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POISSON EQUATION, POINCARÉ-LELONG
EQUATION AND CURVATURE DECAY ON

COMPLETE KÄHLER MANIFOLDS

LEI NI, YUGUANG SHI & LUEN-FAI TAM

Abstract
In the first part of this work, the Poisson equation on complete noncom-
pact manifolds with nonnegative Ricci curvature is studied. Sufficient and
necessary conditions for the existence of solutions with certain growth rates
are obtained. Sharp estimates on the solutions are also derived. In the
second part, these results are applied to the study of curvature decay on
complete Kähler manifolds. In particular, the Poincaré-Lelong equation on
complete noncompact Kähler manifolds with nonnegative holomorphic bi-
sectional curvature is studied. Several applications are then derived, which
include the Steinness of the complete Kähler manifolds with nonnegative
curvature and the flatness of a class of complete Kähler manifolds satisfying
a curvature pinching condition. Liouville type results for plurisubharmonic
functions are also obtained.

0. Introduction

In this paper, we will discuss the Poisson equation on complete non-
compact manifolds and derive some applications on Kähler manifolds.

Let Mm be a complete noncompact Kähler manifold, where m ≥ 2
is the complex dimension. Assume M has nonnegative holomorphic
bisectional curvature and has maximal volume growth such that the
scalar curvature decays like r−2 where r is the distance from a fixed
point. Then it was proved in [20] by Mok-Siu-Yau that one can solve
the following Poincaré-Lelong equation

(0.1)
√−1∂∂u = ρ
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by first solving the Poisson equation 1/2∆u = trace(ρ), where ρ is the
Ricci form of M . They then applied the results to study the analytic
and geometric properties of M . On the other hand, in [27] Yau discussed
certain differential inequalities. Again, applications on Riemannian and
Kähler manifolds were given. For example, some vanishing results for Lp

holomorphic sections of holomorphic vector bundles over Kähler man-
ifolds were obtained; see also [10], [18], [22]. In some cases, if one can
solve the Poisson equation then it is rather easy to apply the methods
in [27]. These motivate our study on the Poisson equation on complete
noncompact manifolds.

We are mainly concerned with manifolds with nonnegative Ricci cur-
vature. Let Mn be such a manifold and consider the Poisson equation:

(0.2) ∆u = f.

The first question is to find sufficient conditions for the existence of solu-
tions of (0.2). If a solution u exists, it is also important for applications
to estimate u together with its gradient and Hessian.

Our main result is that if f decays faster than r−1 in a certain
sense, then (0.2) has a solution. More precisely, assume f ≥ 0 and let
k(x, t) = kf (x, t) = 1/Vx(t)

∫
Bx(t)

f be the average of f over the geodesic
ball Bx(t) with center at x and radius t, where Vx(t) is the volume of
Bx(t). Let o ∈ M be a fixed point and let k(t) = k(o, t). We prove
that if

∫∞
0 k(t)dt < ∞ and if there exist a constant 1 > δ > 0 and a

nonnegative function h(t) ≥ 0, 0 ≤ t < ∞ with h(t) = o(t) as t → ∞
such that ∫ t

0
sk(x, s)ds ≤ h(t)

for all x and for all t ≥ δr(x), then (0.2) has a solution u. Moreover,
lower and upper estimates of u are obtained. In case that M is non-
parabolic (that is, M supports a positive Green’s function) such that
the volume of geodesic balls satisfy certain assumptions then the con-
dition

∫∞
0 k(t)dt < ∞ alone will be sufficient. This is the case if M has

maximal volume growth with n ≥ 3. In any case, pointwise and integral
estimates for the gradient of the solution u and an integral estimate of
the Hessian of u are obtained.

The above conditions on the average of f over geodesic balls for
the existence of solution of (0.2) are reasonable, because in some cases
they are also necessary. For example, we prove the following results.
Let f ≥ 0 be a function on a complete noncompact manifold with
nonnegative Ricci curvature. Then:
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(i) ∆u = f has a bounded solution if and only if there is a constant
C > 0 such that ∫ ∞

0
tk(x, t)dt ≤ C

for all x.

(ii) ∆u = f has a solution with supBo(r) |u| ≤ C log(2 + r) for some
constants C for all r if any only if∫ t

0
sk(x, s)ds ≤ C ′ log(2 + t)

for some constant C ′ for all r = r(x) and for all t ≥ 1
5r.

(iii) ∆u = f has a solution with supBo(r) |u| ≤ C(1 + r)1−δ for some
constant C and 1 > δ > 0 for all r if any only if∫ t

0
sk(x, s)ds ≤ C ′(1 + t)1−δ

for some constant C ′ for all r = r(x) and for all t ≥ 1
5r.

In [12], Li proved that if u is a bounded subharmonic function on
a complete noncompact manifold M with nonnegative Ricci curvature,
then the average of u over a geodesic ball of radius r with a fixed center
converges to supM u as r → ∞. Using the result (i) in the above, we
give another proof of Li’s result. Furthermore, one can estimate the
difference between supM u and the average of u over a geodesic ball
of radius r in terms of ∆u, r and the dimension of M . Using the
pointwise estimate for the gradient of the solution of (0.2), we prove
that if in addition that f = ∆u decays like r−2 then u will actually be
asymptotically constant.

The rest of this work is to apply these results to Kähler manifolds.
One of the applications is to study plurisubharmonic functions. It is easy
to see that if n ≥ 3, then there are nonconstant bounded subharmonic
functions on R

n which are asymptotically constant. On the other hand,
it was proved by Ni in [22] that if u is a plurisubharmonic function on
a complete noncompact Kähler manifold Mm with nonnegative Ricci
curvature and if u satisfies

(0.3) lim sup
x→∞

u(x)
log r(x)

= 0
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then (∂∂u)m ≡ 0. We prove that u is actually constant under some
assumptions on M and ∆u by using a minimum principle in [2], [1] or
a method in [20].

The above mentioned result of Ni can be generalized to nonparabolic
manifolds with scalar curvature R satisfying

∫
M R− < ∞, where R−

is the negative part of R. This generalization is a consequence of one
of the vanishing results we obtain in this work. Consider a complete
noncompact Kähler manifold Mm with nonnegative Ricci curvature and
a Hermitian holomorphic line bundle L over M . We prove that given
any τ > 0 and 0 < ε < 1 there is a constant a depending only on τ ,
ε > 0 and m such that if the average of the trace of positive part of the
curvature of L over B(r) is less than ar−2, then any holomorphic (p, 0)
form φ with value in L is trivial if

1
Vo(r)

∫
B(r)

|φ|τ = O(r−ε)

as r → ∞, where o ∈ M is a fixed point and Vo(r) is the volume of the
ball of radius r centered at o. The proof is a combination of our results
on the Poisson equation and the mean value inequality in [13]. If M is
nonparabolic then a similar result is true. In this case, we assume that
the negative part of the scalar curvature of M and the positive part
of the trace of the curvature of L are both integrable. The vanishing
theorems are similar to some results in [27], [10], [22].

Using the vanishing results and the L2 estimate in [11], [7] one can
prove the following: Let M be a complete noncompact Käher mani-
fold with nonnegative Ricci curvature. Suppose the scalar curvature R
satisfies

(0.4) lim sup
r→∞

r2

Vo(r)

∫
Bo(r)

R = 0,

where o ∈ M is a fixed point, then the Ricci form ρ of M must satisfy
ρm ≡ 0. Observe that if M is nonparabolic and R is integrable, then
(0.4) is true. Hence this generalizes a result in [22, Theorem 3.6].

From the arguments in [23], under the additional assumption that
M has nonnegative holomorphic bisectional curvature which is also
bounded, one can conclude that if (0.4) is true for all base point o
so that the convergence is uniform then M is flat as observed in [4]. In
our case, we only assume that the Ricci curvature is nonnegative and
we do not assume the scalar curvature being bounded. The result is
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weaker and it is interesting to see whether M is actually Ricci flat in
this case. In fact, for Riemannian case, it is proved by Chen and Zhu [3]
that if (0.4) is true uniformly and if the Riemannian manifold is locally
conformally flat then the manifold is flat.

Finally we solve the Poincaré-Lelong equation (0.1). Let Mm be a
complete Kähler manifold with nonnegative bisectional curvature and
let ρ be a real closed (1, 1) form with trace f . We prove that if f ≥ 0
and ρ satisfies the following conditions:

(0.5)
∫ ∞

0

1
Vo(t)

∫
Bo(t)

||ρ||dt < ∞,

and that

(0.6) lim inf
r→∞

1
Vo(r)

∫
Bo(r)

||ρ||2 = 0,

then (0.1) has a solution u. It is easy to see that if Mm has maximal
volume growth with m ≥ 2 and ||ρ|| decays like r−2, then the above
conditions will be satisfied. In fact in this case we have

(0.7)
1

Vo(r)

∫
Bo(r)

||ρ|| ≤ Cr−2

for some C for all r. Hence our result is a generalization of a related
result in [20], see also [19]. Note that we do not assume ||ρ|| to be
bounded.

Using solutions of (0.1), we can discuss properties of Kähler mani-
folds with nonnegative holomorphic bisectional curvature. For example,
we prove that if in addition M has positive Ricci curvature which sat-
isfies (0.5) and (0.6), then M is Stein, provided the sectional curvature
is nonnegative. This is related to the works of [8] and [19], [20]. In
[8], it was proved that M is Stein under the assumption that M has
positive biholomorphic bisectional curvature and nonnegative sectional
curvature. In [19], it was proved that M is Stein under the assumptions
that M has positive Ricci curvature and nonnegative holomorphic bisec-
tional curvature, has maximal volume growth and the scalar curvature
decays likes r−2. Recently, it is proved by Chen and Zhu [4] that a com-
plete noncompact Kähler manifold Mm with nonnegative holomorphic
bisectional curvature and with maximal volume growth is Stein if the
scalar curvature decays like r−1−ε for some ε > 0.

In [24], it was proved that if Mm is a complete noncompact Kähler
manifold of complex dimension m ≥ 3 with nonnegative holomorphic
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bisectional curvature and with a pinching condition, then (0.7) is satis-
fied with a constant independent of the point o. Using solution of (0.1),
we prove that if in addition the scalar curvature has a pointwise decay
like r−2 or the volume of geodesic ball of radius r is no greater than rm,
then M is actually flat. Here m is the complex dimension of M .

Using solutions of (0.1), we can also study relations between the
decay of the scalar curvature and volume growth of a complete Kähler
manifold with nonnegative biholomorphic bisectional curvature. For
example, we prove that if the Ricci form ρ is positive at some point,
ρ satisfies (0.7) and ||ρ|| decays like r−2, then M must have maximal
volume growth. In this case, the scalar curvature cannot decay too fast
in the sense that we have a reverse inequality of (0.7):

1
Vo(r)

∫
Bo(r)

||ρ|| ≥ Cr−2

for some positive constant C for all r. If we only assume that M is not
Ricci flat in the above, then one can prove that Vo(r) ≥ Cr2 for some
positive constant C.

The arrangement of the paper is as follows. In Section 1 and Sec-
tion 2 we study the Poisson equation. Section 3 contains some vanishing
theorems. Section 4 is a discussion of Liouville property of plurisub-
harmonic functions. Section 5 gives a solution to the Poincaré-Lelong
equation with applications on manifolds with nonnegative holomorphic
bisectional curvature.

The authors would like to thank Xi-Ping Zhu for many useful dis-
cussions. The authors would also like to thank the referee for helpful
comments, which were of great help in improving the exposition and
readability of this paper.

1. The Poisson equation (I)

Let Mn be a complete noncompact manifold. Given any function
f ≥ 0 on M , define

kf (x, t) =
1

Vx(t)

∫
Bx(t)

f.

In the following C(a, b, . . . ) will denote a constant depending only on
a, b, . . . . We also denote r(x, y) to be the distance between x and y,
and r(x) = r(x, o) where o ∈ M is a fixed point. In this section, we will
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discuss the conditions on f so that ∆u = f has a solution u and we will
also discuss the properties of u.

Theorem 1.1. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature. Assume M is nonparabolic and there is a
constant σ > 0 such that the minimal positive Green’s function G(x, y)
satisfies

(1.1) σ−1 r2(x, y)
Vx(r(x, y))

≤ G(x, y) ≤ σ
r2(x, y)

Vx(r(x, y))

for all x �= y in M . Let f ≥ 0 be a locally Hölder continuous function
and let k(x, t) = kf (x, t) and k(t) = k(o, t), where o ∈ M is a fixed point.
Suppose that

∫∞
0 k(t)dt < ∞. Then the Poisson equation ∆u = f has a

solution u such that for all 1 > ε > 0

α1r

∫ ∞

2r
k(t)dt+ β1

∫ 2r

0
tk(t)dt ≥ u(x)

≥ − α2r

∫ ∞

2r
k(t)dt

− β2

∫ εr

0
tk(x, t)dt+ β3

∫ 2r

0
tk(t)dt

for some positive constants α1(n, σ), α2(n, σ, ε) and βi(n), 1 ≤ i ≤ 3,
where r = r(x). Moreover u(o) = 0.

Proof. By the estimate of Green’s function in [17, Theorem 5.2],
(1.1) implies

(1.2) C−1 r2(x, y)
Vx(r(x, y))

≤
∫ ∞

r(x,y)

t

Vx(t)
dt ≤ C

r2(x, y)
Vx(r(x, y))

for some constant C = C(n, σ) > 0. For all R > 0, let GR be the
positive Green’s function on Bo(R) with zero boundary value and let

uR(x) =
∫
Bo(R)

(GR(o, y)−GR(x, y)) f(y)dy.

Then ∆uR = f in Bo(R) and uR(o) = 0. For any x with r(x) = r,
suppose R � r, then

uR(x) =

{∫
Bo(R)\Bo(2r)

+
∫
Bo(2r)

}
(GR(o, y)−GR(x, y)) f(y)dy(1.3)

= I + II.
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To estimate I, let y be any point in Bo(R) \ Bo(2r), then r1 = r(y) ≥
2r = 2r(x) and so r(z, y) ≥ 1

2r1 if z ∈ Bo(r). Also Bz(14r) ⊂ Bo(2r).
Hence by the gradient estimate [5, Theorem 6],

|GR(o, y)−GR(x, y)| ≤ r sup
z∈Bo(r)

|∇zGR(z, y)|

≤ C1
r

r1
sup

z∈Bo(r)
GR(z, y)

≤ C2
r

r1
G(o, y)

≤ C3
r

r1

∫ ∞

r1

t

Vo(t)
dt,

where C1 − C3 are constants depending only on n by [5], [17]. Here we
have used the Harnack inequality for GR(·, y), the fact that GR(o, y) ≤
G(o, y) [17, Theorem 5.2].

|I| ≤ C3r

∫
Bo(R)\Bo(2r)

r−1(y)

(∫ ∞

r(y)

t dt

Vo(t)

)
f(y)dy(1.4)

= C3r

∫ R

2r
t−1
(∫ ∞

t

s

Vo(s)
ds

)(∫
∂Bo(t)

f

)
dt

≤ C3r

[
R−1

(∫ ∞

R

s

Vo(s)
ds

)(∫
Bo(R)

f

)

+
∫ R

2r

(
1
t2

∫ ∞

t

s

Vo(s)
ds+

1
V (t)

)(∫
Bo(t)

f

)
dt

]
≤ C4r

(
Rk(R) +

∫ R

2r
k(t)dt

)
for some constant C4(n, σ), where we have used (1.2).
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∫
Bo(2r)

GR(o, y)f(y)dy ≤
∫
Bo(2r)

G(o, y)f(y)dy(1.5)

≤ C5

∫ 2r

0

(∫ ∞

t

s

Vo(s)
ds

)(∫
∂Bo(t)

f

)
dt

= C5

[(∫ ∞

2r

t

Vo(t)
dt

)(∫
Bo(2r)

f

)

+
∫ 2r

0

t

Vo(t)

(∫
Bo(t)

f
)

dt

]

≤ C5

[
C6r

2k(2r) +
∫ 2r

0
tk(t)dt

]
for some constants C5(n) and C6(n, σ). Combining (1.3), (1.4) and
(1.5), we have

(1.6) uR(x) ≤ C7

(
rRk(R) + r2k(2r) + r

∫ R

2r
k(t)dt)

)
+β1

∫ 2r

0
tk(t)dt

for some constants C7(n, σ) and β1(n).
As in the proof of (1.5), using the lower bound of the Green’s func-

tion, we have

(1.7)
∫
Bo(2r)

G(o, y)f(y)dy ≥ C8

[
C9r

2k(2r) +
∫ 2r

0
tk(t)dt

]
for some constants C8(n) > 0 and C9(n, σ) > 0. For 1 > ε > 0,∫

Bx(εr)
GR(x, y)f(y)dy ≤

∫
Bx(εr)

G(x, y)f(y)dy(1.8)

≤ β2

[(∫ ∞

εr

t

Vx(t)
dt

)(∫
Bx(εr)

f

)

+
∫ εr

0

t

Vx(t)

(∫
Bx(t)

f

)
dt

]

≤ C10(εr)2k(x, εr) + β2

∫ εr

0
tk(x, t)dt

≤ C11r
2k ((1 + ε)r)) + β2

∫ εr

0
tk(x, t)dt
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for some constants C10(n, σ), C11(n, σ, ε) and β2(n). Here we have used
volume comparison and the fact that Bx(εr) ⊂ Bo ((1 + ε)r)).∫

Bo(2r)\Bx(εr)
GR(x, y)f(y)dy ≤

∫
Bo(2r)\Bx(εr)

G(x, y)f(y)dy(1.9)

≤ σ · 16r2

Vx(εr)

∫
Bo(2r)

f(y)dy

≤ C12r
2k(2r)

for some constant C12(n, σ, ε). By (1.3), (1.4), (1.8) and (1.9), if R ≥ 4r,
we have

uR(x) ≥ − C13r

(
Rk(R) +

∫ R

2r
k(t)dt

)
(1.10)

− β2

∫ εr

0
tk(x, t)dt

+
∫
Bo(2r)

GR(o, y)f(y)dy

where β3(n) and C13(n, σ, ε) are positive constants. Here we have used
the fact that for any α > 1, k(αR) ≥ Ck(R) for some positive constant
C(n, α) for all R. Since

∫∞
0 k(t)dt < ∞, limR→∞ Rk(R) = 0. Hence

from (1.6) and (1.10), uR is bounded on compact sets and there exists
Ri → ∞ such that uRi converges uniformly on compact sets to a function
u which satisfies ∆u = f . By (1.6), (1.7) and (1.10), let Ri → ∞ we
can conclude that u satisfies the estimates in the theorem. q.e.d.

Note that if n ≥ 3 and M has maximal volume growth, then M
satisfies the assumptions in Theorem 1.1. In general, if M is a complete
noncompact manifold with nonnegative Ricci curvature, then M × R

4

with the standard metric on R
4 satisfies the condition of the theorem

as observed in [23]. Using this, in some cases one can remove the as-
sumptions that M is nonparabolic and that its Green’s function satisfies
(1.1).

Lemma 1.1. Let M = M1 × M2, where M1 and M2 are complete
noncompact manifolds with nonnegative Ricci curvature. Let f ≥ 0 be
a function on M1, and be considered also as a function on M , which is
independent of the second variable. Let x = (x1, x2) ∈ M and r > 0.
Then

C−1

V
(1)
x1

(
1√
2
r
) ∫

B
(1)
x1

(
1√
2
r
) f ≤ 1

Vx(r)

∫
Bx(r)

f ≤ C

V
(1)
x1 (r)

∫
B

(1)
x1
(r)

f
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for some constant C > 0 depending only on the dimensions of M1 and
M2. Here Bx(t), B

(1)
x1 (t) are geodesic balls with radius t in M , M1,

with centers at x, x1 respectively, and Vx(t), V
(1)
x1 (t) are the respective

volumes.

Proof. Denote the geodesic ball with center x2 and radius t in M2

by B
(2)
x2 (t) and its volume by V

(2)
x2 (t). Then

B(1)x1

(
1√
2
r

)
×B(2)x2

(
1√
2
r

)
⊂ Bx(r) ⊂ B(1)x1

(r)×B(2)x2
(r).

∫
Bx(r)

f ≤
∫
B

(1)
x1
(r)×B

(2)
x2
(r)

f

= V (2)x2
(r)
∫
B

(1)
x1
(r)

f

since f is independent of x2. On the other hand,

Vx(r) ≥ V (1)x1

(
1√
2
r

)
V (2)x2

(
1√
2
r

)
≥ CV (1)x1

(r)V (2)x2
(r)

for some constant C > 0 depending only on the dimensions of M1 and
M2 by volume comparison. Hence

1
Vx(r)

∫
Bx(r)

f ≤ C

V
(1)
x1 (r)

∫
B

(1)
x1
(r)

f.

The other inequality can be proved similarly. q.e.d.

Theorem 1.2. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature. Let f ≥ 0 be a locally Hölder continuous
function and let k(x, t) = kf (x, t) and k(t) = k(o, t), where o ∈ M is a
fixed point. Suppose that

∫∞
0 k(t)dt < ∞ and suppose that there exist

1 > δ > 0, h(t) ≥ 0, 0 ≤ t < ∞ with h(t) = o(t) as t → ∞ such that∫ t

0
sk(x, s)ds ≤ h(t)

for all x and for all t ≥ δr(x). Then the Poisson equation ∆u = f has
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a solution u such that for all 1 > ε > 0

α1r

∫ ∞

2r
k(t)dt+ β1

∫ 2r

0
tk(t)dt ≥ u(x)

≥ −α2r

∫ ∞

2r
k(t)dt− β2

∫ εr

0
tk(x, t)dt

+ β3

∫ 2r

0
tk(t)dt

for some positive constants α1(n), α2(n, ε) and βi(n), 1 ≤ i ≤ 3. In
particular, |u(x)| = o (r(x)) as x → ∞.

Proof. Let M̃ = M × R
4 with the flat metric on R

4. Then M̃ is
nonparabolic by [17, Theorem 5.2]. By the volume comparison, it is
easy to see that (1.2) is satisfied by M̃ and hence (1.1) is also satisfied
by M̃ with σ depending only on n. Denote a point on M̃ by x̃ = (x, x′),
and let õ = (o, 0). Let r̃(x̃) and r(x) be the distance functions on M̃
and M from the õ and o respectively. Let f̃(x̃) = f(x) for x̃ = (x, x′)
and let k̃(x̃, t) be the average of f̃ over the geodesic ball of radius t with
center at x̃. By Lemma 1.1, for any t > 0 and x̃ = (x, x′) in M̃ ,

C−1
1 k(x, 1/

√
2t) ≤ k̃(x̃, t) ≤ C1k(x, t)

for some constant C1(n). Since
∫∞
0 k(t)dt < ∞ and

∫ t

0
sk(x, s)ds ≤ h(t)

for all t ≥ δr(x) with h(t) = o(t) as t → ∞, we have

∫ ∞

0
k̃(t)dt < ∞ and

∫ δr̃

0
tk̃(x̃, t)dt = o(r̃)(1.11)

as r̃ = r̃(x) → ∞

where we have used the fact that r̃ ≥ r(x). Let ∆̃ be the Laplacian of
M̃ . By Theorem 1.1, there is a solution ũ of ∆̃ũ = f̃ on M̃ such that
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for all 1 > ε > 0

α1r̃

∫ ∞

2r̃
k̃(t)dt+ β1

∫ 2r̃

0
tk̃(t)dt ≥ ũ(x)(1.12)

≥ −α2r̃

∫ ∞

2r̃
k̃(t)dt

− β2

∫ εr̃

0
tk̃(x̃, t)dt

+ β3

∫ 2r̃

0
tk̃(t)dt

for some positive constants α1(n), α2(n, ε), and βi(n), 1 ≤ i ≤ 3. More-
over, ũ(õ) = 0. By (1.11) and (1.12), it is easy to see that

|ũ(x̃)| = o (r̃(x))

as x̃ → ∞. Let x′
0 ∈ R

4 be fixed, then ṽ(x, x′) = ũ(x, x′ + x′
0) is also a

solution of ∆̃ṽ = f̃ . Hence ṽ− ũ is harmonic and is of sublinear growth.
By the result of [5], ũ− ṽ must be a constant. Hence

ũ(x, x′ + x′
0)− ũ(x, x′) = ũ(o, x′

0).

Let x = o, we conclude that

ũ(o, x′ + x′
0) = ũ(o, x′

0) + ũ(o, x′)

for all x′, x′
0 ∈ R

4. Since ũ(o, x′) is continuous, it must be a linear
function. Using the fact that u is of sublinear growth, we conclude
that ũ(o, x′) is a constant which is zero because ũ(õ) = 0. Hence ũ
is independent of x′ and if we let u(x) = ũ(x, 0), then ∆u = f in M
and u satisfies the estimates in the theorem by (1.12), the fact that
C−1
1 k(x, 1/

√
2t) ≤ k̃(x̃, t) ≤ C1k(x, t) and the fact that if x̃ = (x, 0)

then r̃(x̃) = r(x).
The last assertion of the theorem follows easily from the assumptions

that
∫∞
0 k(t)dt < ∞ and

∫ t
0 sk(x, s)ds = o(t) as t → ∞ uniformly on x.

q.e.d.

Observe that if
∫∞
0 k(o, t)dt < ∞ then

∫∞
0 k(x, t)dt < ∞ for all x. If

u is the solution obtained in Theorem 1.1 or 1.2, then for any x0 ∈ M

u(x)− u(x0) =
∫
M

(G(x0, y)−G(x, y)) f(y)dy.



352 lei ni, yuguang shi & luen-fai tam

From the proof of the theorem, it is easy to see that

α1r

∫ ∞

2r
k(x0, t)dt+ β1

∫ 2r

0
tk(x0, t)dt ≥ u(x)− u(x0)(1.13)

≥ − α2r

∫ ∞

2r
k(x0, t)dt

− β2

∫ εr

0
tk(x, t)dt

+ β3

∫ 2r

0
tk(x0, t)dt

where αi and βj are the constants in Theorem 1.1 or 1.2 and r = r(x, x0).
In the following proposition, we will give a criteria for f to satisfy

the assumptions in Theorem 1.2.

Proposition 1.1. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature and let f ≥ 0 be a function on M . Define
k(x, t) = kf (x, t) and k(t) = k(o, t) as before. Suppose

∫∞
0 k(t)dt < ∞

and sup∂Bo(r) f = o(r−1) as r → ∞. Then

∫ t

0
sk(x, s)ds = o(t)

as t → ∞ uniformly on x. In particular f satisfies the assumptions in
Theorem 1.2.

Proof. Given ε > 0, there exists r0 > 0 such that if r ≥ r0, then

sup
∂Bo(r)

f ≤ εr−1,

and there exists t0 > 0 such that∫ t

0
sk(s)ds < εt

for t ≥ t0 because
∫∞
0 k(t)dt < ∞. Let t1 = max{r0, 13 t0}. Let x ∈ M

be such that r(x) = r ≥ 2r0. If r
2 ≥ t ≥ t1, then r ≥ 2r0 and∫ t

0
sk(x, s)ds ≤ C1εr

−1t2 ≤ 1
2
C1εt
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for some absolute constant C1. If t ≥ r
2 , then∫ t

0
sk(x, s)ds =

∫ r
2

0
sk(x, s)ds+

∫ t

r
2

sk(x, s)ds

≤ 1
2
C1εt+ C2

∫ 3t

0
sk(s)ds

≤ C3εt

for some constants C2(n), C3(n). This completes the proof of the first
part of the proposition. As for the second part, we just take h(t) =
supx∈M

∫ t
0 sk(x, s)ds which is well-defined because f is bounded.

q.e.d.

Suppose f(x) ≤ Cr−2(x) and k(t) = 1/Vo(t)
∫
Bo(t)

f(y) dy ≤ Ct−2,
then the solution u obtained in Theorem 1.2 is bounded if and only if∫∞
0 tk(t)dt < ∞. We will discuss bounded subharmonic functions in the
next section. Here we consider the case when

∫∞
0 tk(t)dt = ∞.

Corollary 1.1. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature and let f ≥ 0 be a locally Hölder contin-
uous function on M . Assume that f(x) ≤ Cr−2(x) and that k(t) =
1/Vo(t)

∫
Bo(t)

f(y) dy ≤ Ct−2 for some constant C for all x ∈ M and
t > 0. Let u be the solution of the Poisson equation ∆u = f which is
obtained in Theorem 1.2. Suppose

∫∞
0 tk(t)dt = ∞. We have:

(i)

β1 ≥ lim sup
r→∞

sup∂Bo(r) u∫ r
0 tk(t)dt

≥ lim inf
r→∞

inf∂Bo(r) u∫ r
0 tk(t)dt

≥ β3

where β1 and β3 are the positive constants in Theorem 1.2.

(ii) If Mn has maximal volume growth with n ≥ 3 then

lim
x→∞

u(x)∫ r(x)
0 tk(t)dt

=
1
n
.

Proof. Since f satisfies the conditions in Proposition 1.1, one can
solve ∆u = f by Theorem 1.2. The solution satisfies the estimates in
the theorem. By the assumptions on f , we can prove that

C1 + β1

∫ 2r

0
tk(t)dt ≥ u(x) ≥ −C2 + β3

∫ 2r

0
tk(t)dt
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for some positive constants C1 and C2 independent of x, where r = r(x).
From this, (i) follows easily.

If n ≥ 3, M has maximal volume growth and u is unbounded, then
by (i) and the proof of Theorem 1.1, it is easy to see that

lim
x→∞

u(x)∫
Bo(2r)

G(o, y)f(y)dy
= 1.

(ii) follows from the sharp bound of the Green’s function in [6], see also
[16]. q.e.d.

Next we will estimate the gradient and the Hessian of the solution
u obtained in Theorem 1.1 or 1.2.

Theorem 1.3. With the same assumptions and notations as in
Theorem 1.1 or 1.2 and let u be the solution of ∆u = f obtained in
Theorem 1.1 or 1.2. We have the following:

(i)

|∇u(x)| ≤ C(n, σ)
∫ ∞

0
k(x, t)dt.

(ii) For any p ≥ 1 and α ≥ 2, if u is the solution obtained in Theo-
rem 1.1, then

1
Vo(R)

∫
Bo(R)

|∇u|p ≤ C ′
(∫ ∞

αR
k(t)dt

)p

+
C ′′Rp

Vo(R)

∫
Bo(αR)

fp

for some constants C ′(n, σ, p) and C ′′(n, σ, p, α), and if u is the
solution obtained in Theorem 1.2, then

1

Vo

(
1√
2
R
) ∫

Bo

(
1√
2
R
) |∇u|p ≤ C ′

(∫ ∞

αR
k(t)dt

)p

+
C ′′Rp

Vo(R)

∫
Bo(αR)

fp

for some constants C ′(n, p) and C ′′(n, p, α).

(iii) If u is the solution obtained in Theorem 1.1, then

1
Vo(R)

∫
Bo(R)

|∇2u|2 ≤ C

[
R−2

(∫ ∞

4R
k(t)dt

)2
+

1
Vo(4R)

∫
Bo(4R)

f2

]

for some constant C(n), and if u is the solution obtained in The-
orem 1.2, then
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1

Vo

(
1√
2
R
) ∫

Bo

(
1√
2
R
) |∇2u|2 ≤ C

[
R−2

(∫ ∞

4R
k(t)dt

)2
+

1
Vo(4R)

∫
Bo(4R)

f2

]

for some constant C(n, σ).

Proof. Let us first consider the solution u obtained in Theorem 1.1.
Divide (1.13) by r, choose ε = 1

4 and let r → 0, it is easy to see (i) is
true. To prove (ii), by Theorem 1.1 for any x ∈ Bo(R), we have

|∇u(x)| ≤
∫
M

|∇xG(x, y)|f(y)dy(1.15)

≤ C1

∫
M

r−1(x, y)G(x, y)f(y)dy

≤ C2

∫
M\Bo(αR)

r(x, y)
Vx(r(x, y))

f(y)dy

+ C1

∫
Bo(αR)

r−1(x, y)G(x, y)f(y)dy

for some constants C1(n), C2(n, σ). Here we have used (1.1) and (1.2)
and the gradient estimate in [5]. Now∫

M\Bo(αR)

r(x, y)
Vx(r(x, y))

f(y)dy(1.16)

≤ C3

∫
M\Bo(αR)

r(y)
Vo(r(y))

f(y)dy

= C3

∫ ∞

αR

t

Vo(t)

(∫
∂Bo(t)

f

)
dt

= C3

[
t

Vo(t)

∫
Bo(t)

f

∣∣∣∣∞
αR

−
∫ ∞

αR

(
1

Vo(t)
− tAo(t)

V 2o (t)

)(∫
Bo(t)

f

)
dt

]

≤ C4

∫ ∞

αR

1
Vo(t)

(∫
Bo(t)

f

)
dt

= C4

∫ ∞

αR
k(t)dt
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for some constants C3(n), C4(n), where we have used the fact that
α ≥ 2, volume comparison, tAo(t) ≤ nVo(t) and the fact that tk(t) → 0
as t → ∞. Note that for any z ∈ M and for any ρ > 0

(1.17)
∫
Bz(ρ)

r(z, y)
Vz(r(z, y))

dy =
∫ ρ

0

tAz(t)
Vz(t)

dt ≤ nρ.

Let us first assume p > 1 and let q = p/(p − 1). By (1.15) and (1.16),
we have∫

Bo(R)
|∇u|p ≤ C5Vo(R)

(∫ ∞

αR
k(t)dt

)p

+ C6

∫
Bo(R)

(∫
Bo(αR)

r−1(x, y)G(x, y)f(y)dy

)p

dx(1.18)

for some constants C5(n, σ, p) and C6(n, p).

∫
Bo(R)

(∫
Bo(αR)

r−1(x, y)G(x, y)f(y)dy

)p

dx

≤
∫
Bo(R)

(∫
Bo(αR)

r−1(x, y)G(x, y)dy

) p
q

·
(∫

Bo(αR)
r−1(x, y)G(x, y)fp(y)dy

)
dx

≤ C7(n, σ, p)R
p
q

∫
Bo(R)

(∫
Bo(αR)

r−1(x, y)G(x, y)fp(y)dy

)
dx

= C7R
p
q

∫
Bo(αR)

(∫
Bo(R)

r−1(x, y)G(x, y)dx

)
fp(y)dy

≤ C8R
p

∫
Bo(αR)

fp(y)dy

(1.19)

for some constants C7(n, σ, p, α) and C8(n, σ, p, α), where we have used
(1.1) and (1.17). Combine this with (1.18), (ii) follows if p > 1. The
case that p = 1 can be proved similarly.

To prove (iii), in terms of a local orthonormal frame,
1
2
∆|∇u|2 =

∑
k,l

u2kl +
∑
k

uk(∆u)k +
∑
k,l

Rklukul

≥ |∇2u|2 + 〈∇u,∇f〉
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where Rkl is the Ricci curvature tensor of M which is positive semi-
definite. Let ϕ ≥ 0 be a smooth function with compact support in
Bo(2R). Multiplying the above inequality by ϕ2 and integrating by
parts, we have∫

Bo(2R)
ϕ2|∇2u|2

≤
∫
Bo(2R)

ϕ2f2 +
∫
Bo(2R)

ϕ|∇ϕ| |∇u| |f |

+ 2
∫
Bo(2R)

ϕ|∇ϕ| ∣∣∇(|∇u|2)∣∣
≤ C9

[∫
Bo(2R)

ϕ2f2

+
∫
Bo(2R)

|∇ϕ|2|∇u|2 +
∫
Bo(2R)

ϕ|∇ϕ| |∇u||∇2u|
]

≤ C9

[∫
Bo(2R)

ϕ2f2 + (1 +
1
ε
)
∫
Bo(2R)

|∇ϕ|2|∇u|2

+ε

∫
Bo(2R)

ϕ2|∇2u|2
]

for any ε > 0, for some absolute constant C9. Hence choose ε = (2C9)−1,
we have∫

Bo(2R)
ϕ2|∇2u|2 ≤ 2C9

(∫
Bo(2R)

ϕ2f2 +
∫
Bo(2R)

|∇ϕ|2|∇u|2
)

for all ϕ ≥ 0 with compact support in Bo(R). Choose a suitable ϕ we
obtain ∫

Bo(R)
|∇2u|2 ≤ C10

(∫
Bo(2R)

f2 +R−2
∫
Bo(2R)

|∇u|2
)

for some absolute constant C10. Combining this with (ii) the results
follows.

Suppose the assumptions of Theorem 1.2 are satisfied. Using the
same notations as in the proof of Theorem 1.2. Then the gradient and
the Hessian of ũ can be estimated as before. Since ũ is independent of
x′ ∈ R

4, the results then follow easily from Lemma 1.1. q.e.d.
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Remark 1.1. The assumption that f ≥ 0 in Theorem 1.1, 1.2
and 1.3 can be relaxed. For general f , let k(x, t) = 1/Vx(t)

∫
Bx(t)

|f |
instead. Under similar assumptions as in Theorem 1.1 or 1.2, we can
solve ∆u1 = max{f, 0} and ∆u2 = max{−f, 0} using these theorems.
Then u = u1 − u2 satisfies ∆u = f . Even though the estimates for u
in Theorem 1.1 or 1.2 will no longer be true, however the estimates for
|∇u| and |∇2u| in Theorem 1.3 still hold.

Corollary 1.2. With the same assumptions on M and f and with
the same notations as in Theorem 1.1 or 1.2. Let u be the solution of
∆u = f obtained in Theorem 1.1 or 1.2. We have the following:

(i) Suppose there is a constant C > 0 such that
∫∞
0 k(x, t)dt ≤ C for

all x. Then supM |∇u| < ∞.

(ii) Suppose f(x) ≤ Cr−2(x) and k(t) ≤ Ct−2 for some constant C
for all x ∈ M and t > 0. Then

|∇u(x)| ≤ C ′r−1(x)

for some constant C ′ for all x.

(iii) Suppose there is a constant C > 0 such that f(x) ≤ Cr−2(x) and
k(t) ≤ t−2h(t) with limt→∞ h(t) = 0. Then

|∇u(x)| = o
(
r−1(x)

)
as x → ∞.

Proof. (i) follows easily from Theorem 1.3(i). To prove (iii), by
Theorem 1.3(i), it is sufficient to estimate

∫∞
0 k(x, t)dt. For any 1

2 > ε >
0, let x ∈ M and let r = r(x), then

(1.20)
∫ εr

0
k(x, t)dt ≤ C1εr

−1

for some constant C1 independent of x and ε. For t ≥ εr,

k(x, t) =
1

Vx(t)

∫
Bx(t)

f(1.21)

=
Vx(t+ r)
Vx(t)

· 1
Vx(t+ r)

∫
Bo(t+r)

f

≤ C2(n)
(
1 + ε−1

)n 1
Vo(t)

∫
Bo((1+ε−1))t

f

≤ C1
(
1 + ε−1

)2n
k
(
(1 + ε−1)t

)
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for some constant C2(n). By (1.20) and (1.21), we have∫ ∞

0
k(x, t)dt ≤ C1εr

−1 +
∫ ∞

εr

(
1 + ε−1

)2n
k
(
(1 + ε−1)t

)
≤ βεr−1 + C2

(
sup

t≥(1+ε)r
h(t)

)
· r−1

for some constant C2(n, ε). Since h(t) → 0 as t → ∞ (iii) follows.
The proof of (ii) is similar. q.e.d.

2. The Poisson equation (II)

In the previous section, we have obtained some conditions on f so
that the Poisson equation ∆u = f has a solution. In this section, we
will study the problem from another perspective. Namely, suppose a
solution u of the Poisson equation ∆u = f exists, we want to discuss
the properties of f . We have the following general result.

Theorem 2.1. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature. Suppose u is a solution of ∆u = f on
M , where f ≥ 0 is a nonnegative function. Suppose that there exist
nondecreasing functions h and g such that

−g(r) ≤ inf
Bo(r)

u ≤ sup
Bo(r)

u ≤ h(r)

for all r, where o ∈ M is a fixed point. Then for any R > 0 and x ∈ M

C(n)
[
R2k(x, R) +

∫ R

0
tk(x, t)dt

]
≤ −u(x) + h(5R+ r)

≤ g(r) + h(5R+ r)

for some positive constant C(n), where r = r(x),

k(x, t) = 1/Vx(t)
∫
Bx(t)

f.

In particular, if we let k(t) = k(o, t), then

C(n)
[
R2k(R) +

∫ R

0
tk(t)dt

]
≤ −u(o) + h(5R)

for all R.
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Proof. Let x ∈ M and let r = r(x). For any R > 0, let GR be
the positive Green’s function on Bx(R) with Dirichlet boundary data.
Then ∫

Bx(R)
GR(x, y)f(y)dy =

∫
Bx(R)

GR(x, y)∆u(y)dy

= −u(x)−
∫
∂Bx(R)

u
∂GR

∂ν

≤ −u(x) + h(R+ r)

where we have used the fact that ∂GR
∂ν < 0 on ∂Bx(R) and that∫

∂Bx(R)
∂GR
∂ν = −1. By Lemma 1.1 in [25]

GR(x, y) ≥ C1

∫ R

r(x,y)

t

Vx(t)
dt

for all y ∈ Bx(15R) for some constant C1(n) > 0. Hence

g(r) + h(R+ r) ≥ −u(x) + h(R+ r)

≥ C1

∫ R
5

0

(∫ R

t

s

Vx(s)
ds

)(∫
∂Bx(t)

f

)
dt

≥ C1

[(∫ R

R
5

t

Vo(t)
dt

)(∫
Bx(

R
5
)
f

)

+
∫ R

5

0

(
t

Vx(t)

∫
Bx(t)

f

)
dt

]

≥ C2

[
R2k(x,

R

5
) +

∫ R
5

0
tk(x, t)dt

]

for some positive constant C2(n), where we have used volume compari-
son. From this the theorem follows. q.e.d.

Note that similar estimate has been obtained in [15, Lemma 2.1],
where no curvature assumption was made and hence the result was
weaker.

Using Theorem 2.1 and the results in Section 1, we can obtain nec-
essary and sufficient conditions for a function f so that ∆u = f has a
solution with certain growth rate.
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Theorem 2.2. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature and let m(t), 0 ≤ t < ∞, be a nonnegative
nondecreasing function such that for any A > 1 there exists C > 0 with

(2.1) m(At) ≤ Cm(t)

for all t, and

(2.2)
∫ ∞

1
t−2m(t)dt < ∞.

Let f ≥ 0 be a locally Hölder continuous function on M and let k(x, t)
as in Theorem 2.1. Then the Poisson equation ∆u = f has a solution
on M with supBo(r) |u| ≤ Cm(r) for some constant C for all r if and
only if

(2.3)
∫ t

0
sk(x, s)ds ≤ C ′m(t)

for some constant C ′ for all x and for all t ≥ 1
5r(x).

Proof. By (2.2) and the fact that m is nondecreasing, m(t) = o(t) as
t → ∞. Suppose f satisfies (2.3). Then it is easy to see that f satisfies
the assumptions in Theorem 2.1. Hence ∆u = f has a solution u such
that

α1r

∫ ∞

2r
k(t)dt+ β1

∫ 2r

0
tk(t)dt ≥ u(x)

≥ −α2r

∫ ∞

2r
k(t)dt

− β2

∫ 1
5
r

0
tk(x, t)dt

+ β3

∫ 2r

0
tk(t)dt

for some positive constants α1(n), α2(n) and βi(n), 1 ≤ i ≤ 3, where
r = r(x), k(t) = k(o, t). Combine this with (2.1)–(2.3), we have

(2.4) sup
Bo(r)

|u| ≤ C1m(r)

for some constant C1 for all r.
Conversely, suppose ∆u = f has a solution satisfying (2.4). Then

by Theorem 2.1 and (2.1), it is easy to see that (2.3) is true. q.e.d.
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Remark 2.1. (i) We assume condition (2.1) so that we can state
the theorem more simply. Otherwise, we may replace some of the m(t)
in the theorem by m(At) for some constant A. (ii) From the proof it is
easy to see that if ∆u = f has a solution satisfying supBo(r) |u| ≤ Cm(r),
then u is the solution obtained in Theorem 1.2. Because in this case,
both u and the solution in Theorem 1.2 are of sub-linear growth.

If we take m(t) =constant, m(t) = log(2 + t) or m(t) = (1 + t)1−δ

for some 1 > δ > 0, then we have the following.

Corollary 2.1. Let Mn be a complete noncompact Riemannian
manifold with nonnegative Ricci curvature and let f ≥ 0 be a locally
Hölder continuous function on M . Let k(x, t) and k(t) be as in Theo-
rem 2.2. Then:

(i) ∆u = f has a bounded solution if and only if there is a constant
C > 0 such that ∫ ∞

0
tk(x, t)dt ≤ C

for all x.

(ii) ∆u = f has a solution with supBo(r) |u| ≤ C log(2 + r) for some
constant C for all r if any only if∫ t

0
sk(x, s)ds ≤ C ′ log(2 + t)

for some constant C ′ for all r = r(x) and for all t ≥ 1
5r.

(iii) ∆u = f has a solution with supBo(r) |u| ≤ C(1 + r)1−δ for some
constants C and 0 < δ < 1 for all r if any only if∫ t

0
sk(x, s)ds ≤ C ′(1 + t)1−δ

for some constant C ′ for all r = r(x) and for all t ≥ 1
5r.

Suppose
∫∞
0 tk(t)dt < ∞ and if f is not identically zero, then∫∞

1 t/Vo(t)dt < ∞ and M must be nonparabolic. In this case, it is
easy to see that u(x) = − ∫M G(x, y)f(y)dy + C for some constant C.
As an application of this remark and Corollary 2.1, we will give another
proof of a result of Li [12, Theorem 4] on bounded subharmonic func-
tions. The method is not simpler, but we obtain some estimates that
may be useful.
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Theorem 2.3. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature. Let u be a bounded subharmonic function,
and let α = supM u, then:

(i)

1
Vo(R)

∫
Bo(R)

(α− u)

≤ C

(
R2

Vo(2R)

∫
Bo(2R)

f +
∫ ∞

2R

(
t

Vo(t)

∫
Bo(t)

f

)
dt

)

for some constant C(n) for all R > 0, where f = ∆u.

(ii) (Li [12])

lim
R→∞

1
Vo(R)

∫
Bo(R)

u = sup
M

u.

Proof. First we assume that M is nonparabolic and satisfies (1.1)
and (1.2). Then f ≥ 0 because u is subharmonic. By Corollary 2.1, we
have

(2.5)
∫ ∞

0

(
t

Vx(t)

∫
Bx(t)

f

)
dt ≤ C1

for some constant C1 for all x ∈ M . Moreover, by adding a constant to
u, we may assume that

u(x) = −
∫
M

G(x, y)f(y)dy.

Note that u is nonpositive. Using similar methods as in the proof of
Theorem 1.3, let R > 0∫

Bo(R)
(−u) =

∫
x∈Bo(R)

(∫
y∈M

G(x, y)f(y)dy
)

dx(2.6)

=
∫
x∈Bo(R)

(∫
y∈Bo(2R)

G(x, y)f(y)dy

)
dx

+
∫
x∈Bo(R)

(∫
y∈M\Bo(2R)

G(x, y)f(y)dy

)
dx.
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For any y ∈ M ,∫
x∈By(3R)

G(x, y)dx ≤ C2

∫ 3R

0
Ay(t)

t2

Vy(t)
dt

= C3

∫ 3R

0
tdt

≤ C4R
2

for some constants C2, C3 and C4 depending only on n and σ, where
we have used (1.1) and (1.2). Hence∫

x∈Bo(R)

(∫
y∈Bo(2R)

G(x, y)f(y)dy

)
dx(2.7)

=
∫
y∈Bo(2R)

f(y)

(∫
x∈Bo(R)

G(x, y)dx

)
dy

≤
∫
y∈Bo(2R)

f(y)

(∫
x∈By(3R)

G(x, y)dx

)
dy

≤ C4R
2

∫
Bo(2R)

f.

For any x ∈ Bo(R), using (2.5)

∫
y∈M\Bo(2R)

G(x, y)f(y)dy ≤ C5

∫
y∈M\Bo(2R)

G(o, y)f(y)dy

≤ C6

∫ ∞

2R

(∫ ∞

t

s

Vo(s)
ds

)(∫
∂Bo(t)

f

)
dt

≤ C6

∫ ∞

2R

(
t

Vo(t)

∫
Bo(t)

f

)
dt

(2.8)

for some constants C5, C6 depending only on n and σ. By (2.6)–(2.8),
we have

1
Vo(R)

∫
Bo(R)

(−u)

≤ (C4 + C6)

(
R2

Vo(R)

∫
Bo(2R)

f +
∫ ∞

2R

(
t

Vo(t)

∫
Bo(t)

f

)
dt

)
.
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This implies (i) because α = supM u ≤ 0. By (2.5), the right side of the
above inequality will tend to 0 as R → ∞. This implies (ii) by noting
that

1
Vo(R)

∫
Bo(R)

(−u) ≥ inf
M

(−u) ≥ 0.

For general cases, we just take M × R
4 with flat metric on R

4 and
consider u as a subharmonic function on M × R

4 and use Lemma 1.1.
Note that in this case, we can choose σ to depend only on n. q.e.d.

Consider the following example: let u be a nonconstant bounded
subharmonic function on R

3 and consider u as a bounded subharmonic
function on R

4. Then the average of u over Bo(r) will tends to supM u
as r → ∞. However, it is obvious that u will not be asymptotically
constant at infinity. In this respect, we have:

Theorem 2.4. Let Mn be a complete noncompact manifold with
nonnegative Ricci curvature and let u be a smooth bounded subharmonic
function on M . Suppose f = ∆u is such that f(x) ≤ Cr−2(x). Then

lim
x→∞u(x) = sup

M
u

where x → ∞ means that r(x) → ∞.

Proof. Since u is bounded and subharmonic, by Corollary 2.1 we
can conclude that

t−2k(t) → 0

as t → ∞, where k(t) = 1/Vo(t)
∫
Bo(t)

f . By Corollary 1.2(iii) and the
assumption that f(x) ≤ Cr−2(x), we have

(2.9) |∇u(x)| = o(r−1(x))

as r(x) → ∞. We may assume that supM u = 0. By Li’s result Theo-
rem 2.3(ii)

lim
r→∞

1
Vo(r)

∫
Bo(r)

u = 0.

Since u ≤ 0, for any ε > 0, let Dr = {x ∈ Bo(r)| u(x) ≥ −ε}, then it is
easy to see that

V (Dr) ≥ (1− ε)V (r)

if r is large enough. Hence if x is such that r(x) = R and if R is large
enough, Vx(12R) ∩ D2R �= ∅. By (2.9) we conclude that u(x) → 0 as
x → ∞. q.e.d.
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3. Some vanishing results

In this section, we will apply the results in Section 1 and Section 2
to obtain some vanishing theorems on holomorphic line bundles over
complete noncompact Kähler manifolds. The results are related to those
in [22] and [10]. We need the following Kodaira-Bochner formula [21,
Chapter 3, §6]:
Lemma 3.1. Let M be a Kähler manifold, let L be a Hermitian

holomorphic line bundle over M and let φ be a holomorphic (p, 0) form
with value in L. Denote |φ| to be the norm of φ with respect to the
Kähler metric on M and the Hermitian metric h on L. Then

|φ|2∆|φ|2 − |∇|φ|2|2

≥ 4
(
−Ω+ min

1≤i1<i2<···<ip≤m
(γi1 + γi2 + · · ·+ γip)

)
|φ|4.

where γi are the eigenvalues of the Ricci form R
ij

of M , Ω is the trace
of the curvature form Ω

ij
of h.

Theorem 3.1. Let Mm be a complete noncompact Kähler manifold
of complex dimension m with nonnegative Ricci curvature. Let L be a
Hermitian holomorphic line bundle over M and let Ω be the trace of
the curvature form of L. For any 0 < ε < 1 and τ > 0, there exists a
constant a(m, τ, ε) such that if

(3.1) lim sup
r→∞

r2

Vo(r)

∫
Bo(r)

Ω+ ≤ a,

where Ω+ is the positive part of Ω, then any holomorphic (p, 0) form φ
(valued in L) is trivial if the norm of φ satisfies

(3.2)
1

Vo(r)

∫
Bo(r)

|φ|2τ = O(r−ε)

as r → ∞.

Proof. Suppose Ω+ satisfies the condition (3.1) with a to be deter-
mined later. Let M̃ = M × R

4 and denote x̃ = (x, x′). Consider Ω+
as a function on M̃ . By Theorem 1.1 and Lemma 1.1, we can find a
solution u(x̃) of ∆̃u = 4τΩ+ such that

u(x̃) ≤ α1r̃

∫ ∞

r̃
k(t)dt+ β1τ

∫ 2r̃

0
tk(t)dt
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where α1 and β1 are the constants depending only on m, r̃ = r̃(x̃) is the
distance from x̃ to õ = (o, 0) and k(t) = 1/Vo(t)

∫
Bo(t)

Ω+. Here ∆̃ is the

Laplacian on M̃ . Choose a > 0 such that aβ1τ < 1
2ε, then a depends

only on m, τ, ε. By (3.1), we have

lim sup
r(x̃)→∞

u(x̃)
aβ1τ log r̃(x)

≤ 1

and hence

(3.3) eu(x̃) ≤ C1(1 + r̃)
1
2
ε(x̃)

for some constant C1 for all x̃. Let φ be a holomorphic (p, 0) form such
that

(3.4)
1

Vo(r)

∫
Bo(r)

|φ|τ = O(r−ε),

and let f = |φ|2. By Lemma 3.1, we have

f∆f − |∇f |2 ≥ −4Ω+f2

and if we consider f as a function on M̃ , then

(3.5) f∆̃f − |∇̃f |2 ≥ −4Ω+f2

where ∇̃ is the gradient on M̃ . For any δ > 0, let g = (f + δ)τ . At a
point x̃ where f(x̃) > 0, we have

g∆̃g − |∇̃g|2 = g2∆̃ log g

= τg2

(
∆̃f

f + δ
− |∇̃f |2

(f + δ)2

)

≥ τg2

(
−4Ω+f

f + δ
+

|∇̃f |2
f(f + δ)

− |∇̃f |2
(f + δ)2

)
≥ −4τΩ+g2.

On the other hand, suppose f(x̃) = 0, then g attains minimum at x̃.
Hence we still have

g∆̃g − |∇̃g|2 ≥ −4τΩ+g2.
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Let v = eug, then

v∆̃v = eug
(
eu∆̃g + 2eu < ∇̃u, ∇̃g > +eug∆̃u+ eug|∇̃u|2

)
≥ e2u

(
−4τΩ+g2 + |∇̃g|2 − 2g|∇̃u| |∇̃g|+ 4τΩ+g2 + g2|∇̃u|2

)
≥ 0.

By the mean value inequality of Li-Schoen ([13, Theorem 2.1]), for any
r̃ > 0,

sup
Bõ(r̃)

v ≤ C2
Võ(2r̃)

∫
Bõ(2r̃)

v

for some constant C2(m). Let δ → 0, we have

sup
Bõ(r̃)

euf τ ≤ C2
Võ(2r̃)

∫
Bõ(2r̃)

euf τ(3.6)

≤ C3(1 + r̃)
1
2
εV −1

õ (2r̃)
∫
Bõ(2r̃)

f τ

≤ C4(1 + r̃)
1
2
εV −1

o (2r̃)
∫
Bo(2r̃)

f τ

for some constants C3 and C4 independent of r̃. Here we have used (3.3)
and Lemma 1.1. For any x ∈ M with r = r(x), if we take r̃ = R > 2r
in (3.6), we have

eu(x,0)|φ(x)|2τ = eu(x,0)f τ (x)

≤ C5(1 +R)
1
2
ε

Vo(2R)

∫
Bo(2R)

f τ

=
C5(1 +R)

1
2
ε

Vo(2R)

∫
Bo(2R)

|φ|2τ

= O
(
R− 1

2
ε
)

for some constant C5 independent of r and R. Let R → ∞, we conclude
that φ ≡ 0. q.e.d.

Remark 3.1. If
∫
M |φ|2τ < ∞, then obviously φ satisfies (3.2)

because the volume growth of M is at least linear by [27].

As an application, we have:

Corollary 3.1. Let Mm be a complete noncompact Kähler manifold
with nonnegative Ricci curvature and let L be a holomorphic line bundle
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over M with Hermitian metric h. Let ρ =
√−1Ω

ij
dzi ∧ dzj be the

curvature form of L, h and let Ω be the trace of ρ. Suppose ρ ≥ 0 and

lim sup
r→∞

r2

Vo(r)

∫
Bo(r)

Ω = 0.

Then ρm ≡ 0.

Proof. Suppose ρm �= 0 at some point, then there exists a positive
integer 4 and a nontrivial holomorphic section φ of L� such that |φ| ∈
L2(M) by Corollary 3.3 in [22]. Note that the trace of the curvature
form of L� is 4Ω. By Theorem 3.1 and the assumption on Ω, we have a
contradiction. q.e.d.

Later in Section 5, we will discuss conditions so that L is actually
flat, see Proposition 5.2.

If we take L to be the anti-canonical bundle of M , then we have the
following generalization of the first part of Corollary 3.5 in [22].

Corollary 3.2. Let Mm be a complete noncompact Kähler manifold
with nonnegative Ricci curvature and let R be the scalar curvature of
M . Suppose

(3.7) lim sup
r→∞

r2

Vo(r)

∫
Bo(r)

R = 0.

Then the Ricci form ρ of m satisfies ρm = 0.

Remark 3.2. (i) If M is nonparabolic and if R is integrable, then
(3.7) is true. Hence Corollary 3.2 is a generalization of Corollary 3.5
and Theorem 3.6 in [22] for the case that M has nonnegative Ricci
curvature. (ii) As observed in [4], from the arguments in [23], if (3.7) is
true for all base point o so that the convergence is uniform and if the
holomorphic bisectional curvature of M is bounded and nonnegative,
then M is flat. In the above corollary, we only assume that the Ricci
curvature is nonnegative and we do not assume that the scalar curvature
is bounded. The result is weaker and it is interesting to see whether
M is actually Ricci flat in this case. In fact, for Riemannian case, it is
proved by Chen and Zhu [3] that if (3.7) is true uniformly and if the
Riemannian manifold is locally conformally flat then the manifold is
flat.

In the next result, we will relax the assumption that M has nonneg-
ative Ricci curvature.
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Theorem 3.2. Let Mm be a complete noncompact nonparabolic
Kähler manifold with complex dimension m. Let L be a Hermitian holo-
morphic line bundle and let Ω be the trace of the curvature form of L.
For any 1 ≤ p ≤ m, let

S(x) = min
1≤i1<i2<···<ip≤m

(γi1(x) + γi2(x) + · · ·+ γip(x)),

where γj are the eigenvalues of the Ricci form of M , and let S ≡ 0 if
p = 0. Suppose ∫

M
(−Ω+ S)− < ∞,

in particular, suppose ∫
M

(Ω+ + S−) < ∞

where Ω+ is the positive part of Ω, S− is the negative part of S and
(−Ω+ S)− is the negative part of −Ω+S. Then any holomorphic (p, 0)
form φ with value in L must be trivial if φ satisfies∫

Bo(r)
|φ|2τ = o(r2)

as r → ∞ for some τ > 0.

Proof. The result follows immediately from Lemma 3.1 and the
result in [18, Corollary 2.2]. For the sake of completeness, we prove the
result in the same spirit as the proof of Theorem 3.1.

First, we claim that there is a solution u of ∆u = (−Ω+ S)− with
u ≤ 0. To prove the claim, let R > 0 be fixed, and let G be the minimal
positive Green’s function of M . G exists because M is nonparabolic.
Let σ = 4 (−Ω+ S)−, then for x ∈ Bo(R),∫

M
G(x, y)σ(y)dy =

∫
Bo(2R)

G(x, y)σ(y)dy +
∫
M\Bo(2R)

G(x, y)σ(y)dy

≤ C1

(
1 +

∫
M\Bo(2R)

G(o, y)σ(y)dy

)
≤ C2

for some constants C1, C2 independent of x with x ∈ Bo(R). Here we
have used Harnack inequality, the fact that supM\Bo(2R)G(o, y) < ∞
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(cf. [14, p.1138]), the fact that for σ ∈ L1(M), and that there exists a
constant C3 such that∫

Bo(2R)
G(x, y)σ(y)dy ≤ C3

for all x ∈ Bo(R). Hence
∫
M G(x, y)σ(y)dy is locally bounded and

u(x) = − ∫M G(x, y)σ(y) is well defined with ∆u = σ. Obviously u ≤ 0.
To complete the proof of the theorem, let φ be a holomorphic (p, 0)

form such that
∫
Bo(r)

|φ|2τ = o(r2). As in the proof of Theorem 3.1, for
any ε > 0, let f = |φ|2 and let g = (f + ε)τ . If v = eτug, then

v∆v ≥ 0.

We can then apply the method in [27], [18]. Namely, multiplying the
above inequality by a suitable cut off function, we have∫

Bo(r)∩Ma

|∇v|2 ≤
∫
Bo(r)

|∇v|2 ≤ C4
r2

∫
Bo(2r)

v2

where Ma = {x ∈ M | f(x) > a} and C4 is a constant independent of r
and a. Let ε → 0, we have

(3.8)
∫
Bo(r)∩Ma

|∇w|2 ≤ C4
r2

∫
Bo(2r)

w2

where w = eτuf τ . By the assumption on f = |φ|2 and the fact that
τ > 0, u ≤ 0, we conclude that

(3.9)
∫
Bo(2r)

w2 =
∫
Bo(2r)

(eτuf τ )2 = o(r2)

as r → ∞. Combine this with (3.8) and let r → ∞, |∇w| ≡ 0 on Ma.
Since a is arbitrary, w must be a constant. Since M is nonparabolic,

lim sup
r→∞

Vo(r)
r2

> 0.

and hence (3.9) implies that w must be identically zero. q.e.d.

Theorem 3.2 generalizes Theorem 2.3 in [22] which deals with holo-
morphic section of line bundles. By taking L to be the trivial bundle
with flat metric, it is easy to see that the theorem also generalizes part
of Theorem 2 in [10] for the case of holomorphic p-forms.
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4. Liouville property of plurisubharmonic functions

In this section, we will apply the results in Section 1 and Section 2
to study plurisubharmonic functions on a complete noncompact Kähler
manifold Mm with nonnegative Ricci curvature, where m is the complex
dimension of M . In [22, Proposition 4.1], it was proved that if u is a
plurisubharmonic function such that

lim sup
r(x)→∞

u(x)
log r(x)

= 0

then

(4.1)
(
∂∂u

)m = 0

on M . Let us first prove a more general result as an application of
Theorem 3.2.

Proposition 4.1. Let Mm be a complete noncompact nonparabolic
Kähler manifold such that the scalar curvature R satisfies∫

M
R− < ∞.

where R− is the negative part of R. Suppose u is plurisubharmonic
function on M such that

lim sup
x→∞

u(x)
log r(x)

= 0.

Then
(
∂∂u

)m = 0.

Proof. Suppose
√−1∂∂u(x0) > 0 at some point x0. We can find

a coordinate neighborhood U with holomorphic coordinates z(x) where
z = (z1, . . . , zm) so that x0 corresponds to the origin and U corresponds
to |z| < 4, and that

√−1∂∂u > 0 in U . Let λ ≥ 0 be a smooth function
on U such that λ(z(x)) = 1 in |z(x)| < 1 and λ = 0 outside |z(x)| = 2.
Let φ be the function on M such that φ(x) = 2(m+1)λ(z(x)) log |z(x)|
on U and zero outside U . Then φ is smooth on M \ {x0} with compact
support. Since ∂∂φ ≥ 0, in the weak sense, within {|z(x)| ≤ 1} and√−1∂∂u > 0 in U . Hence there is a positive constant A such that
if ψ = Au + φ then

√−1∂∂ψ ≥ εω for some nonnegative continuous
function ε which is positive on |z(x)| ≤ 1. Here ω is the Kähler form
of M . Let ρ ≥ 0 be a smooth cutoff function such that ρ(z(x)) = 1 if
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|z(x)| ≤ 1/2 and ρ = 0 outside |z(x)| = 1. Let η = ρdz1 ∧ · · · ∧ dzm. It
is easy to see that ∫

M

||∂η||2
ε

e−ψ < ∞.

By Theorem 5.1 in [7], there is an (m, 0) form τ such that ∂τ = ∂η and∫
M

||τ ||2e−ψ ≤ C

∫
M

||∂η||2
ε

e−ψ < ∞.

Note, here we do not need assumptions on the curvature of M because
we are dealing with (m, 0) forms. By the definition of ψ, we conclude
that τ(x0) = 0. Hence η̃ = τ − η is holomorphic (m, 0) form which is
nontrivial. Moreover, by the above inequality and the growth assump-
tion on u, we have ∫

Bo(r)
|η̃|2 = O(r).

as r → ∞. This contradicts Theorem 3.2 with L being the trivial line
bundle with flat metric. q.e.d.

Because of Ni’s result [22], it is interesting to see whether u is actu-
ally constant if u satisfies (4.1).

Let u be a plurisubharmonic function and let f = ∆u. As before,
let k(x, t) = 1/Vx(t)

∫
Bx(t)

f and k(t) = k(o, t). First, we assume that
M supports a strictly plurisubharmonic function.

Theorem 4.1. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative Ricci curvature. Let u be a plurisubharmnonic
function satisfying (4.1) such that f(x) = ∆u(x) ≤ Cr−2(x) for some
constant C > 0 for all x. Suppose M supports a strictly plurisubhar-
monic function. Then u must be constant if one of the following is
true:

(a) u is bounded.

(b) supBo(r) u = o(r) as r → ∞ and there exist ri → ∞ and a constant
C such that ri

∫∞
ri

k(t)dt ≤ C.

(c) u(x) ≤ a log r(x) for some constant a for all x with r(x) ≥ 2 and
M is nonparabolic with Green’s function satisfying (1.1).

Proof. (a) Since f(x) ≤ Cr−2(x), by Theorem 2.3, we have

lim
x→∞u(x) = sup

M
u.
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By the minimum principle of [2], [1], u must be a constant.
Suppose (b) is true. Then

∫∞
0 k(t)dt < ∞. Since f(x) ≤ Cr−2(x),

we can find a solution v of ∆v = f such that |v(x)| = o (r(x)) as x → ∞
by Proposition 1.1 and Theorem 1.2. Hence u−v is a harmonic function
and supBo(r)(u − v) = o(r) because supBo(r) u = o(r). By the gradient
estimate [5, Theorem 6], u − v must be a constant. Without loss of
generality, we may assume that u = v which is the solution obtained in
Theorem 1.2. In particular,

u(x) ≥ −α2r

∫ ∞

2r
k(t)dt− β2

∫ 1
2
r

0
tk(x, t)dt+ β3

∫ 2r

0
tk(t)dt

where α2 and β2 are positive constants depending only on m and r =
r(x). Since f(x) ≤ Cr−2(x),

(4.2) u(x) ≥ −C1 − α2r

∫ ∞

2r
k(t)dt+ β3

∫ 2r

0
tk(t)dt

for some constant C1 independent of x. By the assumption, there exist
ri → ∞ and a constant C2 such that

(4.3) ri

∫ ∞

ri

k(t)dt ≤ C2.

Hence
inf

∂Bo(
1
2
ri)

u ≥ −C3 + β3

∫ ri

0
tk(t)dt

for some constant C3 for all i. Suppose
∫∞
0 tk(t)dt = ∞, then u(0) =

∞ by the minimum principle of [2], [1]. This is impossible. Hence∫∞
0 tk(t)dt < ∞. By the minimum principle again, we conclude that u
is bounded from below. By Theorem 1.2, u also has an upper bound

u(x) ≤ α1r

∫ ∞

2r
k(t)dt+ β1

∫ 2r

0
tk(t)dt

for some constants α1 and β1 depending only on m, where r = r(x).
By (4.3), the fact that

∫∞
0 tk(t)dt < ∞ and the maximum principle for

subharmonic function, we conclude that u must be also bounded from
above. Hence u is constant by (a).

Suppose (c) is true. By the assumption on the upper bound of u(x)
and Theorem 2.1, there exists a constant C4 such that

(4.4)
∫ R

0
tk(t)dt ≤ C4 logR
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for all R large enough. It is sufficient to show that there exist ri → ∞
such that (4.3) is true. First note that

I =
∫ ∞

r
t−1
(∫ ∞

t

s

Vo(s)
ds

)(∫
∂Bo(t)

f

)
dt(4.5)

≤ C5

∫ ∞

r

A(t)
tV (t)

dt

≤ C6r
−1

for some constants C5 and C6 independent of r. Here we have used the
fact that f(x) ≤ Cr−2(x) and the fact that tA(t) ≤ 2mV (t). On the
other hand,

I = t−1
(∫ ∞

t

s

Vo(s)
ds

)(∫
Bo(t)

f

)∣∣∣∣∞
r

(4.6)

+
∫ ∞

r
t−2
(∫ ∞

t

s

Vo(s)
ds

)(∫
Bo(t)

f

)
dt

+
∫ ∞

r

1
Vo(t)

(∫
Bo(t)

f

)
dt

≥ − C7r

Vo(r)

(∫
Bo(r)

f

)
+
∫ ∞

r
k(t)dt

for some positive constant. Here we have used the fact that the positive
Green’s function satisfies (1.1). By (4.4), (4.5), (4.6) it is easy to see
that (4.3) is true for some ri → ∞. q.e.d.

By the method of [20, pp.195-199], we can obtain the following Liou-
ville result for bounded plurisubharmonic functions on Kähler manifold
with nonnegative sectional curvature with maximal volume growth.

Proposition 4.2. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative sectional curvature and with maximal volume
growth. Let u be a bounded plurisubharmnonic function satisfying (4.1)
such that f = ∆u satisfies f(x) ≤ Cr−2(x) for some constant C > 0
for all x. Then u must be constant.

Proof. Since u is bounded and f(x) ≤ Cr−2(x), u is asymptotically
constant by Theorem 2.4. Using the method in [20], we conclude that
u is constant. q.e.d.
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Suppose M has positive holomorphic bisectional curvature, then M
supports a strictly plurisubharmonic function by [9]. Hence we have the
following.

Corollary 4.1. Let Mm be a complete noncompact Kähler manifold
with positive biholomorphic sectional curvature. Let u be a plurisubhar-
monic function satisfying (4.1) such that f(x) ≤ Cr−2(x). Suppose one
of the conditions (a), (b) or (c) in Theorem 4.1 is true, then u must be
constant.

5. The Poincaré-Lelong equation

Let Mm be a complete Kähler manifold with nonnegative bisectional
curvature. In [20, Theorem 1.1], it was proved that if M has maximal
volume growth and if ρ is a closed (1, 1) form on M such that the norm
||ρ|| of ρ satisfies ||ρ(x)|| ≤ Cr−2(x) for some constant for all x, then one
can solve the Poincaré-Lelong equation by solving 1/2∆u = trace(ρ).
In this section, we will apply the results in Section 1 and Section 2 to
show that given a closed (1, 1) form ρ with trace f , one can solve the
following Poincaré-Lelong equation under rather general assumptions
on ρ:

(5.1)
√−1∂∂u = ρ.

We will also give some applications of the result.
In this section, m always denotes the complex dimension of Mm.

Theorem 5.1. Let Mm be a complete Kähler manifold with non-
negative holomorphic bisectional curvature. Let ρ be a real closed (1, 1)
form with trace f . Suppose f ≥ 0 and ρ satisfies the following condi-
tions:

(5.2)
∫ ∞

0

1
Vo(t)

∫
Bo(t)

||ρ||dt < ∞,

and

(5.3) lim inf
r→∞

1
Vo(r)

∫
Bo(r)

||ρ||2 = 0.

Then there is a solution u of the Poincaré-Lelong Equation (5.1). More-
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over, for any 0 < ε < 1, u satisfies

α1r

∫ ∞

2r
k(t)dt+ β1

∫ 2r

0
tk(t)dt ≥ u(x)

≥ −α2r

∫ ∞

2r
k(t)dt

− β2

∫ εr

0
tk(x, t)dt

+ β3

∫ 2r

0
tk(t)dt

for some positive constants α1(m), α2(m, ε) and βi(m), 1 ≤ i ≤ 3, where
r = r(x). Here as before, k(x, t) = 1/Vx(t)

∫
Bx(t)

f and k(t) = k(o, t),
where o ∈ M is a fixed point. Moreover, the gradient of u satisfies the
estimates in Theorem 1.3.

Proof. Let us first consider the case that M is nonparabolic and its
Green’s function satisfies (1.1). By (5.2), since f is the trace of ρ we
have ∫ ∞

0
k(t)dt < ∞.

By Theorem 1.1 we can find a solution u of 1
2∆u = f . Moreover, u

satisfies the estimates in Theorems 1.1 and 1.3. We claim that u satisfies
(5.1). By (5.3), we can find Rj → ∞ such that

lim
j→∞

1
Vo(Rj)

∫
Bo(Rj)

||ρ||2 = 0.

It is known that ||√−1∂∂u − ρ||2 is subharmonic, see [20, p.187] for
example. For any x ∈ M , if j is large enough so that Rj ≥ 8r(x), then
by the mean value inequality for subharmonic function in [13, Theorem
2.1], using Theorem 1.3(iii) we have

||√−1∂∂u− ρ||2(x) ≤ C1

Vx(
Rj

8 )

∫
Bx(

Rj
8
)
||√−1∂∂u− ρ||2

≤ C2

Vo(
Rj

4 )

∫
Bo(

Rj
4
)

(|∇2u|2 + ||ρ||2)
≤ C3

R−2
(∫ ∞

Rj

k(t)dt

)2
+

1
Vo(Rj)

∫
Bo(Rj)

||ρ||2


→ 0
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as j → ∞, where C1 − C3 are constants independent of j. Hence√−1∂∂u ≡ ρ and the proof is completed in this case.
In general, let M̃ = M×C

2. Then M̃ is nonparabolic and its Green’s
function satisfies (1.1). We may consider ρ as a closed (1, 1) form on M̃ .
Moreover, the trace of ρ is still f which is independent of the variable in
C
2. It is easy to see that ρ still satisfies (5.2) and (5.3) by Lemma 1.1.

Hence we can find ũ such that
√−1∂∂ũ = ρ. It is easy to see that for

any fixed x0 ∈ M , ũ(x0, ·) is pluriharmonic on C
2. Moreover, since ũ

satisfies the estimates in the theorem, we have

lim sup
y∈C2,y→∞

ũ(x0, y)
|y| = 0.

Hence ũ(x0, ·) is constant on C
2 by Harnack inequality, and ũ(x, y) =

u(x) which satisfies (5.1) on M . Moreover, u satisfies the estimates
in the theorem. The estimates of the gradient of u follows from the
construction and Theorem 1.3. q.e.d.

Remark 5.1. (i) If ρ satisfies (5.2), and if

lim inf
r→∞ r−1 sup

∂Bo(r)
||ρ|| < ∞,

then (5.3) will also be satisfied. In particular, ||ρ|| may be unbounded.
(ii) By Remark 1.1, it is easy to see that the theorem is still true without
the assumptions that ρ is real and f is nonnegative. What we need is
(5.2) and (5.3).

In the following we give some applications of the theorem.

(I) Steinness of Kähler manifolds.

Theorem 5.2. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. M is Stein if one
of the following is true:

(i) There exists a closed real (1, 1) form ρ which is positive everywhere
such that ||ρ||(x) ≤ Cr−2(x) and k(t) ≤ Ct−2 for some constant
C for all x and t. Here f is the trace of ρ and k(t) is as in
Theorem 5.1.

(ii) M has nonnegative sectional curvature and there exists a real
closed (1, 1) form ρ which is positive everywhere and satisfies (5.2)
and (5.3).
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Proof. (i) By Theorem 5.1, we can solve the Poincaré-Lelong equa-
tion

√−1∂∂u = ρ. Since ρ is positive everywhere, u is a strictly
plurisubharmonic function. Since u satisfies the estimate in the the-
orem, by Corollary 1.1 and Corollary 3.1, we see that u is an exhaustion
function. Hence M is Stein.

To prove (ii), by the assumption, we can obtain a strictly plurisub-
harmonic function as before. Since the sectional curvature is nonneg-
ative, one can apply the method in [8] to show that the manifold is
Stein.

q.e.d.

Corollary 5.1. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Suppose that M
has positive Ricci curvature. Then M is Stein if M satisfies one of the
following:

(i) The Ricci form ρ satisfies ||ρ||(x) ≤ Cr−2(x) and 1/Vo(t)
∫
Bo(t)

||ρ||
≤ Ct−2 for some constant C for all x ∈ M and t > 0.

(ii) M has nonnegative sectional curvature and ρ satisfies (5.2) and
(5.3).

Corollary 5.1(i) was basically proved in [19] (see also [20]) under
the assumption is that ||ρ||(x) ≤ Cr−2(x) and M has maximal volume
growth, which will imply that 1/Vo(t)

∫
Bo(t)

||ρ|| ≤ Ct−2 provided m ≥
2. Corollary 5.1(i) seems to be more general at first sight, but we will
see later that if m ≥ 2, the assumptions in Corollary 5.1(i) will imply
that M has maximal volume growth. Also, it was proved in [8] that
if M has nonnegative sectional curvature and has positive holomorphic
bisectional curvature, then M is Stein. In (ii) of the corollary, we still
have the same assumption on sectional curvature, but we replace the
assumption on the positivity of holomorphic bisectional curvature by the
assumption that the Ricci curvature is positive and whose norm decays
faster than linearly in a certain sense. We would like to mention that
in [4], it is proved that if M has nonnegative holomorphic bisectional
curvature, has maximal volume growth such that its scalar curvature R
satisfies R(x) ≤ Cr−1−ε(x) for some constants C and ε > 0 for all x,
then M is Stein.

(II) Plurisubharmonic functions revisited

Proposition 5.1. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature and positive
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Ricci curvature with Ricci form ρ satisfies (5.2) and (5.3). Let u be a
plurisubharmonic function satisfying (4.1) such that f(x) ≤ Cr−2(x).
Suppose one of (a), (b) or (c) in Theorem 4.1 is true, then u must be
constant.

Proof. By Theorem 5.1, (5.1) has a solution with ρ being the Ricci
form of M . Since ρ > 0 everywhere, M supports a strictly plurisubhar-
monic function. The result follows from Theorem 4.1. q.e.d.

Proposition 5.2. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature and let L be a
holomorphic line bundle over M with Hermitian metric h with nonneg-
ative curvature. Let Ω be the trace of the curvature of L with respect to
h. Suppose

(i) M supports a strictly plurisubharmonic function;

(ii)

lim sup
r→∞

r2

Vo(r)

∫
Bo(r)

Ω = 0;

and

(iii) Ω(x) ≤ Cr−2(x).

Then L is flat.

Proof. By Theorem 5.1, we can find a solution u of (5.1) satisfying
the estimate in the theorem with f = Ω and ρ be the curvature form of
L. Since ρm = 0 by Theorem 3.1, u must be constant by Theorem 4.1.
Hence ρ ≡ 0. q.e.d.

(III) Volume and curvature estimates

Lemma 5.1. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let ρ be a real
closed (1, 1) form with trace f . Suppose ρ ≥ 0 and ρ > 0 at some point
o and satisfies (5.2) and (5.3). Then for any α > 2 and p ≥ 1, there
exists constants C1 > 0, C2 > 0 independent of R and C∗ independent
of R and α such that

C1R

Vo(R)
≤
C∗

∫ ∞

αR
k(t)dt+ C2R

(
1

Vo(R)

∫
Bo(R)

fp

) 1
p


·
[

1
Vo(R)

∫
Bo(2R)\Bo(

R
2
)
f q(m−1)

] 1
q
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where q = p/(p − 1) if p > 1, and if p = 1, then the last integral is
interpreted as supBo(2R)\Bo(

R
2
) f

m−1.

Proof. By Theorem 5.1 we can solve the Poincaré-Lelong equation√−1∂∂u = ρ. Let us first assume that p > 1. Since ρ ≥ 0 and is strictly
positive at o, there is a constant C1 > 0 such that for all R ≥ 1

C1 ≤
∫
Bo(R)

ρm

=
∫
Bo(R)

(√−1∂∂u ∧ ρm−1)
=
∫
∂Bo(R)

√−1∂u ∧ ρm−1

≤
(∫

∂Bo(R)
|∇u|p

) 1
p
(∫

∂Bo(R)
f q(m−1)

) 1
q

for some constant C4 independent of R and q = p/(p − 1). For R ≥ 2,
integrating from 1

2R to R, there is a constant C5 > 0 independent of R
and α such that

(5.4)
C1
2

R ≤
(∫

Bo(R)\Bo(
R
2
)
|∇u|p

) 1
p
(∫

Bo(R)\Bo(
R
2
)
f q(m−1)

) 1
q

.

By Theorem 5.1, the gradient of u satisfies

1
Vo(R)

∫
Bo(R)

|∇u|p ≤ C∗
(∫ ∞

αR
k(t)dt

)p

+
C2R

p

Vo(R)

∫
Bo(αR)

fp

where α > 2 is a constant, C∗ is a constant independent of R and α
and C2 is a constant independent of R. Combine this with (5.4), the
theorem is true if p > 1. The case that p = 1 is similar. q.e.d.

Theorem 5.3. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let ρ be a closed
real (1, 1) form with trace f . Suppose ρ ≥ 0 and ρ > 0 at some point o
and suppose that

(5.5)

(
1

Vo(r)

∫
Bo(r)

fp

) 1
p

≤ Cr−1−ε
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and

(5.6)

(
1

Vo(r)

∫
Bo(r)\Bo(

r
2
)
f q(m−1)

) 1
q(m−1)

≤ Cr−1−ε

for some 1 ≤ p ≤ m and for some constant C for all r, where 0 < ε ≤ 1,
q = p/(p− 1). If p = 1, (5.6) means that

sup
Bo(r)\Bo(

r
2
)
f ≤ Cr−1−ε.

Then
Vo(R) ≥ CRm(1+ε)

for some constant C > 0 for all R ≥ 2. If, in addition,

Vo(R) ≤ C ′Rm(1+ε)

for some constant C ′ for all R, then(
1

Vo(r)

∫
Bo(r)

fp

) 1
p

≥ C ′′r−1−ε

for some constant C ′′ > 0 for all r large enough. In particular, if ε = 1,
then M has maximal volume growth and(

1
Vo(r)

∫
Bo(r)

fp

) 1
p

≥ C ′′r−2.

Proof. Let us consider the case that p = 1. Then ρ satisfies the
conditions in Lemma 5.1. Hence we have for R ≥ 2,

C1R

Vo(R)
≤
(

C∗

αR
+

C2R

Vo(R)

∫
Bo(R)

f

)
·R−(m−1)(1+ε)

≤ C3R
−m(1+ε)+1

where C1 and C∗ are positive constants independent of α and R, and
C2 and C3 are constants independent of R. From this it is easy to see
that

Vo(R) ≥ CRm(1+ε)
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for some constant C > 0 for all R ≥ 2. If in addition,

Vo(R) ≤ C ′Rm(1+ε)

for some constant C ′ for all R. Then for R large enough, we have

C4
Rε

≤ C∗

αR
+

C2R

Vo(R)

∫
Bo(R)

f

where C4 > 0 is a constant independent of R and α. If we take α large
enough, we can conclude that

1
Vo(R)

∫
Bo(R)

f ≥ C5R
−1−ε

for some constant C5 > 0 independent of R. Suppose p > 1. By (5.5)
we have

1
Vo(r)

∫
Bo(r)

||ρ|| ≤ Cr−1−ε.

Let q∗ = q(m− 1). Since p ≤ m, we have q∗ ≥ m ≥ 2. Let k ≥ 1 be an
integer. By (5.6), for 4 ≤ k, we have∫

Bo(2)\Bo(2−1)
||ρ||q∗ ≤ C2−�q∗(1+ε) × Vo(2�)

where C is a constant independent of 4. Hence for any k0 ≤ k, we have

1
Vo(2k)

∫
Bo(2k)\Bo(1)

||ρ||q∗ ≤ C
1

Vo(2k)

k0∑
�=1

2−�q∗(1+ε) × Vo(2�)

+
∞∑

�=k0+1

2−�q∗(1+ε).

Fix k0, let k → ∞ and then let k0 → ∞, we have

lim
r→∞

1
Vo(r)

∫
Bo(r)

||ρ||q∗ = 0.

Since q∗ ≥ 2, we have

lim
r→∞

1
Vo(r)

∫
Bo(r)

||ρ||2 = 0.
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Hence the conditions of Theorem 5.1 are satisfied and we can proceed as
in the case that p = 1 and complete the proof of the theorem. q.e.d.

In particular, we have:

Corollary 5.2. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature. Suppose the
Ricci curvature is positive at some point and scalar curvature R satisfies
R(x) ≤ Cr−2(x) and 1/Vo(t)

∫
Bo(t)

R ≤ Ct−2. Then M has maximal
volume growth, and

lim inf
r→∞

r2

Vo(r)

∫
Bo(r)

R > 0.

Proof. Set ε = 1 in Theorem 5.3, the result follows easily by noting
that Vo(r) ≤ Cr2m, by the volume comparison. q.e.d.

This result says that under the assumptions of the corollary, even
though the scalar curvature decays, but it actually cannot decay too
fast. One should compare this with Corollary 3.1.

Remark 5.2. If we assume that ρ has rank 4 ≥ 1 at o rather
than ρ is positive at o and if we assume that (5.5) and (5.6) are true
with ε = 1 and with m replaced by 4, then we can modify the proof of
Lemma 5.1 and conclude that Vo(r) ≥ Cr2� for some positive constant
C for all r. In particular, if M is not Ricci flat, then V (r) ≥ Cr2 for
some constant C > 0 for all r ≥ 1.

(IV) Positive (1,1) forms satisfying a pinching condition

Theorem 5.4. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature, with m ≥ 2. Let
ρ ≥ 0 be a closed real (1, 1) form on M such that inf1≤j≤m λj(x) ≥ εf(x)
for some positive constant ε, for all x, where λj are the eigenvalues of
ρ and f is the trace of ρ. Define k(x, t) = 1/Vx(t)

∫
Bx(t)

f and k(t) =
k(o, t) as before. Then ρ ≡ 0 if one of the following is satisfied:

(i) k(t) ≤ Ct−2 and f(x) ≤ Cr−2(x) for some constant C for all
t > 0 and x.

(ii) Vo(r) ≤ Crm for some constant C for all r, ρ satisfies (5.2) and
(5.3) and there exists a constant C such that

∫∞
0 k(x, t)dt ≤ C for

all x.
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Proof. If (i) is true and if f > 0 at some point, then M has maximal
volume growth by Theorem 5.3. Combining this with the assumptions
in (i) and the fact that m ≥ 2, it is not hard to prove that k(x, t) ≤ Ct−2

for some constant C for all t and x. By Theorem 5.1, (5.1) has a solution
u. Moreover, by the gradient estimate in Corollary 1.2, there exists a
constant C1 such that

(5.7) |∇u(x)| ≤ C1r
−1(x).

As in the proof of Theorem 5.3, using the pinching condition that λj ≥
εf , we have∫

Bo(r)
fm ≤ C2

∫
Bo(r)

ρm(5.8)

= C2

∫
Bo(r)

(√−1∂∂u ∧ ρm−1)
= C2

∫
∂Bo(r)

√−1∂u ∧ ρm−1

≤ C3

(∫
∂Bo(r)

|∇u|m
) 1

m
(∫

∂Bo(r)
fm

)m−1
m

≤ C4

(
r

∫
∂Bo(r)

fm

)m−1
m

for some constants C2 − −C4 independent of r, where we have used
(5.7) and the fact that Ao(r) ≤ Cr2m−1 for some constant depending
only on m. Since f > 0 at some point, there exists r0 > 0 such that
F (r) =

∫
Bo(r)

fm > 0 for all r ≥ r0. By (5.8), we have

F ′

F
m

m−1

≥ C5r
−1

for some positive constant C5 for all r ≥ r0. Integrating from r0 to r
with r > r0, we have

F− 1
m−1 (r0)− F− 1

m−1 (r) ≥ C5
m− 1

log
r

r0
.

Let r → ∞, we have a contradiction. Hence f ≡ 0 and ρ ≡ 0.
Under the assumptions of (ii), we conclude that |∇u(x)| ≤ C6 for

some constant C6 for all x by Corollary 1.2. As in (5.8), using the same
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notations as before, we have

F (r) ≤ C7A
1
m
o (r)

(
F ′(r)

)m−1
m

≤ C8
(
rF ′(r)

)m−1
m

for some constants C7, C8 independent of r, where we have used the
assumption that Vo(r) ≤ Crm and the fact that rAo(r) ≤ 2mVo(r). We
can proceed as before to show that f and hence ρ must be identically
zero. q.e.d.

Remark 5.3. If we let g(r) =
∫
∂Bo(r)

|∇u|m, then it is easy to see
that f ≡ 0 provided that∫ ∞

r0

g−
1

m−1 (t)dt = +∞.

Hence the conditions of Theorem 5.4 may be relaxed a little bit further.

In [24], Shi and Yau proved the following: Suppose Mm is a complete
noncompact Kähler manifold withm ≥ 3 and with bounded nonnegative
holomorphic bisectional curvature and suppose that R

ααββ
≥ εR for

some positive constant ε, where R
ααββ

is the holomorphic bisectional

curvature and R is the scalar curvature. Then 1/Vx(t)
∫
Bx(t)

R ≤ Ct−2

for some constant for all x. Using Theorem 5.1, we have:

Corollary 5.3. Let Mm a complete noncompact Kähler manifold
with complex dimension m ≥ 3. Suppose that R

ααββ
≥ εR for some

positive constant ε and suppose that the scalar curvature satisfies (i)
R(x) ≤ Cr−2(x) for all x or (ii) Vo(r) ≤ Crm for some constant C for
all r. Then M is flat.
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[11] L. Hörmander, An introduction to complex analysis in several variables, North-
Holland Publish. Co., 1973, Amsterdam-London.

[12] P. Li , Large time behavior of the heat equation on complete manifolds with non-
negative Ricci curvature, Ann. of Math. 124 (1986) 1–21.

[13] P. Li & R. Schoen, Lp and mean value properties of subharmonic functions on
Riemannian manifolds, Acta Math. 153 (1984) 279–301.

[14] P. Li & L.-F. Tam, Symmetric Green’s functions on complete manifolds, Amer.
J. Math. 109 (1987) 1129–1154.

[15] , Complete surfaces with finite total curvature, J. Differential Geom. 33
(1991) 139–168.

[16] P. Li, L.-F. Tam & J. Wang, Sharp bounds for the Green’s function and the heat
kernel, Math. Res. Lett. 4 (1997) 589–602.

[17] P. Li & S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta
Math. 156 (1986) 139–168.

[18] , Curvature and holomorphic mappings of complete Kähler manifolds,
Comp. Maht. 73 (1990) 125–144.

[19] N. Mok, An embedding theorem of complete Kähler manifolds of positive bisec-
tional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112
(1984) 197–250.

[20] N. Mok, Y.-T. Siu & S.-T. Yau, The Poincaré-Lelong equation on complete Kähler
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