {{f}{g}}.

Lemma 15. mi ≥ (m0 +m2(s2 − 1))s3 . . . si−1, 3 ≤ i ≤ t.

Proof. We prove the statement of the lemma by induction on i. If i = 3, it follows
from condition C4). Assume that it is true for every r < i. By C4),

mi ≥ (m0 +m2(s2 − 1)) +m3(s3 − 1) + · · ·+mi−1(si−1 − 1).

Therefore, by the induction assumption,

mi ≥ (m0 +m2(s2 − 1))(1 + (s3 − 1) + s3(s4 − 1) + · · ·+ s3 . . . si−2(si−1 − 1))
= (m0 +m2(s2 − 1))s3 . . . si−1.

�

For every natural number k, we define the numbers r2, r3, . . . , rt−1, qt, by means
of the following equalities:

k = s2q3 + r2, 0 ≤ r2 < s2,

q3 = s3q4 + r3, 0 ≤ r3 < s3,

· · ·
qt−1 = st−1qt + rt−1, 0 ≤ rt−1 < st−1.(11)

Lemma 16. {fk2 } = f r22 f r33 . . . f
rt−1
t−1 f

qt
t .

Proof. We will show, by reverse induction on i, that

{f qii } = f rii . . . f
rt−1
t−1 f

qt
t ,

for every i = 2, . . . , t, with q2 = k. The base of the induction, for i = t, is evident.
By Corollary 8, we have

{f qi−1
i−1 } = {(fsi−1

i−1 )qif ri−1
i−1 } = {{{fsi−1

i−1 }qi}f
ri−1
i−1 }.

Observe that, by Corollary 7, {fsi−1
i−1 } = fi. Hence, by the induction assumption,

{f qi−1
i−1 } = {{f qii }f

ri−1
i−1 } = {f ri−1

i−1 f
ri
i . . . f

rt−1
t−1 f

qt
t } = f

ri−1
i−1 f

ri
i . . . f

rt−1
t−1 f

qt
t ,

which proves the lemma. �

Corollary 9. {f r1fk2 } = {f r11 fk1
2 } iff r1 = r, k1 = k.
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Theorem 2. Let G(x, y) ∈ F [x, y] and degy(G(x, y)) = k. Then

deg(G(f1, f2)) ≥ m2k + (m0 −m2)
[
k · (m1,m2)

m1

]
,

where [α] is the integer part of α.

Proof. By Corollary 9 and Lemma 11, we have

deg(G(f1, f2)) ≥ deg({fk2 }).
Return to equalities (11). By Lemma 16,

deg({fk2 }) = m2r2 + · · ·+mt−1rt−1 +mtqt.

Now, Lemma 15 gives

deg(G(f1, f2)) ≥ m2r2 + (m0 +m2(s2 − 1))(r3 + s3r4 + s3s4r5 + · · ·+ s3 . . . st−1qt).

By (11),

r3 + s3(r4 + s4(r5 + · · ·+ st−2(rt−1 + st−1qt) . . . )) = q3.

Consequently,

deg(G(f1, f2)) ≥ m2r2 + (m0 +m2(s2 − 1))q3

= m2(r2 + s2q3) + (m0 −m2)q3 = m2k + (m0 −m2)q3.

Since q3 = [ ks2 ], by equality (3) we have q3 =
[
k·(m1,m2)

m1

]
. This proves the theorem.

�

4. The estimation of degrees in the general case

The main result of the paper is the following theorem.

Theorem 3. Let g1, g2 be an arbitrary ∗-reduced pair of polynomials over a field
F of characteristic 0, and let n = deg g1 < m = deg g2, p = n

(n,m) , s = m
(n,m) , N =

N(g1, g2) = mn
(n,m) − m − n + deg[g1, g2]. Suppose that G(x, y) ∈ F [x, y]. If

degy(G(x, y)) = pq + r, where 0 ≤ r < p, then

deg(G(g1, g2)) ≥ qN +mr.

If degx(G(x, y)) = sq1 + r1, where 0 ≤ r1 < s, then

deg(G(g1, g2)) ≥ q1N + nr1.

Proof. Put f1 = g1, f2 = g1g2. Since degy(G(x, y)) = pq + r = k, then xkG(x, y) =
H(x, xy), where degz(H(x, z)) = k. Then

gk1G(g1, g2) = H(g1, g1g2) = H(f1, f2),

and consequently,

deg(G(g1, g2)) = deg(H(f1, f2))− deg(gk1 ).

Now we show that the elements f1, f2 satisfy all the conditions of Theorem 2.
Since ḡ1, ḡ2 are algebraically dependent and ḡ2 /∈ 〈ḡ1〉, the elements f̄1 = ḡ1, f̄2 =
ḡ1ḡ2 are algebraically dependent as well, and f̄2 /∈ 〈f̄1〉. Putm1 = n = deg f1, m2 =
n + m = deg f2. Since deg[g1, g2] ≥ 2, we have deg[f1, f2] = deg(g1[g1, g2]) =
m1 + deg[g1, g2] > m1. Thus, all the conditions of Theorem 2 are fulfilled. Note
that (m1,m2) = (n, n + m) = (n,m), and in the notation of Theorem 2 we have
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m0 = deg[g1, g2]. Applying Theorem 2, we obtain from the formula for degree
G(g1, g2) above

deg(G(g1, g2)) ≥ (n+m)k + (deg[g1, g2]− n−m)
[
k

p

]
− nk

= mk − (m+ n− deg[g1, g2])q
= mpq +mr −mq − nq + q deg[g1, g2]
= q(pm−m− n+ deg[g1, g2]) +mr = qN +mr.

Similarly, putting f1 = g2, f2 = g2g1, we get the second part of the theorem. �

Evidently, mn
(m,n) ≥ m + n and so N(g1, g2) ≥ deg[g1, g2] ≥ 2. Therefore, by

[4, 6.9], Theorem 3 immediately implies the theorem of H. Jung [5] on tameness of
automorphisms of polynomials in two variables.

Corollary 10 ([5]). Every automorphism of a ring of polynomials in two variables
over a field of characteristic 0 is tame.

Corollary 11. In the conditions of Theorem 3, for every h ∈ 〈g1, g2〉, either h̄ ∈
〈ḡ1, ḡ2〉 or deg h ≥ N(g1, g2).

Proof. If h = G(g1, g2) and degy(G(x, y)) < p, then h is a linear combination
of the elements of type gi1g

j
2, j < p. By the proof of Lemma 6, these elements

have different degrees for different values of i, j. Consequently, h̄ = αḡ1
iḡ2

j and
h̄ ∈ 〈ḡ1, ḡ2〉. If degy(G(x, y)) ≥ p, then in the conditions of Theorem 3 we have
q ≥ 1 and deg h ≥ N(g1, g2). �

Note that if p > 2 or deg[g1, g2] > n, then N(g1, g2) > m. We now give some
examples of ∗-reduced pairs with the condition p = 2, deg[g1, g2] ≤ n.

Example 1. Let a = x+ y2, b = y, and

g1 = b+ a2 = y + x2 + 2xy2 + y4,

g2 = 3ab+ 2a3 = 3xy + 2x3 + 3y3 + 6x2y2 + 6xy4 + 2y6.

Then [g1, g2] = 3b[b, a] = −3y[x, y], deg g1 = n = 4, deg g2 = m = 6, deg[g1, g2] =
3, and in the notation of Theorem 3 we have p = 2. The element

f = 2g2
2 − 8g3

1 + 3g2 = 6xy4 + 12x2y2 + 6x3 + y3 + 9xy

has degree 5 = N(g1, g2) < m, and the lower bound of the estimation of Theorem
3 is accessible.

Example 2. Let a = x+ y2 + y3, b = y, and

g1 = b + a2 = y + x2 + 2xy2 + 2xy3 + y4 + 2y5 + y6,

g2 = 3ab+ 2a3 = 3xy + 2x3 + 3y3 + 6x2y2 + 3y4 + 6x2y3 + 6xy4

+ 12xy5 + 2y6 + 6xy6 + 6y7 + 6y8 + 2y9.

Then [g1, g2] = 3b[b, a] = −3y[x, y], deg g1 = n = 6, deg g2 = m = 9, deg[g1, g2] =
3, and in the notation of Theorem 3 we have p = 2. Consider the element

f = 4g3
1 − g2

2 = 3y8 + 6y7 + 3y6 + 6xy5 + 6xy4 + 3x2y2 + 4y3.

We have deg f = 8 > N(g1, g2) = 6, and so the lower bound of the estimation of
Theorem 3 is not accessible.
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Problem 2. Does there exist an estimation, as in Theorem 3, for an algebraically
dependent reduced pair of elements? In particular, will the estimation of Theorem
3 be true for an algebraically dependent reduced pair of elements if we change
deg[g1, g2] to 1?

Certainly, a positive solution of this question would extend the theorem [1].

Example 3. If we set x = 0 in Example 1, then we get the algebraically dependent
reduced pair of elements

g1 = y + y4, g2 = 3y3 + 2y6.

The subalgebra 〈g1, g2〉 contains the element y3 of degree 3.
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