
transactions of the
american mathematical society
Volume 297, Number 2, October 1986

POISSON INTEGRALS OF REGULAR FUNCTIONS

JOSÉ R. DORRONSORO

ABSTRACT. Tangential convergence of Poisson integrals is proved for certain
spaces of regular functions which contain the spaces of Bessel potentials of Lp
functions, 1 < p < oo, and of functions in the local Hardy space h1, and the
corresponding tangential maximal functions are shown to be of strong p type,
p> 1.

1. Introduction. It is well known that for a general Lp function /, 1 < p < oo,
its Poisson integral u(x,y) = Py*f(x) (Py(z) = c„t//(|.s|2+y2)(n+1)/2,z £ Rn,y >
0) converges nontangentially to f(x) a.e. when y tends to 0. It is also well known
[18, p. 280] that for general Lp functions this result fails when convergence inside
regions with some degree of tangentiality is considered.

However, tangential convergence holds for certain classes of functions: Nagel,
Rudin, and Shapiro have recently established [14] the existence of tangential limits
for a large class of potentials of Lp functions (see also [14] for earlier results). A
particular instance are the spaces Lp — {Ja * f: f £ Lp}, 1 < p < oo, (Ja)~(z) =
(1 + |z|2)-a/2, of Bessel potentials of Lp functions, for which explicit approach
regions are given: if 1 < p < n/a and x £ Rn, define Da<p(x) as

(i) DaiP(x) = {(z,y) £ R^+1 :\z-x\< yx-p/n}, p <n/a,
(ii) DaiP(x) = {(z,y) £ R^+1 :\z-x\< (logl/y)-*""1)/», y < í/e}, p = n/a>

1,
(iii) Dn<1(x) = {(x,y) £ R;+1: \z - x\ < (logl/y)x/n, y < 1/e}.

Then [14, Theorems 2.9, 3.13, and 5.5]
(i) if 1 < p < n/a and f £ Lp, u(x,y) = Py * f(z) tends to f(x) inside Da:P(x)

for a.e. x £ Rn;
(ii) if 1 < p < n/a, f £ Lp and 0 < b < a, u(z,y) tends to f(x) inside Dt,,v(x)

for Ba-b,p a.e. x £ Rn(BStt denotes (s,t) Bessel capacity; see §2).
Note that'if a > n/p and / £ Lp, f is continuous.
Furthermore, it is shown in [14, Theorem 3.8] that the corresponding maximal

operators T0,p/(x) = sup{|u(z,y)|: (z,y) £ Da,p(x)} verify ||TaiP/||p < C||/||lp,
whereas for p = 1 Nagel and Stein proved [15, Theorem 5] that if F is in the Hardy
space Hx, \\Ta!f(JaF)\\f < C||P||#i, a < n ([15] also contains results for Bessel
potentials of Hp, p > 0).

The tangentiality of the approaching regions is shown in [14] to depend on the
corresponding Bessel kernels Ja; here we will see how it can also be related to the
regularity of the Lp functions. In fact, similar results (Theorems 1 and 2 below)
hold for a larger class of functions, which we now define. If Pfc denotes the set of
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670 J. R. DORRONSORO

all polynomials of degree k,x £ Rn, i>0, l<r<oo and / £ Lxoc, consider the
"polynomial approximation" operator

E?f(x,t) = sup¿g^f \f-P\
the sup taken over all cubes Q with x £ Q and having Lebesgue measure \Q\ = tn
(throughout the paper jE f or /e stand for the mean ¡Ef dz/\E\).

Now, if o > 0 and m = [a], its integral part, we define Gaf(x,t) =
supa<ts~aE1mf(x, s), Gaf(x) = Gaf(x, oo) (in what follows, if k — m and r = 1,
we will write Ef(x, t) instead of E™f(x, t)); then Cp, 1 < p < oo, denotes the space
of those Lp functions / such that Gaf £ Lp; with the norm ||/||a,p = ||/||p+||Ga/||p,
Cp becomes a Banach space. These spaces were introduced by Calderón and Scott
[4] and are extensively studied by Devore and Sharpley in [8].

Our results are given for a proper subset of Cp, the closed subspace Fp of those
/ £ Cp such that Gaf(x,t) = o(l) a.e. as t goes to 0 (in fact Fp, p < oo, is the
closure of Cq°, the compactly supported C°° functions; see §3). Cp and Fp can be
seen as global versions of the spaces Tp(x) and tp(x) of Calderón and Zygmund [5].
If 1 < p < oo, Lp is continuously imbedded in Fp; indeed, / £ Lp iff / £ Lp and

a oo \ 1/2
Ef(x,t)2r2a-Xdt\     eLp,

and ||/||lp ~ ||/||p+||G0,2/||p (see [9]; by A ~ B we mean that A/C <B<CA, for
some constant C; in what follows C will stand for any constant independent of sets,
points, or functions, and not necessarily the same on each appearance). However,
although the imbedding Lp c Fp is proper, the Poisson integrals of functions in
Fp and Lp have the same tangential behavior:

THEOREM 1. If 1 < p < n/a or p = n/a > 1 and f £ Fp, then u(z,y) =
Py * f(z) tends to f(x) a.e. when (z,y) tends to x inside DatP(x).

The restriction p < n/a is due to the fact that functions in Fp are continuous
when p > n/a, and the same is true in Fx [8, p. 68].

For functions in Fp the exceptional set also becomes smaller when the tangen-
tiality of the approach regions is decreased; in fact the results of [14] can be slightly
improved:

THEOREM 2. (i) If f e Fp, 1 <p < n/a, and 0 < b < a, then u(z,y) converges
to f(x) inside D0iP(x) for all x except a set of zero Hn~^a~h^p Haus dorff measure;
if moreover p > 1, u converges nontangentially to f(x) Ba%p-a.e.

(ii) If p = n/a > 1 and p < r < oo, u converges to f(x) inside Dn/r%r(x) for
Hnplr-a.a. x, whereas if b is such that 0 < b < n/p, u converges to f(x) inside
Db,p(x) for Bn/p,p-a.a. x.

Theorem 2 requires some explanation: functions in Fp are defined in principle
only a.e.; Theorem 2 will be shown to hold after suitably redefining them on a zero
measure set.

As could be expected, Theorems 1 and 2 are deduced from weak type estimates
for the tangential maximal operators TaiPf(x) — sup{\u(z,y)\: (z,y) £ Da,p(x)},
but since functions in Fp are not representable as potentials of Lp functions, we rely

l/r
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POISSON INTEGRALS OF REGULAR FUNCTIONS 671

on certain Sobolev and Trudinger type inequalities for them (Theorem 5). However,
these weak type inequalities can be strengthened.

THEOREM 3.  IffeCp,l<p< n/a, then \\Ta,pf\\p < C\\f\\a,p.
The proof of Theorem 3 is modelled after that of Theorem 3.8 in [14], but with

an important difference: the key argument in [14], Hansson's strong capacitary
estimates [10], is no longer available here and a strong estimate, valid if 1 < p < oo,
for a certain Cp capacity type function, is proved (Theorem 6) along the lines of
similar results by Adams [2] and Dahlberg [7].

Besides Lp, the so-called Triebel-Lizorkin spaces Fp>q, 1 < p,q < oo, a > 0 (see
[17] or §6 for the definition) are also continuously imbedded in Fp (Proposition 3)
and therefore, the above theorems apply to them; we point out that if 1 < p < oo,
Fp'2 = Lp, whereas Fx'2 coincides with the space of Bessel potentials of functions
in D. Goldberg's local Hardy space hx [17, p. 51]. We also remark that Y. Mizuta
has recently proved [13] results similar to those of Theorems 1 and 2 for functions
being locally in the Besov space Bp>p, 0 < a < 1. Since Bp'p = Fp<p, Theorems 1
and 2 contain a global version of Mizuta's results.

The paper is organized as follows: §2 contains certain preliminary facts about
capacities and Hausdorff measures. The spaces Fp are studied in some detail in §3.
Theorems 1 and 2 are proved in §4 and Theorem 3 in §5. Finally, in §6 Triebel-
Lizorkin spaces Fp'q, 1 < p, q < oo, a> 0 are considered.

2. Preliminary results. For a > 0 Ja will denote the Bessel kernel of order a,
(Ja)~(z) = (1 + \z\2)~a/2, and Ia the Riesz kernel, Ia(z) = cn^a\z\a~n, 0 < a < n;
we will also denote by Ja and Ia the corresponding potential operators. The Bessel
capacity Ba<p and the Riesz capacity P0)P are defined for E C Rn as

BatP(E) = inf{j|/||»: / > 0, Jaf > Xe},        a > 0,
Ra>p(E) = inf{\\f\\p: f > 0,Iaf > Xe},        0 < a < n/p

(Xe = characteristic function of E). If o < n/p,

Ra,P(E) < BaJE) < C(Ra<p(E) + Ra,p(E)n'n-a*)

[1]; thus, both have the same zero sets (see [12] for more properties of Pop and
Po,p)-

If / £ Lp we obviously have

(1) Pa,P({|ia/| > t}) < (\\f\\p/t)p,        0 < a < n/p;

(2) Ba,p({\Jaf\ > t}) < (\\f\\p/t)p;
thus, if Mf denotes the Hardy-Littlewood maximal operator, Mf(x) — sup{|/|q:
x £ Q), (1), (2) and the obvious inequalities M(Iaf) < Ia(Mf), M(Jaf) < Ja(Mf)
imply that the complements of the Lebesgue sets of Iaf and Jaf have zero Ra,p
and BajP capacity respectively.

Related to PQ,P and Pa,p is the Hn~ap Hausdorff measure: if 0 < r < oo and
E C Rn we define

H?~ap(E) = inf J ¿ \Ql\x-ap'n \ ,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



672 J. R. DORRONSORO

the inf taken over all coverings of E by cubes of side < r; then Hn ap(E) =
supr H?~ap(E). Hn~ap is finer than 5a,p in the sense that Ba,p(E) < CH^yap(E)
[12]. Here we shall use H£yap rather than Hn~ap; both have the same zero sets
[6].

If0<a<n, l<p< n/a, and / £ Lp, we define
M0/(z)=sup{|Q|a/"|/|Q:x£Q}.

LEMMA 1.   For the above a,p, and /, H^~ap({Maf > t}) < C(||/||p/i)p.

PROOF. For each x £ E = {Maf > t) there is a cube Q with x £ Q and

i<|Q|a/"|/|Q<|Q|a/"-1/p(||/|p)   P;

hence, selecting [16, p. 9] a disjoint family {Qi} such that E C \j5Qi (rQ denotes
the cube with same center as Q and side r times side (Q)), we have

H^-ap(E) < cY,\Qi\l-apln < cr*Y. Í l/lP ̂  ̂ II/IIp/«)"-
JQi

Obviously, the same estimate holds with Ma replaced by (Mas\f\s)x^s, 1 <
s < p. Also, if we define for 0 < r < 1/100 and ¡p(t) = (logl/i)1"?, Hf(E) =
mi{f^tp(\Qi\): E C \JQi, Qi cubes, side Qi < r} and the maximal operator
M^g(x) — sup{/q |{?|/<£>(|<2|): x £ Q, side Q < 1/1000}, the above argument gives
the estimate

Hf/f00({M^>t})<C\\g\\f/t.
LEMMA 2.   If 0 < b < a < n, 1 <p < n/a and f £ Lp, then

P£T(o~6)p(Ua/ > í}) < C7(||/||p/í)p(""(a"6)p)/(n""ap)-

PROOF. The desired inequality follows from Lemma 1 once we prove

(3) \Iaf(x)\ < C\\f\\hpl^-^b^Ma-bf(x)x-bpl^-^-b^;
now, as in [11, Theorem 1], we have for any r > 0

\Iaf(x)\<C[[ +[ )\f(x-z)\\z\a-ndz
\J\z\<r       J\z\>r)

<CY(2-kr)a-n / |/(x + 2)|d2 + CVa-"/p||/||p
0 J\z\<2-kr

<C(rbMa^bf(x)+ra-n/p\\f\\p)

and (3) follows if we choose r = (M„_6/(a:)/||/Hp)1/(a-6-n/p>

LEMMA 3. There is a constant C¡ such that M(Iaf) < C¡Iaf for all positive
f. Also, there is a Cj such that fQJaf(x + z)dz < CjJaf(x) for all cubes Q
centered at 0 with side < 10 and all / > 0.

PROOF. If Q has center 0, an easy computation gives fQ Ia(x + z) dz < C¡Ia(x);
if moreover side (Q) < 10, fQ Ja(x + z)dz < CjJa(x) [3, p. 418]. The lemma now
follows.

As a consequence, if g > 0 and / = Jag, mf(x) < Cf(x), where m denotes the
"local" maximal operator m/(x) = sup{|/|q: x £ Q, \Q\ < 5™}.
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3. The spaces Fp. We fix a > 0, m = [a] and p such that 1 < p < oo.
We first show that Ef can be defined using a minimizing polynomial on each
cube Q; in fact, if Pçf denotes the unique polynomial in Pm such that for any
7= ('Yii"-.'Yn) £Nn with |-y| = 7i +-h 7„ < m,

[ (f(y)-PQf(y))y1dy = o,
JQ

then [8, p. 17]

(4) if D~< = (d/dxfV1 ■ ■ ■ (d/dxn)ln, esssup \D^PQf\ < C\Q\'^'n\f\Q;
Q

it now follows that

(5) foranyP£Pfe, / \f - PQf\ < C / \f - R\,Jq Jq
and therefore, Ef(x, t) ~ sup{ fQ \f - PQf\ : x £ Q, \Q\ = tn};

(6) if Q C Q',        / |/ - Pq/| < C7(|Q'|/IQI) /  1/ - Pq'/I;^Q JQ'
in particular, if <3X)t denotes the cube with center x and side t,

Gaf(x) ~ supr* /     |/-PQlil/|;
t>o      yQIt

also, balls can be used instead of cubes to define Ef and Gaf-
Fix next x £ Q, |Q| = in and let Qi C Q2 C • ■ ■ C Qfe = Q be a sequence of

cubes with x £ Qi and |Q¿+i| = 2"|Q¿|, i = 1,..., k - 1; writing the polynomials
PqJ as PQtf(y) = T,\y<mci^)(y ~ ^PM we have by (4)

fc-i
(7) |c7(Qi) - c-,(Q)| < J] |c7(Qt) - c^(Qi+1)|

1

<£|ZF(PQ,/-PQi+l/)(x)|

<C^(2-ií)-l^lP/(x,2-ií)

<c/      ^/(x,«)«-^1-1^;
J2-H

in particular, since PqJ(x) — cq(Q) tends to /(x) a.e. [8, p. 9], we have

(8) |/(x) - co(Q)\ = \f(x) - PQf(x)\ <C f Ef(x, s) ds/s.
Jo

Next, Cp = {feLp: \\f\\a<p = \\f\\p + \\Gaf\\p} is a Banach space [8, p. 37] and
Fp = {f £ Cp: Gaf(x,t) = o(l)} can also be defined as the subspace of those
/ £ Cp such that ||Ga/(-,i)||p = o(l): indeed, since Gaf(x,t) < Gaf(x), if / £ Fp,
||Ga/(-,t)||P = °(1) by dominated convergence; conversely, ||Ga/(-,£)||p = o(l)
implies that Gaf(x,t3) — o(l) for some subsequence tj, but then / £ Pp, for
Gaf(x,t) < Gaf(x,tj) if t < tj. Furthermore, it can be easily checked that Fp is a
closed subspace of Cp.
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Also, if a is not an integer and / £ Cp, for a.e. x there is a polynomial Pxf £ Pm
such that [8, p. 32]

C'Gaf(x, t) < Saf(x, t) = sups~a I     \f-Pxf\< CGaf(x, t);
s<t       Jqx,,

if 0 < a < 1, Pxf is the constant polynomial f(x).   Furthermore, setting Xt =
i_nXQo,t, (4) gives for í > 1

/OO
\f\*Xs(x)s-a-1ds

and therefore,
/■oo

|| supraP/(x, 0||p < C /     || l/l * xjps-0-1 ds < C\\f\\p;t>i Ji

as a consequence, ||/||a,p ~ ||/||P + ||Ga(-, l)||p.

THEOREM 4. For all positive a and b, Jb is an isomorphism from Cp and Fp
onto C7p+6 and Fp+b respectively; that is, if f £ Fp+b (Cp+b) there is a unique
g £ Fp (Cp) such that f = Jbg and ||/||a+6,P ~ llfflkp-

PROOF. Assuming b < n (the general case follows by the semigroup property
of J) we show first that ||Jbf\\a+b,v < G||/||aiP. Fix x £ R™ and Q with x £ Q,
\Q\ = tn; if T(u,v) = ¿|7i<pL)'1Jb^v1 /~,\ denotes the Taylor polynomial of
degree p — [a + b] of Jb at u, consider the polynomial in y

Rq(v) = PqÎ * My) + f   (/(*) - Pçf(z))T(x -z,y-x)dz;

since \WJh(u)\ < C(l + |u|i>-n-l^l)e-lul [5, p. 192], Rq is well defined and

\Jbf(y) - Rq(v)\ < f   \f(z) - PQf(z)\h(y - z) dz
J2Q

+ f    \f(z)-PQf(z)\\Jb(y-z)-T(x-z,y-x)\dz
' C-2Q

= 1 + 11.

Clearly,

(9) ¡ldy<f   \f(z) - PQf(z)\-f Jb(y-z)dy<CtbEf(x,2t),
Jq J2q Jq

and by Taylor's formula and the fact that |x - z + 9(y - x)| > \x - z|/2 if 6 < 1
and \x - z\> 2\x - y\,

II < Ctp+X f    \f(z) - PQf(z)\ ■ \x - z\b-"-P-x dz
J C2Q

<Ctp+xYi(2kt)b-m-x IEf(x,2kt) + esssnp\P2kQf - PQf\ ) ;
n V 2kQ /
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writing P2kQf(z) = EH<m^(2kQ)(z - *HM (7) gives for z £ 2kQ
m ç2kt

\P2kQf(z)-PQf(z)\ < Cj2(2kt)3 /      Ef(x,s)s-3-xds,
0 *''

which, since a + 6-p-l<0, implies by Fubini's theorem

(10)       II < Ctp+X I H sb-p~x ( P/(x, s) + ¿ s3 i" Ef(x, u)u~3-x du J ds/s j

/oo sb-p-xEf(x,s)ds/s.

Now, putting (9) and (10) together,

EJbf(x,t)<C (tbEf(x,2t) + tp+x f°° sb-p-xEf(x, s)ds/s)

< Cta+bGaf(x),

and thus, ||J(,/||a+i>p < G||/||a,p- Also, if / £ Fp, given e > 0 and T such that
Gaf(x,T)<e,

EJbf(x,t) < C (e + tp+x-a-b If + 1) (sb-p-1Ef(x,s)ds/s)\

< C(e + (t/T)p+x-a-bGbf(x)) < Ce

if í is small enough; hence Jbf £ Fp+b.
Next, if / £ Fp, a > 1, its weak partíais /¿ = df/dxi verify ||Ga_i/t||p <

C||G0/||p [8, p. 42], and also \fi(x)\ < C(Gaf(x) + \f\Qx¡1) and

Ef%(x,t)<cU M(Ef(-,s))(x)s-2ds + Ef(x,2t)/t\

[9, Theorem 3 and Lemma 1]; hence fi £ Fp_v This and the obvious imbeddings
PS C Fp_£ imply that / - A maps Fp, a > 2, into Fp_2 and ||(7 - A)/||„_2,p <
G||/||a,p. Therefore, if 0 < b < 2 and / £ Fp+b, a > 0, f = Jb(I - A) J2_6/ = Jbg,
where g £ Fp and ||/||a+'6,p ~ llfflU.p- The same argument works for the Cp and
for a general b > 0. The theorem follows by the semigroup properties of J.

PROPOSITION 1.   CS° is dense in Fp, 1 < p < oo.

PROOF. Supposing first 0 < o < 1, let ip > 0 be a C°° function with <p(x) = 1
when |x| < 1/10, <p(x) — 0 when |x| > 1 and /fpdx — 1, and set <pr(x) =
r~n<p(x/r), r > 0. If / £ Fp and fr — f * <pr(x), an easy computation yields
Gafr(x,t) < C<pr * Gaf(-,t)(x). Thus, given e, if ||Ga/(-,T)||p < e and r is small
enough, (4) implies

I f°°
\\Ga(f - fr)\\p < G||GQ/(-,T)||p + C\\ ra\f -fr\* Xt(0 dt/t

\\Jt
/•oo

<C\\Gaf(;T)\\p + Cj       \\f - fr\\pra-1 dt

<Ce + CT-a\\f-fr\\p<Ce.
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Next, setting <pr(x) = ip(rx) and fr(x) = f(x)<pr(x), where / £ G°° l~l Gp, it easily
follows that

J\y\<t
(x + y)- f(x)\dy < C\\^\\00Ef(x,t) + i||V^|U/(x)|;

thus, given e, if T1_a||/||p < e, ||GQ/(-,T)||p < s, and r is small enough, we have

l|G„(/ - DIIp < C||Ga/(-,T)||p + CTx-«\\f\\p
+ C

/*oo

jT \f-r\*xt(-)t-a-1dt

<Ce + CT-a\\f-fr\\p<Ce.
Hence, Cq° is dense in Fp, which together with Theorem 4 implies the density

of C°° n Fp in Fg for all a > 0. Finally, the density of C^ in these Fp follows as
before.

If a > n/p functions in Cp are continuous [8, p. 74], whereas if a < n/p they
have a considerable degree of integrability.

PROPOSITION 2.   Ifl<p< n/a, q = np/n - ap and f £ Cp,
ill /   r \ x/p

(/ IZ-Pq/I9)  q <c\Q\a'n(^l(GafY
for any cube Q; if p > 1, a — n/p and p' = p/p — 1, there are constants C,ß such
that for any cube Q

/ exp(/3(|/
JQ

PQÏ\l\\GafXQ\\pY)<G
This result, essentially proved in [8, Lemma 4.2] also follows easily by the Sobolev
and Trudinger inequalities for Riesz potentials [11, 16] from the next theorem.

THEOREM 5.   If 0 < r < 1, a < n/p and f £ Cp, then for any cube Q and a.e.
y^Q,
(ii) l/(y) - PQf(y)\r < ciar(Gafx4Q)r(y).

PROOF. Denoting by By<3 the ball with center y and side s, and by 5n_i the
unit sphere in R", an easy modification of (8) together with (6), polar coordinates
and Fubini's theorem give

\f(y)-PQf(y)\r<C f Ef(y,syds/s
Jo

<C I  \  I     Ef(z,s)rdz) ds/s
JO \JBy,. f

<C f   sar I     Gaf(z)rdzds/s
Jo        Jbv,,

= C f   saz~n /S /      Gaf(x + uy')run-x dudy' ds/s
Jo Jo Js„-i

ci    j      uar-nGaf(x + uy')run-xdy'du
Jo   Jsn-L

<

< CIar(Gafx4Q)r(y)-
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Observe that since Ia ~ Ja near 0, \f(y) - Pçf(y)\ < CJa(GafxAQ)(y); also
||Pq/xq!Ioo < C\f\Q tends to 0 if \Q\ tends to oo, and hence, |/| < CIa(Gaf)
a.e. in R™, 0 < a < n/p. Furthermore, if 1 < s < q, (11) implies Esf(x,t) <
Cta(M(Gaf)r(x))x'r for some r < p; therefore

(12) sup t~a Es f(-,t) |GoJ IP'

it x,i

which for the same s and k>m extends to [8, p. 27]

(13) suPraPsfc/(x,í) ~suPraP3/(z,í)-
t t

Finally we note that since | \f(x + y)\ - \f(x)\ \ < \f(x + y)- f(x)\, if / £ Cp or
Fp, 0 < o < 1, so does l/l and || |/| ||a,p < ||/||a,p.

4. Tangential boundary values. We derive now Theorems 1 and 2 from
pointwise estimates for the corresponding tangential maximal functions.

PROOF OF THEOREM 1. If / £ Fp and u(x, y) = Py* f(x), define Ta<pf(x) =
sup{\u(z,y)\: (z,y) £ £>aiP(x)}; we will show

(14) Ta,p/(x0) < G(M/(x0) + (M(Ga/)p(x0))1/p);

obviously, (14) implies that |{Pa,P/ > t}\ < G(||/||a)P/i)p, and standard arguments
give then Theorem 1.

Suppose xo = 0; if (x,y) £ Da,p(0) and Q = Qo,2\x\, we have

' I + {  )f(z)Py(x-z)dz  =1 + 11;
\Jq   JcqJ

if z £ CQ, \z - x\ > \z\/2 and Py(x - z) < Py(z/2); thus,

II < /    \f(z)\Py(z/2)dz<CMf(0).
Jr"

Next, by (4),

I< / \f(z)-PQf(z)\Py(x-z)dz+ f \PQf(z)\Py(x-z)dzJq Jq

< III + GM/(0) [ Py(x- z) dz < III + GM/(0).Jq
If a < n/p, q — np/n - ap and q' = q/q - 1, Holder's inequality and Proposition

2 give

III<||P!/||g^||/-PQ/|^

'Q
< Cy-n¿q\x\n/p(M(Gaf)p(0))x/p

< C(M(Gaf)p(0))xlp,
since |x| < yplq; thus, (14) is proved in this case.

< G2Tn/9|x|a+n/<3|x| -(/liwr
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If a = n/p, p > 1 and p' = p/p— 1, we will use an Orlicz space version of Holder's
inequality: if <p(t) = i(log(l + i))1^' and * is its conjugate Orlicz function, then
ty(t) < CeatP  for appropriate G and a, and therefore [18, p. 171]

/ ghdz < \\g\\4,max(l, I V(h)dz\ < C||g||¿ / eaW"' dz,

where \\gW4, denotes the r/>-Orlicz norm of gxQ with respect to dz/\Q\. This inequal-
ity and Proposition 2 imply

III < C||G0/xq|IpIQ| / Py(x - z)\M^foM. ¿zJq l|Ga/XQllp

< C\x\n+nlp(M(Gaf)p(0))xlp\\Py(x - -)\U.

But \\Py(x - -)|U = inf{i: fQ<f>(Py(x - z)/t)dz < 1} [18, p. 173]; thus, if T =
G0(log l/y)xlp'l\Q\, Co to be fixed later, then T > G0/2n|x|n(log l/y)p/p' > G02-",
for (x,y) £ DaiP(0), and therefore,

/ (Py(x - z)/T)(log(l + Py(x - z)/T)x'p' dz
Jq

< f   Py(z)(\og(l + cny-n))1/p'dz/T\Q\
JlQ

<C((\ogl/y)xlp'lT\Q\)[   Py(z)dz<l
JlQ

for an appropriate Co- Hence, ||Py(x — -)||^ < T and we have

III < G|x|n+n/p|xr"(logl/2/)1/p'(M(Ga/)p(0))1/p

< C(M(Gaf)p(0))x'p.

PROOF OF THEOREM 2. If l < p < n/a, Theorem 5 and Lemma 3 imply
that Mf(x) < CIaGaf(x), and it easily follows that / can be redefined in a zero
measure set so that the complement of the Lebesgue set of the new / has zero Pa,p,
and hence, Pa,p capacity; clearly this implies nontangential convergence Ba,P-a.e.
When p = 1, the embeddings Fx c Fp_n/p, C Lp_n/p,_e, 1< p < n/n - a, e > 0
[8, pp. 72 and 58] tell us that any / £ Fx can be redefined in a zero measure so that
the complement of its Lebesgue set has zero PQ-„/P'-e,p capacity and hence, zero
fj{n-a)p+Pe Hausdorff measure [12]. Thus, for any e > 0, we have nontangential
convergence of Py * / for all x outside a set of zero Hn~a+e Hausdorff measure.

Next, if 0 < 6 < a, fix xo = 0 and (x, y) £ I\p(0). Proceeding as in the proof of
Theorem 1, we obtain |w(x,i/)| < III + GM/(0), and setting r = np/n-bp, Holder's
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inequality and Theorem 5 imply

III < Cy-n'r\x\a+n/r\x\-a ( / 1/ - Pq/I")

< Cy-n/r\x\n'p+a-b (I (Gaf)A   P < C\x\a-b (I (Gaf)A

< C(M{a_b)p(Gaf)p(0))x/p,

since |x| < t/p/r. Also, Mf < CIaGaf and therefore

ftlP/(0) < C(M,a_b)p(Gaf)p(0))x'p + CIa(Gaf)(0),
which by Lemmas 1 and 2 gives

HZ-{a-b)p({Tb,Pf > t}) < H^a^p({M{a_b)p(Gaf)p > tp/C})
+ H^a-h)p({IaGaf > t/C})

< G(||Ga/||p/i)p + G(||Ga/||p/i)p(n-(o-f,)p)/n-ap

and standard arguments finish now the proof of part (i).
In part (ii) we first divide Rn into a mesh of disjoint cubes of side 1/1000. If x

is in such a cube Q',

u(x,y) = I Py(x - z)(fx4Q'(z) + fXciQ,(z))dz = Uf(x,y) + u2(x,y),

and since |u2(x,y)\ < Cyxlp ||/||p tends to 0 with y uniformly in 2Q', it is enough
to study the convergence of Uf. Fix now Xo = 0, (x, y) £ Dn/r¡r(0), p < r < oo and
Q — Qo,2|i|) and assume 0 £ Q' with Q' in the above mesh, and y small enough so
that side Q < 1/1000. Using again the Orlicz space version of Holder's inequality,
this time with the function <¡>(t) = í(log(l + í))1/V i we obtain as in Theorem 1

Mx,y)|<III + GM(/x4Q')(0)
<C(logl/y)Vr'\\Gn/pfxQ\\p + CM(fx4Q>)(0);

now, Theorem 5, Lemma 3, and (4) give

M(/X4Q<)(0) < GM(/n/p(Gn/p/x8Q<)(0) + C\f\sQ.
< CIn/p(Gn/pfxsQ>)(0) + CJn/p(\f\X8Q')(0)
<CJn/p(Gn/pf + \f\)(0),

and since (x,y) € Dn/rjr(0),

|«i(*,!/)| < G|x|"/r (| (Gn/p/)p)   P + CJn/p(Gn/pf + 1/1X0)

< C(Mn_np/r(Gn/pf)p(0))x/p + CJn/p(Gn/pf + 1/1X0).
Thus, defining T'atf(x) = sup{|tti(z,y)|: (z,y) £ Ds<t(x)}, we have

HZp/r({Tn/rtrf > t}) < HZp/r({Mn_np/r(Gn/pf)p > tp/C})

+ H^({Jn/p(Gn/pf + \f\)>t/C})
= 1 + 11,
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where I < G||G„/p/||p/ip, by Lemma 1. Also, since

Jn/p(Gn/pf + l/l) = Jn/p-e(Je(Gn/pf + |/|)) < In/p-eF,
with F = Je(Gn/pf + l/l), then, if e < n/r, Lemma 2 implies that

II < C(\\F\\p/t)np^ < G(||/||n/p,p/i)np/-.

Convergence inside Dn/r,r(x) for Pnp//r-a.a. x follows now by standard arguments
from these estimates.

Finally, if 0 < b < n/p and (x,y) £ L\p(0), logl/y < Glogl/|x|, and proceeding
as before, we obtain

Mx,2/)|<G((logl/|x|)p-1 f(Gn/pf)r)1/p + CM(fx4Q-)(0)
Jq

< G(M^(Gn/p/)p(0))1/p + CJn/p(Gn/pf + |/|)(0),
with M<p as in §2, and since Pn/P,P < GH^,W0 [12], it follows that

Bn/pAiUJ > t}) < GPf/100({M^(Gn/p/)p > tp/C})
+ Bn/p,p({Jn/p(Gn/pf+\f\)>t/C})

<G(||/|U/p,p/i)p,
and again standard arguments can be used to finish the proof.

5. Strong Lp estimates. The proof of Theorem 3 depends on a strong in-
equality for a certain capacity type set function associated to Cp which we now
define. Fix a, b and p with 0 < b < a and 1 < p < oo, and for any E C Rn denote
by ObajE) the set {g £ Cpb: g > 0, Ja_feg > Xe}\ we define then

UbaJE) = mi{(\\g\\b,py:geOlp(E)}.
Obviously, f/ayP) < Ulp(E<) MECE' and Ub,p(EuF) < C(Uba,p(E) + Uba,p(F));
furthermore, by Theorem 4, if g £ Cp,

(15) £/ab,p({Ja_b(g) > «}) < (ll9lkP/t)p < G(||Ja_b9||0,p/i)p;

it can also be proved that Ub ~ Ubp if 0 < b, b' < a and that PQ,P < CUb^p,
a < n/p; since we clearly have Ubp < GPa,p, it follows that P0,P, Pa.p and Ubp
have the same zero sets when a < n/p (Lemma 3 and (15) imply that any / £ Fp
can be modified in a set of measure zero so that the complement of its Lebesgue
set has zero Ubp "capacity", and hence zero Ba,p capacity if 1 < p < oo).

Ubp satisfies the following strong type inequality.

THEOREM 6.   7/0 < b < a, 1 < p < oo, and g £ Cb, g > 0, then
/■oo

/       Sp-XUbtP({Ja-bg > S}) ds < C(\\ Ja-b9\\a,p)P.
Jo

Once this is proved, Theorem 3 is deduced as in [14]: given A C R" and B C
R^+1 set S (A) = R^.+1 - (j{C(x) :x$A}, with C(x) = {[>, y) £ R^+1 : \x - x\ <
y), and J(B) = {x £ Rn : B n Da,P(x) # 0}; then, if g £ Oba<p(E), and g' = Ja-b9,
J(S(E)) C {Ta.Pg' > Co} for some numerical Go, and the weak inequalities of
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Theorem 1 give \J(S(E))\ < C(||0||6,p)p. Thus, taking inf in Obap(E), we obtain
\J(S(E))\ < CUbjE). Now, if / £ Gp,

{TQ,P/ >s}c J(S({Nf > s/C})),
where Nf(x) = sup{\u(x,y)\ : y > 0}; writing / = Ja-b(g), g £ C£, 0 < b < 1, we
have Nf(x) < Ja_b(N(\g\))(x), but

[\g\(x'-z)Py(z)dz=  í       +[       =1 + 11,
J J\z\<2      J\z\>2

and standard arguments give I < Gm(|g|)(x'), which since \g\ = Jb-eh, h £ CP,
implies I < Cm(Jb-e\h\)(x') < CJb-e\h\(x'), by Lemma 3. Also, if y < 1 and
\z\ > 2, Py(z) < C/(l + \z\)n+1 = Q(z) and II < Q * \g\(x'), which belongs to G6P.
Therefore Nf < C(Ja-e\h\ + Ja-b(Q * \g\)), and since ||Q * \g\ ||&,p < G||/||a,p and
II \h\ ||e,p < G||/||a,p, Theorem 6 gives

poo

\\Ta,Pf\\p=P        sp~x\{Ta,pf > s}\ds
Jo

/•oo
<C        sp-xUlP({Nf>s/C})ds

Jo
/•oo

<C ¡    sp-x(Ulp({Ja-b(Jb-e\h\)> s}))
Jo

+ (UlP({Ja-b(Q*\g\)>s}))ds
<C(\\\h\\\ip + \\Q*\g\\\lp)<C\\f\\lp.

Our proof of Theorem 6 is an adaptation and simplification of the one given by
Dahlberg in [7] ; we need a preliminary lemma.

LEMMA 4.  Let h be a C°° function with h(t) = 0 ift < 0, and |*J—x/t<»C*)I < A>
0<j<m + l,m=[a]. Then if f = Ja-b9, with g £ C£, and g > 0, h(f) £ Gp
and \\h(f)\\a,p < G||/||„,p.

PROOF. We will estimate Gah(f)(x, 1) using the centered version of E (see §3).
Fix x e Rn and write Q for Qx,t, where we assume t < 1. Writing PQf(y) =
E|7|<m c-r W(V - SpM define

%) = /(*)+    E    c,(i)(y-x)Vl!;
0<h\<m

by (4) and Lemma 3 we have

\R(y)\>f(x)-C    Y,    fQ(\v-*\/t)H
0<h|<m

>/(x)fl-G   2   (|y-*|/*)w|!
V       o<hi<m y

thus, if |x - y\ < et with e small enough, P(y) > Cf(x). Considering now the
polynomial

m

S(y) = J2hu)(R(x))(R(y)-R(x))3/j\,
0
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Taylor's formula and (8) give

\Hf(y)) - S(y)\ < \h(f(y)) - h(R(y))\ + \h(R(y)) - S(y)\
<A\f(y)-R(y)\ + C\R(y)-R(x)r+x

x\h(m+x\(l-6)R(x) + 6R(y))\
<C(\f(y)-PQf(y)\+taGaf(x)

+ |P(2/)-P(x)r+1//(xn.
Set now T = (f(x)/Gaf(x))x/a and suppose T < 1; since

m(m+l)

(R(y)-R(x))m+X=    £     !>,(<,-xP,
j=m    \~/\=j

where c1 equals the sum of all terms cli (t) • ■ • clm+l (t) with 71 + • ■ • + 7TO+i = 7,
then (7) and (4) imply for 0 < t < T that

\Cli(t)\ < CT-^fQx,T+CTa-^Gaf(x)
< CT-^(f(x) + TaGaf(x)) < CT~^f(x),

if |7i| < o, or
|c7i(f)| < CT-Wf(x) + Clog(T/t)Gaf(x)

< CT-W \og(T/t)f(x),
if |7¿| = a. In any case,

m(m+l)

|P(y)-P(x)r+1<C/(xr+1(logeT/ir+1    £   (W>
m+1

which implies

Pm(m+1)/i(/)(x,f.)

Tn(m+l)

<G(P/(x,í) + íaGa/(x) + /(x)(logeT/ír+1    £   (t/T)3),
m+l

and therefore

(16) sup r°Pm(m+1)/i(/)(x, Í) < C(Gaf(x) + /(x)T-°) < CGaf(x).
t<T

If T < t < 1, then Pm(m+1>/i(/)(x,t) < CfQ < Cf(x), by (4) and Lemma 3,
and we have

(17) sup  raEm(m+Vh(f)(x,t)<CT-af(x)<CGaf(x).
T<t<l

In the case T > 1, then f(x) > Gaf(x) and we estimate the coefficients c^(t) as
K(i)| < C(f(x) + log(e/t)Ga/(x)) < Clog(e/f)/(x), and replace (16) by

m(m+l)

(18) supraPm(m+1>/i(/)(*,i)<G(G0/(x) + /(x)    Y    sup^-alog(e/í))
'<! r^l     ***

< Cf(x).
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Thus, (16), (17), and (18) yield for a.e. x

(19) Ga/i(/)(x,l)<C(Ga/(x) + /(x))

and, since h(f) < Af, we conclude that ||/i(/)||a,p < G||/||a,p.
To finish the proof of Theorem 6 fix a, 6, p and write U instead of Ubp. As in [2

or 7], if h is a C°° function with h(t) = 0 if t < 0, h(t) = 1 if t > 1, define for any
integer j h3(t) = 23h(22~H - 1) and f3 - h3(f). By Lemma 4 f3 £ Cp, and since
fi(x) = V if f(x) > V, (15) gives

-oo oo oo

/    sp~xU({f > s})ds < Cj2V"U({fi > 2J» < C¿2(\\f,\\a,p)P-
Jo -oo -oo

Now, the h'- have disjoint support and are uniformly bounded; therefore,

oo oo    /   ff(x) \p
(20) ¿2(f1(x))p = Y,    /       h'Ás)ds)

-oo -oo \'/o y

<f{x)p-xY, \h'3(s)\dS<Cf(x)p,
_Jo

and Y. \\fj\\pp < G||/||p. Fix x £ Rn and denote Qx¿ as Q; if t < 1, (4) and Lemma
3 give f(x) < \f(x) - PQf(x)\ + CfQ < CtaGaf(x) + C'f(y) for any y £ Q; thus,

f(y) > (/(x) - Ct*Gaf(x))/C > f(x)/2C
if í < T = (ef(x)/Gaf(x))x/a with e small enough. Now G' ~ 2K for some AT
independent of / or x, and, when f(x) > 2^+K+x, f(y) > 2j on Q and f3(y) = 2».
Hence, using again the centered version of E,

Ef3(x,t)< / \f3iy)-f3ix)\dy = 0.Jqiq

If t > min(l,T), then Ef3(x,t) < C(f3)Q < C2^ = Cf3(x) and therefore

Gaf3(x,l) <      sup     raEf3(x,t) < C(f3(x) + T-af3(x)),
t>min(l,T)

and (20) gives (~ means the index set equals the preceding one)

(21) £       GQ/,(x,l)p < Cj2(fAx)P + T-apf3(x)p)
f(x)>2i + li + 1

< C(f(x)p + Gaf(x)p).

Suppose next f(x) < 23~3; if t < 1 and we set as before R(y) = /(x) + Pq/(x) -
co(t),

\R(y)\<f(x) + C   Yl   fQ(\y-x\/tp<f(x)(i + C^(\y-x\/t)\A
o<hl<"» V /

< V(x)
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if |x - y\ < et withe small enough.  Hence h3(R(y)) = 0 and, setting 5 = {y £
Q:f(y)>V~2}, (4) implies

Ef3(x,et) <C-f f3(y)dy = Crn f h3(f(y))dy
Jq Js

<Ct~n f'\h3(f(y))-h3(R(y))\dy
Js

<c(I\f-R\s)    (rn\S\)x-x/3

< C(EJ(x, t) + taGaf(x))(2-3f(x))l-1'a,
for, by Lemma 3, |5| < C2~3 ¡Qf dz < C2~3tnf(x). Thus,

Gafj(x,l) <c(swpraEsf(x,t) + Gaf(x)) (2-3f(x))x-x'3,

and since £/(l)<2i-3 2^p(1~1/s) < Cf(x)~p(-X~x/S\

(22) £     Gaf3(x,l)p<c(Supt-aEJ(x,t)).

By (19), we estimate the remaining K + 4 f3 as Gaf3(x, 1) < C(Gaf(x) + f(x)),
which with (21) and (22) gives

f>a/,(x, l)p < C ̂ aupt-aEaf(x,t)J + /(x)p) ;

taking now (12) and (20) into account, we obtain
CO

£ HG«/y(-, 1)11? < G(||Ga/||p + ||/||p) < Cil/Il^
— oo

and the proof of Theorem 6 is finished.

6. Further remarks. We discuss here the imbeddings of the Triebel-Lizorkin
spaces in Fp. These spaces are usually defined as follows [17]: let tp be a function
in Schwartz's class S such that * = •tp > 0 and suppVf' C {z: 1/2 < \z\ < 2}, and
set ipt(z) = t~nip(z/t); then Fp<q, a > 0, 1 < p, q < oo is the space of those Lp
functions such that

ill
Da.Pf(x) = (/°°(ra|/ * Mx)\)q dt/t

is in Lp. With the norm ||/||a,p,<j = ||/||p + \\Da,qf\\p, Fp<q becomes a Banach space,
and as mentioned before, if 1 < p < oo, Pp'2 = Lp, and Fx'2 = Ja(hx).

The extension of Theorems 1, 2 and 3 to the Fp'q is a consequence of

PROPOSITION 3.   If 1 < p,q < oo, Fp<q is continuously imbedded in Fp.
PROOF. If 0 < a < 1, / £ Fp'q iff

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POISSON INTEGRALS OF REGULAR FUNCTIONS 685

is in Lp and \\DaJ\\p ~ ||S„,,/||p [17, p. 108]. But then G0/(x) < CSa,qf(x) (see
§3) and therefore, ||/||a,p < G||/||a,P)9. The general case is reduced to this one by
Theorem 4 and the fact [17, p. 58] that the Bessel operator Jb is an isomorphism
between Pp-9 and F™b (in fact it can be shown that / £ Fp'q, l<p,q<oo,a>0
iff

Ga,qf(x)= U™(t-aEf(x,t))qdt/t

isinLp, and||/||a,p,,~||/||p + ||G0,,||p).
As a consequence, Theorems 1, 2, and 3 also hold for certain Besov spaces (see

[16, 17] for their definition): indeed, if 1 < r < p, Bp'r is continuously imbedded
in Fp'r [17, p. 47]. If r > p, the methods used here do not apply to Bp,r, although
the embeddings BP,T C Lp_e yield convergence of the Poisson integral of / £ Pp,r
inside any region Da_£jP, e > 0; since Gp C Lp_e, the same is true of Cp.
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