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POISSON KERNEL CHARACTERIZATION OF
REIFENBERG FLAT CHORD ARC DOMAINS

BY CARLOS E. KENIG 1 AND TATIANA TORO 2

ABSTRACT. – In this paper we prove the conjecture stated by the authors in Free boundary regularity for
harmonic measures and Poisson kernels (Ann. of Math. 150 (1999) 369–454) concerning the free boundary
regularity problem for the Poisson kernel below the continuous threshold. We show that if Ω is a Reifenberg
flat chord arc domain, and the logarithm of the Poisson kernel has vanishing mean oscillation then the unit
normal vector to the boundary also has vanishing mean oscillation.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans cet article, on démontre la conjecture proposée par les auteurs dans Free boundary
regularity for harmonic measures and Poisson kernels (Ann. of Math. 150 (1999) 369–454) concernant la
régularité de la frontière libre pour le noyau de Poisson au-dessous du seuil de continuité. On prouve que si
Ω est un domaine corde-arc Reifenberg plat tel que le logarithme du noyau de Poisson appartienne à VMO,
alors le vecteur unitaire normal à la frontière appartient aussi à VMO.

 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The main goal of this paper is to present a general blow up argument (see Section 4) which
combines geometric and analytic information about the free boundary regularity problem for the
Poisson kernel. This technique allows us to provide a complete characterization of Reifenberg flat
chord arc domains via potential theory. In particular we prove the conjecture stated in [18], and
show that the “weak” regularity of the Poisson kernel of a domain fully determines the geometry
of its boundary. Namely we show that if Ω is a δ-Reifenberg flat chord arc domain for δ > 0
small enough, and the logarithm of its Poisson kernel has vanishing mean oscillation then the
unit normal vector to the boundary also has vanishing mean oscillation. In our context the mean
oscillation of the logarithm of the Poisson kernel, or of the unit normal vector replace stronger
notions of regularity. As in Alt and Caffarelli’s work (see [1]) we show that at “flat points” of
the boundary, the oscillation of the Poisson kernel controls the geometry of the boundary. The
difference between our work and the work in [1] is that we measure the oscillation in an integral
sense (BMO estimates) while they do so in a pointwise sense (Hölder estimates).

We now introduce formally the definitions needed to state our main results. We indicate how
the main theorem follows from the other results, and sketch briefly the contents of each section
of the paper. We always assume that n� 2.

1 The author was partially supported by the NSF.
2 The author was partially funded by the NSF and the Alfred P. Sloan Foundation.
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324 C.E. KENIG AND T. TORO

DEFINITION 1.1. – Let Σ ⊂ Rn+1 be a locally compact set, and let δ > 0. We say that Σ is
δ-Reifenberg flat if for each compact set K ⊂ Rn+1, there exists RK > 0 such that for every
Q ∈ K ∩ Σ and every r ∈ (0,RK ] there exists an n-dimensional plane L(Q,r) containing Q
such that

1

r
D
[
Σ∩B(Q,r),L(Q,r) ∩B(Q,r)

]
� δ.(1.1)

Here B(Q,r) denotes the (n+ 1)-dimensional ball of radius r and center Q, and D denotes the
Hausdorff distance.

Recall that for A,B ⊂ Rn+1,

D[A,B] = sup
{
d(a,B): a ∈A

}
+ sup

{
d(b,A): b ∈B

}
.

Note that the previous definition is only significant for δ > 0 small. This notion was initially
introduced by Reifenberg who proved the following remarkable theorem.

THEOREM [21,23]. – There exists δ > 0 depending only on n so that if Σ is δ-Reifenberg flat
then locally Σ is a topological disc.

We denote by

θ(Q,r) = inf
L

{
1

r
D
[
Σ ∩B(Q,r),L∩B(Q,r)

]}
,(1.2)

where the infimum is taken over all n-planes containing Q.

DEFINITION 1.2. – Let Σ⊂ Rn+1, we say that Σ is Reifenberg flat with vanishing constant
if it is δ-Reifenberg flat for some δ > 0 and for each compact set K ⊂ Rn+1

lim
r→0

sup
Q∈Σ∩K

θ(Q,r) = 0.

DEFINITION 1.3. – A measure µ in Rn+1 is said to be Ahlfors regular if there exists C > 1
such that for Q ∈ sptµ and r > 0

C−1rn � µ
(
B(Q,r)

)
�Crn.(1.3)

DEFINITION 1.4. – Let Ω⊂ Rn+1 be a set of locally finite perimeter (see [7]), ∂Ω is said to
be Ahlfors regular if the surface measure to the boundary, i.e., the restriction of the n-dimensional
Hausdorff measure to ∂Ω, σ =Hn ∂Ω, is Ahlfors regular.

DEFINITION 1.5. – Let Ω ⊂ Rn+1. We say that Ω has the separation property if for each
compact set K ⊂ Rn+1 there exists R> 0 such that for Q ∈ ∂Ω∩K and r ∈ (0,R] there exists
an n-dimensional plane L(Q,r) containing Q and a choice of unit normal vector to L(Q,r),
−−→nQ,r satisfying

T +(Q,r) =

{
X = (x, t) = x+ t−−→nQ,r ∈B(Q,r): x ∈ L(Q,r), t > 1

4
r

}
⊂Ω,(1.4)

and

T −(Q,r) =

{
X = (x, t) = x+ t−−→nQ,r ∈B(Q,r): x∈ L(Q,r), t <−1

4
r

}
⊂Ωc.(1.5)
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REIFENBERG FLAT CHORD ARC DOMAINS 325

Moreover if Ω is an unbounded domain we also require that Rn+1\∂Ω divide Rn+1 into two
distinct connected components Ω and intΩc 
= ∅.

The notation (x, t) = x+ t−−→nQ,r is used to denote a point in Rn+1. The first component, x, of
the pair belongs to an n-dimensional affine space whose unit normal vector is −−→nQ,r . The second
component t belongs to R. From the context it will always be clear what affine hyperplane x
belongs to, and what the orientation of the unit normal vector is.

DEFINITION 1.6. – Let δ ∈ (0, δn), where δn is chosen appropriately (see note below) and let
Ω⊂ Rn+1. We say that Ω is a δ-Reifenberg flat domain or a Reifenberg flat domain if Ω has the
separation property and ∂Ω is δ-Reifenberg flat. Moreover if Ω is an unbounded domain we also
require that

sup
r>0

sup
Q∈∂Ω

θ(Q,r)< δn.(1.6)

When we consider δ-Reifenberg flat domains in Rn+1 we assume that δn > 0 is small enough,
in order to ensure that we are working on NTA domains (see definition in Appendix A, see also
[14] and [19, Theorem 3.1]).

DEFINITION 1.7. – A set Ω ⊂ Rn+1 is said to be a Reifenberg flat domain with vanishing
constant if Ω is a Reifenberg flat domain, and for every compact set K ⊂ Rn+1

lim
r→0

sup
Q∈∂Ω∩K

θ(Q,r) = 0.(1.7)

DEFINITION 1.8. – A set of locally finite perimeter Ω⊂ Rn+1 (see [7]) is said to be a chord
arc domain, if Ω is an NTA domain whose boundary is Ahlfors regular.

DEFINITION 1.9. – Let δ ∈ (0, δn). A set of locally finite perimeter Ω⊂ Rn+1 is said to be a
δ-Reifenberg flat chord arc domain, ifΩ is a δ-Reifenberg flat domain whose boundary is Ahlfors
regular.

Remarks. – (1) Since Ω is a δ-Reifenberg flat domain with δ > 0 small enough, then for each
compact set K ⊂ Rn+1 so that ∂Ω ∩K 
= ∅ there exists RK > 0 so that for every Q ∈ ∂Ω ∩K
and every r ∈ (0,RK) there exists an n-plane L(Q,2r) containing Q and such that

1

2r
D
[
∂Ω∩B(Q,2r);L(Q,2r)∩B(Q,2r)

]
� 2δ,(1.8)

{
X = (x, t) = x+ t−→n (Q,2r): x ∈ L(Q,2r), t > 4δr

}
∩B(Q,2r)⊂Ω,(1.9)

and
{
X = (x, t) = x+ t−→n (Q,2r): x∈ L(Q,2r), t <−4δr

}
∩B(Q,2r)⊂Ωc.(1.10)

Here −→n (Q,2r) denotes the appropriate unit normal vector to L(Q,2r), where we choose
L(Q,2r) to be the “best” possible approximating n-plane to ∂Ω at Q and at radius 2r. (See
Remark 1.1 in [18].)

(2) By Remark 4.2 in [18] we have that if Ω is a set of locally finite perimeter which is a
Reifenberg flat domain then the topological boundary of Ω and its measure theoretic boundary
agree.

DEFINITION 1.10. – Let δ ∈ (0, δn). A set of locally finite perimeter Ω (see [7]) is said to be a
δ-chord arc domain or a chord arc domain with small constant if Ω is a δ-Reifenberg flat domain,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



326 C.E. KENIG AND T. TORO

∂Ω is Ahlfors regular and for each compact set K ⊂Rn+1 there exists R> 0 so that

sup
Q∈∂Ω∩K

‖−→n ‖∗(Q,R)< δ.(1.11)

Here −→n denotes the unit normal vector to the boundary,

‖−→n ‖∗(Q,R) = sup
0<s<R

( ∫
�

B(Q,s)

|−→n −−−→nQ,s|2 dσ
) 1

2

(1.12)

and −−→nQ,s =
∫
�B(Q,s)

−→n dσ.

We only use the notation δ-Reifenberg flat domain, δ-Reifenberg flat chord arc domain or
δ-chord arc domain when we want to emphasize the dependence on δ, otherwise we simply refer
to them as Reifenberg flat domain, Reifenberg flat chord arc domain or chord arc domain with
small constant. Note that a chord arc domain with small constant is a Reifenberg flat chord arc
domain.

DEFINITION 1.11. – A set of locally finite perimeter is said to be a chord arc domain with
vanishing constant if it is a chord arc domain with small constant and for each compact set
K ⊂ Rn+1

lim
r→0

sup
Q∈∂Ω∩K

‖−→n ‖∗(Q,r) = 0.(1.13)

We now present the definition of bounded (resp. vanishing) mean oscillation functions on the
boundary of a chord arc domain Ω; i.e., BMO(∂Ω) (resp. VMO(∂Ω)).

DEFINITION 1.12. – Let Ω ⊂ Rn+1 be a chord arc domain. Let f ∈ L2
loc(dσ), we say that

f ∈BMO(∂Ω) if

‖f‖∗ = sup
r>0

sup
Q∈∂Ω

( ∫
�

B(Q,r)

|f − fQ,r|2 dσ
) 1

2

<∞.(1.14)

Here fQ,r =
∫
�B(Q,r)f dσ, and σ =Hn ∂Ω.

DEFINITION 1.13. – Let Ω ⊂ Rn+1 be a chord arc domain. We denote by VMO(∂Ω) the
closure in BMO(∂Ω) of the set of uniformly continuous bounded functions defined on ∂Ω.

The reader will remark that Definition 1.13 is slightly different than the one used in [18] (see
Definition 1.8 in [18]). These 2 definitions coincide in the case when Ω is bounded. In the case
when Ω is unbounded, Definition 1.13 above provides good control on the behavior of f in large
balls (see discussion below). This is not the case for the definition used in [18].

Let Ω be a Reifenberg flat chord arc domain (either bounded or unbounded), and let X ∈ Ω;
then the harmonic measure with pole at X , ωX and σ = Hn ∂Ω are mutually absolutely
continuous (see [4] and [25]). The Radon–Nikodym theorem ensures that the corresponding
Poisson kernel

kX(Q) =
dωX

dσ
(Q) =

∂G(X,−)
∂n

(Q) ∈L1
loc(dσ).

Here G(X,−) denotes the Green’s function of Ω with pole at X and ∂
∂n =∇ · −→n denotes the

normal derivative at the boundary. We prove that if Ω is a Reifenberg flat chord arc domain, and
logkX ∈VMO(dσ) then Ω is a Reifenberg flat domain with vanishing constant.

4e SÉRIE – TOME 36 – 2003 – N◦ 3



REIFENBERG FLAT CHORD ARC DOMAINS 327

THEOREM 1.1. – Assume that
(1) Ω⊂ Rn+1 is a δ-Reifenberg flat chord arc domain for some δ > 0 small enough;
(2) logkX ∈VMO(dσ).

Then Ω is a Reifenberg flat domain with vanishing constant.

As mentioned above, under the previous assumptions we conclude also that the harmonic
measure is asymptotically optimally doubling (see Definition 1.5 in [18] and Theorem 4.1
in [19]). Hence combining Theorem 1.1 above with Theorems 5.3 or 5.4 in [18] (and taking
into account our modified version of VMO(dσ)) we conclude that the following results hold
both for bounded and unbounded domains.

THEOREM 1.2. – Assume that
(1) Ω⊂ Rn+1 is a chord arc domain with small enough constant.
(2) logkX ∈VMO(∂Ω).

Then Ω is a chord arc domain with vanishing constant.

Furthermore when Ω is an unbounded Reifenberg flat chord arc domain, the harmonic
measure with pole at infinity, ω and σ = Hn ∂Ω are mutually absolutely continuous. The
Radon–Nikodym theorem ensures that the Poisson kernel with pole at infinity h(Q) = dω

dσ (Q) ∈
L1

loc(dσ). As before we prove that if Ω is an unbounded Reifenberg flat chord arc domain, and
logh ∈VMO(dσ) then Ω is a Reifenberg flat domain with vanishing constant.

THEOREM 1.3. – Assume that
(1) Ω ⊂ Rn+1 is an unbounded δ-Reifenberg flat chord arc domain for some δ > 0 small

enough;
(2) logh ∈VMO(dσ).

Then Ω is a Reifenberg flat domain with vanishing constant. Moreover if h= 1 Hn-a.e. in ∂Ω,
then Ω is a half space.

Combining Theorem 1.3 above with the Main Theorem in [18] (and taking into account our
modified version of VMO(dσ)) we conclude that the following result holds.

THEOREM 1.4. – Assume that
(1) Ω⊂ Rn+1 is an unbounded chord arc domain with small enough constant;
(2) logh ∈VMO(∂Ω).

Then Ω is a chord arc domain with vanishing constant.

A more in depth analysis of the blow-up sequence described in Section 4 allows us to prove
that the conjecture stated in [18] holds.

MAIN THEOREM. – Assume that
(1) Ω ⊂ Rn+1 is a (unbounded) δ-Reifenberg flat chord arc domain for some δ > 0 small

enough;
(2) logkX ∈VMO(dσ) (logh ∈VMO(dσ)).

Then Ω is a chord arc domain with vanishing constant, i.e., −→n ∈VMO(dσ).
Remark. – Note that in [19] we have shown the converse of this, namely that if Ω⊂ Rn+1 is

a δ-Reifenberg flat chord arc domain and −→n ∈ VMO(dσ) then logkX ∈ VMO(dσ) for every
X ∈Ω.

Jerison (see [13]) introduced this “end point” problem in higher dimensions, but treated it
under more restrictive assumptions, namely that the boundary is given locally as a Lipschitz
graph, and the normal derivative data is continuous as opposed to having vanishing mean
oscillation. His paper is based on the work of Jerison–Kenig [15] and first points out the
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328 C.E. KENIG AND T. TORO

connection with the work of Alt and Caffarelli [1]. There is an error in Lemma 4 of Jerison’s
paper. Nevertheless in our previous work (see [18]) we made considerable use of the ideas in [13].
In this paper we bypass this approach. The basic difference between the Main Theorem above and
the Main Theorem in [18] (see Section 5) is that in [18] we needed to assume that the harmonic
measure was asymptotically optimally doubling and that −→n had small BMO norm. The main
ingredient of the proof in [18] was a decay-type argument. The assumption that the BMO norm
of −→n was small gave us a starting point for the argument. The main ingredient of the proofs in
this paper is a blow-up and hence the assumption on the BMO norm of −→n is not necessary.

It is interesting to compare our results with those of Alt and Caffarelli [1]. In both cases the
oscillation of the logarithm of the Poisson kernel controls the geometry (i.e., the “flatness”) of
the boundary and the oscillation of the unit normal.

THEOREM [1]. – Assume that
(1) Ω⊂ Rn+1 is a δ-Reifenberg flat chord arc domain for some δ > 0 small enough;
(2) logkX ∈C0,β (or logh ∈C0,β ) for some β ∈ (0,1).

Then Ω is a C1,α domain for some α ∈ (0,1) which depends on β and n. Moreover if Ω is
unbounded and h≡ 1 then Ω is a half-plane.

Jerison showed that α = β (see [13]). We would like to emphasize that the hypothesis 1
above is necessary. Keldysh and Lavrentiev (see [17] and [6]) constructed a domain in R2 whose
boundary is rectifiable but not Ahlfors regular, whose Poisson kernel is identically equal to 1 and
which is not C1. Moreover there are examples of domains in R2 whose boundary is Reifenberg
flat with vanishing constant, rectifiable but not Ahlfors regular, for which the logarithm of the
Poisson kernel is Hölder continuous and which are not even C1 domains (see [6]). Furthermore
if n� 2 there are examples of chord arc domains satisfying hypothesis 2, whose boundaries are
not C1, they contain a neighborhood of the vertex a double cone (see [1] and [18]). These results
should also be compared with Pommerenke’s theorem [22]:

THEOREM [22]. – Let Ω ⊂ R2 be a chord arc domain. Then Ω is a chord arc domain with
vanishing constant if and only if logkX ∈VMO(∂Ω).

We would like to point out that our proofs use a modified version of Alt and Caffarelli’s result
(see Theorem 2.2 and [20] for a proof).

We now sketch the content of each one of the sections. In Section 2 we prove some technical
lemmas which play a central rôle in Sections 3 and 4. These results are of two types: either
boundary regularity of non-negative harmonic functions on Reifenberg flat domains, or regularity
statements for functions of vanishing mean oscillation. The proofs of Theorem 1.1 and the Main
Theorem are accomplished in 2 main stages, described in Sections 3 and 4. In Section 3 we prove
gradient bounds for the Green’s function in terms of the integral of the corresponding Poisson
kernel, provided its logarithm has vanishing mean oscillation. In Section 4 we describe a general
construction of a blow up sequence for a Reifenberg flat chord arc domain whose Poisson kernel
has logarithm in VMO. In Section 4 we also prove the Main Theorem. The estimates obtained in
Section 3 ensure that the limit of this blow up sequence satisfies the hypothesis of Theorem 2.2
(see [20]). Section 4 constitutes the core of this paper. In Appendix A we prove Lemma 3.2 and
Rellich’s identity for chord arc domains with small constant, verifying a point left open in [18].
In particular in Appendix A we construct an approximation of Reifenberg flat chord arc domains
by interior chord arc domains. This is a very useful tool in potential theory.

We finish this introduction by briefly sketching the proof of Theorem 1.1 and Theorem 1.3.
This is an application of the blow up technique described in Section 4. Let K ⊂ Rn+1 be a
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REIFENBERG FLAT CHORD ARC DOMAINS 329

compact set, and let

l= lim
r→0

sup
Q∈∂Ω∩K

θ(Q,r).(1.15)

Our goal is to show that l = 0. There exist sequences {Qi}i�1 ⊂ ∂Ω ∩K , and {ri}i�1 ⊂ R

such that limi→∞Qi =Q∞, 0< ri, limi→∞ ri = 0 and

lim
i→∞

θ(Qi, ri) = l.(1.16)

We consider the blow up sequences Ωi = r−1
i (Ω−Qi), ∂Ωi = r−1

i (∂Ω−Qi), ui, ωi and hi
associated with Qi and ri as described in Section 4.

Theorem 4.1 ensures that there exists a subsequence (which we relabel) satisfying Ωi →Ω∞,
∂Ωi → ∂Ω∞ in the Hausdorff distance sense uniformly on compact sets (see Definition 2.1)
and ui → u∞ uniformly on compact sets, where u∞ satisfies hypothesis (2.35). Furthermore
ωi⇀ω∞. Theorems 4.2 and 4.3 guarantee that if h∞ = dω∞

dσ∞

then u∞ and h∞ satisfy
hypothesis (2.36) and (2.37). Theorem 2.2 allows us to conclude that Ω∞ is a half plane in
Rn+1 and ∂Ω∞ is an n-plane. Since ∂Ωi converges to ∂Ω∞ in the Hausdorff distance sense
uniformly on compact sets and O ∈ ∂Ωk, for each k � 1, given ε > 0 there exists k0 � 1 so that
for k � k0

D
[
∂Ωk ∩B(0,1);∂Ω∞ ∩B(0,1)

]
� ε.(1.17)

Hence

θ(Qk, rk)�
1

rk
D
[
∂Ω∩B(Qk, rk);Lk ∩B(Qk, rk)

]
� ε,(1.18)

where Lk = ∂Ω∞ +Qk is an n-plane through Qk. Since by (1.16) l = limk→∞ θ(Qk, rk), we
conclude that l= 0.

2. Preliminaries

In this section we prove some technical lemmas that will be useful in the rest of the paper.

DEFINITION 2.1 (Uniform Hausdorff convergence on compact sets). – Given a sequence of
closed sets {Ai}i in Rn+1 we say that Ai converges to a closed set A ⊂ Rn+1 (i.e., Ai → A)
in the Hausdorff distance sense uniformly on compact sets of Rn+1 if for any compact set
K ⊂ Rn+1 and any ε > 0 there exists i0 � 1 so that i� i0

sup
{
dist(x,A): x ∈Ai ∩K

}
+ sup

{
dist(x,Ai): x ∈A ∩K

}
� ε.(2.1)

Given a sequence of open sets {Ui}i in Rn+1 we say that Ui converges to an open set
U ⊂ Rn+1 (i.e. Ui → U ) in the Hausdorff distance sense uniformly on compact sets of Rn+1

if U c
i →U c in the Hausdorff distance sense uniformly on compact sets of Rn+1.

ForA,B,C closed subsets of Rn+1, we use the convention that dist(x,B) =+∞ whenB = ∅
but sup{dist(x,A): x∈C}= 0 when C = ∅.

DEFINITION 2.2. – Let µ be a Radon measure on Rn+1. We say that µ is a doubling measure
if there exists C > 1 so that every Q ∈ sptµ and every r > 0

µ
(
B(Q,2r)

)
�Cµ

(
B(Q,r)

)
.(2.2)

Here sptµ denotes the support of the measure µ.
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The following lemma gives an improvement of the conclusion of Lemma 4.1 in [14] in the
Reifenberg flat case.

LEMMA 2.1. – Given ε > 0 there exists δ = δ(n, ε) > 0 so that if Ω is a δ-Reifenberg flat
domain, then for every K ⊂ Rn+1, there exists RK > 0 so that if r ∈ (0,RK), Q ∈ ∂Ω ∩K ,
and u is a non-negative harmonic function in Ω ∩ B(Q,4r) which vanishes continuously on
∂Ω∩B(Q,4r), we have for X ∈B(Q,r)∩Ω

u(X)�C

( |X −Q|
r

)1−ε

sup
Y ∈∂B(Q,2r)∩Ω

u(Y )(2.3)

where C depends only on K , n and ε.

Proof. – Let v0 satisfy ∆v0 = 0 in Ω ∩ B(Q,2r), v0 = 1 on ∂B(Q,2r) ∩ Ω and v0 = 0 on
B(Q,2r)∩ ∂Ω. By the maximum principle for X ∈Ω∩B(Q,r)

u(X)�
[

sup
Y ∈∂B(Q,2r)∩Ω

u(Y )
]
v0(X).(2.4)

Since Ω is a δ-Reifenberg flat domain Remark 1.1 in [14] holds. Let

Λ=
{
X = x+ t−→n (Q,2r);x∈ L(Q,2r); t�−4δr

}
.(2.5)

Let h0 satisfy





∆h0 = 0 on Λ∩B(Q,2r),
h0 = 0 on ∂Λ∩B(Q,2r),
h0 = 1 on Λ∩ ∂B(Q,2r).

(2.6)

By the maximum principle v0(X) � h0(X) for X ∈ Ω ∩ B(Q,2r). Consider the function
g0 defined by g0(x + t−→n (Q,2r)) = t + 4δr; g0 is a non-negative harmonic function on
Λ ∩ B(Q,2r), g0 = h0 = 0 on ∂Λ ∩ B(Q,2r), and therefore by the Comparison principle
(Lemma 4.10 in [14]) we have that for X ∈B(Q,r) ∩Ω

h0(X)

g0(X)
�C

h0(Q+
r
2
−→n (Q,2r))
r

,(2.7)

and if X = x+ t−→n (Q,2r)

h0(X)�C
t+ 4δr

r
.(2.8)

Thus for X ∈B(Q,θr) ∩Ω with θ < 1

v0(X)� h0(X)�C(θ+ δ).(2.9)

An iteration process ensures that for θ < 1

v0(X)�
[
C(θ+ δ)

]k
for X ∈B

(
Q,θkr

)
∩Ω.(2.10)

In particular

v0(X)� (2Cδ)k for X ∈B
(
Q,δkr

)
∩Ω.(2.11)
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By choosing δ > 0 small enough we can ensure that 2Cδ � δ1−ε, which implies that

v0(X)�C

( |X −Q|
r

)1−ε

for X ∈B(Q,r).(2.12)

Combining (2.4) and (2.12) we obtain (2.3). ✷

Notation. – For Ω ∈ Rn+1 as above and X ∈Ω we denote by δ(X) = dist(X,∂Ω).

COROLLARY 2.1. – Given ε > 0 there exists δ = δ(n, ε) > 0 so that if Ω is a δ-Reifenberg
flat domain then for every K ⊂ Rn+1, there exists RK > 0 so that if r ∈ (0,RK), Q ∈ ∂Ω ∩K
and u is a non-negative harmonic function in Ω ∩ B(Q,4r) which vanishes continuously on
∂Ω∩B(Q,4r), we have for X ∈B(Q, r2 ) ∩Ω

u(X)�C

(
δ(X)

r

)1−ε

sup
Y ∈∂B(Q,4r)∩Ω

u(Y )(2.13)

where C depends only on K , n and ε.

Proof. – Apply Lemma 2.1 to K̂ = (K,2RK) = {X ∈ Rn+1,dist(X,K) � 2RK}, for RK

as above. If r <min{RK ,1}, Q ∈K ∩ ∂Ω, and P ∈ B(Q,r) ∩ ∂Ω ⊂K ∩ ∂Ω; (2.3) and the
maximum principle yield that for X ∈B(P, r) ∩Ω

u(X)�C

( |X − P |
r

)1−ε

sup
Y ∈∂B(Q,4r)∩Ω

u(Y ),(2.14)

which implies (2.13).

COROLLARY 2.2. – Given ε > 0 there exists δ = δ(n, ε) > 0 so that if Ω is an unbounded
Reifenberg flat domain such that

sup
Q∈∂Ω

sup
r>0

θ(Q,r)� δ,(2.15)

and u is a non-negative harmonic function in Ω which vanishes continuously on ∂Ω, then for
Q ∈ ∂Ω, R> 0, and X ∈B(Q,R)∩Ω

u(X)�C

(
δ(X)

R

)1−ε

sup
Y ∈∂B(Q,2R)∩Ω

u(Y ),(2.16)

where C depends only on n and ε.

Proof. – Note that since (2.15) holds for each compact set K ⊂ Rn+1, we can take RK =∞,
thus (2.16) follows from (2.13). ✷

COROLLARY 2.3. – Given ε > 0 there exists δ = δ(n, ε)> 0 so that if Ω is a δ-Reifenberg flat
domain,Q0 ∈ ∂Ω, and u is a non-negative harmonic function on Ω∩B(Q,4R0) which vanishes
continuously on ∂Ω∩B(Q,16R0), then for X ∈B(Q0,R0)∩Ω

u(X)�C

(
δ(X)

R0

)1−ε

sup
Y ∈∂B(Q0,16R0)∩Ω

u(Y ),(2.17)

where C depends on R0, ε and n.
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Proof. – Let K = B(Q0,16R0), Corollary 2.1 ensures that there exists RK > 0 so that for
r0 =

1
2 min{R0,RK}, Q ∈ ∂Ω∩B(Q0,R0), and X ∈B(Q, r02 )∩Ω,

u(X)�C

(
δ(X)

r0

)1−ε

sup
Y ∈∂B(Q,4R0)∩Ω

u(Y )

�C
(R0

r0

)1−ε
(
δ(X)

R0

)1−ε

sup
Y ∈∂B(Q0,16R0)∩Ω

u(Y ).(2.18)

Furthermore by Harnack’s principle for X ∈B(Q0,R0) ∩Ω with δ(X)�
r0
2 we have

u(X)�C sup
Y ∈∂B(Q0,16R0)∩Ω

u(Y )�C

(
δ(X)

r0

)1−ε

sup
Y ∈∂B(Q0,16R0)∩Ω

u(Y ).(2.19)

Combining (2.18) and (2.19) we obtain (2.17). ✷

The following theorem is a consequence of the John–Nirenberg inequality [16], see Garnett
and Jones [10] or [9, Chapter 4] in the Euclidean case. As they point out the result remains true
on an Ahlfors regular set. This is not surprising since most of the proof relies on a Calderon–
Zygmund type decomposition, which is possible in this case thanks to the existence of a family
of dyadic cubes (see [2] or [5, Chapter 3]).

THEOREM 2.1. – Let Ω⊂ Rn+1 be a chord arc domain f ∈VMO(∂Ω) and h= ef then for
all Q ∈ ∂Ω, r ∈ (0,diamΩ) and q <∞

( ∫
�

B(Q,r)

hq dσ

) 1
q

�Cq

∫
�

B(Q,r)

hdσ,(2.20)

( ∫
�

B(Q,r)

h−q dσ

) 1
q

�Cq

∫
�

B(Q,r)

h−1 dσ.(2.21)

Here Cq only depends on the VMO character of f , on n, q and the Ahlfors constant for σ.

Proof. – Since f ∈ VMO(∂Ω), then f ∈ BMO(∂Ω) and there exits p > 1 such that h,
h−1 ∈Ap. Since VMO(∂Ω) is the closure of the class of bounded uniformly continuous
functions in BMO(∂Ω) in ∂Ω, then

dist(f,L∞) = inf
g∈L∞

{
‖f − g‖∗

}
= 0(2.22)

where ‖ · ‖∗ denotes the norm in BMO(∂Ω) see Definition 1.12. Combining Corollary 1.1, and
Lemma 1.4 in [10] we conclude that h, h−1 ∈Aq for every q > 1. ✷

COROLLARY 2.4. – Let Ω⊂ Rn+1 be a chord arc domain and logh ∈ VMO(∂Ω), then for
all ε > 0, Q ∈ ∂Ω, r ∈ (0,diamΩ), and E ⊂B(Q,r) ∩ ∂Ω

C−1
ε

(
σ(E)

σ(B(Q,r))

)1+ε

�
ω(E)

ω(B(Q,r))
�Cε

(
σ(E)

σ(B(Q,r))

)1−ε

,(2.23)

where ω(A) =
∫
A
hdσ. Here Cε only depends on n, ε and the Ahlfors constant of σ.
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Proof. – Let q = 1
ε . For E ⊂ ∂Ω∩B(Q,r), applying (2.20) we have

ω(E)�

∫

E

hdσ �

( ∫

B(Q,r)

hq dσ

) 1
q
(∫

E

dσ

)1− 1
q

� σ
(
B(Q,r)

) 1
q

( ∫
�

B(Q,r)

hq dσ

) 1
q

σ(E)1−
1
q

�Cqσ
(
B(Q,r)

) 1
q

( ∫
�

B(Q,r)

hdσ

)
σ(E)1−

1
q

�Cε

(
σ(E)

σ(B(Q,r))

)1−ε

ω
(
B(Q,r)

)
,(2.24)

which shows that

ω(E)

ω(B(Q,r))
�Cε

(
σ(E)

σ(B(Q,r))

)1−ε

.(2.25)

Since σ(A) =
∫
A
h−1 dω, the argument above applied to h−1 rather than h, yields the first

inequality in (2.23). ✷

Let us finish this section by specifying our set up. Let Ω⊂ Rn+1 be a δ-Reifenberg flat chord
arc domain (δ > 0 is chosen so that Ω is an NTA domain, see [19]). Let A⊂Ω be fixed, and let u
denote the Green’s function of Ω with either pole at infinity (see [18, Lemma 3.7]) or the Green’s
function of Ω with pole at A. By the results of [25] or [4] we know that ω and ωA the harmonic
measures of Ω with pole at infinity and pole at A respectively are A∞-weights with respect to
σ, the surface measure to the boundary. Let kA = dωA

dσ denote the Poisson kernel with pole at A
and h= dω

dσ denote the Poisson kernel with pole at infinity. Recall that if u denotes the Green’s
function with pole at infinity we have





∆u= 0 in Ω,

u= 0 on ∂Ω,

u > 0 in Ω,

(2.26)

and
∫

Ω

u∆ϕ=

∫

∂Ω

ϕdω =

∫

∂Ω

ϕhdHn for all ϕ ∈C∞
c

(
Rn+1

)
.(2.27)

Similarly note that if u denotes the Green’s function with pole at A then we have






∆u= 0 in Ω∩B(Q,R),
u= 0 on ∂Ω∩B(Q,R),
u> 0 on Ω∩B(Q,R),

(2.28)

and
∫

Ω

u∆ϕ=

∫

∂Ω

ϕdωA =

∫

∂Ω

ϕkA dHn for all ϕ ∈C∞
C

(
B(Q,R)

)
,(2.29)
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for any Q ∈ ∂Ω and R> 0 so that A /∈B(Q,R). In order to unify our presentation we denote by
ω the harmonic measure with either finite or infinite pole, and by h the corresponding Poisson
kernel.

The following 2 lemmas are used in the proof of Lemma 4.2. We present them here to avoid
interrupting the flow of ideas in Section 4. The first lemma is essentially Lemma 5.4 in [18].

LEMMA 2.2. – Let Ω ⊂ Rn+1 be a δ-Reifenberg flat chord arc domain. Let X ∈ Ω then for
Hn a.e. Q∈ ∂Ω

dωX(Q)

dω
=
kX(Q)

h(Q)
= lim

X→0

ωX(B(Q,r))

ω(B(Q,r))
= lim

Z→Q

G(X,Z)

u(Z)
.(2.30)

Here ωX denotes the harmonic measure, G(X,−) denotes the Green’s function, and kX the
Poisson kernel forΩ with pole atX . LetK(X,Q) = kX (Q)

h(Q) . There exist constantsC > 1,N0 > 1

and α ∈ (0,1) so that for s ∈ (0,diamΩ), and Q0 ∈ ∂Ω, if X ∈Ω\B(Q0,2N0s), then for every
P,Q ∈B(Q0, s)∩ ∂Ω

∣∣K(X,Q)−K(X,P )
∣∣�CK(X,Q)

( |Q− P |
s

)α
.(2.31)

Although the hypothesis above are somewhat weaker than those in the statement of Lemma 5.4
in [18], the reader will easily check that the proof presented in [18] works in this setting. Simply
note that ωX , ω and σ are doubling measures on ∂Ω and ωX , ω ∈A∞(dσ). Thus ωX and ω are
mutually absolutely continuous, and the proof presented in [18] goes through.

LEMMA 2.3. – Let Ω ⊂ Rn+1 be a δ-Reifenberg flat chord arc domain. Assume that h the
Poisson kernel satisfies for all Q ∈ ∂Ω, and r ∈ (0,diamΩ)

( ∫
�

B(Q,r)

h2 dσ

) 1
2

�C0

∫
�

B(Q,r)

hdσ.(2.32)

There exist constants C > 1 and N0 > 1 so that for r ∈ (0,diamΩ), and Q ∈ ∂Ω if
X ∈Ω\B(Q,2N0r) then

( ∫
�

B(Q,r)

k2
X dσ

) 1
2

�C

∫
�

B(Q,r)

kX dσ.(2.33)

Proof. – LetN0 > 1 be as in Lemma 2.2. LetQ ∈ ∂Ω, r ∈ (0,diamΩ) andX ∈Ω\B(Q,2Nr),
then using (2.31) and (2.32) we have

( ∫
�

B(Q,r)

k2
X(P )dσ(P )

) 1
2

=

( ∫
�

B(Q,r)

k2
X(P )

h2(P )
h2(P )dσ(P )

) 1
2

�CK(X,Q)

( ∫
�

B(Q,r)

h2(P )dσ(P )

) 1
2

�CK(X,Q)

∫
�

B(Q,r)

h(P )dσ(P )
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�C

∫
�

B(Q,r)

h(P )
[
K(X,Q)−K(X,P )

]
dσ(P ) +C

∫
�

B(Q,r)

h(P )K(X,P )dσ(P )

�C

∫
�

B(Q,r)

h(P )K(X,P )dσ(P )�C

∫
�

B(Q,r)

kX(P )dσ(P ). ✷(2.34)

We finish this section with the statement of a theorem that plays a crucial role in our proof. It
generalizes some of the results that appear in [1]. In Sections 7 and 8 of [1], Alt and Caffarelli
prove that if Ω is a Reifenberg flat chord arc domain and logh ∈ C0,β(∂Ω) for some β ∈ (0,1)
then Ω is a C1,α domain for some α ∈ (0,1). In particular they show that if h ≡ 1 then Ω is a
half space.

THEOREM 2.2. – There exists δn > 0 so that if Ω⊂ Rn+1 is an unbounded δ-Reifenberg flat
chord arc domain (for δ ∈ (0, δn)) and v and k satisfy






∆v = 0 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(2.35)

and
∫

Ω

v∆ϕ=

∫

∂Ω

ϕk dHn for all ϕ ∈C∞
c Rn+1(2.36)

with

sup
X∈Ω

∣∣∇v(X)
∣∣� 1 and k(Q)� 1 for Hn a.e. Q∈ ∂Ω,(2.37)

then Ω is a half space, and in suitable coordinates v(x,xn+1) = xn+1.

Note that the uniqueness (modulo multiplication by a positive constant) of the Green’s function
with pole at infinity for unbounded NTA domains allows us to conclude that k = 1 on ∂Ω
(see [19]). The proof of Theorem 2.2 follows the same steps as the argument presented in
Sections 7 and 8 of [1], for a proof see [20].

3. Gradient bound for the Green’s function

As mentioned in the introduction the proofs of our results are done in 2 stages. First we give
a bound for the gradient of the Green’s function in terms of the integral of the Poisson kernel.
Second we use this estimate to produce a blow up sequence whose limit satisfies the hypothe-
sis of Alt and Caffarelli’s result as stated in Theorem 2.2. In this section we prove the gradient
estimate.

From now on we assume that Ω⊂Rn+1 is a δ-Reifenberg flat chord arc domain, where δ > 0
is chosen so that, in the unbounded case Corollaries 2.2, and 2.3 hold for ε = 1

4 and in the
bounded case Corollary 2.3 holds for ε= 1

4 . Moreover we assume that logh ∈VMO(∂Ω). This
hypothesis ensures that h ∈ L2

loc(dσ) and that for Q ∈ ∂Ω, r ∈ (0,diamΩ), and s ∈ (0, r)
( ∫

�

B(Q,r)

h2 dσ

) 1
2

�C

∫
�

B(Q,r)

hdσ,(3.1)
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C−1

(
σ(B(Q,s))

σ(B(Q,r))

)1+ 1
8n

�
ω(B(Q,s))

ω(B(Q,r))
�C

(
σ(B(Q,s))

σ(B(Q,r))

)1− 1
8n

,(3.2)

where C is a constant that only depends on n, and the Ahlfors constant of σ.
Recall that u denotes either the Green’s function with pôle A ∈ Ω or with pôle at infinity (if

Ω is unbounded); h denotes the corresponding Poisson kernel and ω the associated harmonic
measure dω = hdσ. We denote by ℓ one quarter of the distance from the pôle of u to ∂Ω, i.e.,
ℓ= δ(A)/4 or ℓ=+∞.

THEOREM 3.1. – Let Ω ⊂ Rn+1 be a δ-Reifenberg flat chord arc domain satisfying Corol-
laries 2.2 and 2.3 with ε = 1

4 . Let u denote the Green’s function with pôle at infinity, ω the
harmonic measure with pôle at infinity, and h= dω

dσ the corresponding Poisson kernel. Assume
that logh ∈VMO(∂Ω), then for all X ∈Ω we have

∣∣∇u(X)
∣∣�
∫

∂Ω

h(Q)dωX(Q).(3.3)

THEOREM 3.2. – Let Ω ⊂ Rn+1 be a δ-Reifenberg flat chord arc domain satisfying Co-
rollary 2.3 with ε = 1

4 . Let G(A,−) denote the Green’s function with pole at A and

kA =
dωA

dσ the corresponding Poisson kernel. Assume that logkA ∈ VMO(∂Ω), then for all
X∈Ω∩ {Y ∈ Rn+1: δ(Y )< δ(A)/8} we have

∣∣∇G(A,X)
∣∣�
∫

∂Ω

kA(Q)dω
X +C

1

δ(A)n

(
δ(X)

δ(A)

) 3
4

ωA
(
B
(
QX , δ(A)

))
,(3.4)

for any QX ∈ ∂Ω such that X ∈B(QX , δ(A)/8)∩Ω.

LEMMA 3.1. – Let X∗ ∈Ω. Let u,ω and h as above, and assume that h ∈ L2
loc(dσ). Then for

ω a.e. Q ∈ ∂Ω, ∇u(X) converges non-tangentially to F (Q), and F ∈ L1
loc(dω

X∗).

Proof. – Let l=min{1, ℓ}. Let K ⊂ Rn+1 be a compact set, let

K̂ =
{
X ∈ Rn+1: dist(X,K)� l

}
.

Let Q ∈ K̂ ∩ ∂Ω, and X ∈ Γ(Q) with δ(X) < ℓ. Here Γ(Q) denotes a nontangential access
region. By a standard estimate for non-negative harmonic functions we have

∣∣∇u(X)
∣∣�C

u(X)

δ(X)
.(3.5)

Furthermore by Lemma 4.8 in [14] there is C > 1 so that for every Q ∈ K̂ ∩∂Ω, X ∈ Γ(Q) with
δ(X)< ℓ, if Y ∈Ω\B(Q,2δ(X))

C−1 <
ωY (B(Q,δ(X)))

δ(X)n−1G(X,Y )
<C.(3.6)

Since A ∈Ω\B(Q,2δ(X)) for X ∈Ω with δ(X)< ℓ, (3.6) yields

C−1 <
ωA(B(Q,δ(X)))

δ(X)n−1G(X,A)
<C.(3.7)
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By the construction described in the proof of Lemma 3.7 in [18], we know that letting |Y | tend
to infinity for Q ∈ K̂ ∩ ∂Ω and X ∈ Γ(Q), (3.6) yields

C−1 <
ω(B(Q,δ(X)))

δ(X)n−1u(X)
<C.(3.8)

Combining (3.5), (3.7) and (3.8) we have that for X ∈ Γ(Q) with δ(X)� l,

∣∣∇u(X)
∣∣�C

u(X)

δ(X)
�C

1

δ(X)n

∫

∂Ω∩B(Q,δ(X))

hdσ,(3.9)

so that if δ(X)� l

sup
X∈Γ(Q)
δ(X)�l

∣∣∇u(X)
∣∣�CMl(h)(Q),(3.10)

where

Ml(h)(Q) = sup
0<r�l

1

rn

∫

B(Q,r)∩∂Ω

hdσ.(3.11)

Since
∫

K

[
Ml(h)

]2
dσ �C

∫

K̂

h2 dσ <∞,(3.12)

we see that the truncated non-tangential maximal function of ∇u is in L2
loc(dσ) and hence in

L1
loc(dω

X∗). By Fatou’s theorem for NTA domains (see [14] Theorem 5.8 and Lemma 8.3 as
well as Lemma 3.3 in Appendix A) we know that ∇u converges non-tangentially to F , and
F ∈L1

loc(dω
X∗). ✷

LEMMA 3.2. – Let F be the non-tangential limit of ∇u. Then since h ∈ L2
loc(dσ), for Hn

a.e. Q ∈ ∂Ω we have that

F (Q) = h(Q)−→n (Q).(3.13)

The proof of this lemma appears in Sections A.1 and A.2 of Appendix A.

LEMMA 3.3. – Let Ω⊂ Rn+1 be an unbounded δ-Reifenberg flat chord arc domain satisfying
Corollaries 2.2 and 2.3 with ε= 1

4 . Assume that logh ∈VMO(∂Ω), and that 0 ∈ ∂Ω. Fix R> 1
large and let ϕR ∈ C∞

c (R
n+1), ϕR ≡ 1 for |X | � R, sptϕR ⊂ B(0,2R), 0 � ϕR � 1 and

|∇ϕR|�C/R, |∆ϕR| �C/R2. For X ∈Ω define

ωR(X) =

∫

Ω

G(X,Y )∆
[
ϕR(Y )∇u(Y )

]
dY,(3.14)

where u denotes the Green’s function of Ω with pole at ∞. Then ωR|∂Ω ≡ 0, ωR ∈ Cα(Ω) for
some α ∈ (0,1), and we have the following estimates for X ∈Ω

∣∣ωR(X)
∣∣�C

δ(X)3/4

R1/2
for |X |< R

2
.(3.15)
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∣∣ωR(X)
∣∣�CRn

[
ω(B(0,R))

Rn

]2(
δ(X)

|X |

) 3
4 1

ω(B(0, |X |)) for |X |� 4R.(3.16)

∣∣ωR(X)
∣∣�C

(
δ(X)

R

) 3
4 ω(B(0,R))

Rn
for

R

2
� |X |� 4R.(3.17)

Proof. – Let V (X) =∇u(X) for X ∈Ω. Then ∆(ϕRV ) = (∆ϕR)V + 2∇ϕR · ∇V so that

ωR(X) = ω1
R(X) + ω2

R(X)(3.18)

with

ω1
R(X) =

∫

Ω

G(X,Y )∆ϕR(Y )V (Y )dY,(3.19)

and

ω2
R(X) = 2

∫

Ω

G(X,Y )∇ϕR(Y ) · ∇V (Y )dY.(3.20)

Note that
∣∣V (Y )

∣∣�C
u(Y )

δ(Y )
and

∣∣∇V (Y )
∣∣�C

u(Y )

δ2(Y )
,(3.21)

also spt∇ϕR, spt∆ϕR ⊂ {R< |Y |< 2R}. Let

IR =

∫

{R<|Y |<2R}∩Ω

(
u(Y )

δ(Y )

)2

dY.(3.22)

CLAIM. – If Ω is as above then

IR �CRn+1u
2(A2R)

R2
.(3.23)

In fact note that by Harnack’s principle and our assumption that δ is chosen so that
Corollary 2.2 holds for ε= 1

4 we have that for Y ∈Ω∩B(0,2R)\B(0,R)

u(Y )�C

(
δ(Y )

R

) 3
4

u(A2R).(3.24)

Thus

IR �Cu2(A2R)

[
1

R3/2

∫

{R<|Y |<2R}∩Ω

dY

δ(Y )1/2

]
.(3.25)

We want to show that the term in brackets is bounded above by C
R2R

n+1. Scaling shows that it
is enough to prove this for R= 1, i.e., we have to show that for Ω as in Corollaries 2.2 and 2.3

∫

{1<|Y |<2}∩Ω

dY

δ(Y )1/2
�C.(3.26)
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Let j � 0, and

Aj =Ω ∩
{
|Y |< 2: 2−j < δ(Y )� 2−j+1

}
.(3.27)

Cover ∂Ω ∩B(0,2) by balls {B(Qi,1/2
j−1)}Ni=1 centered in ∂Ω and so that |Qi −Ql|� 1/2j

for i 
= l. Since ∂Ω is Ahlfors regular, it is straightforward that N � C2jn, where C depends
on n and on the Ahlfors regularity constant of ∂Ω. If Y ∈ Aj there exists X ∈ ∂Ω so
that |X − Y | � 1/2j−1 and Qi ∈ ∂Ω so that |Qi − Y | � 1/2j−2. On the other hand since
δ(Y )> 1/2j , |Qi − Y |> 1/2j . Thus {B(Qi,1/2

j−2)\B(Qi,1/2
j)}Ni=1 covers Aj and

Hn+1(Aj)�Cn2
nj

{(
1

2j−2

)n+1

−
(
1

2j

)n+1}
�Cn2

−j ,(3.28)

which implies that

∫

{1<|Y |<2}∩Ω

dY

δ(Y )1/2
=

∞∑

j=0

∫

Aj

dY

δ(Y )1/2
�Cn

∞∑

j=0

2−j/2 �C,(3.29)

which proves the claim.
Case 1. Let |X |� R

2 . Then

∣∣ω2
R(X)

∣∣� C

R

∫

{R<|Y |<2R}∩Ω

G(X,Y )
u(Y )

δ(Y )2
dY.(3.30)

Let AS = A(0, S/2); i.e., S/M � |AS | � S and δ(AS) � S/M (see Definition 3.1 of NTA
domain in [18]). Then for Y ∈Ω∩B(0,2R)\B(0,R) we have, using Corollary 2.3, that

G(X,Y )�C

[
δ(X)

R

] 3
4

G(AR, Y ).(3.31)

Moreover by the Comparison Principle (Lemma 4.10 in [14]) we have that for
Y ∈ {R< |Y |< 2R}

G(AR, Y )

G(AR,A2R)
�C

u(Y )

u(A2R)
,(3.32)

hence

G(AR, Y )�CG(AR,A2R)
u(Y )

u(A2R)
�

C

Rn−1

u(Y )

u(A2R)
,(3.33)

and combining (3.30), (3.33), (3.23), (3.8), (3.2), and using the fact that R> 1 we have that

∣∣ω2
R(X)

∣∣� C

Rn

(
δ(X)

R

) 3
4 1

u(A2R)

∫

{R<|Y |<2R}∩Ω

u2(Y )

δ(Y )2
dY

�
C

Rn

(
δ(X)

R

) 3
4 1

u(A2R)
IR(3.34)

�C

(
δ(X)

R

) 3
4 u(A2R)

R
�C

(
δ(X)

R

) 3
4 ω(B(0,2R))

Rn
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�C

(
δ(X)

R

) 3
4 ω(B(0,R))

σ(B(0,R))
�C

(
δ(X)

R

) 3
4

R
1
4ω
(
B(0,1)

)
.(3.35)

Hence for |X |� R
2

∣∣ω2
R(X)

∣∣�C
δ(X)3/4

R1/2
.(3.36)

We now estimate the term ω1
R(X). Using (3.21), (3.31) and (3.33) we obtain

∣∣ω1
R(X)

∣∣�
∫

Ω

G(X,Y )
∣∣∆ϕR(Y )

∣∣ ∣∣V (Y )
∣∣dY,

�C

(
δ(X)

R

) 3
4 1

R2

∫

Ω∩{R<|Y |<2R}

G(AR, Y )
u(Y )

δ(Y )
dY

�C
1

Rn+1

(
δ(X)

R

) 3
4

∫

Ω∩{R<|Y |<2R}

u(Y )2

δ(Y )

dY

u(A2R)
.(3.37)

Since for Y ∈Ω with R< |Y |< 2R, δ(Y )� 2R, (3.37) becomes

∣∣ω1
R(X)

∣∣� C

Rn

1

u(A2R)

(
δ(X)

R

) 3
4

∫

Ω∩{R<|Y |<2R}

(
u(Y )

δ(Y )

)2

dY(3.38)

�C
u(A2R)

R

(
δ(X)

R

) 3
4

�C
δ(X)

3
4

R
1
2

,

because of (3.23) and (3.34). This concludes the proof of (3.15).

Case 2. Let |X |� 4R. Assume that 2jR� |X |< 2j+1R for some j � 2. Let Aj =A(0,2jR)
be a non-tangential point for 0 at radius 2jR. For Y ∈ Ω with R < |Y |< 2R, by Corollary 2.3
the comparison principle and (3.8) we have

G(X,Y )�C

(
δ(X)

2jR

) 3
4

G(Aj , Y )�C

(
δ(X)

2jR

) 3
4

G(Aj ,AR)
u(Y )

u(AR)

�C

(
δ(X)

2jR

) 3
4

G(Aj ,Aj−1)
u(Y )

u(Aj−1)
�C

(
δ(X)

2jR

) 3
4 1

(2j−1R)n−1

u(Y )

u(Aj−1)

�C

(
δ(X)

2jR

) 3
4 u(Y )

ω(B(0,2j−1R))
�C

(
δ(X)

2jR

) 3
4 u(Y )

ω(B(0,2jR))
.(3.39)

Thus using (3.23), the fact that ω is a doubling measure, and (3.8) we have

∣∣ω2
R(X)

∣∣� C

R

∫

{R<|Y |<2R}∩Ω

G(X,Y )
u(Y )

δ(Y )2
dY

�
C

R

(
δ(X)

2jR

) 3
4 1

ω(B(0,2jR))

∫

{R<|Y |<2R}∩Ω

u2(Y )

δ(Y )2
dY

�
C

R

(
δ(X)

2jR

) 3
4 IR
ω(B(0,2jR))
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�
CRnu2(AR)

R2

(
δ(X)

2jR

) 3
4 1

ω(B(0, |X |))

�CRn−2

(
ω(B(0,R))

Rn−1

)2(
δ(X)

|X |

) 3
4 1

ω(B(0, |X |))

�CRn

[
ω(B(0,R))

Rn

]2(
δ(X)

|X |

) 3
4 1

ω(B(0, |X |)) .(3.40)

In order to finish the proof of (3.16) we need to estimate ω1
R(X) for |X |� 4R. By (3.21), (3.39)

and the computation in (3.40) we obtain

∣∣ω1
R(X)

∣∣� C

R2

(
δ(X)

2jR

) 3
4 1

ω(B(0,2jR))

∫

Ω∩{R<|Y |<2R}

u(Y )2

δ(Y )
dY

�
C

R

(
δ(X)

2jR

) 3
4 1

ω(B(0,2jR))
IR

�CRn

[
ω(B(0,R))

Rn

]2(
δ(X)

|X |

) 3
4 1

ω(B(0, |X |)) .(3.41)

Inequality (3.16) is proved by combining (3.40) and (3.41).

Case 3. Let 1
2R< |X |< 4R. Note that δ(X)< 4R. Let X̂ ∈ ∂Ω be such that δ(X) = |X̂−X |,

which implies that |X̂|< 8R. Note that if Y ∈B(0,2R) then Y ∈B(X̂ ; 10R). We now look at

∣∣ω2
R(X)

∣∣� C

R

∫

Ω∩{R<|Y |<2R}∩B(X̂,10R)

G(X,Y )
u(Y )

δ(Y )2
dY

�
C

R

∫

Ω∩{R<|Y |<2R}∩B(X,δ(X)/2)

G(X,Y )
u(Y )

δ2(Y )
dY

+
C

R

∫

Ω∩{R<|Y |<2R}∩(B(X̂,2δ(X)\B(X,δ(X)/2)))

G(X,Y )
u(Y )

δ2(Y )
dY

+
C

R

∫

Ω∩{R<|Y |<2R}∩(B(X̂,10R)\B(X̂,2δ(X)))

G(X,Y )
u(Y )

δ2(Y )
dY.(3.42)

For Y ∈Ω∩ {R< |Y |< 2R} ∩B(X,cδ(X)/2),

G(X,Y )�
C

|X − Y |n−1
and

u(Y )

δ(Y )2
�C

u(X)

δ(X)2
,(3.43)

by Harnack’s principle. Thus
∫

Ω∩{R<|Y |<2R}∩B(X,δ(X)/2)

G(X,Y )
u(Y )

δ2(Y )
dY

�C
u(X)

δ(X)2

∫

Ω∩{R<|Y |<2R}∩B(X,δ(X)/2)

dY

|X − Y |n−1
�Cu(X).(3.44)
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Fig. 1.

If Y ∈Ω∩ {R< |Y |< 2R} ∩ [B(X̂,2δ(X))\B(X,δ(X)/2)]

G(X,Y )�C
u(Y )

u(Z)
G(X,Z)�C

u(Y )

u(X)

1

δ(X)n−1
(3.45)

by the Comparison Principle, for Z ∈ ∂B(X,δ(X)/2) (see Fig. 1). Thus (3.45) yields
∫

Ω∩{R<|Y |<2R}∩(B(X̂,2δ(X))\B(X,δ(X)/2))

G(X,Y )
u(Y )

δ(Y )2
dY

�C
1

u(X)δ(X)n−1

∫

Ω∩B(X̂,2δ(X))

u2(Y )

δ(Y )2
dY.(3.46)

A similar argument to the one used to estimate IR (see (3.23)) ensures that

∫

Ω∩B(X̂,2δ(X))

u2(Y )

δ2(Y )
dY �C

u2(X)

δ2(X)
δn+1(X).(3.47)

Thus combining (3.46) and (3.47) we obtain

∫

Ω∩{R<|Y |<2R}∩(B(X̂,2δ(X))\B(X,δ(X)/2))

G(X,Y )
u(Y )

δ2(Y )
dY �Cu(X).(3.48)

If Y ∈ Ω ∩ {R < |Y | < 2R} ∩ (B(X̂,10R)\B(X̂,2δ(X))) there exists j ∈ {1, . . . , j0} so
that 2jδ(X) � |X̂ − Y | < 2j+1δ(X) where j0 is such that 2j0δ(X) > 10R � 2j0−1δ(X). Let
Yj = A(X̂,2jδ(X)) be a non-tangential point with respect to X̂ at radius 2jδ(X). Then for
Y ∈ B(X̂,2j+1δ(X))\B(X̂,2jδ(X)) by the Comparison Principle, Lemma 2.1 and (3.8) we
have

G(X,Y )�CG(X,Yj)
u(Y )

u(Yj)
�C

(
δ(X)

2jδ(X)

) 3
4

G(Yj−1, Yj)
u(Y )

u(Yj)

�C
1

2
3j
4

u(Y )

2j(n−1)δ(X)(n−1)

2j(n−1)δ(X)n−1

ω(B(X̂,2jδ(X)))
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�C
u(Y )

(2j)
3
4ω(B(X̂,2jδ(X)))

.(3.49)

Hence using (3.8), Harnack’s principle and an argument similar to the one used to prove (3.23)
we have that

∫

Ω∩{R<|Y |<2R}∩(B(X̂,10R)\B(X̂,2δ(X)))

G(X,Y )
u(Y )

δ2(Y )
dY

�C

j0∑

j=1

1

(2j)
3
4ω(B(X̂,2jδ(X)))

×
∫

Ω∩{R<|Y |<2R}∩{2jδ(X)�|X̂−Y |<2j+1δ(X)}

u2(Y )

δ2(Y )
dY

�C

j0∑

j=1

1

(2j)
3
4ω(B(X̂,2jδ(X)))

∫

B(X̂,2j+1δ(X))∩Ω

u2(Y )

δ2(Y )
dY

�C

j0∑

j=1

1

(2j)
3
4ω(B(X̂,2jδ(X)))

(
2j+1δ(X)

)n+1 u2(Yj+1)

(2j+1δ(X))2

�C

j0∑

j=1

1

(2j)
3
4

u(Yj)
2(2jδ(X))n−1

ω(B(X̂,2jδ(X)))
�C

j0∑

j=1

1

(2j)
3
4

ω(B(X̂,2jδ(X)))

[2jδ(X)]n−1
.(3.50)

Since logh ∈VMO(∂Ω), by (3.2), and using the fact that ω is doubling in the case where j = j0
we have that

ω(B(X̂,2jδ(X)))

ω(B(X̂,10R))
�C

(
2jδ(X)

R

)n− 1
8

.(3.51)

Thus combining (3.50) and (3.51) we obtain
∫

Ω∩{R<|Y |<2R}∩(B(X̂,10R)\B(X̂,2δ(X)))

G(X,Y )
u(Y )

δ2(Y )
dY

�Cω
(
B(X̂,10R)

) j0∑

j=1

1

(2j)
3
4

· 1

Rn− 1
8

(2jδ(X))n−
1
8

(2jδ(X))n−1

�
C

Rn− 1
8

j0∑

j=1

δ(X)
7
8
ω(B(X̂,10R))

(2j)
3
4−

7
8

�C
δ(X)

7
8

Rn− 1
8

ω
(
B(X̂,10R)

) j0∑

j=1

(2j)
1
8

�C
δ(X)

7
8

Rn− 1
8

ω
(
B(X̂,10R)

)
(2j0)

1
8 �C

δ(X)
7
8

Rn− 1
8

ω
(
B(X̂,10R)

)( R

δ(X)

) 1
8

�C
δ(X)

3
4

Rn
R

1
4ω
(
B(X̂,10R)

)
.(3.52)

Since ω is a doubling measure and |X̂ |< 8R then

ω
(
B(X̂,10R)

)
� ω
(
B(0,18R)

)
�Cω

(
B(0,R)

)
.
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Combining this remark, (3.42), (3.44), (3.48) and (3.52) we obtain that

∣∣ω2
R(X)

∣∣� C

R
u(X) +C

(
δ(X)

R

) 3
4 ω(B(0,R))

Rn
.(3.53)

By the Harnack principle, Corollary 2.2 and (3.8), for X ∈B(0,4R) we have

u(X)�C

(
δ(X)

R

) 3
4

u(AR)�C

(
δ(X)

R

) 3
4 ω(B(0,R))

Rn−1
.(3.54)

Combining (3.53) and (3.54) we obtain

∣∣ω2
R(X)

∣∣�C

(
δ(X)

R

) 3
4 ω(B(0,R))

Rn
.(3.55)

We now look at ω1
R(X),

∣∣ω1
R(X)

∣∣� C

R2

∫

Ω∩{R<|Y |<2R}∩B(X̂,10R)

G(X,Y )
u(Y )

δ(Y )
dY

�
C

R

∫

Ω∩{R<|Y |<2R}∩B(X̂,10R)

G(X,Y )
u(Y )

δ(Y )2
dY.(3.56)

Combining (3.42), (3.44), (3.48), (3.52) and (3.54) we obtain that

∣∣ω1
R(X)

∣∣�C

(
δ(X)

R

) 3
4 ω(B(0,R))

Rn
,(3.57)

which concludes the proof of (3.17), and that of Lemma 3.3. In fact note that (3.15), (3.16)
and (3.17) ensure that ωR vanishes continuously at the boundary, and that ωR ∈ Cα(Ω) for
α ∈ (0, 3

4 ). ✷

Proof of Theorem 3.1. – Recall that Ω is an unbounded δ-Reifenberg flat chord arc domain,
satisfying Corollaries 2.2 and 2.3 with ε = 1

4 . Assume that 0 ∈ ∂Ω. Let R > 1, and using the
notation introduced in Lemma 3.3 define for X ∈Ω,

hR(X) = ϕR(X)∇u(X)− ωR(X).

Note that hR is a harmonic function in Ω satisfying hR ≡ 0 on ∂Ω\B(0,2R). In fact (3.14)
ensures that

∆ωR =∆[ϕR∇u].
The proof of Lemma 3.1 ensures that N(ϕR(X)∇u(X)) ∈ L1(dωX∗) for every X∗ ∈ Ω.
Lemma 3.3 guarantees that ωR is bounded, thus N(ωR) ∈ L1(dωX∗) for every X∗ ∈ Ω. Thus
N(hR) ∈L1(dωX∗) for every X∗ ∈Ω and Lemma 3.3 in Appendix A ensures that

hR(X) =

∫

∂Ω

ϕR(Q)F (Q)dω
X for X ∈Ω.(3.58)

4e SÉRIE – TOME 36 – 2003 – N◦ 3



REIFENBERG FLAT CHORD ARC DOMAINS 345

Therefore for X ∈Ω∩B(0, R2 ) using (3.15) and Lemma 3.2 we have

∣∣∇u(X)
∣∣�
∣∣hR(X)

∣∣+
∣∣ωR(X)

∣∣�
∫

∂Ω

h(Q)dωX(Q) +C
δ(X)3/4

R1/2
.(3.59)

Letting R→∞ we obtain that for X ∈Ω

∣∣∇u(X)
∣∣�
∫

∂Ω

h(Q)dωX(Q),(3.60)

which proves Theorem 3.1. ✷

Proof of Theorem 3.2. – Let Q0 ∈ ∂Ω. Let ϕ ∈C∞
c (B(Q0, δ(A)/4)), ϕ≡ 1 for

|X −Q0|< δ(A)/8,

0 � ϕ � 1, |∇ϕ| � C/δ(A) and |∆ϕ| � C/δ(A)2. In particular ϕ ≡ 0 in B(A, δ(A)/4). For
X ∈Ω define

ω0(X) =

∫

Ω

G(X,Y )∆
[
ϕ(Y )∇G(A,Y )

]
dY.(3.61)

As in Lemma 3.3 we have that ω0|∂Ω ≡ 0, ω0 ∈Cα(Ω), and

∣∣ω0(X)
∣∣� C

δ(A)n

(
δ(X)

δ(A)

) 3
4

for X ∈Ω∩B
(
Q0,

δ(A)

4

)
.(3.62)

In fact ω0(X) = ω1
0(X) +ω

2
0(X) where

ω1
0(X) =

∫

Ω

G(X,Y )∆ϕ∇G(A,Y )dY(3.63)

and

ω2
0(X) =

∫

Ω

G(X,Y )∇ϕ∇
(
∇G(A,Y )

)
dY.(3.64)

Note that

∣∣∇G(A,Y )
∣∣�C

G(A,Y )

δ(Y )
and

∣∣∇2G(A,Y )
∣∣�C

G(A,Y )

δ(Y )2
,(3.65)

also spt∇ϕ, spt∆ϕ⊂B(Q0,2R)\B(Q0,R) where R= δ(A)/8. For

Y ∈Ω∩B(Q0,2R)\B(Q0,R)

Corollary 2.3 and the comparison principle ensure that
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G(X,Y )�C

(
δ(X)

R

) 3
4

G(A2R, Y )�CG(A2R,AR)

(
δ(X)

R

) 3
4 G(A,Y )

G(A,A2R)

�
C

Rn−1

(
δ(X)

R

) 3
4 G(A,Y )

G(A,A2R)
,(3.66)

where A2R = A(Q0,R); i.e. R/M < |A2R − Q0| < 2R and δ(A2R) � R/M and similarly
for AR. Therefore by Harnack’s principle and the fact that δ is chosen so that Ω satisfies
Corollary 2.3 with ε= 1

4 we have

∣∣ω2
0(X)
∣∣� C

Rn

( ∫

Ω∩{R<|Y−Q0|<2R}

G(A,Y )2

δ(Y )2
dY

)(
δ(X)

R

) 3
4 1

G(A,A2R)

�
C

Rn

(
δ(X)

R

) 3
4

G(A,A2R)
1

R
3
2

∫

Ω∩{R<|Y |−Q0|<2R}

dY

δ(Y )
1
2

.(3.67)

The computation done to prove (3.23) shows that

1

R
3
2

∫

Ω∩{R<|Y−Q0|<2R}

dY

δ(Y )
1
2

�CRn−1.(3.68)

Combining (3.67), (3.68) and (3.7) we have

∣∣ω2
0(X)
∣∣�C

(
δ(X)

R

) 3
4 G(A,A2R)

R
�C

(
δ(X)

R

) 3
4 ωA(B(Q0,2R))

Rn

�
C

Rn

(
δ(X)

R

) 3
4

ωA
(
B(Q0,4R)

)
.(3.69)

As similar computation shows that the same inequality holds for |ω1
0(X)|, and hence for

X ∈Ω∩B(Q0, δ(A)/4)

∣∣ω0(X)
∣∣� C

Rn

(
δ(X)

R

) 3
4

ωA
(
B(Q0,4R)

)
,(3.70)

which yields (3.62).
A similar argument as the one presented in the proof of Theorem 3.1 shows that for any

Q0 ∈ ∂Ω and every X ∈Ω∩B(Q0, δ(A)/8)

∣∣∇G(A,X)
∣∣�
∫

∂Ω

kA(Q)dω
X(Q) +

C

δ(A)n

(
δ(X)

δ(A)

) 3
4

ωA
(
B
(
Q0, δ(A)

))
(3.71)

which proves (3.4). ✷

4. Blow up argument

In this section, which is the core of the paper, we describe a general construction of blow-up
sequences for Reifenberg flat chord arc domains whose Poisson kernels have logarithm in VMO.
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The main result is that any such sequence has a subsequence whose limit satisfies the hypothesis
of Theorem 2.2. LetΩ⊂ Rn+1 be a δ-Reifenberg flat chord arc domain, with δ > 0 small enough
so that the conclusion of Corollary 2.3 holds (and that of Corollary 2.2 in the unbounded case)
for ε= 1

4 .
Here again u denotes either the Green function with pole at A or with pole at infinity,

h denotes the corresponding Poisson kernel (see (2.27)) and dω = hdσ. We assume that
logh ∈VMO(∂Ω). Let Qi ∈ ∂Ω, and assume Qi → Q∞ ∈ ∂Ω as i → ∞. Without loss of
generality we may assume that Q∞ = 0. Let {ri}i�1 be a sequence of positive numbers so
that limi→∞ ri = 0. Consider the domains

Ωi =
1

ri
(Ω−Qi) with ∂Ωi =

1

ri
(∂Ω−Qi).(4.1)

Consider also the functions ui on Ωi defined by

ui(Z) =
u(riZ +Qi)

ri
∫
�B(Qi,ri)hdσ

.(4.2)

Let Ω∗
i = Ωi if u is the Green’s function with pole at infinity and Ω∗ =Ωi\{A−Qi

ri
} if u is the

Green’s function with pole at A. Then

∆ui = 0 on Ω∗
i ⊂Ωi, ui|∂Ωi

= 0(4.3)

and

dωi(Q) = hi(Q)dσi(Q) for Hn-a.e. Q ∈ ∂Ωi.(4.4)

Here σi =Hn ∂Ωi, ωi denotes the harmonic measure of Ωi either with pole at infinity or at
A−Qi

ri
, depending on whether u is the Green’s function with pole at infinity or with pole at A.

Furthermore the corresponding Poisson kernel hi satisfies

hi(Q) =
h(riQ+Qi)∫
�B(Qi,ri)hdσ

.(4.5)

Since logh ∈VMO, by including the term
∫
�B(Qi,ri)hdσ in the denominator of the function ui

defined in (4.2) we “remove the singularity” of the Poisson kernel of the limit domain. This is
the “correct” type of blow up in the sense that it allows us to connect the geometry of the limit
domain to the analytic properties of its Green’s function with pole at infinity.

THEOREM 4.1. – There exists a subsequence (which we relabel) satisfying

Ωi → Ω∞ in the Hausdorff distance sense, uniformly on compact sets,(4.6)

∂Ωi → ∂Ω∞ in the Hausdorff distance sense uniformly on compact sets,(4.7)

where Ω∞ is an unbounded 4δ-Reifenberg flat chord arc domain. Moreover there exists
u∞ ∈C(Ω) such that

ui → u∞ uniformly on compact sets(4.8)
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and




∆u∞ = 0 in Ω∞,

u∞ = 0 in ∂Ω∞,

u∞ > 0 in Ω∞.

(4.9)

Furthermore

ωi⇀ω∞,(4.10)

weakly as Radon measures. Moreover ω∞ is the harmonic measure of Ω∞ with pole at infinity
(corresponding to u∞).

Proof. – Since for each i� 1, B(0,1)∩Ωi 
= ∅ and 0 ∈ ∂Ωi, given a compact set K ⊂ Rn+1,
there exists a subsequence {i′} such thatΩi′ ∩K and ∂Ω′

i∩K converge in the Hausdorff distance
sense. Taking an exhaustion of Rn+1 by compact sets, we can insure that there exists another
subsequence {ik} such that Ωik and ∂Ωik converge in the Hausdorff distance sense, uniformly
on compact sets. Hence modulo relabeling the subsequence we have that

Ωi →Ω∞ in the Hausdorff distance sense uniformly on compact sets,(4.11)

and

∂Ωi →Σ∞ in the Hausdorff distance sense uniformly on compact sets.(4.12)

Note that if E ⊂ Rn+1 is a Borel set

ωi(E) =

∫

E

hi(Q)dσi(Q) =

∫
E h(riQ+Qi)dσi(Q)∫

�B(Qi,ri)hdσ

=
r−ni
∫
riE+Qi

h(Q)dσ(Q)
∫
�B(Qi,ri)h(Q)dσ(Q)

= r−ni σ
(
B(Qi, ri)

) ω(riE +Qi)

ω
(
B(Qi, ri)

) .(4.13)

Since ∂Ω is Ahlfors regular, there exists C > 1 so that

C−1 ω(riE +Qi)

ω(B(Qi, ri))
� ωi(E)�C

ω(riE +Qi)

ω(B(Qi, ri))
.(4.14)

Since ω is a doubling measure for each compact set K ⊂ Rn+1, supi�1 ωi(K) � CK . Hence
there exists a subsequence (which we relabel again) so that ωi ⇀ ω∞ and µi ⇀ µ∞ where
µi(E) =

ω(riE+Qi)
ω(B(Qi,ri))

. Note that C−1µ∞ � ω∞ � Cµ∞ which ensures that sptµ∞ = sptω∞,
where spt denotes the support of a measure. Our immediate goal is to show that Σ∞ = ∂Ω∞, to
do this we first need to prove that Σ∞ = sptω∞. It is straightforward to show that sptµ∞ ⊂Σ∞

(see proof of Lemma 2.1 in [18]). Now assume thatX ∈Σ∞, there existXi =
1
ri
(Zi−Qi) ∈ ∂Ωi

with Zi ∈ ∂Ω so that Xi →X . For r ∈ (0,1) there exists i0 � 1 so that for i� i0 |X −Xi|< r
2

and |Zi −Qi|�Mri, where M = |X |+1. Then for i� i0

µi
(
B(X,r)

)
=
ω(B(riX +Qi; rri))

ω(B(Qi, ri))
�
ω(B(Zi,

r
2ri))

ω(B(Qi, ri))

�
ω(B(Zi,

r
2ri))

ω(B(Zi, ri(M + 1)))
�C(r,M),(4.15)
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because ω is doubling. From (4.15) we deduce that X ∈ sptµ∞, which combined with the
remarks above ensures that Σ∞ = sptω∞. In order to prove that ∂Ω∞ =Σ∞, let

X ∈ ∂Ω∞ =Ω∞ ∩Ωc∞.

Given ε > 0 there exist Y ∈Ω∞ ∩B(X,ε) and Y ′ ∈Ωc∞ ∩B(X,ε). By definition

Y ′ = lim
i→∞

1

ri
(Y ′

i −Qi)

for some Y ′
i ∈Ωc. Moreover there exists a sequence Yi ∈ Rn+1 such that

Y = lim
i→∞

1

ri
(Yi −Qi).

Modulo taking a subsequence we may assume that Yi ∈ Ω. A simple connectivity argument
shows that for each i � 1 there exists Pi ∈ ∂Ω ∩ [Yi, Y ′

i ], where [Yi, Y ′
i ] denotes the segment

joining Yi to Y ′
i . Let Pi = (1− ti)

1
ri
Yi + ti

1
ri
Y ′
i for some ti ∈ (0,1) then the sequence

1

ri
(Pi −Qi) = (1− ti)

1

ri
(Yi −Qi) + ti

1

ri
(Y ′

i −Qi)

is bounded, thus there exists a subsequence {iε} such that 1
riε
(Piε −Qiε)→Zε ∈Σ∞. Moreover

since
∣∣∣∣
1

riε
(Piε −Qiε)−

1

riε
(Yiε −Qiε)

∣∣∣∣�
|Yiε − Y ′

iε
|

riε
,

letting iε →∞ we have that

|Y −Zε| � |Y − Y ′| and |X −Zε|� |X − Y |+ |Y − Y ′|� 3ε.

Summarizing we have proved that given X ∈ ∂Ω∞ and given ε > 0 there exists Z ∈ Σ∞ such
that |X − Z| < ε. Hence X ∈ Σ∞ = sptω∞ = sptω∞ = Σ∞, i.e., ∂Ω∞ ⊂ Σ∞. In order to
prove the other inclusion we use the fact that since Ω is a δ-Reifenberg flat domain then Ω is an
NTA domain.

Let X ∈Σ∞ there exists a sequenceXi ∈ ∂Ω such that 1
ri
(Xi−Qi)→X . Given ρ > 0 since

both Ω and Ωc satisfy the corkscrew condition for i large enough (so that riρ < R) there exist
Ai ∈Ω and A′

i ∈Ωc such that

B

(
Ai,

riρ

M

)
⊂Ω, and |Ai −Xi| � ρri,

B

(
A′
i,
riρ

M

)
⊂Ωc, and |A′

i −Xi|� ρri,

which implies that

B

(
Ai −Qi

ri
,
ρ

M

)
⊂Ωi,

∣∣∣∣
Ai −Qi

ri
− Xi −Qi

ri

∣∣∣∣� ρ,

dist

(
Ai −Qi

ri
,Ωi

)
�

ρ

M
;

(4.16)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



350 C.E. KENIG AND T. TORO

B

(
A′
i −Qi

ri
,
ρ

M

)
⊂Ωci ,

∣∣∣∣
A′
i −Qi

ri
− Xi −Qi

ri

∣∣∣∣� ρ,

dist

(
A′
i −Qi

ri
,Ωi

)
�

ρ

M
.

(4.17)

Modulo passing to a subsequence we may assume that

Ai −Qi

ri
→A∞(ρ) ∈Ω∞, and

A′
i −Qi

ri
→A′

∞(ρ).

Let i→∞ in (4.16) and (4.17) we obtain

B

(
A∞(ρ),

ρ

M

)
⊂Ω∞,

∣∣A∞(ρ)−X
∣∣� ρ,(4.18)

and
∣∣A′

∞(ρ)−X
∣∣� ρ, dist

(
A′

∞(ρ),Ω∞

)
�

ρ

2M
.(4.19)

(4.18) and (4.19) prove that there exists M ′ > 1 such that given X ∈ Σ∞ and ρ > 0 there exist
A∞(ρ) ∈Ω∞ and A′

∞(ρ) ∈Ωc∞ such that

∣∣A∞(ρ)−X
∣∣� ρ,

∣∣A′
∞(ρ)−X

∣∣� ρ,(4.20)

and

B

(
A∞(ρ),

ρ

M

)
⊂Ω∞, B

(
A′

∞(ρ),
ρ

M

)
⊂Ωc∞.(4.21)

Letting ρ tend to 0, and using (4.21) we conclude that X ∈ ∂Ω∞ hence ∂Ω∞ =Σ∞.
The fact that ∂Ω∞ is a 4δ-Reifenberg flat set is a direct consequence of the fact that ∂Ω is a

δ-Reifenberg flat set and that the quantity θ(Q,r) is scale invariant. Let K ⊂ Rn+1 be a compact
set, since ∂Ω is a δ-Reifenberg flat set there exists RK so that for every

Q ∈
{
X ∈ Rn+1, dist(X,K)� 1

}
∩ ∂Ω

and r ∈ (0,RK), θ(Q,r)� δ, i.e., given ε > 0 there exists an n-plane L containing Q so that

1

r
D
[
∂Ω∩B(Q,r);L(Q,r)∩B(Q,r)

]
< δ+ ε.(4.22)

Let P ∈K ∩ ∂Ω∞, there exists a sequence {Pi} ∈ ∂Ω so that limi→∞
1
ri
(Pi −Qi) = P , note

that since by assumption limi→∞Qi = 0 then limi→∞ Pi = 0.
Let r ∈ (0,RK) be fixed. Since ∂Ωi → ∂Ω∞ in the Hausdorff distance sense there exists

r0 � 1 so that for i� i0 and r′ ∈ ((1− ε)r, r)

D
[
∂Ωi ∩B(P, r′);∂Ω∞ ∩B(P, r′)

]
< εr,(4.23)

and if Xi =
1
ri
(Pi −Qi), |Xi −P |< εr. For i� i0 let Λi = L(Pi, rir)−Pi +P then

D
[
∂Ω∞ ∩B(P, r);Λi ∩B(P, r)

]
�D
[
∂Ω∞ ∩B(P, r);∂Ωi ∩B(P, r)

]

+D
[
∂Ωi ∩B(P, r),Λi ∩B(P, r)

]
.(4.24)
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Note that (4.23) implies that

D
[
∂Ω∞ ∩B(P, r);∂Ωi ∩B(P, r)

]
� εr.(4.25)

Moreover by our choice of Λi since

1

r
D
[
∂Ωi ∩B(Xi, r);Λi − P +Xi ∩B(Xi, r)

]

=
1

rir
D
[
∂Ω∩B(Pirir);L(Pi, rir) ∩B(Pi, rir)

]

we have, as in the proof of Theorem 2.2 in [18], that

∂Ωi ∩B(P, r)⊂ ∂Ωi ∩B
(
Xi, r(1 + ε)

)

⊂
(
Λi ∩B

(
Xi, r(1 + ε)

)
; 2δr(1 + ε) + 2εr

)

⊂
(
Λi ∩B(P, r); 2δr(1 + ε) + 5εr

)
,(4.26)

and

Λi ∩B(P, r)⊂
(
∂Ωi ∩B(P, r); 2δr+ 4εr

)
.(4.27)

Hence combining (4.26) and (4.27) we have

D
[
∂Ωi ∩B(P, r);Λi ∩B(P, r)

]
� 4δr+ 10εr.(4.28)

Combining (4.24), (4.25) and (4.28) we obtain

1

r
D
[
∂Ω∞ ∩B(P, r);Λi ∩B(P, r)

]
� 4δ+ 11ε.(4.29)

Thus

θ∂Ω∞
(P, r)� 4δ.(4.30)

The fact that ∂Ω∞ is a 4δ-Reifenberg set combined with (4.21) ensures that Ω∞ satisfies the
separation property and therefore Ω∞ is a 4δ-Reifenberg flat domain. Since ∂Ω is Ahlfors
regular, and the measure theoretic boundary of Ω coincides with its topological boundary, we
have that for each R> 0

sup
i�1

σi
(
B(0,R)

)
= sup

i�1

σ(B(0,Rri))

rni
�C.(4.31)

The compactness theorem for BV functions (see [7, §5.2.3]), guarantees that (modulo passing to a
subsequence)χΩj

→ χE in L1
loc(R

n+1)whereE is a set of locally finite perimeter. We claim that
E =Ω∞. First note that since ∂Ω∞ has Hn+1 measure zero, we may assume that E∩∂Ω∞ = ∅.
We can also assume that all points of E are density points for χE . Let X ∈ intΩc∞, there
exists r > 0 so that B(X,r) ⊂ Ωc∞. Since Ωi → Ω∞ in the Hausdorff distance sense there is
i0 � 1 so that for i � i0, B(X, r2 ) ∩ Ωi = ∅, therefore Hn+1(B(X, r2 ) ∩ E) = 0 thus X /∈ E.
Hence E ⊂ Ω∞. Let X ∈ intΩ∞ there exists r > 0, B(X,r) ⊂ Ω∞, since ∂Ωi → ∂Ω∞ in the
Hausdorff distance there exists i0 � 1 so that for i � i0; B(X, r2 ) ∩ ∂Ωi = ∅. Let Pi ∈ ∂Ωi so
that ρi = |X − Pi| = dist(X,∂Ωi) � r

2 . Since Ωi satisfies the separation property then either
B(X, r4 )⊂Ωi orB(X, r4 )⊂Ωci . Since X ∈Ω∞, we conclude that for i largeB(X, r4 )⊂Ωi and
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therefore for ρ < r
4 ,

Hn+1
(
B(X,ρ)∩Ωi

)
= ωn+1ρ

n+1 →Hn+1
(
B(X,ρ)∩E

)
.

Thus X is a density point for χE , which implies that X ∈ E. We have shown that χΩi
→ χΩ∞

in L1
loc(R

n+1) and that Ω∞ is a set of locally finite perimeter.
Once again since Ω∞ is a 4δ-Reifenberg flat domain its measure theoretic boundary coincides

with its topological boundary (se Remark 4.2 in [18]). This fact combined with the lower semi-
continuity of the variation measure (see [7, §5.2.1]) ensures that for X ∈ ∂Ω∞ and r > 0

σ∞
(
B(X,r)

)
� lim inf

i→∞
σi
(
B(X,r)

)
� lim inf

i→∞

σ(B(riX +Qi; rri))

rni
,(4.32)

where σ∞ =Hn ∂Ω∞. Since X ∈ ∂Ω∞ there exists Xi ∈ ∂Ωi so that limi→∞Xi =X and
riXi +Qi = Pi ∈ ∂Ω. Thus since ∂Ω is Ahlfors regular

σ(B(riX +Qi, rri))

rni
�
σ(B(Pi, rri + ri|X −Xi|))

rni
�C
(
r+ |X −Xi|

)n
.(4.33)

Combining (4.32) and (4.33) we have that

σ∞
(
B(X,r)

)
�Crn.(4.34)

Since Ω∞ is an unbounded 4δ-Reifenberg flat domain Remark 4.1 in [18] ensures that for
X ∈ ∂Ω∞ and r > 0

σ∞
(
B(X,r)

)
� (1 + 4δ)−1ωnr

n.(4.35)

Therefore Ω∞ is an unbounded 4δ-Reifenberg flat chord arc domain.
We now prove (4.8), (4.9) and (4.10). The uniqueness of the harmonic measure with finite pole

as well as the fact that the composition of a translation and a dilation with a harmonic function
is still a harmonic function allows to prove that for ϕ ∈C∞

c (R
n+1) so that Ai =

A−Qi

ri
/∈ sptϕ.

∫

∂Ω

ϕ

(
P −Qi

ri

)
dωA(P ) =

∫

Ωi

ϕ(P )dωA(riP +Qi) =

∫

Ωi

∆ϕ(Z)Gi(Ai,Z)dZ.(4.36)

HereGi(Ai,−) denotes the Green’s function of Ωi with pole at Ai. Combining (4.36) and (4.13)
we obtain

∫

∂Ωi

ϕ(P )
dωA(riP +Qi)

ωA(B(Qi, ri))
=

∫

Ωi

∆ϕ(Z)
Gi(Ai,Z)

ωAi

i (B(0,1))
dZ.(4.37)

From (4.4), (4.13) and (4.37) we deduce

∫

∂Ωi

ϕ(P )dωi(P ) =
σ(B(Qi, ri))

rni

∫

Ωi

∆ϕ(Z)
Gi(Ai,Z)

ωAi

i (B(0,1))
dZ.(4.38)

In particular

hi =
σ(B(Qi, ri))

rni

kAi

i

ωAi

i (B(0,1))
(4.39)

4e SÉRIE – TOME 36 – 2003 – N◦ 3



REIFENBERG FLAT CHORD ARC DOMAINS 353

where kAi

i denotes the Poisson kernel of Ωi with pole at Ai. Since Ωi is an NTA domain Lemma
4.8 in [14] guarantees that for i large enough (so Ai is far enough from B(0,1)) we have

Gi

(
Ai,Ai(0,1)

)
∼ ωAi

i

(
B(0,1)

)
,(4.40)

where Ai(0,1) denotes a non-tangential point for Ωi at 0 and radius 1.
Since ∂Ω is Ahlfors regular, the Harnack principle combined with (4.40) asserts the sequence

{φi}i�1 of non-negative harmonic functions

φi(Z) =
σ(B(Qi, ri))

rni

Gi(Ai,Z)

ωAi

i (B(0,1))
(4.41)

defined for Z ∈B(0; |Ai|) ∩Ωi is uniformly bounded on compact sets. In fact if we let φi ≡ 0
in Ωci , by our choice of δ > 0, Corollary 2.3 ensures that {φi} is uniformly bounded on compact
sets in the C3/4 norm. Moreover φi(

A(Qi,ri)−Qi

ri
) � C−1. By the Arzela–Ascoli theorem there

exists a subsequence such that φi converges to a limit u∞ uniformly on compact sets. Moreover
∆u∞ = 0 inΩ∞ becauseΩi → Ω∞. Since φi ≡ 0 onΩci andΩci →Ωc∞ in the Hausdorff distance
sense, u∞ = 0 on ∂Ω∞. Thus u∞ satisfies (4.9). Letting i→∞ in (4.38) we conclude that for
ϕ ∈C∞

c (R
n+1)

∫

∂Ω∞

ϕdω∞ =

∫

Ω∞

u∞(X)∆ϕ(X).(4.42)

Now note that if u(X) = G(A,X) then by the uniqueness of the Green’s function with finite
pole, for n� 2

G(A,riZ +Qi) =
1

rn−1
i

Gi(Ai,Z).(4.43)

Therefore if u denotes the Green’s function with pole at A, we have that ui = φi which proves
(4.8), (4.9) and (4.10) in this case.

If Ω is an unbounded δ-Reifenberg flat chord arc domain and u denotes the Green’s function
of Ω with pole at infinity, Lemma 4.8 in [14] combined with the construction described in the
proof of Lemma 3.7 in [18] we have that

C−1 <
ω(B(Qi, ri))

rn−1
i u(A(Qi, ri))

<C,(4.44)

where A(Qi, ri) denotes a non-tangential point for ∂Ω at Qi and radius ri. The boundary
Harnack principle for NTA domains implies that for X ∈B(0,R)∩Ωi

u(riX +Qi)�CRu
(
A(Qi, ri)

)
.(4.45)

Thus combining (4.44), (4.45) and the fact that ∂Ω is Ahlfors regular we obtain that for
X ∈B(0,R)∩Ωi

ui(X) =
u(riX +Qi)

ri
∫
�B(Qi,ri)hdσ

�CRσ
(
B(Qi, ri)

) u(A(Qi, ri))

riω(B(Qi, ri))

�CR
rn−1
i

ω(B(Qi, ri))
u
(
A(Qi, ri)

)
�CR.(4.46)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



354 C.E. KENIG AND T. TORO

Thus {ui} is uniformly bounded on compact sets, ui(
A(Qi,ri)−Qi

ri
)�C−1, by the Arzela–Ascoli

theorem ui → u∞ uniformly on compact sets and satisfies (4.9). To show that ω∞ is the harmonic
measure with pole at ∞ associated to u∞, note that for ϕ ∈C∞

c (R
n+1)

∫

Ωi

∆ϕ(X)u(riX +Qi)dX =
1

rn−1
i

∫

∂Ωi

ϕ(X)dω(riX +Qi),(4.47)

hence
∫

Ωi

∆ϕ(X)ui(X)dx=
σ(B(Qi, ri))

rni

∫

∂Ωi

ϕ(X)
dω(riX +Qi)

ω(B(Qi, ri))

=

∫

∂Ωi

ϕ(X)dωi(X).(4.48)

Letting i→∞, using the fact that ui → u∞, ωi⇀ω∞,Ωi →Ω∞ and ∂Ωi → ∂Ω∞ we conclude
that

∫

Ω∞

u∞(X)∆ϕ(X)dX =

∫

∂Ω∞

ϕdω∞. ✷(4.49)

THEOREM 4.2. – If Ω∞ ⊂ Rn+1 and u∞ are as in Theorem 4.1, then

sup
Z∈Ω∞

∣∣∇u∞(Z)
∣∣� 1.(4.50)

The proof of Theorem 4.2 will be done by establishing a series of lemmas. Using the notation
above we have:

LEMMA 4.1. – Given ε > 0, A> 1 we have

sup
i�1

∫

∂Ωi∩{|Q|<A}

hi(Q)dσi(Q)�CAn(1+ε),(4.51)

where C is a constant that depends on ε and n.

Proof. – This is a straightforward consequence of Corollary 2.4. Note that (4.13) combined
with (2.23) yields

∫

∂Ωi∩{|Q|<A}

hi(Q)dσi(Q) =
σ(B(Qi, ri))

rni
· ω(B(Qi,Ari))

ω(B(Qi, ri))

�Cε

(
σ(B(Qi,Ari))

σ(B(Qi, ri))

)1+ε

�CεA
n(1+ε),(4.52)

because ∂Ω is Ahlfors regular. ✷

LEMMA 4.2. – Let Z ∈Ω∞. Given ε > 0 there exists i0 � 1 so that

η = inf
i�i0

d(Z,∂Ωi)> 0,

and there exists M =M(|Z|, η, ε)> 0 such that
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sup
i�i0

∫

∂Ωi∩{|Q|>M}

hi(Q)dω
Z
i (Q)< ε.(4.53)

Here ωZi denotes the harmonic measure of Ωi with pole at Z .

Proof. – Let us first remark that if Z ∈Ω∞ then Z ∈Ωi for i large enough. In fact there exists
η > 0 so that B(Z,η) ∩ Ωc∞ = ∅. Since Ωci → Ωc∞, then for i large enough B(Z, η2 ) ⊂ Ωi. Let
Pi ∈ ∂Ωi so that

|Z − Pi|= d(Z,∂Ωi) = ηi,

η� ηi � |Z| and |Pi| � 2|Z|.(4.54)

Let N > 1 be a large constant, we first study
∫

∂Ωi∩{|Q−Pi|>Nηi}

hi(Q)dω
Z
i (Q) =

∫

∂Ωi∩{|Q−Pi|>Nηi}

hi(Q)k
Z
i (Q)dσi(Q)

=

∞∑

j=0

∫

∂Ωi∩{2jNηi<|Pi−Q|�2j+1Nηi}

hi(Q)k
Z
i (Q)dσi(Q)

�

∞∑

j=0

( ∫

∂Ωi∩{2jNηi<|Pi−Q|�2j+1Nηi}

h2
i (Q)dσi(Q)

) 1
2

×
( ∫

∂Ωi∩{2jNηi<|Pi−Q|�2j+1Nηi}

(
kZi (Q)

)2
dσi(Q)

) 1
2

.(4.55)

Here kZi (Q) denotes the Poisson kernel ofΩi with pole atZ , and dωZi = kZi dσi. We look at each
term separately. Note that since Ω is a δ-Reifenberg flat chord arc domain so is Ωi. Moreover the
fact that logh ∈VMO(∂Ω) implies that loghi ∈VMO(∂Ωi). Also (3.1) ensures

( ∫

∂Ωi∩{2jNηi<|Pi−Q|�2j+1Nηi}

h2
i (Q)dσi(Q)

) 1
2

�

( ∫

∂Ωi∩{|Pi−Q|�2j+1Nηi}

h2
i (Q)dσi(Q)

) 1
2

�
C

2jn/2Nn/2η
n/2
i

∫

∂Ωi∩{|Pi−Q|�2j+1Nηi}

hi(Q)dσi

�
C

2jn/2Nn/2η
n/2
i

∫

∂Ωi∩{|Q|<2j+1Nηi+2|Z|}

hi(Q)dσi(Q)

�
C

2jn/2Nn/2η
n/2
i

(
2j+1Nηi +2|Z|

)n(1+ε′)

�
C

2jn/2Nn/2ηn/2
|Z|n(1+ε′)(2jN)n(1+ε′)

�Cη−n/2|Z|n(1+ε′)2jn( 1
2+ε′)Nn( 1

2 +ε),(4.56)
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where we have used (4.51) and (4.54) in several occasions with ε′ instead of ε (ε′ = ε′(ε)). The
constant C above depends on n, ε′ and the Ahlfors regularity constant.

We now look at the second term. If Q ∈ {2jNηi < |Pi −Q|� 2j+1ηiN},

|Q−Z|� |Q− Pi| − |Pi −Z|> 2jηiN − ηi > 2
j−1ηiN.

Let ρj > 0 be such that 2N0ρj = 2
j−1ηiN where N0 is as in Lemma 2.3. Cover

∂Ωi ∩
{
2jηiN < |Pi −Q|� 2j+1ηiN

}

by balls B(Xl, ρj), with

Xl ∈ ∂Ωi ∩
{
2jηiN < |Pi −Q|� 2j+1ηiN

}

so that |Xl−Xk|� 1
2ρj if l 
= k. Note that {B(Xl,

ρj

5 )}l�1 is a disjoint collection of balls. Note
that Z ∈Ωi\B(2N0ρj ,Xl) for each l, thus since loghi ∈VMO(∂Ω) by (2.33) we have that

( ∫
�

B(Xl,ρj)

(
kZi
)2
dσi

) 1
2

�C

∫
�

B(Xl,ρj)

kZi dσi(4.57)

and
∫

∂Ωi∩{2jηiN<|Pi−Q|�2j+1ηiN}

(
kZi
)2
dσi

�
∑

l

∫

B(Xl,ρj)

(
kZi
)2
dσi �C

∑

l

1

σi(B(Xl, ρj))

( ∫

B(Xl,ρj)

kZi dσi

)2

�C
∑

l

rni
σ(B(riXl +Qi, ρjri))

( ∫

B(Xl,ρj)

kZi dσi

)2

�
C

ρnj

∑

l

( ∫

B(Xl,ρj)

kZi dσi

)2

,(4.58)

where we have also used the fact that ∂Ω is Ahlfors regular. Since ωZi is a doubling measure

(with uniform constants on i, that only depend on the NTA character of Ω) and ρj =
2j−1ηiN

2N0
,

(4.58) yields

( ∫

∂Ωi∩{2jηiN<|Pi−Q|�2j+1ηiN}

(
kZi
)2
dσi

) 1
2

�
C

ρ
n/2
j

∑

l

∫

B(Xl,ρj)

kZi dσi �
C

ρ
n/2
j

∑

l

∫

B(Xl,
ρj
5 )

kZi dσi

�
C

η
n/2
i Nn/22jn/2

∫

∂Ωi∩{2jηiN−
ρj
5 <|Pi−Q|�2j+1ηiN+

ρj
5 }

kZi dσi

�
C

η
n/2
i Nn/22jn/2

ωZi

(
B

(
Pi,2

j+1ηiN +
ρj
5

)∖
B

(
Pi,2

jηiN − ρj
5

))
.(4.59)
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Since |Z − Pi|= ηi � η, and ωXi (B(Pi,2
j+1ηiN +

ρj

5 )\B(Pi,2jηiN − ρj

5 )) is a non-negative
harmonic function in Ωi which vanishes on B(Pi,2jηiN − ρj

5 ) ∩ ∂Ωi, Corollaries 2.2 and 2.3
in Section 2 and Lemmas 4.9, 4.11 and 4.8 in [14] imply that

( ∫

∂Ωi∩{2jηiN<|Pi−Q|�2j+1ηiN}

(
kZi
)2
dσi

) 1
2

�
C

ηn/2Nn/22jn/2

( |Z − Pi|
2jNηi

) 3
4

ω
A(Pi,2

j−1ηiN)
i

(
B

(
Pi,2

j+1ηiN +
ρj
5

))

�
C

ηn/2Nn/22jn/2
1

23j/4N3/4
ω
A(Pi,2

j−1ηiN)
i

(
B
(
Pi,2

j−2ηiN
))

�
C

ηn/2Nn/2+3/42j(n/2+3/4)

(
2j−2ηiN

)n−1
Gi

(
A
(
Pi,2

j−1ηiN
)
,A
(
Pi,2

j−2ηiN
))

�
C

ηn/2Nn/2+3/42j(n/2+3/4)
.(4.60)

Combining (4.55), (4.56) and (4.60) we obtain

∫

∂Ωi∩{|Q−Pi|>Nηi}

hi(Q)dω
Z
i (Q)�Cη−n|Z|n(1+ε′)N− 3

4+nε′
∞∑

j=0

(
2−

3
4+nε′

)j

�C
(
n, ε′, η, |Z|

)
N− 3

4+nε′
∞∑

j=0

(
2−

3
4+nε′

)j
.(4.61)

Choosing ε′ > 0 so that nε′ < 1
4 , N > 4 large enough so that

C
(
n, ε′, η, |Z|

)
N− 1

2

∞∑

j=0

2−
1
2 j < ε and M > 2N |Z|

we conclude using (4.54) that for i� i0, since |Q|>M implies

|Q− Pi|>M − 2|Z|�Nηi,

then
∫

∂Ωin{|Q|>M}

hi(Q)dω
Z
i (Q)�

∫

∂Ωi∩{|Q−Pi|�Nηi}

hi dω
Z
i < ε. ✷(4.62)

LEMMA 4.3. – Let Z ∈Ω∞. Then

limsup
i→∞

∫

∂Ωi

hi dω
Z
i � 1.(4.63)

Proof. – Let ε > 0, choose i0 � 1 and M as in Lemma 4.2, in particular |Z|< M
8 and (4.53)

holds. We concentrate on the quantity
∫
∂Ωi∩B(0,M)

hi dω
Z
i . We use the following result which

follows from the fact that 0 ∈ ∂Ω and logh ∈ VMO(∂Ω): given ε′ > 0 there exists r(ε′) > 0
such that for r ∈ (0, r(ε′)) and Q ∈B(0,1)∩ ∂Ω there exists G(Q,r)⊂B(Q,r)∩ ∂Ω such that
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σ(B(Q,r))� (1 + ε′)σ(G(Q,r)) and for all P ∈G(Q,r)

(1 + ε′)−1

∫
�

B(Q,r)

hdσ � h(P )� (1 + ε′)

∫
�

B(Q,r)

hdσ.(4.64)

For further details see Lemma 5.6 in [18] and its proof. Although Lemma 5.6 in [18] is stated for
chord arc domains with small constant the reader can easily check that the argument presented
there only uses the fact that the domain is a Reifenberg flat chord arc domain. It is essentially a
consequence of the definition of VMO and the John–Nirenberg inequality.

For ε′ > 0 to be chosen depending on ε and M , let i1 � i0 so that for i� i1, Mri < r(ε′), and
|Qi| < 1 (recall that Qi → 0). Let Gi =

1
ri
(G(Qi,Mri) −Qi), and Fi = ∂Ωi ∩B(0,M)\Gi,

where G(Qi,Mri)⊂B(Qi,Mri)∩ ∂Ω satisfies

σ
(
B(Qi,Mri)

)
� (1 + ε′)σ

(
G(Qi,Mri)

)
(4.65)

and for all P ∈G(Qi,Mri)
∫
�

B(Qi,Mri)

hdσ∼
ε′
h(P ),(4.66)

where a∼
ε′
b means that 1

1+ε′ � a
b � 1 + ε′. We split the integral above in 2 parts

∫

∂Ωi∩B(0,M)

hi dω
Z
i =

∫

Gi

hi dω
Z
i +

∫

Fi

hi dω
Z
i .(4.67)

For Q ∈Gi, riQ+Qi ∈G(Qi,Mri), the definition of hi and (4.66) yield

hi(Q) =
h(riQ+Qi)∫
�B(Qi,ri)hdσ

∼
ε′

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ
,(4.68)

which implies that

∫

Gi

hi dω
Z
i � (1 + ε′)

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ
ωZi (Gi)� (1 + ε′)

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ
(4.69)

because ωZi is a probability measure. Note that
∫
�

B(Qi,ri)

hdσ�
1

σ(B(Qi, ri))

∫

B(Qi,ri)∩G(Qi,Mri)

hdσ

�
1

(1 + ε′)

σ(B(Qi, ri) ∩G(Qi,Mri))

σ(B(Qi, ri))

∫
�

B(Qi,Mri)

hdσ.(4.70)

Combining (4.69) and (4.70) we obtain

∫

Gi

hi dω
Z
i � (1 + ε′)2

σ(B(Qi, ri))

σ(B(Qi, ri) ∩G(Qi,Mri))
.(4.71)
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Moreover since ∂Ω is Ahlfors regular

σ
(
B(Qi, ri)∩G(Qi,Mri)

)
= σ
(
B(Qi, ri)

)
− σ
(
B(Qi, ri)\G(Qi,Mri)

)

� σ
(
B(Qi, ri)

)
− σ
(
B(Qi,Mri)\G(Qi,Mri)

)

� σ
(
B(Qi, ri)

)
− ε′σ

(
B(Qi,Mri)

)

� σ
(
B(Qi, ri)

)
(1−CMnε′).(4.72)

Combining (4.71) and (4.72) we have

∫

Gi

hi dω
Z
i � (1 + ε′)2

(
1−CMnε′

)−1
.(4.73)

We estimate now the second term in (4.67). Since Z ∈ B(0, M8 ), and Ωi is a δ-Reifenberg flat
chord arc domain, there exists C = C(|Z|, η,M) so that if Ai = A(0,16N0M) ∈ Ωi is a non-
tangential point for Ωi, at 0 and radius 16MN0, with N0 as in Lemma 2.3 then by the boundary
Harnack principle

∫

Fi

hi dω
Z
i �C

∫

Fi

hi dω
Ai

i =C

∫

Fi

hik
Ai

i dσi

�C

( ∫

Fi

h2
i dσi

) 1
2
( ∫

Fi

(
kAi

i

)2
dσi

) 1
2

.(4.74)

Note that
∫

Fi

h2
i dσi = r−ni

∫
B(Qi,Mri)\G(Qi,Mri)

h2 dσ

(
∫
�B(Qi,ri)hdσ)

2
.(4.75)

Since logh2 ∈VMO(∂Ω) for i large enough
∫

B(Qi,Mri)\G(Qi,Mri)

h2 dσ

�C

(
σ(B(Qi,Mri)\G(Qi,Mri))

σ(B(Qi,Mri))

) 1
2
∫

B(Qi,Mri)

h2 dσ

�C(ε′)
1
2

∫

B(Qi,Mri)

h2 dσ(4.76)

�C
√
ε′σ
(
B(Qi,Mri)

)( ∫
�

B(Qi,Mri)

hdσ

)2

.(4.77)

Combining (4.75), (4.76), (4.70) and (4.72) we obtain
∫

Fi

h2
i dσi �C

√
ε′
σ(B(Qi,Mri))

rni
· (
∫
�B(Qi,Mri)hdσ)

2

(
∫
�B(Qi,ri)hdσ)

2

�C
√
ε′Mn

(
1−CMnε′

)−2
,(4.78)
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provided that ε′ < 1 and small enough. Since ∂Ωi is a δ-Reifenberg flat chord arc domain,
loghi ∈ VMO(∂Ωi), and ‖ loghi‖∗(∂Ωi)∼‖ logh‖∗(∂Ω), (2.32) is satisfied, and hence by
Lemma 2.3 we have that

( ∫

Fi

(
kAi

i

)2
dσi

) 1
2

�

( ∫

B(0,M)∩∂Ωi

(
kAi

i

)2
dσi

) 1
2

�Cσi
(
B(0,M)

) 1
2

( ∫
�

B(0,M)∩∂Ωi

kAi

i dσi

)

�Cσi
(
B(0,M)

)− 1
2ωAi
(
B(0,M)

)

�C

(
σ(B(Qi,Mri))

rni

)− 1
2

�CM−n
2 .(4.79)

Combining (4.74), (4.78) and (4.79) we obtain that if CMnε′ < 1
2 then

∫

Fi

hi dω
Z
i �CM (ε

′)
1
4 .(4.80)

Inequalities (4.73) and (4.80) yield

∫

∂Ωi∩B(0,M)

hi dω
Z
i � (1 + ε′)2

(
1−CMnε′

)−1
+CM (ε

′)
1
4 .(4.81)

Choosing ε′ > 0 so that CM (ε′)
1
4 < ε

2 and (1 + ε′)2(1 − CMnε′)−1 < 1 + ε
2 , recalling our

choice of M , and combining (4.53) and (4.81) we obtain that for ε > 0 there exists iε � 1 so that

sup
i�iε

∫

∂Ωi

hi dω
Z
i � 1 + 2ε,(4.82)

therefore

limsup
i→∞

∫

∂Ωi

hi dω
Z
i � 1. ✷(4.83)

We are now ready to finish the proof of Theorem 4.2.

Proof of Theorem 4.2. – Let Z ∈ Ω∞, let i0 � 1 so that η = infi�i0 d(Z,∂Ωi) > 0, by (4.8)
ui → u∞ uniformly on B(Z, η2 ), thus by harmonicity ∇ui → ∇u∞ uniformly on B(Z, η4 ).
Thus limi→∞ |∇ui(Z)| = |∇u∞(Z)|. Now we consider two different cases: either u denotes
the Green’s function with finite pole A or u denotes the Green’s function with pole at infinity. In
the second case ui denotes the Green’s function of Ωi with pole at infinity with corresponding
Poisson kernel hi. By Theorem 3.1

∣∣∇ui(Z)
∣∣�
∫

∂Ωi

hi dω
Z
i .(4.84)
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Thus by Lemma 4.3 we have that
∣∣∇u∞(Z)

∣∣� 1.(4.85)

If u denotes the Green’s function of Ω with pole at A, ui is a multiple of the Green’s function of
Ωi with pole at Ai =

A−Qi

ri
. In fact by (4.2) and (4.43) we have that

ui(Z) =
σ(B(Qi, ri))

rni

Gi(Ai,Z)

ωAi

i (B(0,1))
.(4.86)

Since for i large δi(Z) = dist(Z,∂Ωi) <
δi(Ai)

4 = 1
4ri
δ(A), and Z ∈ B(0, δi(Ai)

4 ) by Theo-
rem 3.2 we have that

∣∣∇Gi(Ai,Z)
∣∣�
∫

∂Ωi

kAi

i dωzi +C
ωAi

i (B(0, δi(Ai)))

(δi(A))n

(
δi(Z)

δi(Ai)

) 3
4

.(4.87)

Combining (4.86), (4.87), (4.13) and (4.39), and using the fact that ∂Ω is Ahlfors regular we
obtain

∣∣∇ui(Z)
∣∣�
∫

∂Ωi

hi dω
Z
i +C

ωA(B(Qi, δ(A)))

δ(A)n
rni

ωA(B(Qi, ri)

(
δi(Z)

δi(Ai)

) 3
4

.(4.88)

Since h= kA, and logh ∈VMO(∂Ω), Corollary 2.4 ensures that

ωA(B(Qi, δ(A)))

ωA(B(Qi, ri))
�C

(
σ(B(Qi, δ(A)))

σ(B(Qi, ri))

)1+ 1
4n

�C

(
δ(A)

ri

)n+ 1
8

.(4.89)

Combining (4.88) and (4.89) we obtain for i large enough that

∣∣∇ui(Z)
∣∣�
∫

∂Ωi

hi dω
Z
i +C

(
δ(A)

ri

) 1
8
(

ri
δ(A)

) 3
4 (
δ∞(Z)

) 3
4

�

∫

∂Ωi

hi dω
Z
i +C

(
ri
δ(A)

) 1
2 (
δ∞(Z)

) 3
4 ,(4.90)

where δ∞(Z) = dist(Z,∂Ω∞). Thus by (4.63) letting i tend to infinity in (4.90) we have that
(4.10) also holds in this case. This concludes the proof of Theorem 4.2. ✷

THEOREM 4.3. – IfΩ∞ ⊂ Rn+1, u∞ andω∞ are as in Theorem 4.1, then h∞ = dω∞

dσ∞

satisfies

h∞(Q)� 1 for Hn-a.e. Q ∈ ∂Ω∞.(4.91)

Proof. – By Theorem 4.1 Ω∞ is an unbounded 4δ-Reifenberg flat chord arc domain. Hence
ω∞ and σ∞ are mutually absolutely continuous (see again [4] and [25]), and the Radon–
Nikodym theorem ensures that h∞ = dω∞

dσ∞

∈ L1
loc(dσ∞). Moreover for ϕ ∈C∞

c (R
n+1)

lim
i→∞

∫

∂Ωi

ϕhi dσi = lim
i→∞

∫

∂Ωi

ϕdωi =

∫

∂Ω∞

ϕdω∞ =

∫

∂Ω∞

ϕh∞ dσ∞.(4.92)
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Recall that each Ωi is a δ-Reifenberg flat chord arc domain, and that χΩi
→ χΩ∞

in L1
loc(R

n+1).
Let −→ni denote the inner unit normal to ∂Ωi, −→n∞ denote the inner unit normal to ∂Ω∞ and let
e ∈ Sn, then for ϕ ∈C∞

c (R
n+1) and ϕ� 0,

∫

∂Ωi

ϕdσi �

∫

∂Ωi

ϕ〈−→ni , e〉dσi =−
∫

Ωi

div(ϕe)(4.93)

and since 〈e,−→n∞ 〉= 1
2 (|e|2 + |−→n∞ |2 − |−→n∞ − e|2) = 1− 1

2 |−→n∞ − e|2,

lim inf
i→∞

∫

∂Ωi

ϕdσi �−
∫

Ω∞

div(ϕe) =

∫

∂Ω∞

ϕ〈e,−→n∞ 〉dσ∞

�

∫

∂Ω∞

ϕdσ∞ − 1

2

∫

∂Ω∞

ϕ|−→n∞ − e|2 dσ∞.(4.94)

Assume that support (ϕ) ⊂ B(0,M), and ϕ � 0. Using the same notation as in the proof of
Theorem 4.2 we know that since logh ∈VMO(∂Ω), for ε ∈ (0,1) there exists i0 � 1 so that for
i� i0 and |Qi|< 1 there exists G(Qi,Mri)⊂B(Qi,Mri)∩ ∂Ω satisfying

σ
(
B(Qi,Mri)

)
� (1 + ε)σ

(
G(Qi,Mri)

)
(4.95)

and
∫
�

B(Qi,Mri)

hdσ ∼
ε
h(P ) for P ∈G(Qi,Mri).(4.96)

If Gi =
1
ri
(G(Qi,Mri)−Qi) and Fi = ∂Ωi ∩B(0,M)\Gi, then for Q ∈Gi

hi(Q) =
h(riQ+Qi)∫
�B(Qi,ri)hdσ

∼
ε

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ
(4.97)

which implies that
∫

Gi

hiϕdσi ∼ε

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ

∫

Gi

ϕdσi.(4.98)

Moreover using the fact that ∂Ω is Ahlfors regular, the definition of σi =Hn ∂Ωi and (4.95)
we have

∫

Gi

ϕdσi =

∫

∂Ωi

ϕdσi −
∫

Fi

ϕdσi �

∫

∂Ωi

ϕdσi − ‖ϕ‖∞σi(Fi)

�

∫

∂Ωi

ϕdσi −C‖ϕ‖∞Mnε.(4.99)

Combining (4.98) and (4.99) we obtain for i� i0
∫

∂Ωi

ϕdσi �

∫

Gi

ϕdσi +C‖ϕ‖∞Mnε
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� (1 + ε)

∫
�B(Qi,ri)hdσ∫

�B(Qi,Mri)hdσ

∫

Gi

hiϕdσi +CMn‖ϕ‖∞ε

� (1 + ε)2
∫
�B(Qi,ri)hdσ∫

�B(Qi,Mri)hdσ

∫

∂Ωi

ϕdωi +CM
n‖ϕ‖∞ε.(4.100)

Furthermore (4.95), (4.96), (2.4) and our choice of ε = 1
4 , the fact that logh ∈ VMO(∂Ω) and

∂Ω is Ahlfors regular yield

∫
�

B(Qi,ri)

hdσ=
1

σ(B(Qi, ri))

{ ∫

B(Qi,ri)∩G(Qi,Mri)

hdσ+

∫

B(Qi,ri)∩G(Qi,Mri)c

hdσ

}

� (1 + ε)
σ(B(Qi, ri)∩G(Qi,Mri))

σ(B(Qi, ri))

∫
�

B(Qi,Mri)

hdσ

+
ω(B(Qi, ri) ∩G(Qi,Mri)

c)

σ(B(Qi, ri))

� (1 + ε)

∫
�

B(Qi,Mri)

hdσ+C
ω(B(Qi, ri))

σ(B(Qi, ri))

(
σ(B(Qi, ri)∩G(Qi,Mri)

c

σ(B(Qi, ri))

) 3
4

� (1 + ε)

∫
�

B(Qi,Mri)

hdσ+Cε
3
4M

3n
4

∫
�

B(Qi,ri)

hdσ,(4.101)

which implies
∫
�

B(Qi,ri)

hdσ �
(
1 +Cε

3
4M

3n
4

) ∫
�

B(Qi,Mri)

hdσ.(4.102)

Combining (4.100) and (4.102) we have for i� i0

∫

∂Ωi

ϕdσi �
(
1+CM

5n
4 ε

1
4

) ∫

∂Ωi

ϕdωi +CMn‖ϕ‖∞ε.(4.103)

Thus (4.103) ensures that for every ε > 0, and ϕ ∈C∞
c (B(0,M)), ϕ� 0

limsup
i→∞

∫

∂Ωi

ϕdσi �
(
1 +CM

5n
4 ε

1
4

)
lim
i→∞

∫

∂Ωi

ϕdωi +CMn‖ϕ‖∞ε

�
(
1 +CM

5n
4 ε

1
4

) ∫

∂Ω∞

ϕdω∞ +CMn‖ϕ‖∞ε.(4.104)

Letting ε→ 0 we conclude that for ϕ ∈C∞
c (R

n+1) ϕ� 0

limsup
i→∞

∫

∂Ωi

ϕdσi �

∫

∂Ω∞

ϕh∞ dσ∞.(4.105)
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Combining (4.94) and (4.105) we have that for ϕ ∈C∞
c (R

n+1), ϕ� 0

∫

∂Ω∞

ϕh∞ dσ∞ �

∫

∂Ω∞

ϕdσ∞ − 1

2

∫

∂Ω∞

ϕ|−→n∞ − e|2 dσ∞.(4.106)

Let Q ∈ ∂∗Ω∞, approximating χB(Q,r) by smooth functions with compact support, and letting
e=−→n∞ (Q), (4.106) implies that

∫

B(Q,r)

h∞ dσ∞ �

∫

B(Q,r)

dσ∞ − 1

2

∫

B(Q,r)

∣∣−→n∞ −−→n∞ (Q)
∣∣2 dσ∞,(4.107)

and
∫
�

B(Q,r)

h∞ dσ∞ � 1− 1

2

∫
�

B(Q,r)

∣∣−→n∞ −−→n∞ (Q)
∣∣2 dσ∞.(4.108)

Since Q ∈ ∂∗Ω∞, limr→0

∫
�B(Q,r)|−→n∞ −−→n∞ (Q)|2 dσ∞ = 0, thus (4.108) implies that for Hn

a.e. Q ∈ ∂Ω∞

h∞(Q) = lim
r→0

∫
�

B(Q,r)

h∞ dσ∞ � 1. ✷(4.109)

THEOREM 4.4. – The subsequence introduced in 4.1 also satisfies

σi⇀σ∞,(4.110)

weakly as Radon measures, where σ∞ =Hn ∂Ω∞.

Proof. – Let ϕ ∈C∞
c (R

n+1), ϕ� 0 and suppose that support(ϕ)⊂B(0,M). Using the same
notation as in the proof of Theorem 4.3 we have that given ε > 0 there exists i0 � 1 such that for
i� i0 (see (4.103))

∫

∂Ωi

ϕdσi �
(
1+CM

5n
4 ε

1
4

) ∫

∂Ωi

ϕdωi +CMn‖ϕ‖∞ε.(4.111)

Since ϕ� 0, (4.97) yields

∫

∂Ωi

ϕdσi �

∫

Gi

ϕdσi � (1 + ε)−1

∫
�B(Qi,ri)hdσ∫

�B(Qi,Mri)hdσ

∫

Gi

hiϕdσi.(4.112)

Furthermore (4.95), (4.96), the fact that logh ∈VMO(∂Ω) and ∂Ω is Ahlfors regular yield as in
(4.102) that

∫
�

B(Qi,ri)

hdσ �
1

σ(B(Qi, ri))

∫

B(Qi,ri)∩G(Qi,Mri)

hdσ

� (1 + ε)−1σ(B(Qi, ri)∩G(Qi,Mri))

σ(B(Qi, ri))

∫
�

B(Qi,Mri)

hdσ
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� (1 + ε)−1

∫
�

B(Qi,Mri)

hdσ

[
1− σ(B(Qi, ri)∩G(Qi,Mri))

c

σ(B(Qi, ri))

]

� (1 + ε)−1

∫
�

B(Qi,Mri)

hdσ
[
1−CMnε

]
.(4.113)

To estimate the term
∫

Gi

hiϕdσi =

∫

∂Ωi

ϕdωi −
∫

Fi

ϕdωi,(4.114)

we need to bound the second term on the right hand side. Using (4.13), our choice of δ > 0
combined with (2.23), (4.95), and the fact that ∂Ω is Ahlfors regular, we obtain
∫

Fi

ϕdωi � ‖ϕ‖∞ωi(Fi)

� ‖ϕ‖∞r−ni σ
(
B(Qi, ri)

)ω(G(Qi,Mri)
c ∩B(Qi,Mri))

ω(B(Qi, ri))

�C‖ϕ‖∞r−ni σ
(
B(Qi, ri)

)ω(B(Qi,Mri))

ω(B(Qi, ri))

(
σ(G(Qi,Mri)

c ∩B(Qi,Mri))

σ(B(Qi, ri))

) 3
4

�C‖ϕ‖∞M
5n
4 ε

3
4

∫
�B(Qi,Mri)hdσ∫

�B(Qi,ri)hdσ
.(4.115)

Combining (4.112), (4.113), (4.114), and (4.115) we have for ε > 0 small
∫

∂Ωi

ϕdσi �
(
1−CεMn

) ∫

∂Ωi

ϕdωi −C‖ϕ‖∞Mnε
1
4 .(4.116)

Thus (4.111) and (4.116) yield that for ε > 0 small enough and i large enough (depending on ε)

(
1−CεMn

) ∫

∂Ωi

ϕdωi −C‖ϕ‖∞Mnε
1
4 �

∫

∂Ωi

ϕdσi

�
(
1 +CM

5n
4 ε

1
4

) ∫

∂Ωi

ϕdωi +CM
n‖ϕ‖∞ε.(4.117)

Letting i→∞ in (4.117) and recalling (4.10) we have that for every ε > 0

(
1−CεMn

) ∫

∂Ω∞

ϕdω∞ −C‖ϕ‖∞Mnε
1
4 � lim inf

i→∞

∫

∂Ωi

ϕdσi,

limsup
i→∞

∫

∂Ωi

ϕdσi �
(
1+CM

5n
4 ε

1
4

) ∫

∂Ω∞

ϕdω∞ +CMn‖ϕ‖∞ε.
(4.118)

Thus for every ϕ ∈C∞
c (R

n+1), ϕ� 0 we have

lim
i→∞

∫

∂Ωi

ϕdσi =

∫

∂Ω∞

ϕdω∞.(4.119)
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Since Ω∞, u∞, ω∞ and h∞ satisfy the hypothesis of Theorem 2.2 we conclude that
dω∞ = dσ∞. Therefore σi⇀σ∞ as i→∞ weakly as Radon measures. ✷

We now recall the statement of the Main Theorem and present its proof.

MAIN THEOREM. – Assume that
(1) Ω⊂ Rn+1 is a δ-Reifenberg flat chord arc domain for some δ > 0 small enough.
(2) logh ∈VMO(dσ).

Then Ω is a chord arc domain with vanishing constant, i.e. −→n ∈VMO(dσ).
Proof. – Let K ⊂ Rn+1 be a compact set, and let

l= lim
r→0

sup
Q∈∂Ω∩K

‖−→n ‖∗
(
B(Q,r)

)
.(4.120)

Our goal is to show that l= 0. There exist sequences {Qi}i�1 ⊂ ∂Ω∩K , and {ri}i�1 ⊂ R such
that limi→∞Qi =Q∞, 0< ri, limi→∞ ri = 0 and

lim
i→∞

( ∫
�

B(Qi,ri)

|−→n −−→n Qi,ri
|2 dσ
) 1

2

= l.(4.121)

We consider the blow up sequences Ωi = r−1
i (Ω−Qi), ∂Ωi = r−1

i (∂Ω−Qi), ui, ωi and hi
associated with Qi and ri as in (4.2), (4.4) and (4.5). Theorems 4.1, 4.2, and 4.3 combined with
Theorem 2.2 ensure that by passing to a subsequence (which we relabel), and modulo rotation
we have that

Ωi → Rn+1
+ in the Hausdorff distance sense,

uniformly on compact sets,(4.122)

∂Ωi → Rn × {0} in the Hausdorff distance sense,

uniformly on compact sets,(4.123)

and

σi, ωi⇀Hn
(
Rn × {0}

)
.(4.124)

Recall also that χΩi
→ χR

n+1
+

in L1
loc(R

n+1), thus for ϕ ∈ C∞
c (R

n+1), ϕ � 0 and e ∈ Sn we

have

lim
i→∞

∫

Ωi

div(ϕe) =

∫

R
n+1
+

div(ϕe).(4.125)

If −→ni denotes the inner unit normal to ∂Ωi we have that

∫

∂Ωi

ϕ〈−→ni , e〉dσi =−
∫

Ωi

div(ϕe).(4.126)

Therefore

lim
i→∞

∫

∂Ωi

ϕ〈−→ni , e〉dσi =
∫

Rn×{0}

ϕ〈en+1, e〉dHn,(4.127)
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which can be rewritten as

lim
i→∞

∫

∂Ωi

ϕdσi −
1

2

∫

∂Ωi

ϕ|−→ni − e|2 dσi

=

∫

Rn×{0}

ϕdHn − 1

2

∫

Rn×{0}

ϕ|en+1 − e|2 dHn.(4.128)

Theorem 4.4 yields

lim
i→∞

∫

∂Ωi

ϕ|−→ni − e|2 dσi =
∫

Rn×{0}

ϕ|en+1 − e|2 dHn.(4.129)

Letting e= en+1 and ϕ ∈C∞
c (R

n+1), ϕ� χB(0,1), (4.129) shows that

lim
i→∞

∫

B(0,1)

|−→ni − en+1|2 dσi = 0.(4.130)

Note that for Q ∈ ∂Ωi, −→ni (Q) =−→n (riQ+Qi) where −→n denotes the inner unit normal to ∂Ω.
Furthermore

∫
�

B(0,1)

|−→ni − en+1|2 dσi =
∫
�

B(Qi,ri)

|−→n − en+1|2 dσ.(4.131)

Combining (4.121), (4.130) and (4.131) we conclude that l= 0. In fact note that

l= lim
i→∞

( ∫
�

B(Qi,ri)

|−→n −−→n Qi,ri
|2 dσ
) 1

2

� 2 lim
i→∞

( ∫
�

B(Qi,ri)

|−→n − en+1|2 dσ
) 1

2

= 0. ✷(4.132)
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Appendix A

The main purpose of this appendix is to prove Lemma 3.2 as well as Rellich’s identity for
chord-arc domains with small constant. We would like to thank G. David who pointed out to us
that our proofs could be simplified, and that some of the results held in a more general class of
domains.

This appendix is organized as follows: we first show that Reifenberg flat chord arc domains
can be locally approximated from the interior by domains of a similar type. We use this
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approximation to show that if Ω is such a domain, and F denotes the non-tangential limit of
the gradient of Green’s function with pole at infinity u or of the gradient of the Green’s function
with pole at A ∈ Ω, G(A,−), then either h(Q) = 〈F (Q),−→n (Q)〉 or kA(Q) = 〈F (Q),−→n (Q)〉
for Hn a.e. Q ∈ ∂Ω. Here h (resp. kA) denote the Poisson kernel with pole at infinity (resp. the
Poisson kernel with pole A). In the second part of the appendix we show that for F as above,
F (Q) = h(Q)−→n (Q) or F (Q) = kA(Q)−→n (Q) for Hn a.e. Q ∈ ∂Ω. The proof presented here
is due to G. David. Our original proof made use of the parameterizations for chord-arc surfaces
with small constant constructed by Semmes in [24]. In the third part of the appendix we prove
Rellich’s identity for chord-arc domains with small constant, verifying a point left open in [18].

A.1. Approximation of Reifenberg flat chord-arc domains

Recall that if Ω is a set of locally finite perimeter which is Reifenberg flat then the topological
boundary of Ω and its measure theoretic boundary agree (see Remark 4.2 in [18]). Moreover
Hn(∂Ω\∂∗Ω) = 0; here ∂∗Ω denotes the reduced boundary of Ω. This implies that for Hn ∂Ω
a.e. Q ∈ ∂Ω

lim
r→0

∫
�

B(Q,r)∩∂Ω

−→n (P )dHn(P ) =−→n (Q),(A.1.1)

∣∣−→n (Q)
∣∣= 1,(A.1.2)

lim
r→0

Hn(∂Ω∩B(Q,r))
ωnrn

= 1.(A.1.3)

See [7, Chapter 5]. Here −→n denote the inward unit normal vector to ∂Ω.
We now begin the construction of the approximating domains. Let Ω ⊂ Rn+1 be a δ-

Reifenberg flat chord-arc domain. Fix K0 ⊂ Rn+1 a compact set, and R0 = RK0 so that (1.8),
(1.9), (1.10) hold. Let Q0 ∈K0 ∩ ∂Ω, let R ∈ (0, R0

4 ), and let ρ ∈ (0,1) be a small but fixed
constant (to be determined later). Let rj = Rρj , for j � 1. Let {Pji}i be a finite subset of
∂∗Ω ∩B(Q,2R) satisfying

|Pji − Pjl|� rj for i 
= l(A.1.4)

and

∂Ω∩B(Q0,2R)⊂
⋃

i

B
(
Pji, rj

)
⊂
⋃

i

B

(
Pji,

13rj
4

)
⊂B(Q0,6R).(A.1.5)

We denote by −→nji =−→n (Pji, rj), where the notation is as in (1.9) and (1.10).
Let {λji}i be a smooth partition of unity associated to {B(Pji, rj)} satisfying

{
λji(X) = 1 if |X − Pji|< 1

4rj ,

λji(X) = 0 if |X − Pji| � 13
4 rj ,

(A.1.6)

0� λji � 1, |∇λji|�
Cn
rj
,
∣∣∇2λji

∣∣� Cn
r2j

(A.1.7)

and

∑

i

λji(X) = 0 and
∑

i

∇λji(X) = 0 for X ∈
(
B(Q0,2R)∩ ∂Ω′ 5rj

2

)
.(A.1.8)
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Define for X ∈ Rn+1 smooth functions Nj and φj by

Nj(X) =
∑

i

λji(X)−→nji(A.1.9)

and

φj(X) =X + αrjNj(X),(A.1.10)

where α denotes a small positive constant much larger than
√
δ. α will be determined later

as a function of δ. Note that if X /∈ ⋃iB(Pji,
13rj

4 ) then Nj(X) = 0 and φj(X) = X . Our
goal is to show that φj is a bilipschitz map from Rn+1 to Rn+1, with constants close to 1
(depending on α > 0). To do this we need to estimate Nj(X) − Nj(Y ). Since Nj(Z) = 0

for Z /∈ ⋃iB(Pji,
13rj

4 ), we only need to consider 2 cases. Either X ∈ ⋃iB(Pji,
13rj

4 ) and

Y /∈ ⋃iB(Pji,
13rj

4 ) or both X,Y ∈ ⋃iB(Pji,
13rj

4 ). Since {B(Pji, 13rj

4 )}i is a disjoint
collection, then X only belongs to at most Kn balls in the collection {B(Pji, rj

4 )}, where

Kn is a constant independent of rj (only depending on n). If Y /∈ ⋃iB(Pji,
13rj

4 ) there is

Z ∈ ∂B(Pjio , Brj

4 ) for some i0 such that

|X −Z|� |Y −X |(A.1.11)

since Nj(Y ) =Nj(Z) = 0 then

Nj(X)−Nj(Y ) =Nj(X)−Nj(Z) =
∑

i

(
λji(X)− λji(Z)

)−→nji

=
∑

|X−Pji|�
13rj

4

(
λji(X)− λji(Z)

)−→nji .(A.1.12)

Since |−→nji |= 1 then

∣∣Nj(X)−Nj(Y )
∣∣� Cn

rj
|X − Y |(A.1.13)

and

(1−Cnα)|X − Y |�
∣∣φj(X)− φj(Y )

∣∣� (1 +Cnα)|X − Y |.(A.1.14)

Now we need to analyze the case when Y ∈ ⋃iB(Pji,
13rj

4 ). If X ∈ B(Pji,
13rj

4 ) and

Y /∈B(Pji, 13rj

4 ), choose Xji ∈ ∂B(Pji,
13rj

4 ) so that |X − Xji| � |X − Y |. Similarly if

Y ∈B(Pjl, 13rj

4 ) and X /∈B(Pjl, 13rj

4 ) choose Yjl ∈ ∂B(Pjl, 13rj

4 ) so that

|Y − Yjl|� |Y −X |.

Using this notation we have that

Nj(X)−Nj(Y ) =
∑

i

(
λji(X)− λji(Y )

)−→nji

=
∑

|X−Pji|�
13rj

4 , |Y−Pji|�
13rj

4

(
λji(X)− λji(Y )

)−→nji

+
∑

|X−Pji|�
13rj

4 , |Y−Pji|>
13rj

4

(
λji(X)− λji(Xji)

)−→nji
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+
∑

|X−Pji|>
13rj

4 , |Y−Pji|�
13rj

4

(
λji(Yjl)− λji(Y )

)−→nji .(A.1.15)

Thus using the finite intersection property of the coverings involved, and the choice of Xji and
Yjl we have

∣∣Nj(X)−Nj(Y )
∣∣�

∑

|X−Pji|�
13rj

4 , |Y−Pji|�
13rj

4

Cn
rj

|X − Y |

+
∑

|x−Pji|�
13rj

4 , |Y−Pji|>
13rj

4

Cn
rj

|X −Xji|

+
∑

|X−Pji|>
13rj

4 , |Y−Pji|�
13rj

4

Cn
rj

|Yjl − Y |

�
Cn
rj

|X − Y |,(A.1.16)

which once again implies that

(1−Cnα)|X − Y |�
∣∣φj(X)− φj(Y )

∣∣� (1 +Cnα)|X − Y |.(A.1.17)

Thus φj is a bilipschitz map from Rn+1 into Rn+1 with constants (1+Cnα) for α small enough.
In particular φj is a homeomorphism from Rn+1 onto its image which coincides with the identity
outside the ball B(Q0,6R). A simple argument shows that φj(Rn+1) =Rn+1.

Define

Ωj = φj(Ω).(A.1.18)

Since φ is a homeomorphism from Rn+1 onto Rn+1

∂Ωj = φj(∂Ω).(A.1.19)

LEMMA A.1.1. – There exist αn, δn > 0 so that if Ω is a δ-Reifenberg flat chord arc domain
(for δ < δn) and Ωj = φj(Ω), with φj defined as above with α< αn then for each j � 1, Ωj is a
chord arc domain. Moreover

Ωj →Ω in the Hausdorff distance sense(A.1.20)

and

∂Ωj → ∂Ω in the Hausdorff distance sense.(A.1.21)

Proof. – Our initial goal is to show that bilipschitz maps transform sets of locally finite
perimeter into sets of locally finite perimeter. Due to the lack of a reference we present the
proof here. Note that given ϕ ∈C1

c (R
n+1,Rn+1) with |ϕ| � 1

∫

Ωj

divϕ(Y )dY =

∫

Ω

divϕ
(
φj(Y )

)
Jφj(Y )dY

=

∫

Ω

divϕ
(
φj(Y )

)
dY +

∫

Ω

divϕ
(
φj(Y )

)(
Jφj(Y )− 1

)
dY.(A.1.22)
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Since Ω is a δ-Reifenberg flat chord arc domain for ϕ ∈C1
c (R

n+1,Rn+1), |ϕ| � 1 then

∫

Ω

divϕ
(
φj(Y )

)
dY =

∫

∂Ω

ϕ
(
φj(Y )

)
· −→n (Y )dHn(Y ),(A.1.23)

and if sptϕ⊂B(Q,R1) with R1 � 6R

∣∣∣∣
∫

Ω

divϕ
(
φj(Y )

)
dY

∣∣∣∣� Hn
(
∂Ω∩B(Q,R1)

)
<∞.(A.1.24)

On the other hand since φj = id outside B(Q0,6R) and smooth in Rn+1

∣∣∣∣
∫

Ω

div
(
ϕ
(
φj(Y )

))(
Jφj(Y )− 1

)
dY

∣∣∣∣

=

∣∣∣∣
∫

Ω∩B(Q,R1)

div
(
ϕ
(
φj(Y )

))(
Jφj(Y )− 1

)
dY

∣∣∣∣

=

∣∣∣∣
∫

Ω∩B(Q,R1)

[
div
(
ϕ
(
φj(Y )

)(
Jφj(Y )− 1

))
− ϕ
(
φj(Y )

)
∇Jφj(Y )

]
dY

∣∣∣∣

�

∣∣∣∣
∫

Ω∩B(Q,R1)

div
(
ϕ
(
φj(Y )

)(
Jφj(Y )− 1

))
dY

∣∣∣∣

+

∣∣∣∣
∫

Ω∩B(Q,R1)

ϕ
(
φj(Y )

)
∇Jφj(Y )dY

∣∣∣∣

�

∣∣∣∣
∫

∂Ω∩B(Q,R1)

ϕ
(
φj(Y )

)(
J
(
φj(Y )

)
− 1
)
· −→n (Y )dHn(Y )

∣∣∣∣

+

∫

Ω∩B(Q,R1)

∣∣D2φj(Y )
∣∣dY

�CnHn
(
∂Ω∩B(Q,R1)

)
+

∫

Ω∩B(Q,R1)

∣∣D2φj(Y )
∣∣dY.(A.1.25)

Note that by definition (A.1.10)

D2φj(Y ) = αrjD
2Nj(Y ) = αrj

∑

i

∇2λji(X)−→nji .(A.1.26)

Thus

∣∣D2φj(Y )
∣∣� αrj

∑

|X−Pji|�
13rj

4

∣∣∇2λji(X)
∣∣� αrj

Cn
r2j

=
Cn
rj
α,(A.1.27)

and (A.1.25) becomes
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∣∣∣∣
∫

Ω

div
(
ϕ
(
φj(Y )

))(
Jφ(Y )− 1

)
dY

∣∣∣∣

�CnHn
(
∂Ω∩B(Q,R1)

)
+
αCn
rj

Rn+1
1 .(A.1.28)

Combining (A.1.22), (A.1.23), (A.1.24) and (A.1.28) we conclude that for each j � 1, Ωj is a
set of locally finite perimeter. Since ∂Ω is Ahlfors regular there exists C > 1 so that for Q ∈ ∂Ω,
and r > 0

C−1rn � Hn
(
∂Ω∩B(Q,r)

)
�Crn.(A.1.29)

Since ∂Ωj = φj(Ω) and Lipφj , Lipφ
−1
j � 1 +Cnα then for Pj ∈ ∂Ωj ∩K and r ∈ (0,R1) if

Pj = φj(P ) with P ∈ ∂Ω∩ φ−1
j (K) then provided that Cnα < 1 we have

φj

(
∂Ω∩B

(
P,

r

1+Cnα

))
⊂ ∂Ωj ∩B(Pj , r)

⊂ φj
(
∂Ω∩B

(
P, (1 +Cnα)r

))
,(A.1.30)

which implies that for α small enough

Hn
(
∂Ωj ∩B(Pj , r)

)
�Hn

(
φj
(
∂Ω∩B

(
P, (1 +Cnα)r

)))

� (Lipφj)
nHn
(
∂Ω∩B

(
P, (1 +Cnα)r

))

�C0r
n,(A.1.31)

(see [7, Section 2.4] for a justification of the second inequality). Similarly

Hn

(
∂Ω∩B

(
P,

r

1+Cnα

))
�Hn

(
φ−1
j

(
∂Ωj ∩B(Pj , r)

))

�
(
Lipφ−1

j

)nHn
(
∂Ωj ∩B(Pj , r)

)
,(A.1.32)

and

C−1
0 rn �Hn

(
∂Ωj ∩B(Pj , r)

)
.(A.1.33)

We have that for each j � 1,Ωj is a set of locally finite perimeter whose boundary ∂Ωj is Ahlfors
regular. To show that Ωj is a chord arc domain we need to prove that Ωj is an NTA domain. To
do this we note that the image of an NTA domain via a bilipschitz map is an NTA domain. Since
Ω is NTA there exist M > 1 and R> 0 so that

Corkscrew condition. For any P ∈ ∂Ω, r < R there exists A=A(r,P ) ∈Ω(A.1.34)

such that M−1r < |A−P |< r and d(A,∂Ω)>M−1r.

Ωc satisfies the corkscrew condition.(A.1.35)

Harnack Chain Condition. If ε > 0, and X1,X2 ∈Ω∩B(P, r4 ) for some P ∈ ∂Ω,(A.1.36)

r < R,d(Xj , ∂Ω)> ε and |X1 −X2|< 2kε, then there exists a Harnack chain

from X1 to X2 of length Mk and such that the diameter of each ball is bounded

below by M−1min{dist(X1, ∂Ω),dist(X2, ∂Ω)}.
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Let R = (1 + Cnα)
−1R, let Pj ∈ ∂Ωj , and r < R. Since Pj = φj(P ) for some P ∈ ∂Ω, then

there exists A=A(P, r) ∈Ω such that

M−1 r

1+Cnα
< |A− P |< r

1 +Cnα
and dist(A,∂Ω)>M−1 r

1 +Cnα
(A.1.37)

therefore Aj = φj(A) ∈Ωj and

M−1(1 +Cnα)
−2r <

∣∣φj(A)− Pj
∣∣< r and

dist(Aj , ∂Ωj)>M−1 r

(1 +Cnα)−2
.(A.1.38)

Thus Ωj satisfies the corkscrew condition with constant M =M(1 + Cnα)
2 and for r < R.

Similarly Ωc satisfies the corkscrew condition with the same constants. In order to verify
that the Harnack chain holds let ε > 0 and Xj

1 ,X
j
2 ∈ Ωj ∩ B(Pj ,

r
4 ) for some Pj ∈ ∂Ωj ,

dist(Xj
i , ∂Ωj)> ε for i= 1,2 and |Xj

1 −Xj
2 |< 2kε. If Pj = φj(P ) and Xj

i = φ(Xi) then

P ∈ ∂Ω X1,X2 ∈Ω∩B
(
P,
r(1 +Cnα)

4

)
, dist(Xi, ∂Ω)> ε(1 +Cnα)

and |X1 −X2|< 2kε(1 + Cnα). Since Ω in NTA, there exists a Harnack chain {B(Yl, rl)}Mk
l=1

joining X1 to X2 satisfying the condition above. Using the fact that φj is bilipschitz and
Lipφj � 1 + Cnα, it is not difficult to check that the collection {B(φj(Yl), (1 + Cnα)rl)}Mk

l=1

forms a Harnack chain joining φj(X1) to φj(X2) and satisfying the diameter condition above.
Therefore Ωj is an NTA domain and hence a chord arc domain. To conclude the proof of
Lemma A.1.1 we need to show that the Ωj ’s (resp. ∂Ωj’s) converge to Ω (resp. Ω) in the
Hausdorff distance sense. Since φj = id on Rn+1\B(Q,6R) by (A.1.4), (A.1.9) and (A.1.10)
then Ω=Ωj , Ωc =Ωcj and ∂Ω= ∂Ωj on Rn+1\B(Q,6R). For X ∈B(Q,6R), (A.1.7) and the

finite intersection property of the collection {B(Pji, 13rj

4 )} ensure that

∣∣Nj(X)
∣∣�
∑

i

λji(X)|−→nji |�
∑

|X−Pji|�
13rj

4

λji(X)�Kn.(A.1.39)

Therefore
∣∣φj(X)−X

∣∣� αKnrj .(A.1.40)

Since φj(Ω) = Ωj , φj(Ωc) = Ωcj and φj(∂Ω) = ∂Ωj we have that

Ωc ⊂
(
Ωcj , αKnrj

)
and ∂Ω⊂ (∂Ωj , αKnrj).(A.1.41)

Since φj is a homeomorphism from Rn+1 onto Rn+1, for each Yj ∈ Ωcj (resp. Pj ∈ ∂Ωj ) there
exists Y ∈ Ωc (resp. P ∈ ∂Ω) so that φj(Y ) = Yj (resp. φj(P ) = Pj ). Hence (A.1.40) implies
that

Ωcj ⊂
(
Ωc,2αKnrj

)
and ∂Ωj ⊂ (∂Ω, αKnrj).(A.1.42)

Combining (A.1.41) and (A.1.42) we have that

D
[
Ωcj ,Ω

c
]
� αKnrj and D[∂Ωj , ∂Ω]� αKnrj .(A.1.43)

Since rj → 0 as j→ 0 this concludes the proof of Lemma A.1.1. ✷
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We now study the local properties of Ωj near Q0, where Q0 ∈ ∂Ω∩K0 is as in (A.1.4).

LEMMA A.1.2. – There exist αn, δn > 0 so that if Ω is a δ-Reifenberg flat chord arc domain
(for δ < δn) and Ωj = φj(Ω) for j � 1 with φj defined as above with α < αn then

Ωj ∩B
(
Q0,

3R

2

)
⊂Ω∩B

(
Q0,

3R

2

)
(A.1.44)

and

Hn ∂Ωj ⇀
j→∞

Hn ∂Ω(A.1.45)

weakly as Radon measures. Moreover if −→nj denotes the inward unit normal to ∂Ωj then for
P ∈ ∂∗Ω

−→nj
(
φj(P )

)
−→
j→∞

−→n (P ).(A.1.46)

Proof. – Let Xj ∈Ωj ∩B(Q0,
3R
2 ), there exists X ∈Ω so that

φj(X) =Xj .

If X /∈⋃iB(Pji,
13rj

4 ) then

φj(X) =X =Xj ∈Ω∩B
(
Q0,

3R

2

)
.

Thus we are only concerned with the case when X ∈⋃iB(Pji,
13rj

4 ). Let X ∈ B(Pji, 13rj

4 ),
and let −→νji = −→n (Pji, 13

4 rj). Then either 〈X − Pji,−→νji 〉 �
√
αrj or 〈X − Pji,−→νji 〉 <

√
αrj .

Before looking at each case separately we need to estimate the angle θ between −→νji and −→nji .
Using (1.8) we know that

D

[
L

(
Pji,

13

4
rj

)
∩B(Pji, rj),L(Pji, rj) ∩B(Pji, rj)

]

�D

[
L

(
Pji,

13

4
rj

)
∩B(Pji, rj), ∂Ω∩B(Pji, rj)

]

+D
[
∂Ω∩B(Pji, rj),L(Pji, rj)∩B(Pji, rj)

]

�D

[
L

(
Pji,

13

4
rj

)
∩B
(
Pji,

13

4
rj

)
, ∂Ω∩B

(
Pji,

13rj
4

)]
+2δrj

�
13

2
δrj + 2δrj � 9δrj .(A.1.47)

Therefore

cosθ� 1−Cδ2.(A.1.48)

In order to show that if X ∈ B(Pji,
13rj

4 ) ∩ Ω then φj(X) ∈ Ω first consider the case when
〈X − Pji,−→νji 〉 �

√
αrj . Since |Nj(X)|�

∑
i λji(X)|−→nji |�Kn, the fact that

〈X − Pji,−→νji 〉 �
√
αrj

guarantees that
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〈
φj(X)−Pji,−→νji

〉
= 〈X −Pji,−→νji 〉+

〈
αrjNj(X),−→νji

〉

�
√
αrj + αrj

〈
Nj(X),−→νji

〉

�
√
αrj −Knαrj

�
√
αrj(1−Kn

√
α).(A.1.49)

Provided that α is small enough so that Kn
√
α < 1

2 , and that δ is small enough depending on

α so that 1
2

√
α > 13

2 δ we conclude that 〈X − Pji,−→νji 〉 � 2δ
13rj

4 , which by (1.9) implies that
φj(X) ∈Ω (by our choice of R and ρ > 0).

Now we consider the case when 〈X − Pji,−→νji 〉<
√
αrj since X ∈Ω, (1.9) implies that

−13rj
2

δ � 〈X − Pji,−→νji 〉<
√
αrj .(A.1.50)

If L(Pji,
13rj

4 ) denotes the plane through Pji orthogonal to −→νji , (A.1.50) implies that

dist

(
X,L

(
Pji,

13rj
4

)
∩B
(
Pji,

13rj
4

))
<
√
αrj ,(A.1.51)

and (1.9) guarantees that

dist

(
X,∂Ω∩B

(
Pji,

13rj
4

))
<
√
αrj +

13

2
δrj .(A.1.52)

Hence there exists Q∈ ∂Ω∩B(Pji, 13rj

4 ) so that

|X −Q|<√
αrj +

13

2
δrj < 2

√
αrj ,(A.1.53)

whenever 13
2 δ <

√
α. Using (A.1.14)

|Q−Q0|� |Q−X |+ |X −Q0|� |X −Q0|+ 2
√
αrj

< (1 +Cnα)
∣∣φ−1

j (X)− φ−1
j (Q0)

∣∣+2
√
αrj

< (1 +Cnα)
(
|Xj −Q0|+

∣∣Q0 − φ−1
j (Q0)

∣∣)+2
√
αrj

< (1 +Cnα)
3R

2
+ (1 +Cnα)

2
∣∣φj(Q0)−Q0

∣∣+ 2
√
αR

� (1 +Cnα)
3

2
R+ (1 +Cnα)

2αrj
∣∣Nj(Q0)

∣∣+ 2
√
αR

�

(
3

2
+ 2

√
α+Cnα

)
R.(A.1.54)

Choosing α and δ > 0 so that 2
√
α+Cnα <

1
8 and 13

2 δ <
√
α we have that

|Q−Q0|< 2R.(A.1.55)

Thus by (A.1.53) and (A.1.55)

dist
(
X,∂Ω∩B(Q0,2R)

)
< 2

√
αrj .(A.1.56)
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Moreover there exists Pjl so that |Q−Pjl|< rj and |X −Pjl|< rj(1+ 2
√
α). Our goal now is

to show that if −→νjl = −→n (Pjl, (1 + 2
√
α)rj) then 〈φj(X)− Pjl,−→νjl 〉 > 2δ(1 + 2

√
αrj), which

by (1.9) implies that φj(X) ∈Ω. Since

〈
φj(X)− Pjl−→νjl

〉
= 〈X − Pjl,−→νjl 〉+αrj

〈
Nj(X),−→νjl

〉
,(A.1.57)

and since X ∈Ω, by (1.9) 〈X − Pjl,−→νjl 〉� −2δ(1 + 2√α)rj . Then (A.1.57) becomes
〈
φj(X)− Pjl,−→νjl

〉
�−6δrj +αrj

〈
Nj(Q),−→νjl

〉

+ αrj
〈
Nj(X)−Nj(Q),−→νjl

〉
.(A.1.58)

Using (A.1.13) and (A.1.53) we have that

∣∣〈Nj(X)−Nj(Q),−→νjl
〉∣∣�Cn

√
α.(A.1.59)

Recall that Nj(Q) =
∑
k

λjk(Q)−→njk and

〈
Nj(Q),−→νjl

〉
=
∑

k

λjk(Q)〈−→njk ,−→νjl 〉.(A.1.60)

A similar argument to the one used to show (A.1.48) with 13
4 replaced by 1 + 2

√
α shows that

〈−→njk ,−→νjl 〉 � 1−Cδ2.(A.1.61)

Combining (A.1.60) and (A.1.61) we have that since Q ∈ ∂Ω∩B(Q0,2R) by (A.1.8)

〈
Nj(Q),−→νjl

〉
�
∑

k

λjk(Q)(1− δ)
(
1−Cnδ

2
)
� 1− 2δ.(A.1.62)

From (A.1.58), (A.1.59) and (A.1.62) we deduce that
〈
φj(X)−Pjl,−→νjl

〉
�−6rjδ+ αrj(1− 2

√
δ)−Cnαrj

√
α

� rj
(
α(1− 3√α)−Cnα

√
α− 6δ

)
.(A.1.63)

Choosing α so that 1− 3√α > 1
2 and Cnα < 1

4 , and δ > 0 so that δ < α
48 we conclude that

〈
φj(X)− Pjl,−→νjl

〉
�
α

4
rj − 6δrj � 6δrj > 2δ(1 + 2

√
α)rj ,(A.1.64)

which implies that Xj = φj(X) ∈Ω by (1.9). Hence we have shown that

Ωj ∩B
(
Q0,

3R

2

)
⊂Ω∩B

(
Q0,

3R

2

)
.

In order to prove (A.1.45) and (A.1.46) we need to look at the Jacobian of φj on ∂Ω, J∂Ωφj .
If P ∈ ∂∗Ω, let τ1(P ), . . . , τn(P ) be an orthonormal basis for TP∂Ω. Note that for k = 1, . . . , n

Dφj(P )
(
τk(P )

)
= τk(P ) + αrj

∑

i

〈
∇λji(P ), τk(P )

〉−→nji(A.1.65)
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where ∇λji(P ) denotes the gradient of λji in Rn+1, and Dφj(P ) :TP∂Ω→ Rn+1 is the linear
map induced by φj on TP∂Ω. By definition (see [26, §12])

Jφj(P ) = J∂Ωφj(P ) =
√
detDφj(P )∗ ◦Dφj(P )(A.1.66)

where Dφj(P )∗ :Rn+1 → TP∂Ω denotes the adjoint transformation to Dφj(P ).
Since

Dφj(P )
∗ ◦Dφj(P )

(
τl(P )

)
=

n∑

k=1

〈
Dφj(P )

∗ ◦Dφj(P )
(
τk(P )

)
, τl(P )

〉
τk(P )

=

n∑

k=1

〈
Dφj(P )

(
τk(P )

)
,Dφj(P )

(
τl(P )

)〉
τk(P ),(A.1.67)

then by 1.6.4 and 1.7.5 in [8]
(
Jφj(P )

)2
=
〈
Dφj(P )

∗ ◦Dφj(P )
(
τ1(P )

)
∧ · · · ∧Dφj(P )∗ ◦Dφj(P )

(
τn(P )

)
,

τ1(P ) ∧ · · · ∧ τn(P )
〉

(A.1.68)

where 〈 , 〉 denotes the inner product in ΛnTp∂Ω induced by that of Tp∂Ω. By 1.7.5 in [8] and
[3, Chapter 1], if ϕl, ωl :TP∂Ω→ R denote the 1-forms defined by ωl(v) = 〈Dφj(P )(τl(P )), v〉
and ϕl(v) = 〈Dφj(P )∗ ◦Dφj(P )(τl(P )), v〉. Then

〈
Dφj(P )

∗ ◦Dφj(P )
(
τ1(P )

)
∧ · · · ∧Dφj(P )∗(A.1.69)

◦Dφj(P )
(
τn(P )

)
, τ1(P )∧ · · · ∧ τn(P )

〉

= 〈ϕ1 ∧ · · · ∧ϕn〉
(
τ1(P ), . . . , τn(P )

)

= det
〈
ϕl(τk(P )

〉
= det

〈
Dφj(P )

∗ ◦Dφj(P )
(
τl(P )

)
, τn(p)

〉

= det
〈
Dφj(P )

(
τl(P )

)
,Dφj(P )

(
τn(P )

)〉
= det

(
ωl
(
Dφj(P )

(
τk(P )

)))

= 〈ω1 ∧ · · · ∧ ωn〉
(
Dφj
(
τ1(P )

)
, . . . ,Dφj

(
τn(P )

))

=
〈
Dφj(P )

(
τ1(P )

)
∧ · · · ∧Dφj(P )

(
τn(P )

)
,Dφj

(
τ1(P )

)
∧ · · · ∧Dφj

(
τk(P )

)〉

=
∣∣Dφj(P )

(
τ1(P )

)
∧ · · · ∧Dφj

(
τn(P )

)∣∣2.
Combining (A.1.68) and (A.1.69) we conclude that

Jφj(P ) =
∣∣Dφj(P )

(
τ1(P )

)
∧ · · · ∧Dφj(P )

(
τn(P )

)∣∣.(A.1.70)

Since Ω is a set of locally finite perimeter whose measure theoretic boundary corresponds to its
topological boundary then for every X ∈C1

c (R
n+1,Rn+1)

∫

Ω

divX dx=−
∫

∂Ω

〈X,−→n 〉dHn,(A.1.71)

where −→n is the inner unit normal.
Thus for any ω ∈Dn(Rn+1) (i.e., ω is a smooth n-form with compact support)

T (ω) =

∫

∂Ω

〈
ω(Q),−→n (Q)

〉
dHn(A.1.72)
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defines an integer multiplicity rectifiable n-current T . Here 〈 , 〉 denotes the usual pairing for
Λn(Rn+1) and Λn(Rn+1). See [26, §27] for notation and details. In this case for P ∈ ∂∗Ω,
−→n (P ) =±τ1(P )∧· · ·∧τn(P ). In particular |τ1(P )∧· · ·∧τn(P )|= 1. Since φj :Rn+1 → Rn+1

is a bilipschitz map and φj(∂Ω) = ∂Ωj , Tj = (φj)#T defines an integer multiplicity rectifiable
n-current, namely

Tj(ω) =

∫

∂Ωj

〈
ω
(
φ(Qj)

)
,−→nj (Qj)

〉
dHn(Qj)(A.1.73)

where −→nj (Pj) = Dφj(P )#
−→n (P )

|Jφj(P )| if φj(P ) = Pj and P ∈ ∂∗Ω (i.e., for Hn a.e. Pj ∈ ∂∗Ωj). By
§26 in [26] and the remark above we have that

−→nj (Pj) =
Dφj(P )#−→n (P )

|Jφj(P )|

=±Dφj(P )(τ1(P )) ∧ · · · ∧Dφj(P )(τn(P ))
|Jφj(P )|

.(A.1.74)

Hence in order to understand the behavior of Jφj and −→nj as j tends to infinity we need to analyze
the behavior of Dφj(P )(τl(P )) for P ∈ ∂∗Ω and l= 1, . . . , n.

First note that since φj :Rn+1 → Rn+1 is bilipschitz, Hn(∂Ω\∂∗Ω) =Hn(∂Ωj\∂∗Ωj) = 0
by Lemma A.1.1 and Remark 4.2 in [18], and φj(∂Ω) = ∂Ωj then

Hn
(
∂∗Ωj\φj(∂∗Ω)

)
=Hn

(
∂∗Ω\φ−1

j (∂∗Ωj)
)
= 0.(A.1.75)

For P ∈ ∂∗Ω∩B(Q0,2R) and l= 1, . . . , n, since
∑

i∇λji(P ) = 0 then
∑

i

〈
∇λji(P ), τl(P )

〉−→nji =
∑

i

〈
∇λji(P ), τl(P )

〉(−→nji −−→n (P )
)

=
∑

|P−Pji|�
13
4 rj

〈
∇λji(P ), τl(P )

〉(−→nji −−→n (P )
)

�Cn sup
|P−Pji|�

13
4 rj

∣∣−→nji −−→n (P )
∣∣,(A.1.76)

where −→n (P ) denotes the inner unit normal to ∂Ω at P . Thus for P ∈ ∂∗Ω and l= 1,2, . . . , n,

∣∣Dφj
(
τl(P )

)
− τl(P )

∣∣�Cnα sup
|P−Pji|�

13
4 rj

∣∣−→nji −−→n (P )
∣∣.(A.1.77)

LEMMA A.1.3. – Using the notation above we claim that for P ∈ ∂∗Ω

lim
j→∞

sup
|P−Pji|�

13
4 rj

∣∣−→nji −−→n (P )
∣∣= 0.(A.1.78)

We postpone the proof of this lemma until later, and continue with the proof of Lemma A.1.2.
Combining (A.1.77) and (A.1.78) we conclude that for P ∈ ∂∗Ω

lim
j→∞

∣∣Dφj
(
τl(P )

)
− τl(P )

∣∣= 0.(A.1.79)

Since P ∈ ∂∗Ω by §1.7.5 in [8], (A.1.77) and (A.1.78) we have that
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∣∣Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn(P )

)
− τ1(P ) ∧ · · · ∧ τn(P )

∣∣(A.1.80)

�
∣∣Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn(P )

)

−Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn−1(P )

)
∧ τn(P )

∣∣

+
∣∣Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn−1(P )

)
∧ τn(P )

−Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn−1(P )

)
∧ τn−1(P ) ∧ τn(P )

∣∣+ · · ·
+
∣∣Dφj
(
τ1(P )

)
∧ τ2(P )∧ · · · ∧ τn(P )− τ1(P ) ∧ · · · ∧ τn(P )

∣∣

�

n∑

i=1

∣∣Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τi−1(P )

)
∧
(
Dφj
(
τi(P )

)

− τi(P )
)
∧ τi+1(P )∧ · · · ∧ τn(P )

∣∣

�

n∑

i=1

∣∣Dφj
(
τ1(P )

)∣∣ · · ·
∣∣Dφj
(
τi−1(P )

)∣∣ ∣∣Dφj
(
τi(P )

)
− τi(P )

∣∣

×
∣∣τi+1(P )

∣∣ · · ·
∣∣τn(P )

∣∣

�Cnα sup
|P−Pji|�

13
4 rj

∣∣−→nji −−→n (P )
∣∣�Cnα.

Therefore for P ∈ ∂∗Ω

lim
j→∞

Dφj
(
τ1(P )

)
∧ · · · ∧Dφj

(
τn(P )

)
= τ1(P ) ∧ · · · ∧ τn(P ),(A.1.81)

which implies using (A.1.70) and (A.1.74) that for P ∈ ∂∗Ω and Pj = φj(P )

lim
j→∞

Jφj(P ) = 1,(A.1.82)

and

lim
j→∞

−→nj (Pj) =−→n (P ).(A.1.83)

This proves (A.1.46). Since φj :∂Ω→ Rn+1 is a bilipschitz map and ∂Ωj = φj(∂Ω) by (A.1.19),
the area formula implies (see [26, §8 and §12]) that for any measurable set A⊂ ∂Ω

Hn
(
φj(A)

)
=

∫

A

Jφj(Q)dHn(Q),(A.1.84)

and any measurable function on ∂Ω, g,

∫

∂Ω

gJφj dHn =

∫

∂Ωj

g
(
φ−1
j (X)

)
dHn(X).(A.1.85)

(A.1.45) follows from (A.1.85). This concludes the proof of Lemma A.1.2. ✷

Proof of Lemma A.1.3. – Let P ∈ ∂∗Ω, and let −→n (P ) denote the inward pointing unit normal
vector to ∂Ω. Define

H+(P ) =
{
Y ∈ Rn+1:

〈−→n (P ), Y − P
〉

� 0
}
,(A.1.86)

H−(P ) =
{
Y ∈ Rn+1:

〈−→n (P ), Y − P
〉

� 0
}
.(A.1.87)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



380 C.E. KENIG AND T. TORO

By Corollary 1 in Section 5.7 in [7] we have that

lim
r→0

Hn+1(B(P, r) ∩Ω∩H−(P ))

rn+1
= 0(A.1.88)

and

lim
r→0

Hn+1(B(P, r) ∩Ωc ∩H+(P ))

rn+1
= 0.(A.1.89)

We shall prove that given ε > 0 there is r > 0 so that if Q ∈ ∂Ω∩B(P, r) then

∣∣∣∣
〈
−→n (P ), Q−P

|Q−P |

〉∣∣∣∣� ε.(A.1.90)

Our proof proceeds by contradiction. First assume that there is ε ∈ (0,1) so that for each m ∈ N,
there is Qm ∈ ∂Ω∩B(P, 1

m ) so that 〈−→n (P ),Qm − P 〉� ε|Qm −P | then

B
(
Qm, ε|P −Qm|

)
⊂H+(P ) ∩B

(
P,2|P −Qm|

)
(A.1.91)

and

B
(
Qm, ε|P −Qm|

)
∩Ωc ⊂H+(P )∩ΩC ∩B

(
P,2|P −Qm|

)
.(A.1.92)

Since Ωc satisfies the corkscrew condition for every m ∈ N

Hn+1(B(Qm, ε|P −Qm|) ∩Ωc)
|P −Qm|n+1

�Cnε
n+1.(A.1.93)

On the other hand (A.1.89) implies that

lim
m→∞

Hn+1(H+(P )∩Ωc ∩B(P,2|P −Qm|)
|P −Qm|n+1

= 0.(A.1.94)

Thus combining (A.1.92), (A.1.93) and (A.1.94) we obtain a contradiction. Thus given ε > 0
there is r1 > 0 so that if Q ∈ ∂Ω∩B(P, r1) then 〈−→n (P ), P −Q〉< ε|P −Q|. In a similar way
we prove that there exist r2 > 0 so that ifQ ∈ ∂Ω∩B(P, r2) then 〈−→n (P ), P −Q〉>−ε|P −Q|.
Therefore given ε > 0 there exists r0 > 0 so that for r < r0

1

r
sup

Q∈∂Ω∩B(P,r)

dist
(
Q,TP∂Ω∩B(P, r)

)
< ε.(A.1.95)

Since ∂Ω is δ-Reifenberg flat, combining (1.8) and (A.1.95) we have that for r < r0

1

r
D
[
∂Ω∩B(P, r), TP ∂Ω∩B(P, r)

]
� 4δ+ ε.(A.1.96)

Since Ω satisfies the separation property from (A.1.96) we deduce that for X ∈ TP∂Ω∩B(P, r)
and r < r0

2 there exists Q ∈ ∂Ω ∩ B(P, r) so that if Π denotes the orthogonal projection from
Rn+1 onto TP∂Ω Π(Q) =X , which implies

|Q−X |=
∣∣〈Q−X,−→n (P )

〉∣∣=
∣∣〈Q− P,−→n (P )

〉∣∣< ε|P −Q|� εr.(A.1.97)
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Combining (A.1.95) and (A.1.97) we conclude that given ε > 0 there exists s > 0 so that for
r < s

1

r
D
[
∂Ω∩B(P, r), TP ∂Ω∩B(P, r)

]
< ε.(A.1.98)

Let j � 1 be large enough so that 5rj < s, and let

|Pji − P |< 13

4
rj ;

there exists Xji ∈ TP∂Ω∩B(P, 13
4 rj) so that

|Pji −Xji|< εrj .

Let Q ∈ ∂Ω ∩ B(Pji, rj) ⊂ ∂Ω ∩ B(P, 17
4 rj), there is X ∈ TP∂Ω ∩ B(P, 17

4 rj) so that
|Q−X |< ε 17

4 rj . Note that

Y =X −Xji + Pji ∈ TP∂Ω−Xji + Pjl, |Q− Y |< 21

4
εrj ,

and either

|Y − Pji|< rj or rj � |Y −Pji|= |X −Xji|� |X −Q|+ |Q−Pji| �
(
1+

17

4
ε

)
rj .

If |Y − Pji|< rj let

Z =

(
1− 5ε rj

|Y − Pji|

)
(Y − Pji) + Pji, Z ∈ TP∂Ω−Xji +Pji,

|Z −Q|� |Z − Y |+ |Y −Q|� 5εrj +
21

4
εrj =

41

4
εrj ,

and

|Z − Pji|=
∣∣∣∣1− 5ε

rj
|Y −Pji|

∣∣∣∣rj
(
1 +

17

4
ε

)
� (1− 5ε)

(
1 +

17

4
ε

)
rj < rj

for ε > 0 small enough. Hence we have shown that for Q ∈ ∂Ω ∩ B(Pji, rj) there exists
Z ∈ (TP∂Ω − Xji + Pji) ∩ B(Pji, rj) and such that |Q − Z| < 11εrj . The same argument
used to prove (A.1.98) ensures that for |Pji −P |< 13

4 rj and 5rj < s

1

rj
D
[
∂Ω∩B(Pji, rj), (TP∂Ω−Xji + Pji)∩B(Pji, rj)

]
� 11ε.(A.1.99)

Since L(Pji, rj) is defined to be the best approximating plane to ∂Ω at Pji at radius rj we
deduce from (A.1.99) that for ε > 0 small enough and j large enough depending on ε > 0, if
|P −Pji|� 13

4 rj then |−→nji −−→n (P )| �Cnε. Hence

lim
j→∞

sup
|P−Pji|�

13
4 rj

∣∣−→nji −−→n (P )
∣∣= 0,

which concludes the proof of Lemma A.1.3. ✷
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This also concludes the construction of the sequence of good approximating domains for
Reifenberg flat chord arc domains.

PROPOSITION A.1.1. – Let Ω⊂ Rn+1 be a δ-Reifenberg flat chord arc domain. Let u denote
the Green’s function of Ω, and let h denote the corresponding Poisson kernel. Assume that
h ∈ L2

loc(dσ). Let F be the non-tangential limit of ∇u, F ∈ L1
loc(dω

X) for X ∈ Ω. Then Hn

a.e. Q ∈ ∂Ω
h(Q) =

〈
F (Q),−→n (Q)

〉
,(A.1.100)

where −→n denote the inward pointing unit normal.

Proof of Proposition A.1.1. – We prove that (A.1.100) holds for Hn a.e. Q ∈ ∂Ω by showing
that it holds for Hn a.e.Q ∈ ∂Ω∩K , for any compact set K ⊂ Rn+1. We do this by showing that
for such K ⊂ Rn+1 there exists R> 0 so that (A.1.100) holds for Hn a.e. Q ∈ ∂Ω∩B(Q0,R)
when Q0 ∈K . For K ⊂ Rn+1, let R > 0 be as chosen at the beginning of the appendix (and
so that A /∈ B(Q,4R) if necessary), let Q0 ∈ ∂Ω ∩K , and let ϕ ∈ C∞

c (B(Q0,R)). (A.1.20)
ensures that ∫

∂Ω

ϕ(Q)h(Q)dHn =

∫

Ω

u∆ϕ= lim
j→∞

∫

Ωj

u∆ϕ.(A.1.101)

Since Ωj ∩B(Q0,
3R
2 ) ⊂ Ω ∩B(Q0,

3R
2 ) u is harmonic on Ωj ∩B(Q0,

3R
2 ), Green’s theorem

ensures that ∫

Ωj

u∆ϕ=

∫

∂Ωj

(
ϕ〈∇u,−→nj 〉 − u〈∇ϕ,−→nj 〉

)
dHn.(A.1.102)

By (A.1.42) we know that if Qj ∈ ∂Ωj dist(Qj , ∂Ω) � αKnrj , which implies by Lemma 4.1
in [14] that

u(Qj)� c

(
rj
R

)α
sup

B(Q,
3R0
2 )

u.(A.1.103)

Thus

lim
j→∞

∫

∂Ωj

u〈∇ϕ,−→nj 〉dHn = 0.(A.1.104)

Since φj is a smooth bilipschitz map on Rn+1 and −→nj is a measurable function on φj(∂Ω) = ∂Ωj
then −→nj ◦ φj is a measurable function on ∂Ω and (A.1.85) implies that

∫

∂Ωj

ϕ〈∇u,−→nj 〉dHn

=

∫

∂Ω

ϕ
(
φj(Q)

)〈
∇u
(
φj(Q)

)
,−→nj
(
φj(Q)

)〉
Jφj(Q)dHn(Q).(A.1.105)

Note that by (A.1.40) if Q ∈B(Q0,R)

dist
(
φj(Q), ∂Ω

)
�
∣∣φj(Q)−Q

∣∣�Knrj .(A.1.106)

By (A.1.63) there exists Pjl ∈ ∂Ω so that |Q−Pjl| � rj(1+2
√
α) and 〈φj(Q)−Pjl,−→νjl 〉�

α
4 rj

where −→νjl = −→n (Pjl, (1 + 2
√
α)rj). Let α be so that 2

√
α < 1

2 . If −→ηjl = −→n (Pjl,2rj) then
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|−→νjl −−→ηjl | �Cnδ, and for δ > 0 small with respect to α > 0

〈
φj(Q)− Pjl,−→ηjl

〉
�
α

8
rj .(A.1.107)

Combining (1.9) and (1.10) we have that

∂Ω∩B(Pjl,2rj)⊂
{
x∈B(Pjl,2rj),

∣∣〈x− Pjl,−→ηjl 〉
∣∣� 4δ

}
.(A.1.108)

From (A.1.107) and (A.1.108) we deduce that

d
(
φj(Q), ∂Ω∩B(Pjl,2rj)

)
�

(
α

8
− 4δ
)
rj .(A.1.109)

Since Q ∈ B(Pjl, 3
2rj), and α < 1

2 we conclude from (A.1.106) and (A.1.109) that for δ small
enough 4δ < α

16

α

16
rj �
∣∣φj(Q)−Q

∣∣�Knrj and
αrj
16

� dist
(
φj(Q), ∂Ω

)
�Knrj .(A.1.110)

Thus φj(Q) approaches Q non-tangentially as j → ∞, in particular φj(Q) ∈ Γβ(Q) for
β = 16Kn/α, where Γβ(Q) = {X ∈ Ω: |X − Q| � β dist(X,∂Ω)}. Hence using the result
in Lemma 3.1, (A.1.46), (A.1.82) and (A.1.110) we have that for Hn a.e. Q ∈ ∂Ω

ϕ
(
φj(Q)

)〈
∇u
(
φj(Q)

)
,−→nj
(
φj(Q)

)〉
Jφj(Q) −→

j→∞
ϕ(Q)
〈
F (Q),−→n (Q)

〉
.(A.1.111)

Since

sup
X∈Γβ(Q), δ(X)�ℓ

∣∣∇u(X)
∣∣�CMℓ(h)(Q)

where Mℓ(h) ∈ L2
loc(dσ) (see proof of Lemma 3.1), and Jφj(Q) � 1 + Cnα by (A.1.80), the

Lebesgue dominated convergence theorem ensures that
∫

∂Ω

ϕ
(
φj(Q)

)〈
∇u
(
φj(Q)

)
,−→nj
(
φj(Q)

)〉
Jφj(Q)dHn(Q)

−→
j→∞

∫

∂Ω

ϕ(Q)
〈
F (Q),−→n (Q)

〉
.(A.1.112)

Combining (A.1.101), (A.1.102), (A.1.104), (A.1.105) and (A.1.112) we have that for all
ϕ ∈C∞

c (B(Q0,R))

∫

∂Ω

ϕ(Q)h(Q)dHn(Q) =

∫

∂Ω

ϕ(Q)
〈
F (Q),−→n (Q)

〉
dHn(Q),(A.1.113)

which implies that for Hn a.e. Q ∈ ∂Ω∩B(Q0,R)

h(Q) =
〈
F (Q),−→n (Q)

〉
.(A.1.114)

This concludes the proof of Proposition A.1.1. ✷
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A.2. Behavior of the tangential components of non-tangential limits

The goal of this section is to show that almost everywhere on ∂Ω the tangential components
of F (the non-tangential limit of ∇u, where u denotes either the Green’s function with pole
at infinity or with pole at A) are zero. The original proof of this fact made use of the
parameterizations for chord-arch surfaces with small constant constructed by Semmes in [24].
In conversations with G. David he pointed out that there was a much simpler proof. The proof
presented here is due to him. The authors are very grateful to him for this contribution. Before
starting the proof we need to specify the properties satisfied by the points Q ∈ ∂∗Ω for which
we can prove that F (Q) − 〈F (Q),−→n (Q)〉−→n (Q) = 0. Recall that for Hn a.e. Q ∈ ∂∗Ω, ∇u
converges non-tangentially to F (Q); i.e.

F (Q) = lim
X→Q
X∈Γ(Q)

∇u(X),(A.2.1)

here Γ(Q) denotes a non-tangential cone with vertex Q. (We do not specify the “angle” since it
does not play a role.) Let l be 1 if u is the Green’s function with pole at infinity, and let l be δ(A)

4
if u is the Green’s function with pole at A. Consider the non-tangential maximal function of ∇u
at Q

Nl∇u(Q) = sup
X∈Γ(Q), δ(X)�l

∣∣∇u(X)
∣∣�CMl(h)(Q)(A.2.2)

by (3.10). Moreover since h ∈ L2
loc(dσ) then Ml(h) ∈ L2

loc(dσ) and so Nl∇u ∈ L2
loc(dσ) (see

(3.12)). Thus for Hn a.e. Q ∈ ∂Ω Nl∇u(Q)<∞ and

lim
r→0

∫
�

B(Q,r)∩∂Ω

∣∣Nl∇u(P )−Nl∇u(Q)
∣∣dHn(P ) = 0(A.2.3)

which implies, since ∂Ω is Ahlfors regular, that for Hn a.e. Q ∈ ∂Ω

lim
r→∞

1

rn
Hn
({
P ∈B(Q,r) ∩ ∂Ω: Nl∇u(P )> 2Nl∇u(Q)

})
= 0.(A.2.4)

In particular

lim
r→0

δ′ε(r) = 0(A.2.5)

where we set

δ′ε(r) =
1

rn
Hn
({
P ∈B(Q,2r) ∩ ∂Ω: Nl∇u(P )> 2Nl∇u(Q)

})
.(A.2.6)

Note also that for ε > 0 and Hn a.e. Q ∈ ∂Ω

lim
r→0

δε(r) = 0(A.2.7)

where we set

δε(r) =
1

rn
Hn
({
P ∈B(Q,2r)∩ ∂Ω;

∣∣F (P )− F (Q)
∣∣> ε
})
.(A.2.8)
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In order to do the proof we need to recall the proof of Egoroff’s theorem, which asserts that ∇u
converges uniformly to F on large sets. For all ε > 0 and l > 0 define

H(l, ε) =
{
P ∈ ∂Ω:

∣∣F (P )−∇u(X)
∣∣� ε for all X ∈ Γ(Q) with δ(X)� l

}
(A.2.9)

where the existence of the limit F (P ) is part of the definition.
Because of (A.2.1) we know that for each ε > 0 Hn a.e. Q ∈ ∂Ω lies in some H(l, ε).

Therefore given any η > 0 we can find l = l(ε, η) so that Hn(∂Ω\H(l(ε, η), ε))< η. We apply
this to εn = 2−n, ηn = 2−n−1η, for η > 0. We get small numbers ln = l(2−n,2−n−1η). Define

E(η) =
⋂

n�1

H
(
ln,2

−n
)
.(A.2.10)

Then

Hn
(
∂Ω\E(η)

)
�
∑

n

Hn
(
∂Ω\H

(
ln,2

−n
))

�
∑

n

2−n−1η � η,(A.2.11)

while (A.2.10) and the definition (A.2.9) ensure uniform convergence of ∇u(X) in Γ(Q) for
Q ∈E(η). Note also that

Hn

(
∂Ω\
⋃

η>0

E(η)

)
= 0.(A.2.12)

Thus for Hn a.e. Q ∈ ∂∗Ω, Q is a density point for some E(η). This means that if we set

δ′′(r) =
1

rn
Hn
(
∂Ω∩B(Q,2r)\E(η)

)
(A.2.13)

then

lim
r→0

δ′′(r) = 0.(A.2.14)

We are now ready to prove the following statement.

PROPOSITION A.2.2. – Let Ω⊂ Rn+1 be a δ-Reifenberg flat chord-arc domain. Let u denote
the Green’s function of Ω (either with pole at A or at infinity) and let h denote the corresponding
Poisson kernel. Assume that h ∈ L2

loc(dσ).
Let F be the non-tangential limit of ∇u, F ∈ L1

loc(dω
X) for X ∈Ω. Then Hn a.e. Q ∈ ∂Ω

F (Q) = h(Q)−→n (Q)(A.2.15)

where −→n denotes the inward pointing unit normal.

Proof. – Given ε > 0, let Q0 ∈ ∂∗Ω be such that (A.2.4), (A.1.95), (A.2.7) and (A.2.14) are
satisfied. Since Q0 ∈ ∂∗Ω, (A.1.95) ensures

lim
r→∞

1

r
sup

Q∈∂Ω∩B(Q0,2r)

dist
(
Q,TQ0∂Ω∩B(Q0,2r)

)
= 0.(A.2.16)

Let l(r) be a non-negative function satisfying

lim
r→0

l(r)

r
= 0(A.2.17)
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Fig. 2.

sup
Q∈∂Ω∩B(Q0,2r)

dist
(
Q,TQ0∂Ω∩B(Q0,2r)

)
� l(r),(A.2.18)

and

Hn
(
∂Ω∩B(Q, l(r))

)
� 2
[
δε(r) + δ′ε(r) + δ′′(r)

]
rn

for all Q ∈ ∂Ω∩B(Q0,2r).(A.2.19)

It is possible to have (A.2.17), (A.2.18) and (A.2.19) simultaneously because (A.2.5), (A.2.7)
and (A.2.14) hold and ∂Ω is Ahlfors regular.

We now define a disc D(r) which is parallel to TQ0∂Ω, has radius r, lies in Ω, “just above
Q0” at distance 1

2C0l(r) from Q0, where C0 is a large constant to be specified shortly. By “just

above Q0” we mean that if π denotes the orthogonal projection onto TQ0∂Ω then π(Q̃0) =Q0

where Q̃0 is the center of D(r).
The condition on C0, (and on the “aperture” of the NTA cones Γ(Q) at the same time) is that





if y ∈D(r) and Q ∈ ∂Ω∩B(Q0,2r) are such that

|π(y)− π(Q)|�2l(r), then

D(r) ∩B(y, l(r))⊂ Γ(Q)∩ {X ∈ Rn+1, δ(X)� l} for l�C0l(r).

(A.2.20)

The general idea of the argument is as follows. We take random points y1, y2 of D(r), and
estimate 〈F (Q0), y2 − y1〉 in terms of the function u, and in particular u(y2) − u(y1). We
will need the following lemma whose proof we postpone until after we finish the proof of
Proposition A.2.2.

LEMMA A.2.4. – Under the assumptions above, if r > 0 is small enough, then

∣∣u(y)
∣∣�CNl∇u(Q0)l(r) for y ∈D(r).(A.2.21)

Define for y1, y2 ∈D(r)

R(y1, y2) = u(y2)− u(y1)−
〈
F (Q0), y2 − y1

〉
.(A.2.22)
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Since

u(y2)− u(y1) =

1∫

0

〈
∇u
(
y1 + t(y2 − y1)

)
, y2 − y1

〉
dt(A.2.23)

we have that

∣∣R(y1, y2)
∣∣� |y2 − y1|

1∫

0

∣∣∇u
(
y1 + t(y2 − y1)

)
− F (Q0)

∣∣dt.(A.2.24)

It is enough to only look at the average

I(r) =
1

r

∫
�

D(r)

∫
�

D(r)

∣∣R(y1, y2)
∣∣dy1 dy2,(A.2.25)

where we integrate against Lebesgue measure. Using Fubini and combining (A.2.24) and
(A.2.25) we have that

I(r)�
Cn
rn+1

∫
�

D(r)

∫

Sn−1

2r∫

0

ρn−1

ρ∫

0

χD(r)(y1 + ρω)(A.2.26)

×
∣∣∇u(y+ sω)−F (Q0)

∣∣dsdρdω dy1

�
Cn
rn+1

∫
�

D(r)

2r∫

0

ρn−1

∫

D(y1,ρ)∩D(r)

|∇u(X)− F (Q0)|
|y1 −X |n−1

dX dρdy1

�
Cn
r

∫
�

D(r)

∫

D(r)

|∇u(X)− F (Q0)|
|y1 −X |n−1

dX dy1

�
Cn
rn+1

∫

D(r)

∣∣∇u(X)−F (Q0)
∣∣
∫

D(r)

dy1
|X − y1|n−1

dX

�Cn

∫
�

D(r)

∣∣∇u(X)− F (Q0)
∣∣dX.

In the previous computation D(y1, ρ) denotes the intersection of the ball B(y1, ρ) and the plane
parallel to TQ0∂Ω which lies at distance 1

2C0l(r) from Q0.
Next we claim that

∣∣∇u(y)−F (Q0)
∣∣� 2ε for y ∈D(r).(A.2.27)

In fact let y ∈D(r) be given. Since Ω is a Reifenberg flat domain using the separation property
it is easy to show that there exists Q(y) ∈ ∂Ω ∩ B(Q0,2r) such that π(Q(y)) = π(y). Let
B(y) = ∂Ω ∩B(Q(y), l(r)) with l(r) as before. We want to choose a point Q ∈B(y) carefully
in order to obtain (A.2.27) by estimating

∣∣∇u(y)− F (Q0)
∣∣�
∣∣∇u(y)− F (Q)

∣∣+
∣∣F (Q)− F (Q0)

∣∣.(A.2.28)
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Because of (A.2.19) (i.e. by our choice of l(r))

Hn
(
B(y)
)

� 2
(
δε(r) + δ′′(r)

)
rn.(A.2.29)

If we compare with the definitions (A.2.8) and (A.2.13) we see that we can choose points
Q ∈B(y) such that

∣∣F (Q)− F (Q0)
∣∣< ε and Q ∈E(η).(A.2.30)

Recall the definitions established in (A.2.9) and (A.2.10), the fact that Q ∈ E(η) implies that
Q ∈H(ln,2−n) for all n ∈ N. In particular choose n so large that 2−n < ε, and by (A.2.9) we
have that

∣∣∇u(X)−F (Q)
∣∣� 2−n < ε for X ∈ Γ(Q) with δ(X)� ln.(A.2.31)

Note that (A.2.17) ensures that for r small enough l(r) < ln and therefore for y ∈ D(r),
y ∈ Γ(Q) by (A.2.20) and

∣∣∇u(y)− F (Q)
∣∣� 2−n < ε,(A.2.32)

which combined with (A.2.30) proves (A.2.27). From (A.2.26) and (A.2.27) we deduce that
I(r) � Cε for r small. Because of the definition of I(r) (see (A.2.25)) this means that for r
small

∫
�

D(r)

∫
�

D(r)

∣∣R(y1, y2)
∣∣dy1 dy2 �Cεr.(A.2.33)

Using (A.2.22), the fact that for r small, |u(y)| �CNl(∇u(Q0))l(r)� εr (by Lemma A.2.4 and
because l(r)

r tends to 0 as r tends to 0 (see (A.2.17))) and (A.2.33) we obtain that

∫
�

D(r)

∫
�

D(r)

∣∣〈F (Q0), y2 − y1
〉∣∣dy1 dy2 �Cεr.(A.2.34)

From this it is easy to deduce that

∣∣〈F (Q0), v
〉∣∣�Cε|v| for all v ∈ TQ0∂Ω.(A.2.35)

Since (A.2.35) holds for an arbitrary ε > 0, we conclude that 〈F (Q0), v〉= 0 for all v ∈ TQ0∂Ω
which proves (A.2.15). ✷

Proof of Lemma A.2.4. – Let y ∈ D(r), let Q(y) ∈ ∂Ω ∩ B(Q0,2r) be such that
π(Q(y)) = π(y), and let B(y) = ∂Ω∩B(Q(y), l(r)). We know from (A.2.20) that

if Q ∈B(y) then y ∈ Γ(Q) and δ(y)�C0l(r).(A.2.36)

Also because of (2.10) we know that Hn(B(y)) � 2δ′ε(r)r
n . Using the definition (A.2.6) we

see that we can find points P ∈ B(y) so that Nl∇u(P ) � 2Nl∇u(Q0). Let us choose such
P ∈B(y). Since Ω is a δ-Reifenberg flat domain, by [14, Lemma 4.4] we have that

u(y)�Cu
(
A
(
P,C0l(r)

))
,(A.2.37)

where A = A(P,C0l(r)) ∈ Γ(P ), and C0l(r)/4 � δ(A) � C0l(r). By (A.2.36) and using the
fact that Ω is a δ-Reifenberg flat domain, we know that there exists a path γ ∈ Γ(P ); with
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supX∈γ δ(X)�C0l(r) joining A(P,C0l(r)) to A(P,C0δl(r)), with length

γ �CC0l(r)�C′l(r).

Integrating along this path we have

u
(
A
(
P,C0l(r)

))
�

∫

γ

|∇u|(ζ)dH1(ζ) + u
(
A
(
P,C0δl(r)

))

�Cl(r)NC0l(r)∇u(P ) + u
(
A
(
P,C0δl(r)

))

�Cl(r)Nl∇u(P ) + u
(
A
(
P,C0δl(r)

))
,(A.2.38)

for r small enough because C0l(r) becomes much smaller than l. Lemma 4.1 in [14] combined
with Harnack’s inequality ensures that

u
(
A
(
P,C0δl(r)

))
�Cδαu

(
A
(
P,C0l(r)

))
.(A.2.39)

Therefore combining (A.2.37), (A.2.38) and (A.2.39), and given our choice of P we obtain (for
r small)

u(y)�Cl(r)Nl∇u(Q0) for y ∈D(r). ✷(A.2.40)

A.3. Rellich’s identity for chord-arc domains

We use the machinery introduced at the beginning of this appendix to show that Rellich’s
identity holds for chord arc domains with small constant or for Reifenberg flat chord arc domains
satisfying logh ∈VMO(∂Ω). We assume that Ω⊂ Rn+1 is a bounded δ0 chord arc domain (or
(δ0,∞)-chord arc domain) with δ0 > 0 small enough to ensure that Corollary 5.2 (or Corollary
5.1) in [18] holds. Here n� 2.

LEMMA A.3.1. – Let Ω be a bounded δ-chord arc domain or a (δ,∞)-chord arc domain for
δ < δ0 or a chord arc domain so that logh ∈ VMO(∂Ω). Let A ∈ Ω, and let ωA denote the

harmonic measure of ∂Ω with pole at A. Then if kA = dωA

dσ ,

1

σn

∫

∂Ω

kA(Q)
dHn(Q)

|Q−A|n−1
=−
∫

∂Ω

k2
A(Q)
〈
Q−A,−→n (Q)

〉
dHn(Q)(A.3.1)

where σn denotes the surface area of the unit sphere in Rn+1, and −→n (Q) denotes the inward
pointing unit normal.

Proof. – Let R< δ(A)/8 and Q0 ∈ ∂Ω by Lemmata A.1.2 and A.1.3 Ω can be approximated
by a sequence {Ωj} of interior chord arc domains satisfying (A.1.20), (A.1.21), (A.1.44),
(A.1.45) and (A.1.46). Let ϕ ∈C∞

c (B(Q0,R)), for Q ∈ ∂Ω∩B(Q0,R) let

αj(Qj) =Qj −A−
〈
Qj −A,−→nj (Qj)

〉−→nj (Qj),

where Qj = φj(Q) with φj as defined in (A.1.10) for some α < αn (αn as in Lemma A.1.2).
Here −→nj (Qj) denotes the inward pointing unit normal to ∂Ωj .

As in [14] (see proof of Main Identity) we look at the expression
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∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
αj(Qj),∇G(A,Qj)

〉
ϕ(Qj)dHn

=

∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
Qj −A,∇G(A,Qj)

〉
ϕ(Qj)dHn

−
∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉2〈
Qj −A,−→nj (Qj)

〉
ϕ(Qj)dHn.(A.3.2)

Lemma 3.2 guarantees that for Hn a.e. Q ∈ ∂Ω
〈
∇G(A,Qj),−→nj (Qj)

〉
=
〈
∇G
(
A,φj(Q)

)
,−→nj
(
φj(Q)

)〉
−→
j→∞

kA(Q)(A.3.3)

〈
αj(Qj),∇G(A,Qj)

〉
=
〈
αj
(
φj(Q)

)
,∇G
(
A,φj(Q)

)〉
−→
j→∞

0.(A.3.4)

Combining (A.3.3), (A.3.4) and (A.1.82) we have that for Hn a.e. Q ∈ ∂Ω
〈
∇G
(
A,φj(Q)

)
,−→nj
(
φj(Q)

)〉〈
αj
(
φj(Q)

)
,∇G
(
A,φj(Q)

)〉
ϕ
(
φj(Q)

)
Jφj(Q) −→

j→∞
0.

(A.3.5)

Since supX∈Γβ ,δ(X)�l |∇G(A,X)| � CMl(kA)(Q), where Ml(kA) ∈ L2
loc(dσ) (by our as-

sumption that δ � δ0 or that logh ∈VMO(∂Ω) combined with Theorem 2.1,

∣∣αj
(
φj(Q)

)∣∣�
∣∣A− φj(Q)

∣∣�R+ δ(A),

and 0� Jφj(Q)� 1 +Cnδ by (A.1.80), the Lebesgue dominated convergence theorem ensures
that

lim
j→∞

∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
αj(Qj),∇G(A,Qj)

〉
ϕ(Qj)dHn(A.3.6)

= lim
j→∞

∫

∂Ω

〈
∇G
(
A,φj(Q)

)
,−→nj
(
φj(Q)

)〉〈
αj
(
φj(Q)

)
,∇G
(
A,φj(Q)

)〉
ϕ
(
φj(Q)

)

×Jφj dHn = 0

and

lim
j→∞

∫

∂Ωj

ϕ(Qj)
〈
∇G(A,Qj),−→nj (Qj)

〉2〈
Qj −A,−→nj (Qj)

〉
dHn

= lim
j→∞

∫

∂Ω

ϕ
(
φj(Q)

)〈
∇G
(
A,φj(Q)

)
,−→nj
(
φj(Q)

)〉2

×
〈
φj(Q)−A,−→nj

(
φj(Q)

)〉
Jφj(Q)dHn(Q)

=

∫

∂Ω

k2
A(Q)
〈
Q−A,−→n (Q)

〉
ϕ(Q)dHn.(A.3.7)
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Now recall that for n� 2 (see [12, Theorem 8.29] for the bounded case, and [12, Theorems 5.6,
5.13 and 9.22] for the unbounded case)

G(A,X) =
1

(n− 1)σn
|X −A|1−n − uA(X)(A.3.8)

where uA is a harmonic function in Ω, satisfying

uA|∂Ω
=

1

(n− 1)σn
|X −A|1−n|∂Ω

since by (A.1.47) ∂Ωj ∩B(Q0,
3R
2 )⊂Ω∩B(Q0,

3R
2 )

∇G(A,Qj) =− Qj −A

σn|Qj −A|n+1
−∇uA(Qj).(A.3.9)

We now look at the term
∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
Qj −A,∇G(A,Qj)

〉
ϕ(Qj)dHn

=− 1

σn

∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉 1

|Qj −A|n−1
ϕ(Qj)dHn

−
∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
Qj −A,∇uA(Qj)

〉
ϕ(Qj)dHn.(A.3.10)

Since for Qj ∈ ∂Ωj ∩B(Q0,
3R
2 ),

|Qj −A|� |A−Q0| − |Qj −Q0|� δ(A)− δ(A)

4
=
3δ(A)

4
.

Lemma 3.2, the fact that supX∈Γβ , δ(X)�ℓ |∇G(A,X)| � CM1(kA)(Q), and the Lebesgue
dominated convergence theorem ensure that

lim
j→∞

1

σn

∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉 ϕ(Qj)

|Qj −A|n−1
dHn

=
1

σn

∫

∂Ω

kA(Q)

|Q−A|n−1
ϕ(Q)dHn.(A.3.11)

We now look carefully at the only remaining term, namely

∫

∂Ω

〈
∇G(A,Qj),−→nj (Qj)

〉〈
Qj −A,∇uA(Qj)

〉
ϕ(Qj)dHn.(A.3.12)

By Lemma 3.2 and using (A.3.9) we know that Hn a.e. Q ∈ ∂Ω,

lim
j→∞

∇uA
(
φj(Q)

)
=− Q−A

σn|Q−A|n+1
− kA(Q)−→n (Q)

=∇F0(A,Q)− kA(Q)−→n (Q),(A.3.13)
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where F0(A,Q) = 1/((n− 1)σn|Q−A|n−1) denotes the fundamental solution of the Laplacian
in Rn+1, n� 2. The same argument used above ensures that

lim
j→∞

∫

∂Ωj

〈
∇G(A,Qj),−→nj (Qj)

〉〈
Qj −A,∇uA(Qj)

〉
ϕ(Qj)dHn

=

∫

∂Ω

〈
Q−A,∇F0(A,Q)− kA(Q)−→n (Q)

〉
kA(Q)ϕ(Q)dHn.(A.3.14)

Combining (A.3.2), (A.3.6), (A.3.7), (A.3.10), (A.3.11) and (A.3.13) we obtain for ϕ ∈
C∞
c (B(Q0,R)), and Q0 ∈ ∂Ω

1

σn

∫

∂Ω

kA(Q)
ϕ(Q)

|A−Q|n−1
dHn(Q) +

∫

∂Ω

k2
A(Q)

〈
Q−A,−→n (Q)

〉
ϕ(Q)dHn(Q)

=−
∫

∂Ω

〈
Q−A,∇F0(A,Q)− kA(Q)−→n (Q)

〉
kA(Q)ϕ(Q)dHn.(A.3.15)

Taking a partition of unity for a neighborhood of ∂Ω, and adding all the terms (corresponding to
(A.3.15)) we obtain

1

σn

∫

∂Ω

kA(Q)
dHn(Q)

|Q−A|n−1
+

∫

∂Ω

k2
A(Q)
〈
Q−A,−→n (Q)

〉
dHn

=−
∫

∂Ω

〈
Q−A,∇F0(A,Q)− kA(Q)−→n (Q)

〉
kA(Q)dHn.(A.3.16)

We would like to remark that in the unbounded case Lemma 6.1 in [18], which is a purely
technical result, ensures that all the terms are finite.

LetH(X) =∇F0(A,X)−∇G(A,X),H is a harmonic function in Ω (see definition Chapter
9 of [12] if Ω is unbounded), and for Hn a.e. Q ∈ ∂Ω, H(X) converges non-tangentially to
∇F0(A,Q) − kA(Q)−→n (Q). Note that V (X) = 〈X − A,H(X)〉 is a harmonic function in
Ω, with V (A) = 0, and such that for Hn a.e. Q ∈ ∂Ω, V (X) converges non-tangentially to
〈Q−A,∇F0(A,Q)−kA(Q)−→n (Q) ∈ L1(dωX) for anyX ∈Ω. Theorems 8.15 and 9.23 in [12]
ensure that the function V defined in Ω by

V (X) =

∫

∂Ω

〈
Q−A,∇F0(A,Q)− kA(Q)−→n (Q)

〉
dωX(Q)(A.3.17)

is a harmonic function. Moreover for Hn a.e. Q ∈ ∂Ω, V (X) converges non-tangentially
to 〈Q − A,∇F0(A,Q) − kA(Q)−→n (Q)〉. Therefore abusing notation slightly we have that
∆V =∆V = 0 in Ω and V (Q) = V (Q) for Hn a.e. Q ∈ ∂Ω.

Our next goal is to show that there exists f ∈ L1(dωA) so that V (X) =
∫
∂Ω f(Q)dω

X(Q).
Since Ω is a Reifenberg flat chord arc domain this will imply that V (Q) = f(Q) Hn a.e.
Q ∈ ∂Ω (here again V (Q) means the non-tangential limit of V at Q). This would guarantee
that V (X) = V (X) for every X ∈ Ω, and in particular V (A) = V (A) = 0. To achieve this our
main tool is Lemma 8.3 in [14]. To be able to use this lemma in the bounded case, and a suitable
modification in the unbounded case, we need to study the behavior of the non-tangential maximal
function of V

Nα(V )(Q) = sup
x∈Γα(Q)

∣∣V (X)
∣∣,(A.3.18)
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where α > 0 and

Γα,Ω(Q) = Γα(Q) =
{
X ∈Ω: |X −Q|� (1 +α)dist(X,∂Ω)

}
.(A.3.19)

As mentioned in Lemma 8.2 of [14], α does not really play a role, in the sense that
Nα(V ) ∈ L1(dωA) if and only if Nβ(V ) ∈ L1(dωA) for some β > 0.

Recall that V (X) = 〈X − A,∇uA(X)〉 where uA is a harmonic function in Ω satisfying
G(A,X) = F (A,X)− uA(X)� 0. In particular, 0� uA(X)� F (A,X) for every X ∈ Ω. Let
Y ∈Ω then

∣∣V (Y )
∣∣� |Y −A|

∣∣∇uA(Y )
∣∣�Cn|Y −A|uA(Y )

δ(Y )
(A.3.20)

where δ(Y ) = dist(Y,∂Ω).
From now on we assume that Y ∈ Γα(Q), and we consider several cases. First assume that

|Y −Q|� 2|A−Q| then |Y −A| � |Y −Q| − |Q−A| � |Q−A| and (A.3.20) yields

∣∣V (Y )
∣∣�Cn|Y −A|F (A,Y )|A−Q|

�Cn
1

|Y −A|n−2|A−Q| �Cn
1

|A−Q|n−1
.(A.3.21)

If |Y −Q|< 2|A−Q| using the fact that V and uA are harmonic, and

Hn
(
∂B(0,1)

)
= (n+1)ωn+1

we have for 2r �min{δ(Y ), |Y −A|}

V (Y ) =

∫
�

B(Y,r)

V (X)dX

=

∫
�

B(Y,r)

div
(
(X −A)uA(X)

)
dX −

∫
�

B(Y,r)

(n+ 1)uA(X)

=
1

ωn+1rn+1

∫

∂B(Y,r)

〈
X −A,

X − Y

r

〉
uA(X)− (n+ 1)uA(Y )

=
1

ωn+1rn+1

∫

∂B(Y,r)

〈
X − Y,

X − Y

r

〉
uA(X)− (n+ 1)uA(Y )

+
1

ωn+1rn+1

∫

∂B(Y,r)

〈
Y −A,

X − Y

r

〉
uA(X)

=
1

ωn+1rn

∫

∂B(Y,r)

uA(X)dX − (n+ 1)uA(Y )

+
1

ωn+1rn+1

〈
Y −A,

∫

∂B(Y,r)

X − Y

r

(
uA(X)− uA(Y )

)
dX

〉
.(A.3.22)

Hence
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∣∣V (Y )
∣∣�Cn

|Y −A|
r

∫
�

∂B(Y,r)

∣∣uA(X)− uA(Y )
∣∣dX

�Cn
|Y −A|

r

{ ∫
�

∂B(Y,r)

∣∣G(A,X)−G(A,Y )
∣∣dX

+

∫
�

∂B(Y,r)

∣∣F (A,X)−F (A,Y )
∣∣dX
}
.(A.3.23)

We look at each term separately. For X ∈ ∂B(Y, r),
∣∣F (A,X)− F (A,Y )

∣∣�Cn|X − Y | |X −A|n−2 + |Y −A|n−2

|X −A|n−1|Y −A|n−1

�Cnr

{
1

|X −A| |Y −A|n−1
+

1

|Y −A| |X −A|n−1

}

�Cnr
1

|Y −A|n �Cnr
1

|Q−A|n−1|Y −A|(A.3.24)

because |Y −A| � |A−Q| − |Q− Y | � |A−Q|/2, by our assumption |Y −Q| � 2|A−Q|.
Note also that this assumption implies that Y ∈ B(A,3|A−Q|). Standard PDE estimates plus
Harnack’s inequality ensure that

∫
�

∂B(Y,r)

∣∣G(A,X)−G(A,Y )
∣∣dX � r sup

Z∈B(Y,r)

∣∣∇G(A,Z)
∣∣

�Cr
G(A,Y )

δ(Y )
�CrM2δ(A)(kA)(Q),(A.3.25)

where M2δ(A)(kA)(Q) = sup0<s<2δ(A)

∫
�B(Q,s)∩∂ΩkA(Q)dσ (see proof of Lemma A.3.1).

Combining (A.3.23), (A.3.24) and (A.3.25) we obtain that for Y ∈ Γα(Q) if

|Y −Q|� 2|A−Q|

then

∣∣V (Y )
∣∣�Cn

{ |Y −A|
r

}{
rM2δ(A)(kA)(Q) +

r

|Y −A| |Q−A|n−1

}

�Cn|Q−A|M2δ(A)(kA)(Q) +
Cn

|Q−A|n−1
.(A.3.26)

Combining (A.3.21) and (A.3.26) we conclude that

Nα(V )(Q)�Cn|Q−A|M2δ(A)(kA)(Q) +
Cn

|Q−A|n−1
.(A.3.27)

If Ω is a bounded chord arc domain with small enough constant kA ∈ L2(dσ) and therefore
M2δ(A)(kA) ∈L2(dσ). This yields the following estimate

∫

∂Ω

Nα(V )(Q)dω
A(Q)�Cn(diamΩ)

∫

∂Ω

M2δ(A)(kA)(Q)dω
A(Q) +Cn

ωA(∂Ω)

δ(A)n−1
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�Cn(diamΩ)

∫

∂Ω

M2δ(A)(kA)(Q)kA(Q)dσ +
Cn

δ(A)n−1

�Cn(diamΩ)

∫

∂Ω

[
M2δ(A)(kA)(Q)

]2
dσ +

Cn
δ(A)n−1

�Cn(diamΩ)

∫

∂Ω

kA(Q)
2 dσ +

Cn
δ(A)n−1

.(A.3.28)

By (A.3.28), Nα(V ) ∈ L1(dωA). Lemma 8.3 in [14] implies that V (X) =
∫
∂Ω
f(Q)dωX(Q)

for every X ∈ Ω and some f ∈ L1(dωA). As explained above this ensures that V (X) = V (X),
and in particular we have (see (A.3.16), (A.3.17) and recall that V (A) = 0)

1

σn

∫

∂Ω

kA(Q)
dσ(Q)

|Q−A|n−1
=−
∫

∂Ω

k2
A(Q)

〈
Q−A,−→n (Q)

〉
dσ(Q).(A.3.29)

If Ω is an unbounded domain two things remain to be done. We first show that
Nα(V ) ∈ L1(dωA), then we show there is a version of Lemma 8.3 in [14] which holds for
unbounded NTA domains. From (A.3.27) we have that

∫

∂Ω

Nα(V )(Q)dω
A(Q)�Cn

∫

∂Ω

|Q−A|M2δ(A)(kA)(Q)dω
A(Q)

+Cn

∫

∂Ω

kA(Q)

|Q−A|n−1
dσ.(A.3.30)

Let Ω be an unbounded δ-Reifenberg flat chord arc domain with δ � δ0 and

sup
r>0

sup
Q∈∂Ω

θ(Q,R)< δ0

for some δ0 small enough so that Corollary 5.1 and Lemma 6.1 in [18] hold. In this case, if
Q0 ∈ ∂Ω is such that |Q0 −A|= δ(A) taking M is large enough we obtain

∫

∂Ω

kA(Q)

|Q−A|n−1
dσ =

∫

∂Ω∩{|Q−Q0|<Mδ(A)}

kA(Q)

|Q−A|n−1
dσ

+

∫

∂Ω∩{|Q−Q0|�Mδ(A)}

kA(Q)

|Q−A|n−1
dσ

�
1

δ(A)n−1
ωA
(
B(Q0,Mδ(A))

)
+

1

2δ(A)n−1

�
3

2

1

δ(A)n−1
,(A.3.31)

(see [18] for details). If Ω is a Reifenberg flat chord arc domain such that logh ∈ VMO(∂Ω),
combining Theorem 2.1, Lemma 2.3 and a similar argument to the one presented in the proof
of Lemma 6.1 in [18], we show that (A.3.31) also holds. The first term in the right hand side of
(A.3.30) requires more careful attention. Let M > 4 be a large constant to be chosen later.
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∫

∂Ω

|Q−A|M2δ(A)(kA)(Q)dω
A =

∫

∂Ω∩{|Q−Q0|�Mδ(A)}

|Q−A|M2δ(A)(kA)(Q)dω
A

+

∫

∂Ω∩{|Q−Q0|�Mδ(A)}

|Q−A|M2δ(A)(kA)(Q)dω
A.(A.3.32)

By a similar argument to the one shown in the proof of Lemma 3.1 we have
∫

∂Ω∩{|Q−Q0|�Mδ(A)}

|Q−A|M2δ(A)(kA)(Q)kA(Q)dσ

� (M +1)δ(A)

∫

∂Ω∩B(Q0,Mδ(A)

M2δ(A)(kA)
2(Q)dσ

� (M +1)δ(A)

∫

∂Ω∩B(Q0,(M+2)δ(A))

k2
A(Q)dσ(Q).(A.3.33)

Covering B(Q0, (M + 2)δ(A)) by balls {B(Qi,
δ(A)
N }Kn

i=0 with Qi ∈ ∂Ω |Qi − Qj | �
δ(A)
2N ,

where N is large enough, and using the fact that ωA is a doubling measure, we deduce that

∫

∂Ω∩B(Q0,(M+2)δ(A))

k2
A(Q) dσ(Q)�

k∑

i=0

∫

∂Ω∩B(Qi,
δ(A)

N
)

k2
A dσ

� 4

k∑

i=0

Hn

(
∂Ω∩B

(
Qi,

δ(A)

N

))[ ∫
�

∂Ω∩B(Qi,
δ(A)

N
)

kA dσ

]2

�Cn
Nn

δ(A)n

k∑

i=0

[
ωA
(
B

(
Qk,

δ(A)

N

))]2

�Cn
Nn

δ(A)n

k∑

i=0

ωA
(
B

(
Qi,

δ(A)

N

))

�Cn
Nn

δ(A)n
ωA
(
B
(
Q0, (M + 3)δ(A)

))

�Cn
Nn

δ(A)n
,(A.3.34)

(see Corollary 5.1 in [18] and its proof for more details).
We now look at the second term in the right hand side of (A.3.32).

∫

∂Ω∩{|Q−Q0|�Mδ(A)}

|Q−A|M2δ(A)(kA)(Q)kA(Q)

=

∞∑

i=0

∫

2iMδ(A)�|Q−Q0|�2i+1Mδ(A)

|Q−A|M2δ(A)(kA)(Q)kA(Q)dσ

� 2

∞∑

i=0

2i+1Mδ(A)

∫

2iMδ(A)�|Q−Q0|�2i+1Mδ(A)

M2δ(A)(kA)(Q)kA(Q)dσ.(A.3.35)
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As in the proof of Lemma 6.1 in [18] we look at each term

∫

2iMδ(A)�|Q−Q0|�2i+1Mδ(A)

M2δ(A)(kA)(Q)kA(Q)dσ

separately.
Let s = δ(A), and ∂Ω ∩ B(Q,r) = ∆(r,Q). For Q ∈ ∆(2i+1Ms,Q0)\∆(2iMs,Q0), we

have |Q−A|� |Q−Q0|− |Q0−A|> 2i−1Ms. Cover∆(2i+1Ms,Q0)\∆(2iMs,Q0) by balls
∆(ρi,Qj), Qj ∈∆(2i+1Ms,Q0)\∆(2iMs,Q0) and such that the balls ∆(ρi

5 ,Qj) are disjoint.
Assume that ρi > 0 is such that Nρi = 2i−1Ms, where N = 2N0 > 2, and N0 is as in Corollary
5.1 or 5.2 in [18] or as in Lemma 2.3 as needed. Note that A ∈Ω\B(Nρi,Qj), and

(
1

σ(∆(ρi,Qj))

∫

∆(ρi,Qj)

k2
A dσ

) 1
2

� 2
1

σ(∆(ρi,Qj))

∫

∆(ρi,Qj)

kA dσ.(A.3.36)

Recall that, since ∂Ω is Ahlfors regular, there exists C > 1 depending only on n and the
Ahlfors regularity constants such that σ(∆(ρi,Qj))�C(n)−1ρni . Moreover the fact that Ω is an
unbounded NTA domain, with uniform constants, guarantees that ωA is uniformly doubling on
∂Ω∩ {|Q−Q0|�Ms}.

Therefore the previous inequality implies that

∫

2iMs�|Q−Q0|�2i+1Ms

M2s(kA)(Q)kA(Q)dσ

�
∑

j

∫

∆(ρi,Qj)

M2s(kA)(Q)kA(Q)dσ �
∑

j

∫

∆(ρi+2s,Qj)

k2
A(Q)dσ

�
∑

j

∫

∆(2ρi,Qj)

k2
A(Q)dσ � 4

∑

j

ωA(∆(2ρi,Qj))

σ(∆(2ρi,Qj))
ωA
(
∆(2ρi,Qj)

)

�Cρ−ni
∑

j

ωA
(
∆(ρi,Qj)

)
�Cρ−ni

∑

j

ωA
(
∆

(
ρi
5
,Qj

))

�Cρ−ni ωA
(
∆

(
2i+1Ms+

ρi
5
,Q0

)∖
∆

(
2iMs− ρi

5
,Q0

))
.(A.3.37)

Note that ωX(∆(2i+1Ms+ 2i−1Ms
N ,Q0)\∆(2iMs− 2i−1Ms

N ,Q0)) is a non-negative harmonic

function in Ω, which vanishes onB(2iMs− 2i−1Ms
N ,Q0)∩∂Ω, and whose supremum is 1. Thus

Lemmata 4.9 and 4.11 in [14] imply that

ωA
(
∆

(
2i+1Ms+

2i−1Ms

N
,Q0

)∖
∆

(
2iMs− 2i−1Ms

N
,Q0

))

�C

( |A−Q0|
2i−1Ms− 2i−2Ms

N

)α
�C

(
1

2iM

)α
.(A.3.38)
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Combining (A.3.37) and (A.3.38) we obtain

∫

2iMs�|Q−Q0|�2i+1Ms

M2s(kA)(Q)kA(Q)dσ �Cρ−ni

(
1

2iM

)α
.(A.3.39)

Thus (A.3.35) and (A.3.39) yield
∫

∂Ω∩{|Q−Q0|>Mδs}

|Q−A|M2s(kA)(Q)kA(Q)dσ

�

∞∑

i=0

C2i+1Msρ−ni

(
1

2iM

)α

�

∞∑

i=0

C2i+1Ms

(
N

2i−1Ms

)n(
1

2iM

)α

�C
s−(n−1)

Mn−1+α

∞∑

i=0

1

2i(n−1+α)
.(A.3.40)

Combining (A.3.32), (A.3.33), (A.3.34) and (A.3.40) we have for M = 2N = 4N0
∫

∂Ω

|Q−A|M2δ(A)(k)A(Q)dω
A

�C
M

δ(A)n−1
+C

1

Mn−1+a

1

δ(A)n−1

�C
1

δ(A)n−1
.(A.3.41)

Putting together (A.3.30), (A.3.31) and (A.3.41) we conclude that Nα(V ) ∈ L1(dωA). Let Ω be
an unbounded NTA domain and let

H(Ω, dωA) =
{
u harmonic in Ω;Nα(U) ∈ L1

(
dωA
)}
.(A.3.42)

LEMMA A.3.2 ([14], Lemma 8.3). – If u ∈H1(Ω, dωA) then there exists f ∈ L1(dωA) with
u(X) =

∫
∂Ω
f(Q)dωX(Q) for all X ∈Ω.

Proof. – It follows the steps of the proof of Lemma 8.3 in [14]. It relies on the construction
of bounded sawtooth domains inside Ω, which exhaust Ω. In what follows we state the results
from [14] that are needed to prove Lemma A.3.2. Although the proofs there are only done for Ω
bounded, since the arguments are purely geometric they can be translated to the unbounded case
without any problem.

LEMMA A.3.3 ([14], Lemma 6.3). – For any α > 0 there exist β, γ > 0 such that for
Q0 ∈ ∂Ω, s > 0 and any bounded closed set F ⊂ ∂Ω ∩ B(Q0, s) there exist an NTA domain
ΩF and constants C1,C2 > 0 so that

∂Ω∩ ∂ΩF = F(A.3.43)

⋃

Q∈F

Γγ,Ω(Q)∩B(Q0,C1s)⊂ΩF ⊂
⋃

Q∈F

Γβ,Ω(Q)∩B(Q0,C2s),(A.3.44)

4e SÉRIE – TOME 36 – 2003 – N◦ 3



REIFENBERG FLAT CHORD ARC DOMAINS 399

there exists X0 ∈ΩF so that dist(X0, ∂ΩF )≃ s.(A.3.45)

Moreover, ωΩ and ωΩF
are mutually absolutely continuous on F .

To prove Lemma A.3.2 note that, since Nα(u) ∈ L1(dωA), u has a non-tangential limit f for
ωA a.e. Q ∈ ∂Ω, and f ∈L1(dωA). Choose β associated to α as in Lemma A.3.3. For λ > 0, let
λ> 0 be so that ωA(∂Ω\B(Q0, λ))� 1/λ2. LetFλ =B(Q0, λ)∩{Q∈ ∂Ω;Nβ(u)(Q)� λ} for
Q0 ∈ ∂Ω so that δ(A) = |Q0−A|. Construct the sawtooth regionΩλ =ΩFλ

as in Lemma A.3.3.
In particular A ∈ Ωλ, Ωλ ⊂⋃Q∈Fλ

Γβ,Ω(Q) ∩B(Q0,C2λ), and |u| � λ on Ωλ. As in Lemma

5.15 in [14], ωAλ (∂Ωλ\Fλ) � MωA(∂Ω\Fλ) with M independent of λ and the Ωλ’s increase
to Ω. By Lemma 8.3 and Remark 5.12 in [14] there exists fλ ∈ L∞(dωAλ ) so that for X ∈ Ωλ,
u(X) =

∫
∂Ωλ

fλ dω
X
λ . Since ωAλ and ωA are mutually absolutely continuous on Fλ, it follows

that f = fλ ωλ a.e. Q ∈ Fλ. For X ∈Ωλ ∩B(Q0,R) with R> 2δ(A), we have that ωXλ and ωAλ
are mutually absolutely continuous. For such X

u(X) =

∫

Fλ

f(Q)dωXλ (Q) +

∫

∂Ωλ\Fλ

fλ(Q)dω
X
λ (Q),(A.3.46)

and by Theorem 7.1 and its corollary in [14] (see Theorem 3.1 in [18]) we have
∫

∂Ωλ\Fλ

fλ(Q)dω
X
λ (Q)� λωXλ (∂Ωλ\Fλ)

�CX,Rλω
A
λ (∂Ωλ\Fλ)

�MCX,Rλω
A(∂Ω\Fλ)

�CX,Rλ
{
ωA
(
∂Ω\B(Q0, λ)

)
+ ωA

(
B(Q0, λ)\Fλ

)}

�CX,R
1

λ
+CX,Rλω

A
(
B(Q0, λ)\Fλ

)

�CX,R
1

λ
+CX,R

∫

B(Q0,λ)∩{Nβ(u)(Q)>λ}

Nβ(u)(Q)dω
A(Q).(A.3.47)

Since Nα(u) ∈ L1(dωA) and Nα(u) controls Nβ(u) we have that for X ∈B(Q0,R)∩Ωλ

lim
λ→∞

∫

∂Ωλ\Fλ

fλ(Q)dω
X
λ = 0(A.3.48)

hence for X ∈B(Q0,R)∩Ω

u(X) = lim
λ→∞

∫

Fλ

f(Q)dωXλ .(A.3.49)

Arguing as in the proof of Theorem 5.14 in [14] we show that for every X ∈B(Q0,R)∩Ω

u(X) =

∫

∂Ω

f(Q)dωX(Q).(A.3.50)

Since R> 2δ(A) is arbitrary, Lemma A.3.2 is established. ✷
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We conclude the proof of Rellich’s identity in the unbounded case by noting that since
Nα(V ) ∈ L1(dωA) by Lemma A.3.2 there exists f ∈ L1(dωA) so that

V (X) =

∫

∂Ω

f(Q)dωX(Q) for all X ∈Ω.

Since Ω is a Reifenberg flat chord arc domain, V (Q) = f(Q) Hn a.e. Q ∈ ∂Ω which ensures
that V (X) = V (X) for all X ∈ Ω, and in particular V (A) = V (A). Thus (A.3.1) also holds in
this case. ✷
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