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Poisson Image Reconstruction With Hessian
Schatten-Norm Regularization

Stamatios Lefkimmiatis, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract— Poisson inverse problems arise in many modern
imaging applications, including biomedical and astronomical
ones. The main challenge is to obtain an estimate of the
underlying image from a set of measurements degraded by a
linear operator and further corrupted by Poisson noise. In this
paper, we propose an efficient framework for Poisson image
reconstruction, under a regularization approach, which depends
on matrix-valued regularization operators. In particular, the
employed regularizers involve the Hessian as the regularization
operator and Schatten matrix norms as the potential functions.
For the solution of the problem, we propose two optimization
algorithms that are specifically tailored to the Poisson nature
of the noise. These algorithms are based on an augmented-
Lagrangian formulation of the problem and correspond to two
variants of the alternating direction method of multipliers.
Further, we derive a link that relates the proximal map of an
ℓ p norm with the proximal map of a Schatten matrix norm of
order p. This link plays a key role in the development of one
of the proposed algorithms. Finally, we provide experimental
results on natural and biological images for the task of Poisson
image deblurring and demonstrate the practical relevance and
effectiveness of the proposed framework.

Index Terms— Poisson noise, Hessian operator, schatten norms,
eigenvalue optimization, ADMM, image reconstruction.

I. INTRODUCTION

IN this work, we focus on the recovery of an image from a
set of measurements that are degraded by a linear operator

and further corrupted by Poisson noise. Poisson (or shot)
noise [1] is due to fluctuations in the number of detected
photons and is an inherent limitation of the detection process
occurring in many imaging devices such as CCD cameras.
In this context, the measurements at every location of the
sensor can be considered as the realization of an indirect
Poisson random variable, in the sense that its mean and vari-
ance is indirectly related, through a linear transformation, to
the underlying intensity of the image. Such inverse problems,
which in the literature are also known as Poisson inverse prob-

lems [2], [3], arise in several imaging applications, including
medical [4], biological [5], and astronomical [6] ones.

For most cases of practical interest, Poisson inverse prob-
lems are ill-posed; the linear operator relating the under-
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lying intensities to the Poisson measurements is either
ill-conditioned or singular. Thus, additional knowledge is
required to obtain a meaningful image reconstruction. This
knowledge is expressed in the variational framework by a
penalty function that constrains the number of plausible solu-
tions. Then, the reconstruction task is cast as the optimization
of an objective function consisting of two terms: the data

fidelity that quantifies the proximity between the reconstructed
image and the measurements, and the regularizer that incor-
porates our assumptions about the underlying image. From a
statistical point of view, the image reconstruction corresponds
to estimating the underlying intensity from a single realization
of the Poisson random variables.

A. Overview of Current Methods

Well-established reconstruction methods have been shown
to provide satisfactory results in the context of linear inverse
problems with Gaussian independent identically distributed
(i.i.d.) noise. Unfortunately, they cannot be applied in our case
because Poisson inverse problems face a noise that is signal-
dependent. Despite this difficulty, the prevalence of photon-
imaging applications has generated an increasing interest dur-
ing the past few years and has triggered the development of
several algorithms that were designed to handle the Poisson
nature of the noise. Most of these methods can be inter-
preted as optimization techniques of an objective function. For
instance, the classical Richardson-Lucy (RL) algorithm [7], [8]
corresponds to a maximum-likelihood (ML) estimate. Another
approach which is widely followed is to obtain the solution
as a penalized ML estimate. In [9], the authors proposed an
algorithm consisting of two steps. In the first step, a variance-
stabilizing transform (such as Anscombe [10]) is applied to
the measurements to reform the data so that the noise becomes
approximately Gaussian with constant variance. Then, in the
second step, the solution is obtained as the minimizer of an
objective function that consists of a nonlinear data-fidelity term
and a regularizer acting on the transform-domain coefficients
of the underlying image. This kind of regularization is known
in the literature as frame-synthesis (FS) since the regularizer
is not a direct function of the image. Methods that seek the
solution by penalizing coefficients that arise from multiscale
nonlinear transformations of the underlying image have been
proposed in [2], [11] and in references therein. For the
simplest Poisson inverse problem (denoising) and despite the
nonlinearity of the employed transform, it has been shown
in [11] that the resulting estimate is optimal, in the minimum
mean-squared error (MMSE) sense, both in the coefficient
and the image domain. Finally, there also exist algorithms
that obtain penalized ML solutions where the regularizers are
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directly applied on the underlying image, i.e., frame-analysis
(FA) regularization framework. This includes the modified RL
algorithm with total-variation (TV) regularization [12] and the
methods proposed in [13]–[15], which use TV as well but
adopt different optimization strategies.

B. Contributions

In this work, we consider methods specifically tailored to
Poisson-distributed data and we employ a class of second-
order derivative-based regularizers that act directly on the
underlying image. Our proposed algorithms are based on
an augmented-Lagrangian framework and follow the same
principles as other existing algorithms in the literature [13],
[14]. However, while the latter have been designed to work
with regularizers involving scalar and vector-valued operators,
ours are designed to handle matrix-valued linear operators.
This generalization is important since it introduces additional
difficulties which cannot be handled in a trivial way. Neverthe-
less, we are able to address these problems and we introduce
two novel algorithms that can be considered extensions of
existing techniques to the case of matrix-valued regularization
operators.

The key contributions of this work are as follows.
1) We employ a family of non-quadratic regularization

functionals that involves matrix-valued operators [16]
for dealing with Poisson inverse problems. These func-
tionals are based on the Schatten norms [17] of the
Hessian operator, evaluated at every pixel of the image,
and are shown to be appropriate candidates for modeling
a wide class of natural images.

2) We propose two alternative minimization approaches
that can provide a solution to the optimization problem
under any Schatten-norm-based penalty function. These
two algorithms are based on an augmented-Lagrangian
formulation and arise as two different variants of the
alternating-direction method of multipliers (ADMM).

3) We derive a result that relates the proximal map evalua-
tion of a Schatten matrix norm of order p to the proximal
map evaluation of an ℓp norm. This link plays a key role
in the development of one of the proposed algorithms
but can potentially have a wider range of applicability.

The rest of this paper is organized as follows: In Section II,
we provide a formal description of Poisson inverse problems,
we discuss regularization strategies, and we introduce the fam-
ily of non-quadratic second-order functionals that we employ
for reconstructing images. In Section III, we briefly review
the ADMM framework and we describe our two proposed
optimization algorithms. Then, in Section IV, we perform
experiments on natural and biomedical images to assess the
performance of our techniques for the task of Poisson image
deblurring. We conclude our work in Section V.

II. REGULARIZATION OF POISSON INVERSE PROBLEMS

A. Problem Formulation

Our approach for reconstructing the underlying image from
the measurements is based on the observation model

y = T (Kx) , (1)

where K ∈ R
M×N is a matrix that models the spatial response

of the imaging device, T is an operation that describes
the nature of the measurement noise and how it affects the
image acquisition, and y ∈ RM

+ , x ∈ R
N
+ are the vectorized

versions of the observed image and the image to be estimated,
respectively. The set R+ denotes the set of real non negative
numbers. We further expand (1) by noting that the unobserved
intensities x of the underlying image are related to other
intensities λ (which are also unobserved) through the linear
relation λ = Kx. For the elements of λ to be interpreted as
photon intensities, we further need to assume that λ ∈ RM

+ .
This hypothesis is consistent with the idea that K represents
a linear degradation effect, e.g., blurring.

Under the basic photon-imaging model, the measurement
noise implied by T in (1) is signal-dependent. In particular,
the observed image y can be considered as a vector containing
the samples of a random sequence Y = (Y1, . . . , YM ). The M

random variables Ym are conditionally independent upon λ,
and each one follows a Poisson distribution with rate parameter
λm , so that Ym ∼ Pois (Ym |λm). The likelihood of x can then
be expressed as

p (Y = y|x) =
M
∏

m=1

e−λm λm
ym

ym ! =
M
∏

m=1

e−[Kx]m [Kx]ym
m

ym ! , (2)

where [·]m indicates the mth element of the vector argument.
One way to recover x from the measurements y is by

minimizing the negative log-likelihood

fL (x) =
M
∑

m=1

([Kx]m − ym log [Kx]m) + ιC (x) + const., (3)

where ιC is the indicator function of the convex set C = R
N
+

that represents non-negativity constraints on the solution. The
convention is that ιC (x) takes values 0 for x ∈ C and ∞
otherwise. In order for (3) to be consistent with (2), we also
use the convention that 0 log (0) = 0. The minimizer of (3)
is equivalent to the ML estimate. One way to obtain it is
by using RL, which is an iterative multiplicative gradient
type technique [7], [8]. Unfortunately, the ill-posed nature
of the problem implies that the operator K for the cases of
practical interest is either ill-conditioned or singular, and the
corresponding ML estimator has a large variance that may
lead to a not informative solution. For this reason, the RL
algorithm should be terminated early in practice, after just a
few iterations. Otherwise, the noise gets amplified and results
in an image estimate dominated by noise.

To alleviate this amplification of the noise, one can follow
the alternative approach of minimizing a penalized version of
the negative log-likelihood. This can be formulated by

f (x) = fL (x) + φ (x) , (4)

where the role of the term φ (x) is to narrow down the set of
plausible solutions by favoring those that satisfy properties
related to the assumed regularity of the underlying image.
The minimizer of (4) corresponds to a maximum a posteriori

(MAP) estimate, with φ (x) being interpreted as the negative
logarithm of the prior distribution of the underlying image x.
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The minimization of (4) can also arise if, instead of a Bayesian
approach, we treat the problem in a variational framework.
Indeed, we can interpret (4) as an energy functional consisting
of two terms: the data fidelity fL (x) and the regularizer φ (x).
Then, the estimate of the underlying image corresponds to the
minimizer of this energy functional.

B. Regularization Strategy

Many regularization techniques have been proposed for
solving ill-posed inverse problems. Among the most popular
ones is the TV semi-norm [18] which produces good estimates
for a variety of imaging applications. The main reason for
its wide acceptance in the imaging community is that TV
manages to provide reconstructions with well-preserved and
sharp edges. However, its downside is that it introduces strong
block artifacts, commonly known in the literature as the
staircase effect. In this work, to avoid this undesirable effect,
we employ instead the family of non-quadratic regularizers
that we recently proposed in [16]. Our regularizers are based
on the Schatten norms of the Hessian matrix computed at
every pixel of the image. They can be considered as second-
order extensions of TV, in the sense that they satisfy the same
invariance properties while involving second-order derivatives
instead of first-order ones. Their main feature is that they
favor piecewise-smooth solutions, as opposed to TV which
favors piecewise-constant solutions. Therefore, for a wide
range of images, including those that are commonly met
in biomedical applications, second-order regularization can
potentially provide reconstructions which better approximate
the intensity variations of the underlying image and at the
same time avoid the introduction of severe artifacts [16], [19].

C. Notations and Definitions

In the sequel capital slanted bold-faced letters will be used
to refer to multidimensional arrays, while capital bold-faced
letters will be reserved for matrices. The set of unitary matrices
is denoted as U

n =
{

X ∈ Cn×n : X−1 = XH
}

, where C is the
set of complex numbers and (·)H is the Hermitian transpose.
Further, the set of positive semidefinite diagonal matrices is
denoted as Dn1×n2 =

{

X ∈ R
n1×n2
+ : X (i, j) = 0 ∀ i �= j

}

.

Definition 1 (Schatten norms): Let X ∈ Cn1×n2 be a matrix
with the singular-value decomposition (SVD) X = U�VH ,
where U ∈ Un1 and V ∈ Un2 consist of the singular vectors
of X, and � ∈ Dn1×n2 consists of the singular values of X.
The Schatten norm of order p (Sp norm) of X is defined as

‖X‖Sp
=

⎛

⎝

min(n1,n2)∑

k=1

σ
p

k

⎞

⎠

1
p

, (5)

where p ≥ 1 and σk is the kth singular value of X.
Definition 1 implies that the Sp norm of a matrix X

corresponds to the ℓp norm of its singular-values vector σ ∈
R

min(n1,n2)
+ . This further means that all Schatten norms are

unitarily invariant, which is a highly desirable property that we
are going to exploit next. Moreover, we note that the family
of Sp norms includes three of the most popular matrix norms,

namely, the nuclear/trace norm (p = 1), the Frobenius norm
(p = 2), and the spectral/operator norm ( p = ∞).

D. Discrete Hessian Operator and Its Adjoint

Hereafter, we use H to refer to the discrete version of the
Hessian operator. To simplify our analysis, we assume that the
image intensities on an Nx × Ny grid are rasterized in a vector
x of dimension N = Nx · Ny so that the pixel at coordinates
(i , j) maps to the nth entry of x with n = j Nx +(i+1). In this
case, the discrete Hessian operator is a mapping H : RN 	→ K,
where K = RN×2×2 . For x ∈ RN , Hx is given as

[Hx]n =
[ [

�r1r1 x
]

n

[

�r1r2 x
]

n
[

�r1r2 x
]

n

[

�r2r2 x
]

n

]

, (6)

where n = 1 , . . . , N and �r1r1 , �r2r2 , and �r1r2 denote the
finite-difference operators that compute the discrete approxi-
mations of the second-order partial derivatives along the two
dimensions of the image. In Section IV, where we report
reconstruction results employing the Hessian, we use a forward
finite-difference approximation scheme. Then the second-order
derivative operators �ri r j , are defined as in [16].

We equip the space K with the inner product 〈· , ·〉K and
norm ‖·‖K. To define them, let X, Y ∈ K, with Xn, Yn ∈
R2×2 ∀ n = 1, . . . , N . Then, we have

〈X , Y 〉K =
N
∑

n=1

tr
(

Y T
n Xn

)

(7)

and

‖X‖K =
√

〈X , X〉K =

√
√
√
√

N
∑

n=1

‖Xn‖2
F , (8)

where tr (·) is the trace of the input matrix, (·)T denotes the
transpose operation, and ‖·‖F is the Frobenius matrix norm.
For the Euclidean space RN , we denote its inner product and
norm by 〈· , ·〉2 and ‖·‖2, respectively.

The adjoint of H is the discrete operator H
∗ : K 	→ RN

such that

〈Y , Hx〉K =
〈

H
∗Y , x

〉

2 . (9)

Note that this definition of the adjoint operator is a general-
ization of the Hermitian transpose. Based on the relation of
the inner products in (9), for any Y ∈ K it holds that [16]

[

H
∗Y
]

n
=
[

�∗
r1r1

Y (1,1)
]

n
+
[

�∗
r1r2

(

Y (1,2) + Y (2,1)
)]

n

+
[

�∗
r2r2

Y (2,2)
]

n
, (10)

where �∗
r1r1

, �∗
r1r2

, �∗
r2r2

are the adjoint finite-difference
operators and Y (i, j ) represents an N-size column-vector
that consists of the (i, j) entries of the matrices Yn, with n =
1, . . . , N .
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E. Hessian Schatten-Norm Regularization

Next, we proceed with the definition of the regularization
family that we employ to solve Poisson inverse problems. The
discrete Hessian Schatten-norm regularizers are defined as [16]

HS p (x) = ‖Hx‖1,p =
N
∑

n=1

‖[Hx]n‖Sp
, ∀p ≥ 1 . (11)

Based on their definition, we observe that a close relation
exists between them and the sparsity-promoting group norms,
commonly met in the context of compressive sensing (see [20],
for instance). However, a significant difference is that in (11)
the mixed norm is a vector-matrix norm rather than a vector-
vector norm. Therefore, the sparsity is enforced on the sin-
gular values of the Hessian matrix rather than directly on its
elements.

Since the Hessian of x at each pixel is a 2 × 2 symmetric
matrix, the SVD in the definition of the Schatten norm reduces
to the spectral decomposition and the singular values corre-
spond to the absolute eigenvalues, which can be computed ana-
lytically. This makes the computation of the Hessian Schatten
norms very efficient but also provides us the means to interpret
them. If we consider the intensity map of the (continuous)
image as a 3-D differentiable surface, then the two eigenvalues
of the Hessian at coordinates (i , j) correspond to the principal
curvatures at that point. These can be used to measure how
this surface bends by different amounts in different directions
at that point. Therefore, the proposed potential functions can
be interpreted as scalar measurements of the curvature at a
local surface patch. Note that the S2 norm (Frobenius norm)
of the Hessian is a scalar curvature index, commonly used
in differential geometry, which quantifies lack of flatness of
the surface at a specific point. Since our regularizers combine
these scalar curvature measurements over the whole image
domain, we can infer that they provide a measure of the total
curvature of the image intensity map. Consequently, as we
already mentioned above, our regularizers promote piecewise-
smooth reconstruction solutions.

III. POISSON IMAGE RESTORATION

A. Penalized ML Formulation

Based on the forward model (1) for the Poisson measure-
ments and under Hessian Schatten-norm regularization (11),
a penalized ML estimate x̂ of the underlying image is obtained
as the minimizer

x̂ = arg min
x∈RN

(

f (x) =
M
∑

m=1

([Kx]m − ym log [Kx]m)

+ τ ‖Hx‖1,p + ιC (x)
)

, (12)

where τ ≥ 0 is the regularization parameter which balances
the influence of the data fidelity and the penalty term.

Next, we design different methods that efficiently deal with
Problem (12). The proposed methods rely on the ADMM
optimization framework and will be derived as solvers of

special instances of the generic optimization task

x̂ = arg min
x∈RN

(
K
∑

k=1

fk (Akx)

)

, (13)

where Ak is a linear operator that performs the mapping Ak :
RN 	→ Xk . We further assume that each function fk : Xk 	→
R in (13) is closed, proper, and convex. Our motivation for
first studying (13) instead of directly dealing with (12) is that
this provides a clearer insight and better justifies the splitting
strategies that we pursue in Sections III-C and III-D.

B. Generic ADMM Optimization Framework

In this section, we review the ADMM optimization strategy
that can be utilized to solve the generic problem (13). The
form of (13) is difficult to work with, due to the coupling that
exists among the functions fk . To decouple them, we introduce
the auxiliary variables zk = Akx ∈ Xk and express (13) in the
equivalent constrained form

min
x∈R

N

z=Ax ∈X

f (z) =
K
∑

k=1

fk (zk) , (14)

where z = Ax denotes the mapping of x to the multilinear
space X = X1 × . . . × XK . In this case z and A are formed
as concatenated versions of all the auxiliary variables zk and
the linear operators Ak , respectively:

z =

⎡

⎢
⎣

z1
...

zK

⎤

⎥
⎦ =

⎡

⎢
⎣

A1x
...

AK x

⎤

⎥
⎦ = Ax . (15)

Since (14) corresponds to a constrained minimization prob-
lem, we solve it by forming the augmented Lagrangian and
employing the ADMM algorithm (for comprehensive and
detailed reviews of this optimization strategy, see [21], [22]).
Note that (14) is a special instance of the functions that can
be minimized using ADMM. In particular, ADMM solves
problems of the general form

min
Ax+Bz=c

g (x) + f (z) , (16)

where x ∈ RN , z ∈ RM , A ∈ RL×N , B ∈ RL×M , and c ∈
RL . Now, since in our case A corresponds to a set of linear
operators we can always express the mapping z = Ax ∈ X as
a matrix-vector multiplication with z being properly re-ordered
as a vector and A as a matrix. Then, by choosing B in (16)
to be a negative block-identity matrix, c a zero vector, and
g (x) = 0, we end up with the exact form of Problem (14).
In the sequel we shall retain the operator-based notation since
it is better suited to our needs.

The augmented Lagrangian for Problem (14) is

Lα (x, z, η) = f (z) + 〈η , Ax − z〉X + α

2
‖Ax − z‖2

X
, (17)

where η ∈ X corresponds to the concatenation of the K dual
variables (Lagrange multipliers) ηk ∈ Xk , α > 0 is a penalty
parameter, and 〈· , ·〉X and ‖·‖X denote the inner product and
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the norm of the linear space X , respectively. The ADMM
iterations that solve (14) are given by

zt+1 = arg min
z∈X

f (z) + α

2

∥
∥z −

(

Axt + st
)∥
∥

2
X

(18a)

xt+1 = arg min
x∈Rn

∥
∥
∥Ax −

(

zt+1 − st
)∥
∥
∥

2

X
(18b)

st+1 = st + Axt+1 − zt+1 (18c)

where s = η/α is the scaled version of the dual variable.
Usually in the literature, the z- and x-update steps appear in
reverse order. In this work, however, we choose to perform
the z-update first so as to simplify the initialization process of
our algorithms. Nevertheless, changing the order of the update
steps does not affect the convergence of the resulting ADMM
algorithm [22]. Furthermore, we observe that the argument in
the z-update of the ADMM is decoupled in K independent
components. Indeed, it holds that

f (z) + α

2

∥
∥z −

(

Axt + st
)∥
∥

2
X

=
K
∑

k=1

fk (zk) + α

2

∥
∥zk −

(

Akxt + st
k

)∥
∥

2
Xk

, (19)

and we can thus compute each zt+1
k in (18a) independently as

zt+1
k = prox fk/α

(

ut
k

)

,∀ k = 1, . . . , K , (20)

where ut
k = Akxt + st

k ∈ Xk . There,

prox f (y) = arg min
x∈X

1

2
‖x − y‖2

X
+ f (x) (21)

is the Moreau proximity operator (or proximal map [23]) of
a function f (x) with dom f = X , evaluated at y. If f is
a closed, proper, convex function, then the solution (21) is
unique. The x-update of ADMM corresponds to solving a
quadratic minimization problem. In this case, if at least one
of the operators Ak has an empty non-trivial nullspace1, then
the solution is unique and given by

xt+1 =
(

A∗A
)−1

A∗
(

zt+1 − st
)

=
(

K
∑

k=1

A∗
kAk

)−1 K
∑

k=1

A∗
k

(

zt+1
k − st

k

)

, (22)

where A∗
k is the adjoint operator of Ak that provides the

mapping A∗
k : Xk 	→ RN . Similarly to the z-update, the

s-update in (18c) is performed in a decoupled manner as

st+1
k = st

k + Akxt+1 − zt+1
k ,∀ k = 1, . . . , K , (23)

with sk ∈ Xk .
The minimization approach we considered above is quite

general and apparently depends on the splitting strategy (i.e.,
the choice of A). This permits us to consider several possibili-
ties for the form of A. They will result in different variants of
the ADMM algorithm. We pursue this option in Sections III-C
and III-D where we design two novel algorithms that can find
a numerical solution to Problem (12).

1A typical example of a linear operator with an empty non-trivial nullspace
is the identity operator.

C. Splitting of the Data Fidelity Term

One way to decouple the objective function f (x) is to
formulate the unconstrained minimization problem (12) as

min
x∈RN

zk=Akx ∈Xk ,k=1,2

f1 (z1) + f2 (z2) (24)

where A1 = K, A2 = I, and

f1 (z1) =
M
∑

m=1

([z1]m − ym log [z1]m)

f2 (z2) = τ ‖Hz2‖1,p + ιC (z2) . (25)

What remains now is to specify the form of the ADMM update
steps described in (18).

To perform the z-update of (18a) we need to compute the
proximal maps of the functions defined in (25). The proximal
map prox f1/α

(

ut
1

)

, with ut
1 = Kxt + st

1, is separable and is
computed component-wise. The solution for each component
of the auxiliary variable z1 is obtained by solving a minimiza-
tion problem of the form

arg min
z∈R+

1

2
(z − u)2 + 1

α
(z − y log (z)) . (26)

Since the function under minimization is smooth, the solution
corresponds to the positive root of a second-order polynomial.
Based on this fact, it is simple to show that

zt+1
1 = 1

2

⎛

⎝ut
1 − 1

α
+

√
(

ut
1 − 1

α

)2

+ 4y

α

⎞

⎠ , (27)

where all the operations are performed component-wise.
To evaluate the proximal map prox f2/α

(

ut
2

)

, with ut
2 =

xt + st
2, we employ the iterative algorithm we recently intro-

duced in [16]. This method finds a numerical solution to the
minimization problem

arg min
x∈Rn

1

2
‖x − y‖2

2 + τ ‖Hx‖1,p + ιD (x) ∀p ≥ 1 , (28)

where D is a convex set (in our case D ≡ C) and ιD represents
additional constraints on the solution. As in the case of the
numerical methods developed for computing the proximal map
of other functionals, such as TV, our algorithm for the Hessian
Schatten-norm regularizers is only meant to run for a finite
number of iterations. Therefore, the practical result will be an
approximation of the solution. However, this is not going to
jeopardize the convergence of the overall algorithm, thanks to
a theorem provided by Eckstein and Bertsekas [24]. According
to this theorem, even an inexact optimization of the internal
ADMM sub-problems is sufficient to guarantee convergence,
under the requirement that the approximation error of the sub-
problems is absolute-summable. To that end, similar to the
strategy adopted for the TV case in [13], we initialize the
internal variables of the algorithm we designed in [16] with
those obtained in the previous ADMM iteration.

The x-update of the algorithm depends on the solution of the
quadratic minimization problem that corresponds to solving
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the following system of linear equations:

xt+1 =
(

KT K + I
)−1 (

KT
(

zt+1
1 − st

1

)

+
(

zt+1
2 − st

2

))

.

(29)

In practice, due to its large size, the
(

KT K + I
)−1

oper-
ator cannot be computed. However, if we assume periodic
boundary conditions for the image, then a blurring operation
corresponds to circular convolution and the operator KT K + I

is diagonalized by the fast Fourier transform (FFT) [25].
In this case, the x-update (29) is computed very efficiently in
a single step without having to resort to an iterative method.
The same holds if we assume Neumann (mirror) boundary
conditions, where the operator is now diagonalizable by the
discrete cosine transform (DCT) [25]. Moreover, we note that
the matrix inversion can also be computed very efficiently
for a number of other types of linear degradation operators
(see [26]). Finally, for the case of inverse problems where the
degradation operator K does not exhibit any special structure,
we can find the solution of (29) employing the conjugate-
gradient (CG) method [27]. An approach that we have found
to work well in practice and does not introduce a significant
computational overhead is to employ CG with a “warm-start”
strategy. This strategy amounts to choosing the starting point
of CG to be the solution of the quadratic sub-problem of the
previous ADMM iteration. We have observed that by following
this simple strategy and by just running a few CG iterations we
can efficiently minimize the overall objective function without
compromising the convergence of our algorithm (results are
not reported here). In fact, we manage to obtain almost exactly
the same solution and at the same rate of convergence with
the solution one gets by computing the x-update in closed-
form. Similar findings to ours have also been recently reported
in [28], where the authors employ an ADMM strategy for
differential phase contrast X-ray tomogram reconstruction.
Whenever this is possible, the number of CG iterations can
be further reduced by employing a preconditioned conjugate
gradient algorithm.

A summary of the overall proposed numerical algorithm,
which we will refer to as HSPIRAL1 (Hessian Schatten-norm
Poisson Image Reconstruction by Augmented Lagrangian), is
provided in Algorithm 1.

D. Splitting of the Data Fidelity and Penalty Terms

Another way to decouple the objective function f (x) is to
formulate the unconstrained minimization problem (12) as

min
x∈R

N

zk=Akx ∈Xk ,k=1,...,3

f1 (z1) + f2 (z2) + f3 (z3) (30)

where A1 = K, A2 = H, A3 = I, and

f1 (z1) =
M
∑

m=1

([z1]m − ym log [z1]m)

f2 (z2) = τ ‖z2‖1,p

f3 (z3) = ιC (z3).

(31)

The operator A1 and the function f1 in (31) are the same
as those in our previous splitting approach. Therefore, the

Algorithm 1 Hessian Schatten-norm Poisson Image Recon-
struction by Augmented Lagrangian (HSPIRAL1).

proximal map prox f1/α

(

ut
1

)

, with ut
1 = Kxt + st

1, is given
by (27). Moreover, since f3 is an indicator function, its
proximal map corresponds to the projection onto the convex
set C. This projection can be computed as

prox f3/α

(

ut
3

)

= max
(

ut
3 , 0

)

, (32)

where ut
3 = xt + st

3, 0 is a zero vector of the same size
as ut

3, and the maximum operation in (32) is computed
in a component-wise fashion. Lastly, to complete with the
z-updates we also need to compute the proximal map related
to the function f2. To do so, we first note that A2 corre-
sponds to the Hessian operator. Thus, it holds that z2 ∈ K.
In addition, we can also show that prox f2/α

(

ut
2

)

is separable,
with ut

2 = Hxt + st
2 ∈ K. Indeed, for a variable Y ∈ K we

have that

prox f2/α
(Y ) = arg min

X∈K

1

2
‖X − Y‖2

K
+ τ

α
‖X‖1,p

= arg min
Xn∈R2×2

N
∑

n=1

1

2
‖Xn − Yn‖2

F + τ

α
‖Xn‖Sp

.

(33)

From (33), we easily verify that the minimization can be
performed independently for each matrix component Yn of Y .
Therefore, the computation of the proximal map of f2 boils
down to computing the proximal maps of N functions defined
as the Sp norms of a 2 × 2 matrix multiplied by a constant:

proxτ‖·‖Sp
(Y) = arg min

X∈R2×2

1

2
‖X − Y‖2

F + τ ‖X‖Sp
. (34)
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This operation can be performed efficiently based on the
Proposition 1 which provides a direct link between the proxi-
mal map of an ℓp vector-norm and the proximal map of an Sp

matrix-norm. This result is new, to the best of our knowledge.
Proposition 1: Let Y ∈ Cn1×n2 be a matrix with the SVD

decomposition Y = U�VH , where U ∈ U
n1 , V ∈ U

n2 , and
� ∈ Dn1×n2 . If ψp (·) = τ ‖·‖Sp

and φp (·) = τ ‖·‖p, then the
proximal map

X̂ = proxψp
(Y) (35)

is equal to

X̂ = Udiag
(

proxφp
(σ )
)

VH , (36)

where diag (·) is the operator that transforms a vector to a
diagonal matrix and σ denotes the vector with the singular
values of Y.

Proof: Since all Schatten norms are unitarily invariant,
the proximal map (35) can be equivalently written as

X̂ = proxψp
(Y) = arg min

X

1

2
‖X − Y‖2

F + τ ‖X‖Sp

= arg min
X

1

2

∥
∥
∥UH XV − UH YV

∥
∥
∥

2

F
+ τ

∥
∥
∥UH XV

∥
∥
∥
Sp

.

(37)

Let us now consider the matrix Z = UH XV that is associated
with the solution of (37). If we substitute Z in (37), then we
end up with the regularized problem

Ẑ = arg min
Z

1

2
‖Z − �‖2

F + τ ‖Z‖Sp

︸ ︷︷ ︸

h(Z;�)

. (38)

Next, we show that the optimal solution of (38) should be a
positive semidefinite diagonal matrix. Indeed, we have

h
(

Ẑ; �
)

= 1

2
‖Ẑ‖2

F + 1

2
‖�‖2

F − Re
(

tr
(

ẐH �
))

+ τ‖Ẑ‖Sp

≥ 1

2
‖�̂‖2

F + 1

2
‖�‖2

F − tr
(

�̂T �
)

+ τ‖�̂‖Sp

= 1

2
‖�̂ − �‖2

F + τ‖�̂‖Sp
= h

(

�̂; �
)

, (39)

where �̂ is a diagonal matrix with the singular values of Ẑ.
We note that the inequality in (39) follows from

Re
(

tr
(

AH B
))

≤ 〈σA , σB〉2 , (40)

where A, B ∈ C
n1×n2 and σA, σB are the vectors with the

singular values of A and B, respectively. The inequality in (40)
stems from von Neumann’s trace theorem [29]. Further, the
equality ‖Ẑ‖Sp

= ‖�̂‖Sp
,∀p ≥ 1, is a direct consequence of

the Schatten-norm definition.
Now, we argue that, since Ẑ is the minimizer of the

function h, h
(

Ẑ; �
)

should be the smallest of all values.
However, in (39) we obtained a lower bound on this value,
which immediately implies that h

(

Ẑ; �
)

= h
(

�̂; �
)

and

therefore Ẑ = �̂. This means that Ẑ is a positive semidefinite
diagonal matrix. We then express the solution of (38) as
Ẑ = diag

(

ẑ
)

, where ẑ is given by

ẑ = proxφp
(σ ) = arg min

z∈Rmin(n1,n2)

1

2
‖z − σ‖2

2 + τ ‖z‖p , (41)

and σ is the vector formed by the diagonal entries of �. Using
this result and the relation between the optimal solutions of
(37) and (38), we are finally led to (36).

Based on Proposition 1, we design an algorithm to evaluate
the proximal map of an Sp norm. The algorithm consists of
three steps: (a) decompose Y in its singular vectors and singu-
lar values by means of the SVD; (b) evaluate the proximal map
of the ℓp norm at σ (a vector with the singular values of Y);
and (c) obtain the final result via singular-value reconstruction
(SVR) using the result obtained at step (b).

As it turns out, this algorithm depends on our ability to
evaluate the proximal map of the ℓp norm. Fortunately, this
dependency does not introduces any difficulties thanks to
the efficient proximity algorithm for ℓp norms that has been
recently proposed in [30]. Moreover, in Section III-E we
report three cases of Sp norms, for p = 1, 2,∞, where their
proximal map can be evaluated in closed form.

The x-update for the current splitting approach is obtained
by solving a system of linear equations of the form

xt+1 =
(

KT K + H
∗
H + I

)−1 (
KT

(

zt+1
1 − st

1

)

+ H
∗
(

zt+1
2 − st

2

)

+
(

zt+1
3 − st

3

)
)

, (42)

with H
∗
H = �∗

r1r1
�r1r1 +2�∗

r1r2
�r1r2 +�∗

r2r2
�r2r2 . Similarly

to the x-update of the HSPIRAL1 algorithm that we proposed
in Section III-C, we can either employ the CG method or
assume periodic or mirror boundary conditions for the image
to find the solution of (42). Likewise, the adequate choice for
the extension of the image leads to an efficient computation
without the need of an iterative method. A summary of the
overall proposed numerical algorithm which we will refer to
as HSPIRAL2, is provided in Algorithm 2.

A last comment on HSPIRAL1 and HSPIRAL2 is that
they can be viewed as extensions of the PIDAL-TV [13]
and PIDSplit+ [14] algorithms. These numerical methods
perform image reconstruction under Poisson noise subject to
TV regularization, while our proposed algorithms perform
Poisson image reconstruction subject to Hessian Schatten-
norm regularization. Therefore, while PIDAL-TV and
PIDSplit+ can handle linear vector-valued regularization oper-
ators, HSPIRAL1 and HSPIRAL2 are extensions to linear
matrix-valued operators. Also note that the splitting approach
we use in HSPIRAL1 is novel and differs from the one in [13],
reducing the number of auxiliary functions from three to two.
Finally, we would like to emphasize that our proposed methods
are not limited to the use of the Hessian operator but are
general enough to accommodate other (real or complex) linear
matrix-valued regularization operators.

E. Closed Form of Sp-Norm Proximal Maps for p = 1, 2,∞
From Proposition 1, we have that the proximal map of the

S1 norm is linked to the proximal map of the ℓ1 norm. The
latter is computed by applying the soft-thresholding operator
Sγ (σ ) = max (σ − γ, 0) [31], where the max is applied
component-wise and γ is a threshold. Therefore, we have

proxτ‖·‖S1
(Y) = Udiag (Sτ (σ )) VH , (43)
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Algorithm 2 Hessian Schatten-norm Poisson Image Recon-
struction by Augmented Lagrangian (HSPIRAL2).

where σ denotes the vector with the singular values of Y. Note
that this result corresponds to the singular-value thresholding
(SVT) method [32], [33], first developed in the field of low-
rank matrix reconstruction. The derivation of the SVT method
in [32], [33] is quite technical. It relies on the characterization
of the subgradient of the nuclear norm [34]. By contrast, our
result comes out naturally as an immediate consequence of
Proposition 1. To obtain the proximal map of the S2 norm, we
use Proposition 1 and the proximal map of the ℓ2 norm [21,
Section 4.2]. Then, it is simple to show that

proxτ‖·‖S2
(Y) =

{

O , if ‖Y‖S2
≤ τ

( ‖Y‖S2
−τ

‖Y‖S2

)

Y , if ‖Y‖S2
> τ ,

(44)

where O is a zero matrix of the same size as Y. This situation
is advantageous since it allows us to avoid both the SVD
and the SVR steps. Consequently, this drastically reduces the
complexity for the computation of the proximity operator.
Finally, for the S∞ norm, the result depends on the proximal
map of the ℓ∞ norm

proxτ‖·‖∞ (σ ) = min (σ , τγ · 1) , (45)

where 1 is a vector of ones and the min operation is com-
puted component-wise. In general, the threshold γ cannot
be obtained in closed form, so we have to recourse to one
of the methods available in the literature [35]–[38] to find
it. However, in our case, for σ ∈ R2

+, we can compute it

analytically

γ =

⎧

⎪
⎨

⎪
⎩

0 , if σ1 ≤ 1 − σ2 ,
σ1+σ2−1

2 , if 1 − σ2 < σ1 ≤ 1 + σ2 ,

σ1 − 1 , if σ1 > 1 + σ2 ,

(46)

where σ1, σ2 are the largest and smallest elements of σ ,
respectively. Now, we express the S∞ proximal map as

proxτ‖·‖S∞
(Y) = Udiag (min (σ , τγ · 1)) VH . (47)

IV. EXPERIMENTAL RESULTS

Our goal in this section is to assess experimentally the
quality of reconstruction obtained by using penalty terms
from the Hessian Schatten-norm family. Additionally, we want
to illustrate the effectiveness of the proposed optimization
strategies for the problem of Poisson image restoration. Our
results are compared against the ones obtained by using three
alternative regularizers; namely, TV and the fully redundant
Haar and Daubechies (with four vanishing moments, DB4)
wavelet transforms. In the wavelet case, we focus on FA
regularization to deblur images since it has been reported in
the literature (c.f [13], [39]) that FS usually leads to inferior
results. In particular, the regularizers we employ correspond
to the ℓ1 norm of the wavelet coefficients. If we denote the
wavelet frame-analysis operator by �, then the regularizer
of choice is ‖S�x‖1, where S is a masking operator which
zeroes out the scaling coefficients so that they do not influence
the value of the penalty function. This is common practice
in wavelet-based techniques since the wavelet coefficients are
sparse while the scaling coefficients, which are related to the
low-frequency content of the image, are not.

A. Algorithmic Performance

We examine the convergence performance of the two pro-
posed algorithms, HSPIRAL1 and HSPIRAL2. To do so, we
consider the restoration of a degraded version of the Face
image shown in Fig. 1 using the HS2 regularizer (11). The
original image is scaled to a maximum intensity of M = 25
and its quality is degraded by Gaussian blurring of standard
deviation σb = 4 and subsequent “addition" of Poisson noise.
Since the two algorithms under study involve the solution
of different sub-problems, their computational complexity is
not the same. In particular, a main difference is that the
proximal map (28) of HSPIRAL1 cannot be obtained in
closed-form and needs to be computed iteratively. To estimate
this proximal map we use just 5 inner iterations, which from
our experience does not seem to compromise the convergence
of the overall algorithm. Then, we run the two methods
for the same amount of time. In both cases, we use the
observed degraded image as the initial solution and set the
penalty parameter as α = 60τ/M . In Fig. 3(a) we present for
both algorithms the evolution of the objective cost function
f (x) in (12). We present in Fig. 3(b) the evolution of the
normed residual error ‖z − Ax‖X . This residual error indicates
how efficiently the equality constraints, which involve the
auxiliary variables that are used in the splitting process, are
enforced. The two plots of Fig. 3 allow us to conclude that
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Fig. 1. Set of natural test images. From left to right: Boat, Face, Hill, House, Kids, Peppers, and Wall.

Fig. 2. Set of biological test images. From left to right: Chick chorioallantoic membrane (CAM), CAM2, Fluorescent cell, Leukocyte (White blood cell),
and Thrombus (blood clot).

HSPIRAL1 converges faster than HSPIRAL2 for the Face
image. However, since the penalty parameter α in general
influences significantly the speed of convergence of every
ADMM-based algorithm, this result is not conclusive about the
relative efficiency of the two algorithms. Still, combined with
the theoretical guarantee of convergence for HSPIRAL2, this
result can serve as an indication that HSPIRAL1 behaves well
despite the approximate evaluation of the proximal map (28).

B. Restoration Settings

For the comparisons among the different regularization
schemes we use two distinct set of images. The first set is
composed of eight grayscale natural images, that is the images
shown in Fig. 1 plus the standard Lena image2. Four of them
are well-known standard test images of size 512 × 512 pixel
(except the Peppers image which is of size 256 × 256) with
the additional images3 being of size 255 × 255. Given that
our main interest leans toward biomedical imaging, we also
conduct experiments on a second set composed of the five
biological images shown in Fig. 2. Four of these images
are part of the biomedical image database [40], they were
converted to grayscale and resized. The largest resulting image
has a dimension of 314 × 402 pixel. The last member of this
set is of size 512 × 512.

The performance of every regularizer under comparison
is assessed for various blurring kernels and different noise
levels. In particular, we employ three point-spead functions
(PSFs) to produce blurred versions of the natural images.
We use a Gaussian PSF of standard deviation σb = 4,
a moving-average (uniform) PSF, and a motion-blur kernel.
The first two PSFs have a support of 9 × 9 pixel while
the third one has a support of 19 × 19 pixel. To simulate
various SNR values of Poisson noise we scale the images
to have a maximum intensity of (5, 25, 100, 255). Since
Poisson noise is signal-dependent with local SNR =

√
λk ,

where λk denotes the underlying image intensity at position
k, the relative amount of noise increases as the maximum

2Due to a reviewer’s request we removed the Lena image from Fig. 1.
3These images along with the motion-blur kernel used in the

experiments can be obtained from http://www.wisdom.weizmann.ac.il/
∼levina/papers/LevinEtalCVPR09Data.rar.

Fig. 3. Comparisons of the speed of convergence among HSPIRAL1 and
HSPIRAL2. Evolution of (a) the objective cost function f (x) of (12) and
(b) the normed residual error ‖z − Ax‖X .

intensity of the image decreases. The mean intensity for
each maximum intensity level, for all natural images, varies
in the ranges of [1.20 , 2.54], [5.98 , 12.72] [23.92 , 50.97],
[61 , 129.71] covering a wide gamut of noise levels. For the
set of biological images we use two PSFs that can better
approximate the spatial response of a microscope, namely, a
Gaussian PSF of standard deviation σb = 4 and support size
7 × 7 and an airy disk PSF of support 31 × 31. The latter was
obtained using our software4 according to the Richards-Wolf
PSF model [41]. For this image set, the Poisson noise levels
are generated with the images scaled to a maximum intensity
of (10, 50, 250, 500). In this case, the mean intensity for each
maximum intensity level varies in the ranges of [1.76 , 4.73],
[8.82 , 23.66], [44.08 , 118.31], [88.17 , 236.61].

Regarding the minimization of the objective functions, for
the Hessian Schatten-norm regularizers we report the results
obtained using HSPIRAL1. For the TV seminorm and the
two wavelet-based penalties we use a similar optimization
strategy with the difference being that, instead of the proximal
map (28), we evaluate the proximal maps that are related
to properly modified versions of f2 in (25). This evaluation
is performed by the algorithm proposed in [42] which is
an extended version of Chambolle’s dual algorithm [43] for
constrained optimization. The adopted minimization approach
for these three regularizers can be considered as a modification

4Software is available at http://bigwww.epfl.ch/algorithms/psfgenerator
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Fig. 4. Restoration of the Face image, scaled to a maximum intensity of
M = 25 and degraded by Gaussian blurring and Poisson noise. (a) Degraded
image (PSNR = 17.01 dB), (b) DB4 result (PSNR = 23.30 dB), (c) TV result
(PSNR = 23.10 dB), and (d) HS1 result (PSNR = 23.90 dB).

of the PIDAL-TV algorithm [13] that reduces the required
number of auxiliary splitting variables. The rationale for our
choice, is that the comparison among the different regular-
izers is more meaningful that way, since the quality of the
restoration does not depend on the choice of the minimization
strategy but rather on the choice of the regularizer. After
all, PIDAL-TV is ranked among the most efficient opti-
mization techniques for Poisson inverse problems under TV
regularization.

To ensure convergence of the methods, the stopping cri-
terion is always triggered by a relative normed difference
of 10−5 between two successive estimates, or by a maxi-
mum of 400 iterations. Further, we use 5 inner iterations
for computing the proximal maps of all the different ver-
sions of f2 in (25). Finally, the quality of the reconstructed
images is assessed in terms of PSNR measured in dB and
defined as 10 log10

(

M2/MSE
)

, where M denotes the maxi-
mum intensity of the underlying image and MSE stands for
the mean squared error between the restored and the noiseless
image.

C. Poisson Deblurring of Natural Images

In Table I, we provide comparative Poisson image restora-
tion results for the set of natural images and for many combi-
nations of blurring and noise levels. Regarding the Hessian
Schatten-norm regularizers, we report the results obtained
employing Schatten norms or order one, two, and infinity.
They correspond to the nuclear, Frobenius, and spectral matrix
norms, respectively. The PSNR scores are pooled over 10

Fig. 5. Restoration of the House image, scaled to a maximum intensity of
M = 100 and degraded by motion blurring and Poisson noise. (a) Degraded
image (PSNR = 19.92 dB), (b) Haar result (PSNR = 23.14 dB), (c) TV result
(PSNR = 23.13 dB), and (d) HS2 result (PSNR = 23.71 dB).

Fig. 6. Restoration of the Wall image, scaled to a maximum intensity of
M = 255 and degraded by uniform blurring and Poisson noise. (a) Degraded
image (PSNR = 19.59 dB), (b) DB4 result (PSNR = 23.92 dB), (c) TV result
(PSNR = 23.93 dB), and (d) HS∞ result (PSNR = 24.26 dB).

independent realizations of Poisson noise. For the sake of
consistency, the reported results for each regularizer under
comparison, including TV, Haar, and DB4, are derived using
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TABLE I

PSNR COMPARISONS (POOLED OVER 10 TRIALS) ON POISSON IMAGE RESTORATION FOR THREE BLURRING KERNELS AND FOUR NOISE LEVELS

the individualized regularization parameter τ that gives the
best PSNR performance while, similar to [13], the penalty
parameter in the ADMM updates is chosen as α = 60τ/M .
According to the authors in [13], this heuristic choice of
the ADMM penalty parameter appears to lead to satisfactory
results for wavelet and TV regularization. Moreover, choosing
a value which is an order above or below this choice does
not change significantly the convergence behavior of the
algorithm.

From Table I, we observe that the Hessian-based regular-
ization framework almost always results in the best restoration
performance and leads to improved quantitative results com-
pared to TV and to wavelet-based regularization. The HS1

regularizer achieves slightly better pooled scores than HS2.
The HS∞ regularizer, while not performing as well as the
other two members of the family, in most of the cases still
performs better than the other alternative approaches. The TV

regularizer consistently outperforms the Haar frame operator,
which sometimes falls behind more than 1 dB compared to
the best achieved PSNR result. However, for certain images
the DB4 wavelet regularization outperforms TV.

Beyond quantitative comparisons, the improved perfor-
mance of the Hessian-based regularization framework can also
be visually appreciated by inspecting the representative Pois-
son image restoration examples provided in Figs. 4–6. Even
in cases where the PSNR improvement over the competing
regularizers is not substantial, the HS p penalty functions
result in image estimates with finer feature reconstructions
and avoid the presence of strong artifacts. On the other hand,
as it is verified from Figs. 4–6, block artifacts are intro-
duced by the Haar and TV regularizers, while ringing-artifacts
are introduced by the DB4 regularizer. These are becoming
even more pronounced when the level of Poisson noise is
increased.
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TABLE II

PSNR COMPARISONS (POOLED OVER 10 TRIALS) ON POISSON IMAGE RESTORATION FOR TWO BLURRING KERNELS AND FOUR NOISE LEVELS

Fig. 7. Restoration of the CAM2 image, scaled to a maximum intensity of
M = 50 and degraded by airy-disk blurring and Poisson noise. Close up of
(a) Degraded image (PSNR = 18.29 dB), (b) DB4 result (PSNR = 22.13 dB),
(c) TV result (PSNR = 22.03 dB), and (d) HS1 result (PSNR = 22.44 dB).

Regarding the computational cost, we report the execution
time of all methods under comparison for the restoration of
the Face image under Gaussian blur and at a peak intensity 25.
For each regularization method we used the regularization
parameter that led to the best PSNR performance. The sim-
ulations were performed on a laptop with a 2.5 GHz Intel
Core i7 Processor and 8 GB memory, using a MATLAB
implementation of the algorithms. The reconstruction of the
image using the HS p regularizers for p = 1, 2,∞, took 29.2,
19.8, and 29.3 seconds, respectively. The TV reconstruction
was obtained in 20.71 seconds, while the Haar and DB4

reconstructions in 57.7 and 76.7 seconds, respectively. Note
that while each of the HSPIRAL1 iterations is more expensive
than TV’s, the termination criteria are satisfied earlier, which
explains why in the HS2 case the running time is smaller.

Fig. 8. Restoration of the Thrombus image, scaled to a maximum intensity of
M = 250 and degraded by Gaussian blurring and Poisson noise. Close up of
(a) Degraded image (PSNR = 20.88 dB), (b) Haar result (PSNR = 22.70 dB),
(c) TV result (PSNR = 23.07 dB), and (d) HS2 result (PSNR = 23.55 dB).

D. Poisson Deblurring of Biological Images

A potential and quite promising application of the photon-
imaging observation model is biomicroscopy. There, the most
dominant noise source is the shot noise, which obeys a Poisson
law. An extra degradation factor is the out-of-focus blur due
to the poor localization of the PSF of the microscope. Since
the use of the proposed regularization framework seems to
have a practical relevance in this field, we provide in Table II
comparative restoration results for the set of biological images
shown in Fig. 2. As with natural images we report the results
obtained with the same HS p regularizers and we compare
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their performance with wavelet-based and TV regularization.
Likewise, we observe once more that the Hessian-based regu-
larizers, combined with the proposed minimization approach,
consistently outperform the alternative regularization schemes.
Moreover, since the biological images of Fig. 2 consist of
smooth intensity transitions and filament-like features, the
HS p regularizers are well-tuned to these image properties and
result in satisfactory reconstructions. Representative restora-
tion examples of biological images are illustrated in Figs. 7
and 8. There, we observe that the Haar and TV penalties have
the effect of shuffling the details of the images and broadening
their fine structures, while the wavelet regularization with
higher vanishing moments (DB4) introduces ringing artifacts.
On the other hand, the Hessian-based regularizers show a
better reconstruction behavior and restore the image features
more accurately.

V. CONCLUSION

We proposed an efficient framework for Poisson image
reconstruction subject to regularization which depends upon
potential functions acting on the eigenvalues of the Hessian.
Our motivation for employing this class of penalty terms
stems from the fact that they have recently been shown
to perform well for linear inverse problems with Gaussian
noise. We observe that their performance remains consistent
in the case of Poisson noise. We designed two algorithms
that optimize the corresponding objective functions. They are
based on an augmented Lagrangian formulation and arise as
two different ADMM variants. The second variant depends
heavily on a result we derive in this paper. This result relates
the evaluation of the proximal map of a Schatten matrix-norm
of order p with the evaluation of the proximal map of the ℓp

norm. The scope of this link, while being fundamental to the
development of our second proposed algorithm, is general and
potentially has a wider applicability that extends beyond this
paper.

The practical relevance of the proposed regularization
framework, as well as the effectiveness of our novel min-
imization approach, was verified through comparisons with
alternative methods, including total variation, for the problem
of Poisson image deblurring of natural and biological images.
The results we obtained are promising and competitive. They
provide an indication that this framework can be considered
as a viable alternative to other existing schemes.
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