POISSON INTEGRALS OF REGULAR FUNCTIONS

JOSÉ R. DORRONSORO

Abstract

Tangential convergence of Poisson integrals is proved for certain spaces of regular functions which contain the spaces of Bessel potentials of L^{p} functions, $1<p<\infty$, and of functions in the local Hardy space h^{1}, and the corresponding tangential maximal functions are shown to be of strong p type, $p \geq 1$.

1. Introduction. It is well known that for a general L^{p} function $f, 1 \leq p \leq \infty$, its Poisson integral $u(x, y)=P_{y} * f(x)\left(P_{y}(z)=c_{n} y /\left(|z|^{2}+y^{2}\right)^{(n+1) / 2}, z \in \mathbf{R}^{n}, y>\right.$ 0) converges nontangentially to $f(x)$ a.e. when y tends to 0 . It is also well known [18, p. 280] that for general L^{p} functions this result fails when convergence inside regions with some degree of tangentiality is considered.

However, tangential convergence holds for certain classes of functions: Nagel, Rudin, and Shapiro have recently established [14] the existence of tangential limits for a large class of potentials of L^{p} functions (see also [14] for earlier results). A particular instance are the spaces $L_{a}^{p}=\left\{J_{a} * f: f \in L^{p}\right\}, 1 \leq p \leq \infty,\left(J_{a}\right)^{\wedge}(z)=$ $\left(1+|z|^{2}\right)^{-a / 2}$, of Bessel potentials of L^{p} functions, for which explicit approach regions are given: if $1 \leq p \leq n / a$ and $x \in \mathbf{R}^{n}$, define $D_{a, p}(x)$ as
(i) $D_{a, p}(x)=\left\{(z, y) \in \mathbf{R}_{+}^{n+1}:|z-x| \leq y^{1-a p / n}\right\}, p<n / a$,
(ii) $D_{a, p}(x)=\left\{(z, y) \in \mathbf{R}_{+}^{n+1}:|z-x| \leq(\log 1 / y)^{-(p-1) / n}, y \leq 1 / e\right\}, p=n / a>$ 1,
(iii) $D_{n, 1}(x)=\left\{(x, y) \in \mathbf{R}_{+}^{n+1}:|z-x| \leq(\log 1 / y)^{1 / n}, y \leq 1 / e\right\}$.

Then [14, Theorems 2.9, 3.13, and 5.5]
(i) if $1 \leq p \leq n / a$ and $f \in L_{a}^{p}, u(x, y)=P_{y} * f(z)$ tends to $f(x)$ inside $D_{a, p}(x)$ for a.e. $x \in \mathbf{R}^{n}$;
(ii) if $1<p \leq n / a, f \in L_{a}^{p}$ and $0<b<a, u(z, y)$ tends to $f(x)$ inside $D_{b, p}(x)$ for $B_{a-b, p}$ a.e. $x \in \mathbf{R}^{n}\left(B_{s, t}\right.$ denotes ($\left.s, t\right)$ Bessel capacity; see $\left.\S 2\right)$.

Note that if $a>n / p$ and $f \in L_{a}^{p}, f$ is continuous.
Furthermore, it is shown in [14, Theorem 3.8] that the corresponding maximal operators $T_{a, p} f(x)=\sup \left\{|u(z, y)|:(z, y) \in D_{a, p}(x)\right\}$ verify $\left\|T_{a, p} f\right\|_{p} \leq C\|f\|_{L_{a}^{p}}$, whereas for $p=1$ Nagel and Stein proved [15, Theorem 5] that if F is in the Hardy space $H^{1},\left\|T_{a, 1}\left(J_{a} F\right)\right\|_{1} \leq C\|F\|_{H^{1}}, a<n([15]$ also contains results for Bessel potentials of $H^{p}, p>0$).

The tangentiality of the approaching regions is shown in [14] to depend on the corresponding Bessel kernels J_{a}; here we will see how it can also be related to the regularity of the L_{a}^{p} functions. In fact, similar results (Theorems 1 and 2 below) hold for a larger class of functions, which we now define. If \mathbf{P}_{k} denotes the set of

[^0]all polynomials of degree $k, x \in \mathbf{R}^{n}, t>0,1 \leq r \leq \infty$ and $f \in L_{\text {loc }}^{1}$, consider the "polynomial approximation" operator
$$
E_{r}^{k} f(x, t)=\sup \inf _{P \in \mathbf{P}_{k}}\left(f_{Q}|f-P|^{r}\right)^{1 / r}
$$
the sup taken over all cubes Q with $x \in Q$ and having Lebesgue measure $|Q|=t^{n}$ (throughout the paper $f_{E} f$ or f_{E} stand for the mean $\int_{E} f d z /|E|$).

Now, if $a>0$ and $m=[a]$, its integral part, we define $G_{a} f(x, t)=$ $\sup _{s \leq t} s^{-a} E_{1}^{m} f(x, s), G_{a} f(x)=G_{a} f(x, \infty)$ (in what follows, if $k=m$ and $r=1$, we will write $E f(x, t)$ instead of $\left.E_{1}^{m} f(x, t)\right)$; then $C_{a}^{p}, 1 \leq p \leq \infty$, denotes the space of those L^{p} functions f such that $G_{a} f \in L^{p}$; with the norm $\|f\|_{a, p}=\|f\|_{p}+\left\|G_{a} f\right\|_{p}$, C_{a}^{p} becomes a Banach space. These spaces were introduced by Calderón and Scott [4] and are extensively studied by Devore and Sharpley in [8].

Our results are given for a proper subset of C_{a}^{p}, the closed subspace F_{a}^{p} of those $f \in C_{a}^{p}$ such that $G_{a} f(x, t)=o(1)$ a.e. as t goes to 0 (in fact $F_{a}^{p}, p<\infty$, is the closure of C_{0}^{∞}, the compactly supported C^{∞} functions; see §3). C_{a}^{p} and F_{a}^{p} can be seen as global versions of the spaces $T_{a}^{p}(x)$ and $t_{a}^{p}(x)$ of Calderón and Zygmund [5]. If $1<p<\infty, L_{a}^{p}$ is continuously imbedded in F_{a}^{p}; indeed, $f \in L_{a}^{p}$ iff $f \in L^{p}$ and

$$
G_{a, 2} f(x)=\left(\int_{0}^{\infty} E f(x, t)^{2} t^{-2 a-1} d t\right)^{1 / 2} \in L^{p}
$$

and $\|f\|_{L_{a}^{p}} \sim\|f\|_{p}+\left\|G_{a, 2} f\right\|_{p}$ (see [9]; by $A \sim B$ we mean that $A / C \leq B \leq C A$, for some constant C; in what follows C will stand for any constant independent of sets, points, or functions, and not necessarily the same on each appearance). However, although the imbedding $L_{a}^{p} \subset F_{a}^{p}$ is proper, the Poisson integrals of functions in F_{a}^{p} and L_{a}^{p} have the same tangential behavior:

Theorem 1. If $1 \leq p<n / a$ or $p=n / a>1$ and $f \in F_{a}^{p}$, then $u(z, y)=$ $P_{y} * f(z)$ tends to $f(x)$ a.e. when (z, y) tends to x inside $D_{a, p}(x)$.

The restriction $p \leq n / a$ is due to the fact that functions in F_{a}^{p} are continuous when $p>n / a$, and the same is true in F_{n}^{1} [$\left.8, \mathrm{p} .68\right]$.

For functions in F_{a}^{p} the exceptional set also becomes smaller when the tangentiality of the approach regions is decreased; in fact the results of [14] can be slightly improved:

THEOREM 2. (i) If $f \in F_{a}^{p}, 1 \leq p<n / a$, and $0<b<a$, then $u(z, y)$ converges to $f(x)$ inside $D_{b, p}(x)$ for all x except a set of zero $H^{n-(a-b) p}$ Hausdorff measure; if moreover $p>1, u$ converges nontangentially to $f(x) B_{a, p}-a . e$.
(ii) If $p=n / a>1$ and $p<r<\infty, u$ converges to $f(x)$ inside $D_{n / r, r}(x)$ for $H^{n p / r}$-a.a. x, whereas if b is such that $0 \leq b<n / p, u$ converges to $f(x)$ inside $D_{b, p}(x)$ for $B_{n / p, p^{-}}$a.a. x.

Theorem 2 requires some explanation: functions in F_{a}^{p} are defined in principle only a.e.; Theorem 2 will be shown to hold after suitably redefining them on a zero measure set.

As could be expected, Theorems 1 and 2 are deduced from weak type estimates for the tangential maximal operators $T_{a, p} f(x)=\sup \left\{|u(z, y)|:(z, y) \in D_{a, p}(x)\right\}$, but since functions in F_{a}^{p} are not representable as potentials of L^{p} functions, we rely
on certain Sobolev and Trudinger type inequalities for them (Theorem 5). However, these weak type inequalities can be strengthened.

THEOREM 3. If $f \in C_{a}^{p}, 1 \leq p \leq n / a$, then $\left\|T_{a, p} f\right\|_{p} \leq C\|f\|_{a, p}$.
The proof of Theorem 3 is modelled after that of Theorem 3.8 in [14], but with an important difference: the key argument in [14], Hansson's strong capacitary estimates [10], is no longer available here and a strong estimate, valid if $1 \leq p<\infty$, for a certain C_{a}^{p} capacity type function, is proved (Theorem 6) along the lines of similar results by Adams [2] and Dahlberg [7].

Besides L_{a}^{p}, the so-called Triebel-Lizorkin spaces $F_{a}^{p, q}, 1 \leq p, q<\infty, a>0$ (see [17] or $\S 6$ for the definition) are also continuously imbedded in F_{a}^{p} (Proposition 3) and therefore, the above theorems apply to them; we point out that if $1<p<\infty$, $F_{a}^{p, 2}=L_{a}^{p}$, whereas $F_{a}^{1,2}$ coincides with the space of Bessel potentials of functions in D. Goldberg's local Hardy space h^{1} [17, p. 51]. We also remark that Y. Mizuta has recently proved [13] results similar to those of Theorems 1 and 2 for functions being locally in the Besov space $B_{a}^{p, p}, 0<a<1$. Since $B_{a}^{p, p}=F_{a}^{p, p}$, Theorems 1 and 2 contain a global version of Mizuta's results.

The paper is organized as follows: $\S 2$ contains certain preliminary facts about capacities and Hausdorff measures. The spaces F_{a}^{p} are studied in some detail in $\S 3$. Theorems 1 and 2 are proved in $\S 4$ and Theorem 3 in $\S 5$. Finally, in $\S 6$ TriebelLizorkin spaces $F_{a}^{p, q}, 1 \leq p, q<\infty, a>0$ are considered.
2. Preliminary results. For $a>0 J_{a}$ will denote the Bessel kernel of order a, $\left(J_{a}\right)^{\wedge}(z)=\left(1+|z|^{2}\right)^{-a / 2}$, and I_{a} the Riesz kernel, $I_{a}(z)=c_{n, a}|z|^{a-n}, 0<a<n$; we will also denote by J_{a} and I_{a} the corresponding potential operators. The Bessel capacity $B_{a, p}$ and the Riesz capacity $R_{a, p}$ are defined for $E \subset \mathbf{R}^{n}$ as

$$
\begin{array}{ll}
B_{a, p}(E)=\inf \left\{\|f\|_{p}^{p}: f \geq 0, J_{a} f \geq \chi_{E}\right\}, & a>0 \\
R_{a, p}(E)=\inf \left\{\|f\|_{p}^{p}: f \geq 0, I_{a} f \geq \chi_{E}\right\}, & 0<a<n / p
\end{array}
$$

($\chi_{E}=$ characteristic function of E). If $a<n / p$,

$$
R_{a, p}(E) \leq B_{a, p}(E) \leq C\left(R_{a, p}(E)+R_{a, p}(E)^{n / n-a p}\right)
$$

[1]; thus, both have the same zero sets (see [12] for more properties of $R_{a, p}$ and $B_{a, p}$).

If $f \in L^{p}$ we obviously have

$$
\begin{gather*}
R_{a, p}\left(\left\{\left|I_{a} f\right|>t\right\}\right) \leq\left(\|f\|_{p} / t\right)^{p}, \quad 0<a<n / p \tag{1}\\
B_{a, p}\left(\left\{\left|J_{a} f\right|>t\right\}\right) \leq\left(\|f\|_{p} / t\right)^{p} \tag{2}
\end{gather*}
$$

thus, if $M f$ denotes the Hardy-Littlewood maximal operator, $M f(x)=\sup \left\{|f|_{Q}\right.$: $x \in Q\},(1),(2)$ and the obvious inequalities $M\left(I_{a} f\right) \leq I_{a}(M f), M\left(J_{a} f\right) \leq J_{a}(M f)$ imply that the complements of the Lebesgue sets of $I_{a} f$ and $J_{a} f$ have zero $R_{a, p}$ and $B_{a, p}$ capacity respectively.

Related to $B_{a, p}$ and $R_{a, p}$ is the $H^{n-a p}$ Hausdorff measure: if $0<r \leq \infty$ and $E \subset \mathbf{R}^{n}$ we define

$$
H_{r}^{n-a p}(E)=\inf \left\{\sum_{\substack{0 \\ 0}}^{\infty}\left|Q_{i}\right|^{1-a p / n}\right\},
$$

the inf taken over all coverings of E by cubes of side $\leq r$; then $H^{n-a p}(E)=$ $\sup _{r} H_{r}^{n-a p}(E) . H^{n-a p}$ is finer than $B_{a, p}$ in the sense that $B_{a, p}(E) \leq C H_{\infty}^{n-a p}(E)$
[12]. Here we shall use $H_{\infty}^{n-a p}$ rather than $H^{n-a p}$; both have the same zero sets [6].

If $0<a<n, 1 \leq p<n / a$, and $f \in L^{p}$, we define

$$
M_{a} f(x)=\sup \left\{|Q|^{a / n}|f|_{Q}: x \in Q\right\} .
$$

Lemma 1. For the above a, p, and $f, H_{\infty}^{n-a p}\left(\left\{M_{a} f>t\right\}\right) \leq C\left(\|f\|_{p} / t\right)^{p}$.
Proof. For each $x \in E=\left\{M_{a} f>t\right\}$ there is a cube Q with $x \in Q$ and

$$
t<|Q|^{a / n}|f|_{Q} \leq|Q|^{a / n-1 / p}\left(\int_{Q}|f|^{p}\right)^{1 / p}
$$

hence, selecting $[\mathbf{1 6}$, p. 9$]$ a disjoint family $\left\{Q_{i}\right\}$ such that $E \subset \bigcup 5 Q_{i}(r Q$ denotes the cube with same center as Q and side r times side (Q)), we have

$$
H_{\infty}^{n-a p}(E) \leq C \sum\left|Q_{i}\right|^{1-a p / n} \leq C t^{-p} \sum \int_{Q_{i}}|f|^{p} \leq C\left(\|f\|_{p} / t\right)^{p} .
$$

Obviously, the same estimate holds with M_{a} replaced by $\left(M_{a s}|f|^{s}\right)^{1 / s}, 1<$ $s \leq p$. Also, if we define for $0<r \leq 1 / 100$ and $\varphi(t)=(\log 1 / t)^{1-p}, H_{r}^{\varphi}(E)=$ $\inf \left\{\sum \varphi\left(\left|Q_{i}\right|\right): E \subset \bigcup Q_{i}, Q_{i}\right.$ cubes, side $\left.Q_{i} \leq r\right\}$ and the maximal operator $M_{\varphi} g(x)=\sup \left\{\int_{Q}|g| / \varphi(|Q|): x \in Q\right.$, side $\left.Q \leq 1 / 1000\right\}$, the above argument gives the estimate

$$
H_{1 / 100}^{\varphi}\left(\left\{M_{\varphi} g>t\right\}\right) \leq C\|g\|_{1} / t
$$

Lemma 2. If $0<b \leq a<n, 1 \leq p<n / a$ and $f \in L^{p}$, then

$$
H_{\infty}^{n-(a-b) p}\left(\left\{I_{a} f>t\right\}\right) \leq C\left(\|f\|_{p} / t\right)^{p(n-(a-b) p) /(n-a p)}
$$

Proof. The desired inequality follows from Lemma 1 once we prove

$$
\begin{equation*}
\left|I_{a} f(x)\right| \leq C\|f\|_{p}^{b p /(n-(a-b) p)} M_{a-b} f(x)^{1-b p /(n-(a-b) p)} ; \tag{3}
\end{equation*}
$$

now, as in [11, Theorem 1], we have for any $r>0$

$$
\begin{aligned}
\left|I_{a} f(x)\right| & \leq C\left(\int_{|z| \leq r}+\int_{|z|>r}\right)|f(x-z)||z|^{a-n} d z \\
& \leq C \sum_{0}^{\infty}\left(2^{-k} r\right)^{a-n} \int_{|z| \leq 2^{-k} r}|f(x+z)| d z+C r^{a-n / p}\|f\|_{p} \\
& \leq C\left(r^{b} M_{a-b} f(x)+r^{a-n / p}\|f\|_{p}\right)
\end{aligned}
$$

and (3) follows if we choose $r=\left(M_{a-b} f(x) /\|f\|_{p}\right)^{1 /(a-b-n / p)}$
LEmma 3. There is a constant C_{I} such that $M\left(I_{a} f\right) \leq C_{I} I_{a} f$ for all positive f. Also, there is a C_{J} such that $f_{Q} J_{a} f(x+z) d z \leq C_{J} J_{a} f(x)$ for all cubes Q centered at 0 with side ≤ 10 and all $f \geq 0$.

PROOF. If Q has center 0 , an easy computation gives $f_{Q} I_{a}(x+z) d z \leq C_{I} I_{a}(x)$; if moreover side $(Q) \leq 10, f_{Q} J_{a}(x+z) d z \leq C_{J} J_{a}(x)[3$, p. 418]. The lemma now follows.

As a consequence, if $g \geq 0$ and $f=J_{a} g, m f(x) \leq C f(x)$, where m denotes the "local" maximal operator $m f(x)=\sup \left\{|f|_{Q}: x \in Q,|Q| \leq 5^{n}\right\}$.
3. The spaces F_{a}^{p}. We fix $a>0, m=[a]$ and p such that $1 \leq p \leq \infty$. We first show that $E f$ can be defined using a minimizing polynomial on each cube Q; in fact, if $P_{Q} f$ denotes the unique polynomial in \mathbf{P}_{m} such that for any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbf{N}^{n}$ with $|\gamma|=\gamma_{1}+\cdots+\gamma_{n} \leq m$,

$$
\int_{Q}\left(f(y)-P_{Q} f(y)\right) y^{\gamma} d y=0
$$

then $[8$, p. 17]

$$
\begin{equation*}
\text { if } D^{\gamma}=\left(\partial / \partial x_{1}\right)^{\gamma_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\gamma_{n}}, \underset{Q}{\operatorname{esss} \sup }\left|D^{\gamma} P_{Q} f\right| \leq C|Q|^{-|\gamma| / n}|f|_{Q} \tag{4}
\end{equation*}
$$

it now follows that

$$
\begin{equation*}
\text { for any } R \in \mathbf{P}_{k}, \quad f_{Q}\left|f-P_{Q} f\right| \leq C f_{Q}|f-R| \tag{5}
\end{equation*}
$$

and therefore, $E f(x, t) \sim \sup \left\{f_{Q}\left|f-P_{Q} f\right|: x \in Q,|Q|=t^{n}\right\} ;$

$$
\begin{equation*}
\text { if } Q \subset Q^{\prime}, \quad f_{Q}\left|f-P_{Q} f\right| \leq C\left(\left|Q^{\prime}\right| /|Q|\right) f_{Q^{\prime}}\left|f-P_{Q^{\prime}} f\right| \tag{6}
\end{equation*}
$$

in particular, if $Q_{x, t}$ denotes the cube with center x and side t,

$$
G_{a} f(x) \sim \sup _{t>0} t^{-a} f_{Q_{x, t}}\left|f-P_{Q_{x, t}} f\right|
$$

also, balls can be used instead of cubes to define $E f$ and $G_{a} f$.
Fix next $x \in Q,|Q|=t^{n}$ and let $Q_{1} \subset Q_{2} \subset \cdots \subset Q_{k}=Q$ be a sequence of cubes with $x \in Q_{1}$ and $\left|Q_{i+1}\right|=2^{n}\left|Q_{i}\right|, i=1, \ldots, k-1$; writing the polynomials $P_{Q_{i}} f$ as $P_{Q_{i}} f(y)=\sum_{|\gamma| \leq m} c_{\gamma}\left(Q_{i}\right)(y-x)^{\gamma} / \gamma!$, we have by (4)

$$
\begin{align*}
\left|c_{\gamma}\left(Q_{1}\right)-c_{\gamma}(Q)\right| & \leq \sum_{1}^{k-1}\left|c_{\gamma}\left(Q_{i}\right)-c_{\gamma}\left(Q_{i+1}\right)\right| \tag{7}\\
& \leq \sum\left|D^{\gamma}\left(P_{Q_{i}} f-P_{Q_{i+1}} f\right)(x)\right| \\
& \leq C \sum^{\left(2^{-i} t\right)^{-|\gamma|} E f\left(x, 2^{-i} t\right)} \\
& \leq C \int_{2^{-k} t}^{t} E f(x, s) s^{-|\gamma|-1} d s
\end{align*}
$$

in particular, since $P_{Q} f(x)=c_{0}(Q)$ tends to $f(x)$ a.e. $[8$, p. 9], we have

$$
\begin{equation*}
\left|f(x)-c_{0}(Q)\right|=\left|f(x)-P_{Q} f(x)\right| \leq C \int_{0}^{t} E f(x, s) d s / s \tag{8}
\end{equation*}
$$

Next, $C_{a}^{p}=\left\{f \in L^{p}:\|f\|_{a, p}=\|f\|_{p}+\left\|G_{a} f\right\|_{p}\right\}$ is a Banach space [8, p. 37] and $F_{a}^{p}=\left\{f \in C_{a}^{p}: G_{a} f(x, t)=o(1)\right\}$ can also be defined as the subspace of those $f \in C_{a}^{p}$ such that $\left\|G_{a} f(\cdot, t)\right\|_{p}=o(1)$: indeed, since $G_{a} f(x, t) \leq G_{a} f(x)$, if $f \in F_{a}^{p}$, $\left\|G_{a} f(\cdot, t)\right\|_{p}=o(1)$ by dominated convergence; conversely, $\left\|G_{a} f(\cdot, t)\right\|_{p}=o(1)$ implies that $G_{a} f\left(x, t_{j}\right)=o(1)$ for some subsequence t_{j}, but then $f \in F_{a}^{p}$, for $G_{a} f(x, t) \leq G_{a} f\left(x, t_{j}\right)$ if $t \leq t_{j}$. Furthermore, it can be easily checked that F_{a}^{p} is a closed subspace of C_{a}^{p}.

Also, if a is not an integer and $f \in C_{a}^{p}$, for a.e. x there is a polynomial $P_{x} f \in \mathbf{P}_{m}$ such that [8, p. 32]

$$
C^{\prime} G_{a} f(x, t) \leq S_{a} f(x, t)=\sup _{s \leq t} s^{-a} f_{Q_{x, s}}\left|f-P_{x} f\right| \leq C G_{a} f(x, t)
$$

if $0<a<1, P_{x} f$ is the constant polynomial $f(x)$. Furthermore, setting $\chi_{t}=$ $t^{-n} \chi_{Q_{0, t}},(4)$ gives for $t \geq 1$

$$
t^{-a} E f(x, t) \leq C \int_{1}^{\infty}|f| * \chi_{s}(x) s^{-a-1} d s
$$

and therefore,

$$
\left\|\sup _{t \geq 1} t^{-a} E f(x, t)\right\|_{p} \leq C \int_{1}^{\infty}\left\||f| * \chi_{s}\right\|_{p} s^{-a-1} d s \leq C\|f\|_{p}
$$

as a consequence, $\|f\|_{a, p} \sim\|f\|_{p}+\left\|G_{a}(\cdot, 1)\right\|_{p}$.
THEOREM 4. For all positive a and b, J_{b} is an isomorphism from C_{a}^{p} and F_{a}^{p} onto C_{a+b}^{p} and F_{a+b}^{p} respectively; that is, if $f \in F_{a+b}^{p}\left(C_{a+b}^{p}\right)$ there is a unique $g \in F_{a}^{p}\left(C_{a}^{p}\right)$ such that $f=J_{b} g$ and $\|f\|_{a+b, p} \sim\|g\|_{a, p}$.

Proof. Assuming $b<n$ (the general case follows by the semigroup property of J) we show first that $\left\|J_{b} f\right\|_{a+b, p} \leq C\|f\|_{a, p}$. Fix $x \in \mathbf{R}^{n}$ and Q with $x \in Q$, $|Q|=t^{n}$; if $T(u, v)=\sum_{|\gamma| \leq p} D^{\gamma} J_{b}(u) v^{\gamma} / \gamma!$ denotes the Taylor polynomial of degree $p=[a+b]$ of J_{b} at u, consider the polynomial in y

$$
R_{Q}(y)=P_{Q} f * J_{b}(y)+\int_{c_{2 Q}}\left(f(z)-P_{Q} f(z)\right) T(x-z, y-x) d z
$$

since $\left|D^{\gamma} J_{b}(u)\right| \leq C\left(1+|u|^{b-n-|\gamma|}\right) e^{-|u|}[\mathbf{5}, \mathrm{p} .192], R_{Q}$ is well defined and

$$
\begin{aligned}
\left|J_{b} f(y)-R_{Q}(y)\right| \leq & \int_{2 Q}\left|f(z)-P_{Q} f(z)\right| J_{b}(y-z) d z \\
& +\int_{c_{2 Q}}\left|f(z)-P_{Q} f(z)\right|\left|J_{b}(y-z)-T(x-z, y-x)\right| d z \\
= & \mathrm{I}+\mathrm{II} .
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
f_{Q} \mathrm{I} d y \leq \int_{2 Q}\left|f(z)-P_{Q} f(z)\right| f_{Q} J_{b}(y-z) d y \leq C t^{b} E f(x, 2 t) \tag{9}
\end{equation*}
$$

and by Taylor's formula and the fact that $|x-z+\theta(y-x)| \geq|x-z| / 2$ if $\theta \leq 1$ and $|x-z| \geq 2|x-y|$,

$$
\begin{aligned}
\mathrm{II} & \leq C t^{p+1} \int_{c_{2 Q}}\left|f(z)-P_{Q} f(z)\right| \cdot|x-z|^{b-n-p-1} d z \\
& \leq C t^{p+1} \sum_{0}^{\infty}\left(2^{k} t\right)^{b-m-1}\left(E f\left(x, 2^{k} t\right)+\underset{2^{k} Q}{\operatorname{esssup}}\left|P_{2^{k} Q} f-P_{Q} f\right|\right)
\end{aligned}
$$

writing $P_{2^{k} Q} f(z)=\sum_{|\gamma| \leq m} c_{\gamma}\left(2^{k} Q\right)(z-x)^{\gamma} / \gamma!,(7)$ gives for $z \in 2^{k} Q$

$$
\left|P_{2^{k} Q} f(z)-P_{Q} f(z)\right| \leq C \sum_{0}^{m}\left(2^{k} t\right)^{j} \int_{t}^{2^{k} t} E f(x, s) s^{-j-1} d s
$$

which, since $a+b-p-1<0$, implies by Fubini's theorem

$$
\begin{align*}
\mathrm{II} & \leq C t^{p+1}\left(\int_{t}^{\infty} s^{b-p-1}\left(E f(x, s)+\sum_{0}^{m} s^{j} \int_{t}^{s} E f(x, u) u^{-j-1} d u\right) d s / s\right) \tag{10}\\
& \leq C t^{p+1} \int_{t}^{\infty} s^{b-p-1} E f(x, s) d s / s .
\end{align*}
$$

Now, putting (9) and (10) together,

$$
\begin{aligned}
E J_{b} f(x, t) & \leq C\left(t^{b} E f(x, 2 t)+t^{p+1} \int_{t}^{\infty} s^{b-p-1} E f(x, s) d s / s\right) \\
& \leq C t^{a+b} G_{a} f(x)
\end{aligned}
$$

and thus, $\left\|J_{b} f\right\|_{a+b, p} \leq C\|f\|_{a, p}$. Also, if $f \in F_{a}^{p}$, given $\varepsilon>0$ and T such that $G_{a} f(x, T) \leq \varepsilon$,

$$
\begin{aligned}
t^{-a-b} E J_{b} f(x, t) & \leq C\left(\varepsilon+t^{p+1-a-b}\left(\int_{t}^{T}+\int_{T}^{\infty}\right)\left(s^{b-p-1} E f(x, s) d s / s\right)\right) \\
& \leq C\left(\varepsilon+(t / T)^{p+1-a-b} G_{b} f(x)\right) \leq C \varepsilon
\end{aligned}
$$

if t is small enough; hence $J_{b} f \in F_{a+b}^{p}$.
Next, if $f \in F_{a}^{p}, a>1$, its weak partials $f_{i}=\partial f / \partial x_{i}$ verify $\left\|G_{a-1} f_{i}\right\|_{p} \leq$ $C\left\|G_{a} f\right\|_{p}\left[8\right.$, p. 42], and also $\left|f_{i}(x)\right| \leq C\left(G_{a} f(x)+|f|_{Q_{x, 1}}\right)$ and

$$
E f_{i}(x, t) \leq C\left(\int_{0}^{t} M(E f(\cdot, s))(x) s^{-2} d s+E f(x, 2 t) / t\right)
$$

[9, Theorem 3 and Lemma 1]; hence $f_{i} \in F_{a-1}^{p}$. This and the obvious imbeddings $F_{a}^{p} \subset F_{a-\varepsilon}^{p}$ imply that $I-\Delta \operatorname{maps} F_{a}^{p}, a>2$, into F_{a-2}^{p} and $\|(I-\Delta) f\|_{a-2, p} \leq$ $C\|f\|_{a, p}$. Therefore, if $0<b<2$ and $f \in F_{a+b}^{p}, a>0, f=J_{b}(I-\Delta) J_{2-b} f=J_{b} g$, where $g \in F_{a}^{p}$ and $\|f\|_{a+b, p} \sim\|g\|_{a, p}$. The same argument works for the C_{a}^{p} and for a general $b>0$. The theorem follows by the semigroup properties of J.

Proposition 1. C_{0}^{∞} is dense in $F_{a}^{p}, 1 \leq p<\infty$.
Proof. Supposing first $0<a<1$, let $\varphi \geq 0$ be a C^{∞} function with $\varphi(x)=1$ when $|x| \leq 1 / 10, \varphi(x)=0$ when $|x| \geq 1$ and $\int \varphi d x=1$, and set $\varphi_{r}(x)=$ $r^{-n} \varphi(x / r), r>0$. If $f \in F_{a}^{p}$ and $f_{r}=f * \varphi_{r}(x)$, an easy computation yields $G_{a} f_{r}(x, t) \leq C \varphi_{r} * G_{a} f(\cdot, t)(x)$. Thus, given ε, if $\left\|G_{a} f(\cdot, T)\right\|_{p} \leq \varepsilon$ and r is small enough, (4) implies

$$
\begin{aligned}
& \qquad \qquad G_{a}\left(f-f_{r}\right)\left\|_{p} \leq C\right\| G_{a} f(\cdot, T)\left\|_{p}+C\right\| \int_{T}^{\infty} t^{-a}\left|f-f_{r}\right| * \chi_{t}(\cdot) d t / t \|_{p} \\
& \\
& \leq C\left\|G_{a} f(\cdot, T)\right\|_{p}+C \int_{T}^{\infty}\left\|f-f_{r}\right\|_{p} t^{-a-1} d t \\
&
\end{aligned}
$$

Next, setting $\varphi^{r}(x)=\varphi(r x)$ and $f^{r}(x)=f(x) \varphi^{r}(x)$, where $f \in C^{\infty} \cap C_{a}^{p}$, it easily follows that

$$
f_{|y| \leq t}\left|f^{r}(x+y)-f^{r}(x)\right| d y \leq C\left\|\varphi^{r}\right\|_{\infty} E f(x, t)+t\left\|\nabla \varphi^{r}\right\|_{\infty}|f(x)| ;
$$

thus, given ε, if $T^{1-a}\|f\|_{p} \leq \varepsilon,\left\|G_{a} f(\cdot, T)\right\|_{p} \leq \varepsilon$, and r is small enough, we have

$$
\begin{aligned}
\left\|G_{a}\left(f-f^{r}\right)\right\|_{p} \leq & C\left\|G_{a} f(\cdot, T)\right\|_{p}+C T^{1-a}\|f\|_{p} \\
& +C\left\|\int_{T}^{\infty}\left|f-f^{r}\right| * \chi_{t}(\cdot) t^{-a-1} d t\right\|_{p} \\
\leq & C \varepsilon+C T^{-a}\left\|f-f^{r}\right\|_{p} \leq C \varepsilon
\end{aligned}
$$

Hence, C_{0}^{∞} is dense in F_{a}^{p}, which together with Theorem 4 implies the density of $C^{\infty} \cap F_{a}^{p}$ in F_{a}^{p} for all $a>0$. Finally, the density of C_{0}^{∞} in these F_{a}^{p} follows as before.

If $a>n / p$ functions in C_{a}^{p} are continuous [8, p. 74], whereas if $a \leq n / p$ they have a considerable degree of integrability.

Proposition 2. If $1 \leq p<n / a, q=n p / n-a p$ and $f \in C_{a}^{p}$,

$$
\left(f_{Q}\left|f-P_{Q} f\right|^{q}\right)^{1 / q} \leq C|Q|^{a / n}\left(f_{Q}\left(G_{a} f\right)^{p}\right)^{1 / p}
$$

for any cube Q; if $p>1, a=n / p$ and $p^{\prime}=p / p-1$, there are constants C, β such that for any cube Q

$$
f_{Q} \exp \left(\beta\left(\left|f-P_{Q} f\right| /\left\|G_{a} f \chi_{Q}\right\|_{p}\right)^{p^{\prime}}\right) \leq C
$$

This result, essentially proved in [8, Lemma 4.2] also follows easily by the Sobolev and Trudinger inequalities for Riesz potentials $[\mathbf{1 1}, 16]$ from the next theorem.

Theorem 5. If $0<r \leq 1, a \leq n / p$ and $f \in C_{a}^{p}$, then for any cube Q and a.e. $y \in Q$,

$$
\begin{equation*}
\left|f(y)-P_{Q} f(y)\right|^{r} \leq C I_{a r}\left(G_{a} f \chi_{4 Q}\right)^{r}(y) \tag{11}
\end{equation*}
$$

Proof. Denoting by $B_{y, s}$ the ball with center y and side s, and by S_{n-1} the unit sphere in \mathbf{R}^{n}, an easy modification of (8) together with (6), polar coordinates and Fubini's theorem give

$$
\begin{aligned}
\left|f(y)-P_{Q} f(y)\right|^{r} & \leq C \int_{0}^{t} E f(y, s)^{r} d s / s \\
& \leq C \int_{0}^{t}\left(f_{B_{y, s}} E f(z, s)^{r} d z\right) d s / s \\
& \leq C \int_{0}^{2 t} s^{a r} f_{B_{y, s}} G_{a} f(z)^{r} d z d s / s \\
& =C \int_{0}^{2 t} s^{a z-n} \int_{0}^{s} \int_{S_{n-1}} G_{a} f\left(x+u y^{\prime}\right)^{r} u^{n-1} d u d y^{\prime} d s / s \\
& \leq C \int_{0}^{2 t} \int_{S_{n-1}} u^{a r-n} G_{a} f\left(x+u y^{\prime}\right)^{r} u^{n-1} d y^{\prime} d u \\
& \leq C I_{a r}\left(G_{a} f \chi_{4 Q}\right)^{r}(y) .
\end{aligned}
$$

Observe that since $I_{a} \sim J_{a}$ near $0,\left|f(y)-P_{Q} f(y)\right| \leq C J_{a}\left(G_{a} f \chi_{4 Q}\right)(y)$; also $\left\|P_{Q} f \chi_{Q}\right\|_{\infty} \leq C|f|_{Q}$ tends to 0 if $|Q|$ tends to ∞, and hence, $|f| \leq C I_{a}\left(G_{a} f\right)$ a.e. in $\mathbf{R}^{n}, 0<a<n / p$. Furthermore, if $1 \leq s<q$, (11) implies $E_{s} f(x, t) \leq$ $C t^{a}\left(M\left(G_{a} f\right)^{r}(x)\right)^{1 / r}$ for some $r<p$; therefore

$$
\begin{equation*}
\left\|\sup _{t} t^{-a} E_{s} f(\cdot, t)\right\|_{p} \sim\left\|G_{a} f\right\|_{p} \tag{12}
\end{equation*}
$$

which for the same s and $k \geq m$ extends to [8, p. 27]

$$
\begin{equation*}
\sup _{t} t^{-a} E_{s}^{k} f(x, t) \sim \sup _{t} t^{-a} E_{s} f(x, t) \tag{13}
\end{equation*}
$$

Finally we note that since $||f(x+y)|-|f(x)|| \leq|f(x+y)-f(x)|$, if $f \in C_{a}^{p}$ or $F_{a}^{p}, 0<a<1$, so does $|f|$ and $\||f|\|_{a, p} \leq\|f\|_{a, p}$.
4. Tangential boundary values. We derive now Theorems 1 and 2 from pointwise estimates for the corresponding tangential maximal functions.

Proof of Theorem 1. If $f \in F_{a}^{p}$ and $u(x, y)=P_{y} * f(x)$, define $T_{a, p} f(x)=$ $\sup \left\{|u(z, y)|:(z, y) \in D_{a, p}(x)\right\} ;$ we will show

$$
\begin{equation*}
T_{a, p} f\left(x_{0}\right) \leq C\left(M f\left(x_{0}\right)+\left(M\left(G_{a} f\right)^{p}\left(x_{0}\right)\right)^{1 / p}\right) \tag{14}
\end{equation*}
$$

obviously, (14) implies that $\left|\left\{T_{a, p} f>t\right\}\right| \leq C\left(\|f\|_{a, p} / t\right)^{p}$, and standard arguments give then Theorem 1.

Suppose $x_{0}=0$; if $(x, y) \in D_{a, p}(0)$ and $Q=Q_{0,2|x|}$, we have

$$
|u(x, y)|=\left|\left(\int_{Q}+\int_{c_{Q}}\right) f(z) P_{y}(x-z) d z\right|=\mathrm{I}+\mathrm{II}
$$

if $z \in{ }^{c} Q,|z-x| \geq|z| / 2$ and $P_{y}(x-z) \leq P_{y}(z / 2)$; thus,

$$
\mathrm{II} \leq \int_{\mathbf{R}^{n}}|f(z)| P_{y}(z / 2) d z \leq C M f(0)
$$

Next, by (4),

$$
\begin{aligned}
\mathrm{I} & \leq \int_{Q}\left|f(z)-P_{Q} f(z)\right| P_{y}(x-z) d z+\int_{Q}\left|P_{Q} f(z)\right| P_{y}(x-z) d z \\
& \leq \mathrm{III}+C M f(0) \int_{Q} P_{y}(x-z) d z \leq \mathrm{III}+C M f(0)
\end{aligned}
$$

If $a<n / p, q=n p / n-a p$ and $q^{\prime}=q / q-1$, Hölder's inequality and Proposition 2 give

$$
\begin{aligned}
\mathrm{III} & \leq\left\|P_{y}\right\|_{q^{\prime}}\left(\int_{Q}\left|f-P_{Q} f\right|^{q}\right)^{1 / q} \\
& \leq C y^{-n / q}|x|^{a+n / q}|x|^{-a}\left(f_{Q}\left|P_{Q} f\right|^{q}\right)^{1 / q} \\
& \leq C y^{-n / q}|x|^{n / p}\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p} \\
& \leq C\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p}
\end{aligned}
$$

since $|x|<y^{p / q}$; thus, (14) is proved in this case.

If $a=n / p, p>1$ and $p^{\prime}=p / p-1$, we will use an Orlicz space version of Hölder's inequality: if $\phi(t)=t(\log (1+t))^{1 / p^{\prime}}$ and Ψ is its conjugate Orlicz function, then $\Psi(t) \leq C e^{\alpha t^{p^{\prime}}}$ for appropriate C and α, and therefore $[18$, p. 171]

$$
\left|f_{Q} g h d z\right| \leq\|g\|_{\phi} \max \left(1, f_{Q} \Psi(h) d z\right) \leq C\|g\|_{\phi} f_{Q} e^{\alpha|h|^{p^{\prime}}} d z
$$

where $\|g\|_{\phi}$ denotes the ϕ-Orlicz norm of $g \chi_{Q}$ with respect to $d z /|Q|$. This inequality and Proposition 2 imply

$$
\begin{aligned}
\mathrm{III} & \leq C\left\|G_{a} f \chi_{Q}\right\|_{p}|Q| f_{Q} P_{y}(x-z) \frac{\left|f(z)-P_{Q} f(z)\right|}{\left\|G_{a} f \chi_{Q}\right\|_{p}} d z \\
& \leq C|x|^{n+n / p}\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p}\left\|P_{y}(x-\cdot)\right\|_{\phi} \int_{Q} \exp \left(\beta\left(\frac{\left|f-P_{Q} f\right|}{\left\|G_{a} f \chi_{Q}\right\|_{p}}\right)^{p^{\prime}}\right) d z \\
& \leq C|x|^{n+n / p}\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p}\left\|P_{y}(x-\cdot)\right\|_{\phi}
\end{aligned}
$$

But $\left\|P_{y}(x-\cdot)\right\|_{\phi}=\inf \left\{t: f_{Q} \phi\left(P_{y}(x-z) / t\right) d z \leq 1\right\}[18$, p. 173]; thus, if $T=$ $C_{0}(\log 1 / y)^{1 / p^{\prime}} /|Q|, C_{0}$ to be fixed later, then $T \geq C_{0} / 2^{n}|x|^{n}(\log 1 / y)^{p / p^{\prime}} \geq C_{0} 2^{-n}$, for $(x, y) \in D_{a, p}(0)$, and therefore,

$$
\begin{aligned}
& f_{Q}\left(P_{y}(x-z) / T\right)\left(\log \left(1+P_{y}(x-z) / T\right)^{1 / p^{\prime}} d z\right. \\
& \quad \leq \int_{2 Q} P_{y}(z)\left(\log \left(1+c_{n} y^{-n}\right)\right)^{1 / p^{\prime}} d z / T|Q| \\
& \quad \leq C\left((\log 1 / y)^{1 / p^{\prime}} / T|Q|\right) \int_{2 Q} P_{y}(z) d z \leq 1
\end{aligned}
$$

for an appropriate C_{0}. Hence, $\left\|P_{y}(x-\cdot)\right\|_{\phi} \leq T$ and we have

$$
\begin{aligned}
\mathrm{III} & \leq C|x|^{n+n / p}|x|^{-n}(\log 1 / y)^{1 / p^{\prime}}\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p} \\
& \leq C\left(M\left(G_{a} f\right)^{p}(0)\right)^{1 / p}
\end{aligned}
$$

Proof of Theorem 2. If $1<p<n / a$, Theorem 5 and Lemma 3 imply that $M f(x) \leq C I_{a} G_{a} f(x)$, and it easily follows that f can be redefined in a zero measure set so that the complement of the Lebesgue set of the new f has zero $R_{a, p}$, and hence, $B_{a, p}$ capacity; clearly this implies nontangential convergence $B_{a, p}$-a.e. When $p=1$, the embeddings $F_{a}^{1} \subset F_{a-n / p^{\prime}}^{p} \subset L_{a-n / p^{\prime}-e}^{p}, 1<p<n / n-a, e>0$ [8, pp. 72 and 58] tell us that any $f \in F_{a}^{1}$ can be redefined in a zero measure so that the complement of its Lebesgue set has zero $B_{a-n / p^{\prime}-e, p}$ capacity and hence, zero $H^{(n-a) p+p e}$ Hausdorff measure [12]. Thus, for any $\varepsilon>0$, we have nontangential convergence of $P_{y} * f$ for all x outside a set of zero $H^{n-a+\varepsilon}$ Hausdorff measure.

Next, if $0<b<a$, fix $x_{0}=0$ and $(x, y) \in D_{b, p}(0)$. Proceeding as in the proof of Theorem 1, we obtain $|u(x, y)| \leq \operatorname{III}+C M f(0)$, and setting $r=n p / n-b p$, Hölder's
inequality and Theorem 5 imply

$$
\begin{aligned}
\mathrm{III} & \leq C y^{-n / r}|x|^{a+n / r}|x|^{-a}\left(f_{Q}\left|f-P_{Q} f\right|^{q}\right)^{1 / q} \\
& \leq C y^{-n / r}|x|^{n / p+a-b}\left(f_{Q}\left(G_{a} f\right)^{p}\right)^{1 / p} \leq C|x|^{a-b}\left(f_{Q}\left(G_{a} f\right)^{p}\right)^{1 / p} \\
& \leq C\left(M_{(a-b) p}\left(G_{a} f\right)^{p}(0)\right)^{1 / p}
\end{aligned}
$$

since $|x| \leq y^{p / r}$. Also, $M f \leq C I_{a} G_{a} f$ and therefore

$$
T_{b, p} f(0) \leq C\left(M_{(a-b) p}\left(G_{a} f\right)^{p}(0)\right)^{1 / p}+C I_{a}\left(G_{a} f\right)(0)
$$

which by Lemmas 1 and 2 gives

$$
\begin{aligned}
H_{\infty}^{n-(a-b) p}\left(\left\{T_{b, p} f>t\right\}\right) \leq & H_{\infty}^{n-(a-b) p}\left(\left\{M_{(a-b) p}\left(G_{a} f\right)^{p}>t^{p} / C\right\}\right) \\
& +H_{\infty}^{n-(a-b) p}\left(\left\{I_{a} G_{a} f>t / C\right\}\right) \\
\leq & C\left(\left\|G_{a} f\right\|_{p} / t\right)^{p}+C\left(\left\|G_{a} f\right\|_{p} / t\right)^{p(n-(a-b) p) / n-a p}
\end{aligned}
$$

and standard arguments finish now the proof of part (i).
In part (ii) we first divide $\mathbf{R}^{\boldsymbol{n}}$ into a mesh of disjoint cubes of side $1 / 1000$. If x is in such a cube Q^{\prime},

$$
u(x, y)=\int P_{y}(x-z)\left(f \chi_{4 Q^{\prime}}(z)+f \chi_{c_{4 Q^{\prime}}}(z)\right) d z=u_{1}(x, y)+u_{2}(x, y)
$$

and since $\left|u_{2}(x, y)\right| \leq C y^{1 / p^{\prime}}\|f\|_{p}$ tends to 0 with y uniformly in $2 Q^{\prime}$, it is enough to study the convergence of u_{1}. Fix now $x_{0}=0,(x, y) \in D_{n / r, r}(0), p<r<\infty$ and $Q=Q_{0,2|x|}$, and assume $0 \in Q^{\prime}$ with Q^{\prime} in the above mesh, and y small enough so that side $Q \leq 1 / 1000$. Using again the Orlicz space version of Hölder's inequality, this time with the function $\phi(t)=t(\log (1+t))^{1 / r^{\prime}}$, we obtain as in Theorem 1

$$
\begin{aligned}
\left|u_{1}(x, y)\right| & \leq \mathrm{III}+C M\left(f \chi_{4 Q^{\prime}}\right)(0) \\
& \leq C(\log 1 / y)^{1 / r^{\prime}}\left\|G_{n / p} f \chi_{Q}\right\|_{p}+C M\left(f \chi_{4 Q^{\prime}}\right)(0)
\end{aligned}
$$

now, Theorem 5, Lemma 3, and (4) give

$$
\begin{aligned}
M\left(f \chi_{4 Q^{\prime}}\right)(0) & \leq C M\left(I_{n / p}\left(G_{n / p} f \chi_{8 Q^{\prime}}\right)(0)+C|f|_{8 Q^{\prime}}\right. \\
& \leq C I_{n / p}\left(G_{n / p} f \chi_{8 Q^{\prime}}\right)(0)+C J_{n / p}\left(|f| \chi_{8 Q^{\prime}}\right)(0) \\
& \leq C J_{n / p}\left(G_{n / p} f+|f|\right)(0)
\end{aligned}
$$

and since $(x, y) \in D_{n / r, r}(0)$,

$$
\begin{aligned}
\left|u_{1}(x, y)\right| & \leq C|x|^{n / r}\left(\int_{Q}\left(G_{n / p} f\right)^{p}\right)^{1 / p}+C J_{n / p}\left(G_{n / p} f+|f|\right)(0) \\
& \leq C\left(M_{n-n p / r}\left(G_{n / p} f\right)^{p}(0)\right)^{1 / p}+C J_{n / p}\left(G_{n / p} f+|f|\right)(0)
\end{aligned}
$$

Thus, defining $T_{s, t}^{\prime} f(x)=\sup \left\{\left|u_{1}(z, y)\right|:(z, y) \in D_{s, t}(x)\right\}$, we have

$$
\begin{aligned}
H_{\infty}^{n p / r}\left(\left\{T_{n / r, r}^{\prime} f>t\right\}\right) \leq & H_{\infty}^{n p / r}\left(\left\{M_{n-n p / r}\left(G_{n / p} f\right)^{p}>t^{p} / C\right\}\right) \\
& +H_{\infty}^{n p / r}\left(\left\{J_{n / p}\left(G_{n / p} f+|f|\right)>t / C\right\}\right) \\
= & \mathrm{I}+\mathrm{II}
\end{aligned}
$$

where I $\leq C\left\|G_{n / p} f\right\|_{p}^{p} / t^{p}$, by Lemma 1. Also, since

$$
J_{n / p}\left(G_{n / p} f+|f|\right)=J_{n / p-e}\left(J_{e}\left(G_{n / p} f+|f|\right)\right) \leq I_{n / p-e} F
$$

with $F=J_{e}\left(G_{n / p} f+|f|\right)$, then, if $e<n / r$, Lemma 2 implies that

$$
\mathrm{II} \leq C\left(\|F\|_{p} / t\right)^{n p / r e} \leq C\left(\|f\|_{n / p, p} / t\right)^{n p / r e}
$$

Convergence inside $D_{n / r, r}(x)$ for $H^{n p / r}$-a.a. x follows now by standard arguments from these estimates.

Finally, if $0 \leq b<n / p$ and $(x, y) \in D_{b, p}(0), \log 1 / y \leq C \log 1 /|x|$, and proceeding as before, we obtain

$$
\begin{aligned}
\left|u_{1}(x, y)\right| & \leq C\left((\log 1 /|x|)^{p-1} \int_{Q}\left(G_{n / p} f\right)^{p}\right)^{1 / p}+C M\left(f \chi_{4 Q^{\prime}}\right)(0) \\
& \leq C\left(M_{\varphi}\left(G_{n / p} f\right)^{p}(0)\right)^{1 / p}+C J_{n / p}\left(G_{n / p} f+|f|\right)(0)
\end{aligned}
$$

with M_{φ} as in $\S 2$, and since $B_{n / p, p} \leq C H_{1 / 100}^{\varphi}[12]$, it follows that

$$
\begin{aligned}
B_{n / p, p}\left(\left\{T_{b, p}^{\prime} f>t\right\}\right) \leq & C H_{1 / 100}^{\varphi}\left(\left\{M_{\varphi}\left(G_{n / p} f\right)^{p}>t^{p} / C\right\}\right) \\
& +B_{n / p, p}\left(\left\{J_{n / p}\left(G_{n / p} f+|f|\right)>t / C\right\}\right) \\
\leq & C\left(\|f\|_{n / p, p} / t\right)^{p}
\end{aligned}
$$

and again standard arguments can be used to finish the proof.
5. Strong L^{p} estimates. The proof of Theorem 3 depends on a strong inequality for a certain capacity type set function associated to C_{a}^{p} which we now define. Fix a, b and p with $0<b<a$ and $1 \leq p<\infty$, and for any $E \subset \mathbf{R}^{n}$ denote by $O_{a, p}^{b}(E)$ the set $\left\{g \in C_{b}^{p}: g \geq 0, J_{a-b} g \geq \chi_{E}\right\}$; we define then

$$
U_{a, p}^{b}(E)=\inf \left\{\left(\|g\|_{b, p}\right)^{p}: g \in O_{a, p}^{b}(E)\right\}
$$

Obviously, $U_{a, p}^{b}(E) \leq U_{a, p}^{b}\left(E^{\prime}\right)$ if $E \subset E^{\prime}$ and $U_{a, p}^{b}(E \cup F) \leq C\left(U_{a, p}^{b}(E)+U_{a, p}^{b}(F)\right)$; furthermore, by Theorem 4, if $g \in C_{b}^{p}$,

$$
\begin{equation*}
U_{a, p}^{b}\left(\left\{J_{a-b}(g)>t\right\}\right) \leq\left(\|g\|_{b, p} / t\right)^{p} \leq C\left(\left\|J_{a-b} g\right\|_{a, p} / t\right)^{p} \tag{15}
\end{equation*}
$$

it can also be proved that $U_{a, p}^{b} \sim U_{a, p}^{b^{\prime}}$ if $0<b, b^{\prime}<a$ and that $R_{a, p} \leq C U_{a, p}^{b}$, $a<n / p$; since we clearly have $U_{a, p}^{b} \leq C B_{a, p}$, it follows that $R_{a, p}, B_{a, p}$ and $U_{a, p}^{b}$ have the same zero sets when $a<n / p$ (Lemma 3 and (15) imply that any $f \in F_{a}^{p}$ can be modified in a set of measure zero so that the complement of its Lebesgue set has zero $U_{a, p}^{b}$ "capacity", and hence zero $B_{a, p}$ capacity if $1<p<\infty$).
$U_{a, p}^{b}$ satisfies the following strong type inequality.
THEOREM 6. If $0<b<a, 1 \leq p<\infty$, and $g \in C_{b}^{p}, g \geq 0$, then

$$
\int_{0}^{\infty} s^{p-1} U_{a, p}^{b}\left(\left\{J_{a-b} g>s\right\}\right) d s \leq C\left(\left\|J_{a-b} g\right\|_{a, p}\right)^{p}
$$

Once this is proved, Theorem 3 is deduced as in [14]: given $A \subset \mathbf{R}^{n}$ and $B \subset$ \mathbf{R}_{+}^{n+1} set $S(A)=\mathbf{R}_{+}^{n+1}-\bigcup\{C(x): x \notin A\}$, with $C(x)=\left\{(z, y) \in \mathbf{R}_{+}^{n+1}:|z-x| \leq\right.$ $y\}$, and $J(B)=\left\{x \in \mathbf{R}^{n}: B \cap D_{a, p}(x) \neq \varnothing\right\}$; then, if $g \in O_{a, p}^{b}(E)$, and $g^{\prime}=J_{a-b} g$, $J(S(E)) \subset\left\{T_{a, p} g^{\prime} \geq C_{0}\right\}$ for some numerical C_{0}, and the weak inequalities of

Theorem 1 give $|J(S(E))| \leq C\left(\|g\|_{b, p}\right)^{p}$. Thus, taking inf in $O_{a, p}^{b}(E)$, we obtain $|J(S(E))| \leq C U_{a, p}^{b}(E)$. Now, if $f \in C_{a}^{p}$,

$$
\left\{T_{a, p} f>s\right\} \subset J(S(\{N f>s / C\}))
$$

where $N f(x)=\sup \{|u(x, y)|: y>0\}$; writing $f=J_{a-b}(g), g \in C_{b}^{p}, 0<b<1$, we have $N f(x) \leq J_{a-b}(N(|g|))(x)$, but

$$
\int|g|\left(x^{\prime}-z\right) P_{y}(z) d z=\int_{|z| \leq 2}+\int_{|z|>2}=\mathrm{I}+\mathrm{II}
$$

and standard arguments give $\mathrm{I} \leq C m(|g|)\left(x^{\prime}\right)$, which since $|g|=J_{b-e} h, h \in C_{e}^{p}$, implies $\mathrm{I} \leq C m\left(J_{b-e}|h|\right)\left(x^{\prime}\right) \leq C J_{b-e}|h|\left(x^{\prime}\right)$, by Lemma 3. Also, if $y \leq 1$ and $|z| \geq 2, P_{y}(z) \leq C /(1+|z|)^{n+1}=Q(z)$ and II $\leq Q *|g|\left(x^{\prime}\right)$, which belongs to C_{b}^{p}. Therefore $N f \leq C\left(J_{a-e}|h|+J_{a-b}(Q *|g|)\right)$, and since $\|Q *|g|\|_{b, p} \leq C\|f\|_{a, p}$ and $\||h|\|_{e, p} \leq C\|f\|_{a, p}$, Theorem 6 gives

$$
\begin{aligned}
\left\|T_{a, p} f\right\|_{p}^{p} & =p \int_{0}^{\infty} s^{p-1}\left|\left\{T_{a, p} f>s\right\}\right| d s \\
\leq & \leq \int_{0}^{\infty} s^{p-1} U_{a, p}^{b}(\{N f>s / C\}) d s \\
\leq & C \int_{0}^{\infty} s^{p-1}\left(U_{a, p}^{b}\left(\left\{J_{a-b}\left(J_{b-e}|h|\right)>s\right\}\right)\right) \\
& \quad+\left(U_{a, p}^{b}\left(\left\{J_{a-b}(Q *|g|)>s\right\}\right)\right) d s \\
\leq & C\left(\||h|\|_{e, p}^{p}+\|Q *|g|\|_{b, p}^{p}\right) \leq C\|f\|_{a, p}^{p}
\end{aligned}
$$

Our proof of Theorem 6 is an adaptation and simplification of the one given by Dahlberg in [7]; we need a preliminary lemma.

Lemma 4. Let h be a C^{∞} function with $h(t)=0$ if $t<0$, and $\left|t^{j-1} h^{(j)}(t)\right| \leq A$, $0 \leq j \leq m+1, m=[a]$. Then if $f=J_{a-b} g$, with $g \in C_{b}^{p}$, and $g \geq 0, h(f) \in C_{a}^{p}$ and $\|h(f)\|_{a, p} \leq C\|f\|_{a, p}$.

Proof. We will estimate $G_{a} h(f)(x, 1)$ using the centered version of E (see $\S 3$). Fix $x \in \mathbf{R}^{n}$ and write Q for $Q_{x, t}$, where we assume $t \leq 1$. Writing $P_{Q} f(y)=$ $\sum_{|\gamma| \leq m} c_{\gamma}(t)(y-x)^{\gamma} / \gamma!$, define

$$
R(y)=f(x)+\sum_{0<|\gamma| \leq m} c_{\gamma}(t)(y-x)^{\gamma} / \gamma!;
$$

by (4) and Lemma 3 we have

$$
\begin{aligned}
|R(y)| & \geq f(x)-C \sum_{0<|\gamma| \leq m} f_{Q}(|y-x| / t)^{|\gamma|} \\
& \geq f(x)\left(1-C \sum_{0<|\gamma| \leq m}(|y-x| / t)^{|\gamma|}\right)
\end{aligned}
$$

thus, if $|x-y|<\varepsilon t$ with ε small enough, $R(y)>C f(x)$. Considering now the polynomial

Taylor's formula and (8) give

$$
\begin{aligned}
|h(f(y))-S(y)| \leq & |h(f(y))-h(R(y))|+|h(R(y))-S(y)| \\
\leq & A|f(y)-R(y)|+C|R(y)-R(x)|^{m+1} \\
& \quad \times\left|h^{(m+1)}((1-\theta) R(x)+\theta R(y))\right| \\
\leq & C\left(\left|f(y)-P_{Q} f(y)\right|+t^{a} G_{a} f(x)\right. \\
& \left.\quad+|R(y)-R(x)|^{m+1} / f(x)^{m}\right) .
\end{aligned}
$$

Set now $T=\left(f(x) / G_{a} f(x)\right)^{1 / a}$ and suppose $T \leq 1 ;$ since

$$
(R(y)-R(x))^{m+1}=\sum_{j=m}^{m(m+1)} \sum_{|\gamma|=j} c_{\gamma}(y-x)^{\gamma}
$$

where c_{γ} equals the sum of all terms $c_{\gamma_{1}}(t) \cdots c_{\gamma_{m+1}}(t)$ with $\gamma_{1}+\cdots+\gamma_{m+1}=\gamma$, then (7) and (4) imply for $0<t \leq T$ that

$$
\begin{aligned}
\left|c_{\gamma_{i}}(t)\right| & \leq C T^{-\left|\gamma_{i}\right|} f_{Q_{x, T}}+C T^{a-\left|\gamma_{i}\right|} G_{a} f(x) \\
& \leq C T^{-\left|\gamma_{i}\right|}\left(f(x)+T^{a} G_{a} f(x)\right) \leq C T^{-\left|\gamma_{i}\right|} f(x)
\end{aligned}
$$

if $\left|\gamma_{i}\right|<a$, or

$$
\begin{aligned}
\left|c_{\gamma_{\mathrm{i}}}(t)\right| & \leq C T^{-\left|\gamma_{i}\right|} f(x)+C \log (T / t) G_{a} f(x) \\
& \leq C T^{-\left|\gamma_{i}\right|} \log (T / t) f(x)
\end{aligned}
$$

if $\left|\gamma_{i}\right|=a$. In any case,

$$
|R(y)-R(x)|^{m+1} \leq C f(x)^{m+1}(\log e T / t)^{m+1} \sum_{m+1}^{m(m+1)}(t / T)^{j}
$$

which implies

$$
E^{m(m+1)} h(f)(x, t)
$$

$$
\leq C\left(E f(x, t)+t^{a} G_{a} f(x)+f(x)(\log e T / t)^{m+1} \sum_{m+1}^{m(m+1)}(t / T)^{j}\right)
$$

and therefore

$$
\begin{equation*}
\sup _{t \leq T} t^{-a} E^{m(m+1)} h(f)(x, t) \leq C\left(G_{a} f(x)+f(x) T^{-a}\right) \leq C G_{a} f(x) \tag{16}
\end{equation*}
$$

If $T \leq t \leq 1$, then $E^{m(m+1)} h(f)(x, t) \leq C f_{Q} \leq C f(x)$, by (4) and Lemma 3, and we have

$$
\begin{equation*}
\sup _{T \leq t \leq 1} t^{-a} E^{m(m+1)} h(f)(x, t) \leq C T^{-a} f(x) \leq C G_{a} f(x) \tag{17}
\end{equation*}
$$

In the case $T>1$, then $f(x)>G_{a} f(x)$ and we estimate the coefficients $c_{\gamma_{i}}(t)$ as $\left|c_{\gamma_{i}}(t)\right| \leq C\left(f(x)+\log (e / t) G_{a} f(x)\right) \leq C \log (e / t) f(x)$, and replace (16) by
(18) $\sup _{t \leq 1} t^{-a} E^{m(m+1)} h(f)(x, t) \leq C\left(G_{a} f(x)+f(x) \sum_{m+1}^{m(m+1)} \sup _{t \leq 1} t^{j-a} \log (e / t)\right)$ $\leq C f(x)$.

Thus, (16), (17), and (18) yield for a.e. x

$$
\begin{equation*}
G_{a} h(f)(x, 1) \leq C\left(G_{a} f(x)+f(x)\right) \tag{19}
\end{equation*}
$$

and, since $h(f) \leq A f$, we conclude that $\|h(f)\|_{a, p} \leq C\|f\|_{a, p}$.
To finish the proof of Theorem 6 fix a, b, p and write U instead of $U_{a, p}^{b}$. As in [2 or 7], if h is a C^{∞} function with $h(t)=0$ if $t<0, h(t)=1$ if $t>1$, define for any integer $j h_{j}(t)=2^{j} h\left(2^{2-j} t-1\right)$ and $f_{j}=h_{j}(f)$. By Lemma $4 f_{j} \in C_{a}^{p}$, and since $f_{j}(x)=2^{j}$ if $f(x)>2^{j},(15)$ gives

$$
\int_{0}^{\infty} s^{p-1} U(\{f>s\}) d s \leq C \sum_{-\infty}^{\infty} 2^{j p} U\left(\left\{f_{j} \geq 2^{j}\right\}\right) \leq C \sum_{-\infty}^{\infty}\left(\left\|f_{j}\right\|_{a, p}\right)^{p}
$$

Now, the h_{j}^{\prime} have disjoint support and are uniformly bounded; therefore,

$$
\begin{align*}
\sum_{-\infty}^{\infty}\left(f_{j}(x)\right)^{p} & =\sum_{-\infty}^{\infty}\left(\int_{0}^{f(x)} h_{j}^{\prime}(s) d s\right)^{p} \tag{20}\\
& \leq f(x)^{p-1} \sum_{-\infty}^{\infty} \int_{0}^{f(x)}\left|h_{j}^{\prime}(s)\right| d s \leq C f(x)^{p}
\end{align*}
$$

and $\sum\left\|f_{j}\right\|_{p}^{p} \leq C\|f\|_{p}^{p}$. Fix $x \in \mathbf{R}^{n}$ and denote $Q_{x, t}$ as Q; if $t \leq 1$, (4) and Lemma 3 give $f(x) \leq\left|f(x)-P_{Q} f(x)\right|+C f_{Q} \leq C t^{a} G_{a} f(x)+C^{\prime} f(y)$ for any $y \in Q$; thus,

$$
f(y) \geq\left(f(x)-C t^{a} G_{a} f(x)\right) / C^{\prime}>f(x) / 2 C^{\prime}
$$

if $t \leq T=\left(\varepsilon f(x) / G_{a} f(x)\right)^{1 / a}$ with ε small enough. Now $C^{\prime} \sim 2^{K}$ for some K independent of f or x, and, when $f(x)>2^{j+K+1}, f(y)>2^{j}$ on Q and $f_{j}(y)=2^{j}$. Hence, using again the centered version of E,

$$
E f_{j}(x, t) \leq f_{Q}\left|f_{j}(y)-f_{j}(x)\right| d y=0
$$

If $t \geq \min (1, T)$, then $E f_{j}(x, t) \leq C\left(f_{j}\right)_{Q} \leq C 2^{j}=C f_{j}(x)$ and therefore

$$
G_{a} f_{j}(x, 1) \leq \sup _{t>\min (1, T)} t^{-a} E f_{j}(x, t) \leq C\left(f_{j}(x)+T^{-a} f_{j}(x)\right)
$$

and (20) gives (\sim means the index set equals the preceding one)

$$
\begin{align*}
\sum_{f(x)>2^{j+\kappa+1}} G_{a} f_{j}(x, 1)^{p} & \leq C \sum_{\sim}\left(f_{j}(x)^{p}+T^{-a p} f_{j}(x)^{p}\right) \tag{21}\\
& \leq C\left(f(x)^{p}+G_{a} f(x)^{p}\right)
\end{align*}
$$

Suppose next $f(x)<2^{j-3}$; if $t \leq 1$ and we set as before $R(y)=f(x)+P_{Q} f(x)-$ $c_{0}(t)$,

$$
|R(y)| \leq f(x)+C \sum_{0<|\gamma| \leq m} f_{Q}(|y-x| / t)^{|\gamma|} \leq f(x)\left(1+C \sum_{\sim}(|y-x| / t)^{|\gamma|}\right)
$$

$\leq 2 f(x)$
if $|x-y| \leq \varepsilon t$ with' ε small enough. Hence $h_{j}(R(y))=0$ and, setting $S=\{y \in$ $\left.Q: f(y)>2^{j-2}\right\}$, (4) implies

$$
\begin{aligned}
E f_{j}(x, \varepsilon t) & \leq C f_{Q} f_{j}(y) d y=C t^{-n} \int_{S} h_{j}(f(y)) d y \\
& \leq C t^{-n} \int_{S}\left|h_{j}(f(y))-h_{j}(R(y))\right| d y \\
& \leq C\left(f_{Q}|f-R|^{s}\right)^{1 / s}\left(t^{-n}|S|\right)^{1-1 / s} \\
& \leq C\left(E_{s} f(x, t)+t^{a} G_{a} f(x)\right)\left(2^{-j} f(x)\right)^{1-1 / s}
\end{aligned}
$$

for, by Lemma $3,|S| \leq C 2^{-j} \int_{Q} f d z \leq C 2^{-j} t^{n} f(x)$. Thus,

$$
G_{a} f_{j}(x, 1) \leq C\left(\sup _{t} t^{-a} E_{s} f(x, t)+G_{a} f(x)\right)\left(2^{-j} f(x)\right)^{1-1 / s}
$$

and since $\sum_{f(x)<2^{j-3}} 2^{-j p(1-1 / s)} \leq C f(x)^{-p(1-1 / s)}$,

$$
\begin{equation*}
\sum_{f(x)<2^{j-3}} G_{a} f_{j}(x, 1)^{p} \leq C\left(\sup _{t} t^{-a} E_{s} f(x, t)\right) \tag{22}
\end{equation*}
$$

By (19), we estimate the remaining $K+4 f_{j}$ as $G_{a} f_{j}(x, 1) \leq C\left(G_{a} f(x)+f(x)\right)$, which with (21) and (22) gives

$$
\sum_{-\infty}^{\infty} G_{a} f_{j}(x, 1)^{p} \leq C\left(\left(\sup _{t} t^{-a} E_{s} f(x, t)\right)^{p}+f(x)^{p}\right)
$$

taking now (12) and (20) into account, we obtain

$$
\sum_{-\infty}^{\infty}\left\|G_{a} f_{j}(\cdot, 1)\right\|_{p}^{p} \leq C\left(\left\|G_{a} f\right\|_{p}^{p}+\|f\|_{p}^{p}\right) \leq C\|f\|_{a, p}
$$

and the proof of Theorem 6 is finished.
6. Further remarks. We discuss here the imbeddings of the Triebel-Lizorkin spaces in F_{a}^{p}. These spaces are usually defined as follows [17]: let ψ be a function in Schwartz's class S such that $\Psi=\hat{\psi} \geq 0$ and $\operatorname{supp} \Psi \subset\{z: 1 / 2 \leq|z| \leq 2\}$, and set $\psi_{t}(z)=t^{-n} \psi(z / t)$; then $F_{a}^{p, q}, a>0,1 \leq p, q \leq \infty$ is the space of those L^{p} functions such that

$$
D_{a, p} f(x)=\left(\int_{0}^{\infty}\left(t^{-a}\left|f * \psi_{t}(x)\right|\right)^{q} d t / t\right)^{1 / q}
$$

is in L^{p}. With the norm $\|f\|_{a, p, q}=\|f\|_{p}+\left\|D_{a, q} f\right\|_{p}, F_{a}^{p, q}$ becomes a Banach space, and as mentioned before, if $1<p<\infty, F_{a}^{p, 2}=L_{a}^{p}$, and $F_{a}^{1,2}=J_{a}\left(h^{1}\right)$.

The extension of Theorems 1,2 and 3 to the $F_{a}^{p, q}$ is a consequence of
Proposition 3. If $1 \leq p, q<\infty, F_{a}^{p, q}$ is continuously imbedded in F_{a}^{p}.
PROOF. If $0<a<1, f \in F_{a}^{p, q}$ iff

$$
S_{a, q} f(x)=\left(\int_{0}^{\infty}\left(t^{-a} \int_{|y| \leq 1}|f(x+t y)-f(x)| d y\right)^{q} d t / t\right)^{1 / q}
$$

is in L^{p} and $\left\|D_{a, q} f\right\|_{p} \sim\left\|S_{a, q} f\right\|_{p}\left[\mathbf{1 7}\right.$, p. 108]. But then $G_{a} f(x) \leq C S_{a, q} f(x)$ (see $\S 3)$ and therefore, $\|f\|_{a, p} \leq C\|f\|_{a, p, q}$. The general case is reduced to this one by Theorem 4 and the fact [$\mathbf{1 7}$, p. 58$]$ that the Bessel operator J_{b} is an isomorphism between $F_{a}^{p, q}$ and $F_{a+b}^{p, q}$ (in fact it can be shown that $f \in F_{a}^{p, q}, 1 \leq p, q<\infty, a>0$ iff

$$
G_{a, q} f(x)=\left(\int_{0}^{\infty}\left(t^{-a} E f(x, t)\right)^{q} d t / t\right)^{1 / q}
$$

is in L^{p}, and $\left.\|f\|_{a, p, q} \sim\|f\|_{p}+\left\|G_{a, q}\right\|_{p}\right)$.
As a consequence, Theorems 1, 2, and 3 also hold for certain Besov spaces (see [16, 17] for their definition): indeed, if $1 \leq r \leq p, B_{a}^{p, r}$ is continuously imbedded in $F_{a}^{p, r}[17, \mathrm{p} .47]$. If $r>p$, the methods used here do not apply to $B_{a}^{p, r}$, although the embeddings $B_{a}^{p, r} \subset L_{a-\varepsilon}^{p}$ yield convergence of the Poisson integral of $f \in B_{a}^{p, r}$ inside any region $D_{a-\varepsilon, p}, \varepsilon>0$; since $C_{a}^{p} \subset L_{a-\varepsilon}^{p}$, the same is true of C_{a}^{p}.

References

1. D. R. Adams, Quasiadditivity and sets of finite L^{p} capacity, Pacific J. Math. 79 (1978), 283-291.
2. 125-140.
3. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier 11 (1961), 385-475.
4. A. P. Calderón and R. Scott, Sobolev type inequalities for $p>0$, Studia Math. 62 (1978), 75-92.
5. A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
6. L. Carleson, Selected problems on exceptional sets, Van Nostrand, 1967.
7. B. Dahlberg, Regularity properties of Riesz potentials, Indiana Univ. Math. J. 28 (1979), 257-268.
8. R. Devore and R. Sharpley, Maximal operators and smoothness, Mem. Amer. Math. Soc., No. 293 (1984).
9. J. R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), 21-31.
10. K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102.
11. L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
12. N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue spaces, Math. Scand. 26 (1970), 255-292.
13. Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier (Grenoble) 34 (1984), 99-109.
14. A. Nagel, W. Rudin and J. Shapiro, Tangential boundary behavior of functions in Dirichlet type spaces, Ann. of Math. (2) 116 (1982), 331-360.
15. A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83-106.
16. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
17. H. Triebel, Theory of function spaces, Birkhäuser, 1983.
18. A. Zygmund, Trigonometric series, Cambridge Univ. Press, 1959.
[^1]
[^0]: Received by the editors July 17, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 31B25; Secondary 46E35. Partially supported by C.A.I.C.Y.T. 2805-83.

[^1]: División de Matemáticas, facultad de Ciencias, Universidad Autónoma, 28049 MADRID, Spain

