Poisson measures on the configuration space and unitary representations of the group of diffeomorphisms

By
Hiroaki Shimomura

Introduction

Let X be a connected para-compact but not compact C^{∞}-manifold and m be a locally Euclidean measure with smooth local densities. In [6], Vershik-Gel'fand-Graev considered representations of Diff X, group of diffeomorphisms with compact supports, defined by quasi-invariant measures, especially Poisson measures P_{m} in the space Γ_{X} of infinite configurations on X. The present paper is a supplement of their works and we summarize it as follows: First in section 1 we extend the notion of configuration space Γ_{X} to some general topological space X and show that Γ_{X} is a standard space equipped with a natural measurable structure \mathscr{C}. Next we consider Poisson measures P_{m} with intensity m on the measurable space $\left(\Gamma_{X}, \mathscr{C}\right)$ and investigate the mutual equivalence of P_{m} with respect to another one, say $P_{m^{\prime}}$ and investigate their ergodicity with respect to action groups arising from the basic space X. These are contents in section 2. Lastly in section 3 we generalize the results obtained in [6] of the equivalence of elementary representations of Diff X generated by Poisson measures. Our main result is stated in Theorem 3.1 and its Corollary in section 3 .

1. Basic properties of configuration space

1.1. Definition of configuration space. Let K be a Polish space. That is, the topology of K is derived from a metric d such that (K, d) is a complete separable metric space. And let K^{n} be the direct product of the n copies of K and define a metric d_{K}^{n} on K^{n} such that $d_{K}^{n}(x, y)=\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right)$, for $x=$ $\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right) \in K^{n}$. Then K^{n} is a Polish space with the metric $d_{\widetilde{K}}^{n}$. Put $\widetilde{K}^{n}=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \mid x_{i} \neq x_{j}\right.$ for all $\left.i \neq j\right\}$. As \widetilde{K}^{n} is an open set in K^{n}, \widetilde{K}^{n} is again a Polish space with the induced topology. A metric δ_{K}^{n} with which ($\widetilde{K}^{n}, \delta_{K}^{n}$) is a complete separable metric space is for example as follows:

[^0]$$
\delta_{K}^{n}(x, y)=\frac{d_{K}^{n}(x, y)}{d_{K}^{n}(x, y)+d_{K}^{n}\left(x,\left(\widetilde{K}^{n}\right)^{c}\right)+d_{K}^{n}\left(y,\left(\widetilde{K}^{n}\right)^{c}\right)},
$$
where
$d_{K}^{n}\left(x,\left(\widetilde{K}^{n}\right)^{c}\right)$ is the distance from x to the complemented set of \widetilde{K}^{n}. Next let us consider an n-point set γ in K. The collection of all such γ 's will be denoted by B_{K}^{n}. For $\gamma=\left\{x_{1}, \cdots x_{n}\right\}, \gamma^{\prime}=\left\{x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right\} \in B_{K}^{n}$ put
$$
d_{K}^{(n)}\left(\gamma, \gamma^{\prime}\right)=\inf _{\sigma \in \mathbb{E}_{n}} d_{K}^{n}\left(\left(x_{1}, \cdots, x_{n}\right),\left(x_{\sigma(1)}^{\prime}, \cdots, x_{\sigma(n)}^{\prime}\right)\right)
$$
and
$\delta_{K}^{(n)}\left(\gamma, \gamma^{\prime}\right)=\inf _{\sigma \in \mathfrak{E}_{n}} \delta_{K}^{n}\left(\left(x_{1}, \cdots, x_{n}\right),\left(x_{\sigma(1)}^{\prime}, \cdots, x_{\sigma(n)}^{\prime}\right)\right)$, where \mathbb{S}_{n} is the symmetric group. It is easily checked that $d_{K}^{(n)}$ and $\delta_{K}^{(n)}$ are equivalent metrics on B_{K}^{n} and ($B_{K}^{n}, \delta_{K}^{(n)}$) is a complete separable metric space. Therefore B_{K}^{n} is a Polish space with this topology. The Borel σ-field on B_{K}^{n} will be denoted by $\mathscr{B}\left(B_{K}^{n}\right)$. Now for each subset A in K let us consider a number map $N_{A}: B_{K}^{n} \rightarrow$ $\{0,1, \cdots, n\}$ defined by $N_{A}(\gamma)=|\gamma \cap A| \equiv^{*}(\gamma \cap A)$, where ${ }^{*} A$ denotes the number of elements of a set A.

Lemma 1.1. If U is an open set in K, then $\left\{\gamma \mid N_{U}(\gamma) \geqq l\right\}$ is also open in B_{K}^{n} for each $l=0,1, \cdots, n$.

Proof. There is nothing to prove for $l=0$. So let $N_{U}\left(\gamma_{0}\right) \geqq l \geqq 1$. By the definition of N_{U}, some l elements x_{1}, \cdots, x_{l} of γ_{0} exist in U. Take $\varepsilon>0$ such that $U_{\varepsilon}\left(x_{i}\right) \subset U(i=1, \cdots, l)$, where $U_{\varepsilon}\left(x_{i}\right)=\left\{x \in K \mid d\left(x, x_{i}\right)<\varepsilon\right\}$. Then it is easy to see that $d_{K}^{(n)}\left(\gamma, \gamma^{\prime}\right)<\varepsilon$ implies $N_{U}\left(\boldsymbol{\gamma}^{\prime}\right) \geqq l$.
(Q. E. D)

It is a direct consequence of the above lemma that $N_{B}(\cdot)$ is $\mathscr{B}\left(B_{K}^{n}\right)$ -measurable for all Borel sets B in K. The converse assertion also holds. For this let us see the following lemma.

Lemma 1.2. For any $\varepsilon>0$ and for any $\gamma \in B_{K}^{n}$ there exists some open set $O_{\varepsilon}(\gamma)$ which belongs to to the smallest σ-algebra \mathscr{B} with which all the functions $N_{B}(\cdot)(B$ is a Borel set in $K)$ are measurable such that $\gamma \in O_{\varepsilon}(\gamma) \subset$ $\left\{\gamma^{\prime} \mid d_{K}^{(n)}\left(\gamma, \gamma^{\prime}\right)<\varepsilon\right\}$.

Proof. For the set $\gamma=\left\{x_{1}, \cdots, x_{n}\right\}$, let us take η such that $\varepsilon>\eta>0$ and $U_{n / n}\left(x_{i}\right) \cap U_{n / n}\left(x_{j}\right)=\phi(i \neq j)$ and put $O_{\varepsilon}(\gamma)=\cap_{i=1}^{n}\left\{\gamma^{\prime} \| \gamma^{\prime} \cap U_{\eta / n}\left(x_{i}\right) \mid \geqq 1\right\}$. Then we have $\gamma \in O_{\varepsilon}(\gamma) \in \mathscr{B}$ and $O_{\varepsilon}(\gamma)$ is an open set by Lemma 1.1. And if $\gamma^{\prime}=\left\{y_{1}, \cdots, y_{n}\right\} \in O_{\varepsilon}(\gamma)$, then by the choice of η we may conclude that $y_{i} \in$ $U_{n / n}\left(x_{i}\right) \quad(i=1, \cdots, n)$. This implies $d_{K}^{(n)}\left(\gamma, \gamma^{\prime}\right)<\varepsilon$ and the lemma is proved.
(Q. E. D)

Now take any open set G in B_{K}^{n}. Then by the above lemma and the separabil-
ity of B_{K}^{n} there exist some open sets $O_{\varepsilon_{n}}\left(\gamma_{n}\right)\left(\varepsilon_{n}>0\right)$ such that $G=$ $\cup_{n=1}^{\infty} O_{\varepsilon n}\left(\gamma_{n}\right)$. So we have $G \in \mathscr{B}$ and therefore $\mathscr{B}\left(B_{K}^{n}\right) \subset \mathscr{B}$. Hence we have,

Theorem 1.1. $\quad\left(B_{R}^{n}, d_{K}^{(n)}\right)$ is a Polish space and the Borel σ-field $\mathscr{B}\left(B_{R}^{n}\right)$ coincides with the smallest σ-algebra with which all the functions $N_{B}(\cdot)$ (B is a Borel set in K) are measurable.

Next let us consider the direct sum of $B_{K}^{n}(n=0,1, \cdots), B_{K}=\sum_{n=0}^{\infty} B_{K}^{n}$, where $B_{K}^{o}=\{\phi\}$. It is easy to see that B_{K} is again a Polish space with the direct sum topology and the Borel σ-field $\mathscr{B}\left(B_{K}\right)$ coincides with the smallest σ-algebra with which all the functions $N_{B}(\cdot)$ on $B_{K}(B$: Borel sets in $K)$ are measurable. Now consider a topological space X which satisfies following two properties.
(B.1) X is a union of increasing subsets $K_{n} \quad(n=1,2, \cdots)$, and
(B.2) K_{n} is a Polish space with the induced topology of X for each n.

We shall call such a sequence $\left\{K_{n}\right\}$ basic sequence. Since a map $\pi_{K_{n}, K_{m}}(n$ $<m): \gamma \in B_{K_{m}} \rightarrow \gamma \cap K_{n} \in B_{K_{n}}$ is measurable with rspect to $\mathscr{B}\left(B_{K_{m}}\right)$ and $\mathscr{B}\left(B_{K_{n}}\right)$ in virtue of Theorem 1.1, so the projective limit of $\left(B_{K_{n},} \pi_{K_{n}, K_{m}}\right), \underline{\longleftrightarrow}{ }^{\lim }\left(B_{K_{n}}\right.$, $\left.\pi_{K_{n}, K_{m}}\right)=\left\{\left(\gamma_{n}\right) \in \prod_{n=1}^{\infty} B_{K_{n}} \mid \pi_{K_{n}, K_{m}}\left(\gamma_{m}\right)=\gamma_{n}\right.$ for $\left.m>n\right\}$ is a Borel set in the infinite product space $\prod_{n=1}^{\infty} B_{K_{n}}$, and the later is a Polish space with the product topology. Thus $\underset{\longleftrightarrow}{\lim }\left(B_{K_{n}}, \pi_{K_{n}, K_{m}}\right)$ is a standard space. (See, [4].) As is easily
 set $\Gamma_{X}=\left\{\gamma \mid \gamma \subset X\right.$ such that $\left|\gamma \cap K_{n}\right|<\infty$ for all $\left.n\right\}$ which is called the configuration space on X. So identifying ${ }_{\longleftrightarrow}^{\lim }\left(B_{K n}, \pi_{K n, K m}\right)$ with Γ_{X}, we have a standard measurable structure on Γ_{X}. It is easy to see that its σ-algebra \mathscr{C} coincides with the smallest σ-algebra with which all the functions $N_{B}(\cdot)$ on Γ_{X} (B : Borel set in X) are measurable. Thus we have,

Theorem 1.2. The measurable space $\left(\Gamma_{X}, \mathscr{C}\right)$, where \mathscr{C} is a minimal σ-algebra with which all the functions $N_{B}(\cdot)$ (B : Borel set in X) are measurable is a standard space.

For a Borel subset Y in X we put $\Gamma_{Y}=\left\{\gamma \in \Gamma_{X} \mid \gamma \subset Y\right\}=\left\{\gamma \in \Gamma_{X}| | \gamma \cap Y^{c} \mid=\right.$ $0\}$. Naturally Γ_{Y} is a measurable subspace and its σ-algebra also coincides with the minimal σ-algebra with which all the number maps $N_{B}(\cdot)$ (B : Borel set in Y) are measurable.

Remark 1. When X is a locally compact and σ-compact metrizable space (for example X is a para-compact manifold), there is an increasing sequence $\left\{X_{n}\right\}$ of open sets with compact closure such that $\cup_{n=1}^{\infty} X_{n}=X$. If we choose this sequence $\left\{X_{n}\right\}$ as a basic sequence, then the configuration space Γ_{X} consists of countable sets γ which satisfies $|\gamma \cap K|<\infty$ for all compact sets K.

As is easily seen, it is equivalent to say that γ has no accumulation points in X.
1.2. Definition of Poisson measure. Let m be a non atomic Borel measure on X such that $m\left(K_{n}\right)<\infty$ for all n where $\left\{K_{n}\right\}$ is a basic sequence. Let K be one of $K_{n}{ }^{\prime}$ s and put $m_{K}=m \mid K$. By the non atomic assumption the product measure m_{K}^{n} of n copies of m_{K} is regarded naturally as a measure on \widetilde{K}^{n}. So we can define a measure $m_{K, n}$ on $\mathscr{B}\left(B_{R}^{n}\right)$ as the image measure of m_{K}^{n} by a map $p_{K}^{n}:\left(x_{1}, \cdots, x_{n}\right) \in \widetilde{K}^{n} \longrightarrow\left\{x_{1}, \cdots, x_{n}\right\} \in B_{K}^{n}$.
Put $P_{K, m}=\exp (-m(K)) \sum_{n=0}^{\infty} \frac{m_{K, n}}{n!}$, where $m_{K, 0}$ is a probability measure on the one point set B_{K}^{0}. It is easy to see that $P_{K, m}$ is a probability measure on $\mathscr{B}\left(B_{K}\right)$ and the following formula holds for any non negative integers n_{1}, \cdots, n_{l} and for any disjoint Borel sets B_{1}, \cdots, B_{l} in K (under an agreement that $0^{0}=$ 1),

$$
\begin{equation*}
P_{K, m}\left(\cap_{i=1}^{i}\left\{\gamma \| \gamma \cap B_{i} \mid=n_{i}\right\}\right)=\prod_{i=1}^{i} \frac{m\left(B_{i}\right)^{n_{i}} \exp \left(-m\left(B_{i}\right)\right)}{n_{i}!} \tag{1}
\end{equation*}
$$

Especially, $\left|\gamma \cap B_{i}\right|(i=1, \cdots, l)$ are independent random variables whose laws are 1-dimensional Poisson measures with mean $m\left(B_{i}\right)$. Further it is a direct consequence of the above formula that $P_{K, m}$ is consistent. That is, $\pi_{K_{n}, K_{t}} P_{K_{l}, m}$ $=P_{K_{n, m}}$ for all $n<l$. Since $B_{K n}(n=1,2, \cdots$,$) are Polish spaces, so by the$ well-known theorem (for example, see [4]) there corresponds uniquely a probability measure P_{m} on the projective limit space (Γ_{X}, \mathscr{C}) such that $\pi_{K_{n}} P_{m}$ $=P_{K_{n, m}}$ for all n , where $\pi_{K n}$ is a map : $\gamma \in \Gamma_{X} \longrightarrow \gamma \cap K_{n} \in B_{K n}$.
The measure P_{m} is called the Poisson measure. The following is also a direct consequence of (1). For any non negative integers n_{1}, \cdots, n_{l} and for any disjoint Borel sets B_{1}, \cdots, B_{I} in X we have

$$
\begin{equation*}
P_{m}\left(\cap_{i=1}^{l}\left\{\gamma \| \gamma \cap B_{i} \mid=n_{i}\right\}\right)=\prod_{i=1}^{l} \frac{m\left(B_{i}\right)^{n_{i}} \exp \left(-m\left(B_{i}\right)\right)}{n_{i}!} \tag{2}
\end{equation*}
$$

Remark 2. Let $\mu_{K_{l}}$ be a probability measure on $\mathscr{B}\left(B_{K_{I}}\right)$ defined by $\mu_{K t}=\sum_{n=0}^{\infty} \frac{c_{l, n}}{n!} m_{K l, n}$ where $c_{l, n}$ are non negative constants. If it happens that $\mu_{K_{t}}(l=1,2, \cdots$,$) is consistent by the map \pi_{K_{n}, K_{l}}$ choosing suitable constants $c_{1, n}$, then a probability measure μ arises on $\left(\Gamma_{X}, \mathscr{C}\right)$ such that $\pi_{K_{1}} \mu=\mu_{K_{i}}$. In [3], Obata considered a characterization of such μ and obtained a result that in case $m(X)=\infty, \mu$ is a superposition of Poisson measures $P_{c m}(c \geqq 0)$. More exactly, μ can be represented as $\mu=\int_{0}^{\infty} P_{c m} \lambda(d c)$ with a suitable Borel measure λ on $[0, \infty)$.

2. Poisson measure

2.1. Basic formulas. Let X be a topological space with properties (B.1) and (B.2), $\left\{K_{n}\right\}$ be a basic sequence, and m be a non atomic Borel measure on X such that $m\left(K_{n}\right)<\infty$ for all n.

Lemma 2.1. Let $\rho(x)$ be a non negative measurable function on X such that $\rho(x)=1$ on K_{n}^{c} and $\int_{K n} \rho(x) \mathrm{m}(d x)<\infty$ for some n. Then a function $\Pi_{x \in r} \rho(x)$ defined on Γ_{X} is measurable and for any non negative integers n_{1}, \cdots. n_{l} and for any disjoint Borel sets B_{1}, \cdots, B_{l} we have,

$$
\begin{equation*}
\int_{n_{i-1}^{\prime},(\gamma \||r \cap B|=n,\}} \Pi_{x \in \gamma} \rho(x) P_{m}(d \gamma)=\exp \left(m^{\prime}\left(K_{n}\right)-m\left(K_{n}\right)\right) \tag{3}
\end{equation*}
$$

$P_{m^{\prime}}\left(\cap_{i=1}^{1}\left\{\gamma \| \gamma \cap B_{i} \mid=n_{i}\right\}\right)$, where m^{\prime} is a Borel measure on X defined by $m^{\prime}(B)=$ $\int_{B} \rho(x) m(d x)$.

Proof. Without loss of generality we may assume that $B_{i} \subset K_{N} \quad(i=1$, \cdots, l) for some $N(\geqq n)$. Let us approximate $\rho(x)$ with step functions $\rho_{h}(x)$ $(h=1,2, \cdots)$ which is increasing with respect to $h: \rho_{h}(x)=\sum_{k=1}^{s} c_{k} \chi_{A_{k}}(x)+$ $\chi_{K_{N}^{C}}^{C}(x)$, where $\left\{A_{1}, \cdots, A_{s}\right\}$ is a Borel partition of K_{N} and χ_{A} is the indicator function of a set A. It may be assumed that $\left\{A_{1}, \cdots, A_{s}\right\}$ is a subdivision of $\left\{B_{1}, \cdots, B_{l}, K_{N} \cap\left(B_{1} \cup \cdots \cup B_{l}\right)^{c}\right\}$, so we have $B_{1}=\cup_{i=1}^{s_{1}} A_{i}, B_{2}=$ $\bigcup_{i=s_{1}+1}^{s_{2}} A_{i}, \cdots, B_{l}=\bigcup_{i=s_{l-1}+1}^{s_{1}} A_{i}$ for suitable numbers $1 \leqq s_{1}<\cdots<s_{l} \leqq s$.
Since $\Pi_{x \in r} \rho_{h}(x)=\prod_{i=1}^{s} c_{i}^{k_{i}}$ on $\cap_{i=1}^{s}\left\{\gamma \| \gamma \cap A_{i} \mid=k_{i}\right\}$, it is a measurable function of γ for each h and so is $\Pi_{x \in \gamma} \rho(x)$.
Next as we have,

$$
\begin{aligned}
& \int_{n_{i-1}^{i}\left\{r\left|r \cap B_{1}\right|=n_{i}\right\}} \\
& \Pi_{x \in r} \rho_{h}(x) P_{m}(d \gamma) \\
& =\Sigma^{\prime} \int_{n_{i-1}\left\{\left(\gamma\left|r \cap A_{1}\right|=k_{i}\right)\right.} \Pi_{i=1}^{S} c_{i}^{k_{i} P_{m}}(d \gamma)
\end{aligned}
$$

where Σ^{\prime} is a sum for k_{1}, \cdots, k_{s} such that $k_{1}+\cdots+k_{s_{1}}=n_{1}, \cdots, k_{s_{i-1}+1}+\cdots+$ $k_{s_{l}}=n_{l}$ and $k_{j}=0,1, \cdots,\left(s_{l}+1 \leqq j \leqq s\right)$,

$$
\begin{aligned}
& =\sum^{\prime} \Pi_{i=1}^{S} \frac{c_{i}^{k_{i}} m\left(A_{i}\right)^{k_{i}} \exp \left(-m\left(A_{i}\right)\right)}{k_{i}!} \\
& =\exp \left(-m\left(K_{N} \backslash \cup_{i=1}^{\prime} B_{i}\right)\right) \exp \left(\int_{K_{N} \backslash \cup_{i-1} B_{i}} \rho_{h}(x) m(d x)\right) \cdot \\
& \Pi_{i=1}^{l} \frac{\left(\int_{B_{i}} \rho_{h}(x) m(d x)\right)^{n_{i}} \exp \left(-m\left(B_{i}\right)\right)}{n_{i}!}
\end{aligned}
$$

So (3) follows by letting $h \longrightarrow \infty$. Notice that $m^{\prime}\left(K_{N}\right)-m\left(K_{N}\right)=m^{\prime}\left(K_{n}\right)-$ $m\left(K_{n}\right)$.
(Q.E.D.)

The following result is derived by the same reasoning, so we omit its proof.

Lemma 2.2. Let $\rho(x)$ be a non negative integrable function defined on K_{n} and put $m^{\prime}(B)=\int_{B} \rho(x) m(d x)$ for all Borel sets B in K_{n}.
Then we have

$$
\begin{align*}
& P_{K_{n}, m^{\prime}}(E)=\exp \left(-m^{\prime}\left(K_{n}\right)+m\left(K_{n}\right)\right) \int_{E} \Pi_{x \in r} \rho(x) P_{K_{n}, m}(d \gamma) \tag{4}\\
& \text { for all } E \in \mathscr{B}\left(B_{K_{n}}\right)
\end{align*}
$$

2.2. Mutual equivalence.

Let m and m^{\prime} be non atomic Borel measures on X such that $m\left(K_{n}\right), m^{\prime}\left(K_{n}\right)$ $<\infty$ for all n.

Theorem 2.1. If $P_{m^{\prime}}$ is absolutely continuous with respect to $P_{m}\left(P_{m} \geq\right.$ $\left.P_{m^{\prime}}\right)$, then $m \gtrsim m^{\prime}$.

Proof. Let $m(B)=0$. Then $m\left(B \cap K_{n}\right)=0$ for all n and $P_{m}\left(\gamma \| \gamma \cap B \cap K_{n} \mid\right.$ $=1)=0$. From the assumption, it follows that $P_{m^{\prime}}\left(\gamma \| \gamma \cap B \cap K_{n} \mid=1\right)=0$ and therefore $m^{\prime}\left(B \cap K_{n}\right)=0$ for all n. Hence we have $m^{\prime}(B)=0$.
(Q.E.D.)

The first part of the following theorem is already stated in [5]. However we prove it in a different even simpler manner from the original one.

Theorem 2.2. Assume that $m \geqq m^{\prime}$, and put $\frac{d m^{\prime}}{d m}(x)=\rho(x)$. Then in order that $P_{m} \geq P_{m^{\prime}}$, it is necessary and sufficient that $\int_{X}|\sqrt{\rho(x)}-1|^{2} m(d x)<\infty$. Further if $\int_{X}|\sqrt{\rho(x)}-1|^{2} m(d x)=\infty$, then P_{m} and $P_{m}{ }^{\prime}$, are singular.

Proof. As is easily seen from (4), we have $P_{K n, m^{\prime}} \leq P_{K n, m}$ and $\frac{d P_{K_{n}, m^{\prime}}}{d P_{K n, m}}(\gamma)$ $=\exp \left(-m^{\prime}\left(K_{n}\right)+m\left(K_{n}\right)\right) \Pi_{x \in r} \rho(x)$ for all n.
Hence in order that $P_{m^{\prime}} S P_{m}$ it is necessary and sufficient that $\left\{\sqrt{\frac{d P_{K_{n}, m^{\prime}}}{d P_{K_{n}, m}}\left(\gamma \cap K_{n}\right)}\right\}$ forms a Cauchy sequence in $L_{P_{m}}^{2}\left(\Gamma_{X}\right)$ which is assured by the well-known theorem. (See, [7]). So we shall calculate the values

$$
\phi_{n, l}=\int_{\Gamma_{X}}\left|\sqrt{\frac{d P_{K_{n}, m^{\prime}}}{d P_{K_{n}, m}}\left(\gamma \cap K_{n}\right)}-\sqrt{\frac{d P_{K,, m^{\prime}}}{d P_{K, m}}\left(\gamma \cap K_{l}\right)}\right|^{2} P_{m}(d \gamma)
$$

for $l>n$, noticing that $\Pi_{x \in \gamma \cap K_{n}} \rho(x)$ and $\Pi_{x \in r \cap\left(K \backslash K_{n}\right)} \sqrt{\rho(x)}$ are independent ran-
dom variables with respect to $P_{K l, m}$. Now applying (4) to $\sqrt{\rho}$ instead of ρ we have.

$$
\begin{aligned}
& \phi_{n, l}=2\left\{1-\exp \left\{1 / 2\left(m\left(K_{n}\right)-m^{\prime}\left(K_{n}\right)+m\left(K_{l}\right)-m^{\prime}\left(K_{l}\right)\right)\right\} \cdot\right. \\
& \left.\int_{B_{K_{l}}} \Pi_{x \in \tau \cap K_{n}} \rho(x) \Pi_{x \in \tau \cap\left(K \backslash K_{n}\right)} \sqrt{\rho(x)} P_{K_{l, m}}(d \gamma)\right] \\
& =2\left[1-\exp \left\{1 / 2\left(-m\left(K_{n}\right)+m^{\prime}\left(K_{n}\right)+m\left(K_{l}\right)-m^{\prime}\left(K_{l}\right)\right)\right\} \cdot\right. \\
& \left.\exp \left(\int_{K_{\backslash \backslash K_{n}}} \sqrt{\rho(x)} m(d x)-m\left(K_{l} \backslash K_{n}\right)\right)\right] \\
& =2\left\{1-\exp \left(-1 / 2 \int_{K_{\Lambda} \backslash K_{n}}(\sqrt{\rho(x)}-1)^{2} m(d x)\right)\right\} .
\end{aligned}
$$

Thus $\phi_{n, l} \rightarrow 0(n, l \rightarrow \infty)$ is equivalent to $\int_{X}|\sqrt{\rho(x)}-1|^{2} m(d x)<\infty$.
If $\int_{X}|\sqrt{\rho(x)}-1|^{2} m(d x)=\infty$, then it follows from the above calculation,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{l \rightarrow \infty} \int_{\Gamma_{X}} \sqrt{\frac{d P_{K_{n}, m^{\prime}}}{d P_{K_{n}, m}}}\left(\gamma \cap K_{n}\right) \sqrt{\frac{d P_{K_{l}, m^{\prime}}}{d P_{K l, m}}}\left(\gamma \cap K_{l}\right) P_{m}(d \gamma)=0 . \tag{5}
\end{equation*}
$$

By the way, $\frac{d P_{K_{n, m^{\prime}}}}{d P_{K_{n, m}}}\left(\gamma \cap K_{n}\right)$ converges to a function $f_{\infty}(\gamma)$ for $P_{m}-$ a. e. γ as $n \longrightarrow \infty$ by the martingale convergence theorem, and $f_{\infty}(\gamma)$ is the density function of the absolutely continuous part of $P_{m^{\prime}}$ with respect to P_{m}. Applying Lebesgue-Fatou's lemma twice to (5), we get $\int_{\Gamma_{X}} f_{\infty}(\gamma) P_{m}(d \gamma)=0$ which shows P_{m} and $P_{m^{\prime}}$ are singular.
(Q.E.D.)

Corollary. The Hellinger distance between P_{m} and $P_{m^{\prime}}$ is given by

$$
\begin{align*}
& \int_{\Gamma_{X}}\left|\sqrt{\frac{d P_{m^{\prime}}}{d P_{m}}}(\gamma)-1\right|^{2} P_{m}(d \gamma) \tag{6}\\
& =2\left\{1-\exp \left(-1 / 2 \int_{X}(\sqrt{\rho(x)}-1)^{2} m(d x)\right)\right\}
\end{align*}
$$

2.3. Ergodicity. Let G be a group of bimeasurable maps $\phi: X \longrightarrow$ X such that $m \simeq \psi m$ (image measure of m by the map ψ) and $\int_{X}\left|\sqrt{\frac{d \psi m}{d m}}(x)-1\right|^{2} m(d x)<\infty$. Note that $\psi m\left(K_{n}\right)<\infty$ for all n, because $\sqrt{\psi m\left(K_{n}\right)}=\left\{\int_{K_{n}} \frac{d \psi m}{d m}(x) m(d x)\right\}^{1 / 2} \leqq\left\{\int_{K_{n}}\left|\sqrt{\frac{d \psi m}{d m}}(x)-1\right|^{2} m(d x)\right\}^{1 / 2}+m\left(K_{n}\right)^{1 / 2}$ $<\infty$. Hence $P_{\phi m}$ is well defined and $P_{\psi_{m}} \simeq P_{m}$. Next we put $\psi(\gamma)=\left\{\psi\left(x_{1}\right)\right.$, $\left.\cdots, \phi\left(x_{n}\right), \cdots\right\}$ for all $\gamma=\left\{x_{1}, \cdots, x_{n}, \cdots\right\} \in \Gamma_{X}$. It must be noticed that $\psi(\gamma)$
does not necessarily belong to Γ_{X}. Nevertheless, $\left|\phi(\gamma) \cap K_{n}\right|=\left|\gamma \cap \psi^{-1}\left(K_{n}\right)\right|$ $<\infty$ for $P_{m}-a . e . \gamma$, because $\psi m\left(K_{n}\right)<\infty$. So a map $T_{\psi}: \gamma \in \Gamma_{X} \longrightarrow \psi(\gamma) \in$ Γ_{X} is defined almost everywhere with respect to P_{m}.

Definition 1. $\quad P_{m}$ is said to be G-ergodic, if $P_{m}(A)=1$ or 0 provided that $P_{m}\left(A \ominus T_{\psi}^{-1}(A)\right)=0$ for all $\phi \in G$.

If $m(X)<\infty$, then P_{m} is not ergodic, because $B_{X}^{n} \equiv\left\{\gamma \in \Gamma_{X} \| \gamma \mid=n\right\}$ is a G-invariant set but $P_{m}\left(B_{X}^{n}\right)=\frac{m(X)^{n}}{n!} \exp (-m(X)) \neq 1,0$ for each n. Gener. ally speaking, the ergodicity of P_{m} has no relation with that of m. Now we shall state sufficient conditions for the ergodicity as the following two theorems.

Theorem 2.3. If for any $\varepsilon>0$ and for any n there exists $\phi \in G$ such that $\phi\left(K_{n}\right) \cap K_{n}=\phi$ and $\int_{X}\left|\sqrt{\frac{d \psi m}{d m}}(x)-1\right|^{2} m(d x)<\varepsilon$, then P_{m} is G-ergodic.

Proof. First of all we shall claim that

$$
\begin{equation*}
P_{m}\left(T_{\phi}^{-1}(E)\right) \leqq P_{m}(E)+A_{\psi} \text { for all } \psi \in G \text { and for all } E \in \mathscr{C}, \tag{7}
\end{equation*}
$$

where $A_{\psi}=2 \sqrt{2}\left\{1-\exp \left(-1 / 2 \int_{X}\left|\sqrt{\frac{d \psi m}{d m}}(x)-1\right|^{2} m(d x)\right)\right\}^{1 / 2}$.
In fact we have

$$
\begin{aligned}
& P_{m}\left(T_{\phi}^{-1}(E)\right)=\int_{E} \frac{d P_{\psi_{m}}}{d P_{m}}(\gamma) P_{m}(d \gamma) \leqq P_{m}(E)+\int_{E}\left|\frac{d P_{\psi_{m}}}{d P_{m}}(\gamma)-1\right| P_{m}(d \gamma) \\
& \leqq P_{m}(E)+2\left\{\int_{\Gamma_{X}}\left|1-\sqrt{\frac{d P_{\psi m}}{d P_{m}}}(\gamma)\right|^{2} P_{m}(d \gamma)\right\}^{1 / 2} \\
& =P_{m}(E)+2 \sqrt{2}\left\{1-\exp \left(-1 / 2 \int_{X}\left(\sqrt{\frac{d \psi m}{d m}}(x)-1\right)^{2} m(d x)\right)\right\}^{1 / 2},
\end{aligned}
$$

where the last inequality is derived from (6).
Now let A be a measurable set such that $P_{m}\left(A \ominus T_{\psi}^{-1}(A)\right)=0$ for all $\psi \in G$. We take $B_{n} \in \mathscr{B}\left(B_{K n}\right)$ such that $P_{m}\left(A \ominus \pi_{K_{n}}^{-1}\left(B_{n}\right)\right)<\varepsilon$ for a given $\varepsilon>0$. Then we have $P_{m}\left(A \ominus T_{\psi}^{-1} \pi_{K_{n}}^{-1}\left(B_{n}\right)\right)<\varepsilon+A_{\varphi}$ by virtue of taking E as $A \ominus \pi_{K_{n}}^{-1}\left(B_{n}\right)$ in (7). By the assumption there exists a map $\phi \in G$ such that $\phi\left(K_{n}\right) \cap K_{n}=\phi$ and $A_{\phi}<\varepsilon$. It follows from the regionally independence of Poisson measure that

$$
\begin{aligned}
& \left(P_{m}(A)-2 \varepsilon\right)\left(P_{m}\left(A^{c}\right)-\varepsilon\right)<P_{m}\left(T_{\psi}^{-1} \pi_{K_{n}^{1}}^{-1}\left(B_{n}\right)\right) P_{m}\left(\pi_{K_{n}^{-1}}^{-1}\left(B_{n}^{c}\right)\right)= \\
& P_{m}\left(T_{\psi}^{-1} \pi_{K_{n}^{1}}^{-1}\left(B_{n}\right) \cap \pi_{K n}^{-1}\left(B_{n}^{c}\right)\right) \leqq P_{m}\left(T_{\psi}^{-1} \pi_{K_{n}^{1}}^{-1}\left(B_{n}\right) \ominus A\right)+P_{m}\left(\pi_{K n}^{-1}\left(B_{n}^{c}\right) \ominus A^{c}\right) \\
& <\varepsilon+A_{\psi}+\varepsilon<3 \varepsilon \text {. } \\
& \text { Letting } \varepsilon \longrightarrow 0 \text {, we have } P_{m}(A) P_{m}\left(A^{c}\right)=0 \text {. }
\end{aligned}
$$

Definition 2. Let $G_{K_{n}}=\left\{\psi \in G \mid \psi=\right.$ identity on $\left.K_{n}^{c}\right\}$ and let f be a symmetric measurable function defined on $\widetilde{K}_{n}^{\prime}(l=1,2, \cdots)$.
We say that m is $G_{K n}^{l}$-ergodic, if f is constant modulo null sets provided that for all $\psi \in G_{K n}, f\left(x_{1}, \cdots, x_{l}\right)=f\left(\psi\left(x_{1}\right), \cdots, \psi\left(x_{l}\right)\right)$ for $m_{K n}^{l}-$ a.e. $x=\left(x_{1}, \cdots\right.$, $\left.x_{l}\right)$.

Theoren 2.4. If for any n, m is $G_{K_{N}}^{\prime}$-ergodic for some $N \geqq n$ and for all l, then P_{m} is G-ergodic provided that $m(X)=\infty$.

Proof. If necessary taking a subsequence of the basic sequence, we may assume that m is $G_{K n}^{l}$-ergodic for all n and l. Let P_{n}^{1}, P_{n}^{2} be image measures of P_{m} by the maps $\pi_{K n}, \pi_{K_{n}^{c}}, \pi_{K_{n}^{c}}(\gamma)=\gamma \cap K_{n}^{c}$, respectively. Then P_{m} is regarded as the product measure of P_{n}^{1} and P_{n}^{2}. Now assume that a measurable set A satisfies $P_{m}\left(A \ominus T_{\psi}^{-1}(A)\right)=0$ for all $\psi \in G$. For each n we put

$$
f_{n}\left(\gamma_{1}\right)=\int_{\Gamma_{k i}^{k}} \chi_{A}\left(\gamma_{1} \cup \gamma_{2}\right) P_{n}^{2}\left(d \gamma_{2}\right) \quad \text { for } \gamma_{1} \in B_{K_{n}}
$$

Then for all $\psi \in G_{K_{n}}$ we have,

$$
\begin{aligned}
& 0=\int_{B_{K_{n}}}\left|f_{n}\left(\gamma_{1}\right)-f_{n}\left(\phi\left(\gamma_{1}\right)\right)\right| P_{n}^{1}\left(d \gamma_{1}\right)= \\
& \sum_{l=0}^{\infty} \frac{\exp \left(-m\left(K_{n}\right)\right)}{l!} \int_{\widetilde{K}_{n}^{\prime}}\left|f_{n}\left(\left\{x_{1}, \cdots, x_{l}\right\}\right)-f_{n}\left(\left\{\phi\left(x_{1}\right), \cdots, \phi\left(x_{l}\right)\right\}\right)\right| m_{K_{n}}^{\prime}(d x)
\end{aligned}
$$

Thus the symmetric function : $\left(x_{1}, \cdots, x_{l}\right) \longrightarrow f_{n}\left(\left\{x_{1}, \cdots, x_{l}\right\}\right)$ satisfies the assumption of $G_{K n}^{\prime}$-ergodicity, so it follows that $f_{n}\left(\left\{x_{1}, \cdots, x_{l}\right\}\right)=$ const $\left(\equiv c_{n, l}\right)$ for $m_{K n}^{l}$-a.e.x. Define a new measure ν by $\nu(E)=P_{m}(A \cap E)$ for all $E \in \mathscr{C}$. Then for any $B \in \mathscr{B}\left(B_{K n}\right)$ we have,

$$
\nu\left(\pi_{K_{n}^{1}}^{-1}(B)\right)=\int_{B} f_{n}\left(\gamma_{1}\right) P_{n}^{1}\left(d \gamma_{1}\right)=\sum_{l=0}^{\infty} \frac{\exp \left(-m\left(K_{n}\right)\right)}{l!} c_{n, l}, m_{K_{n} l}\left(B \cap B_{K_{n}}^{l}\right) .
$$

Therefore there exists some measure λ on $[0, \infty)$ such that

$$
\nu=\int_{0}^{\infty} P_{c m} \lambda(d c) \text { in virtue of Remark 2. As } \nu \leq P_{m} \text { and } \lim _{N \rightarrow \infty} \frac{1}{N}
$$

$\sum_{l=1}^{N} \frac{\left|\gamma \cap\left(K_{l+1} \backslash K_{l}\right)\right|}{m\left(K_{l+1} \backslash K_{l}\right)}=c$ for $P_{c m}-a . e . \gamma$ by the law of large numbers, so we have $\lambda\left(\{1\}^{c}\right)=0$ and therefore $\nu=\lambda(\{1\}) P_{m}$. This shows $P_{m}\left(A^{c}\right)=0$ if $\lambda(\{1\})>0$ and $P_{m}(A)=0$ if $\lambda(\{1\})=0$.
(Q.E.D.)

The next theorem is already stated in [6] but we shall list and prove it as an application of Theorem 2.4.

Theorem 2.5. $\quad P_{m}$ is G-ergodic under the following situation.
(a) X is a connected para-compact but not compact C^{∞}-manifold,
(b) a basic sequence $\left\{K_{n}\right\}$ is a sequence of connected open sets with compact closure,
(c) m is a locally Euclidean infinite measure whose local densities (with respect to the Lebesgue measure) on each coordinate neighbourhood are all C^{∞}-functions,
(d) G is composed of all C^{∞}-diffeomorphisms ϕ with compact supports.

That is, there exists some compact set K depending on ψ such that ψ is identity on K^{c}. We shall denote this group by Diff X.

Proof. Fix n and put $K_{n}=K, m \mid K=m_{K}$. Then for the proof it is sufficient to show that $m_{K}^{\prime}(A) m_{K}^{l}\left(A^{c}\right)=0$ holds for a measurable set $A \subset \widetilde{K}^{\prime} \quad(l=1$, $2, \cdots)$ which satisfies $m_{K}^{\prime}\left(A \ominus T_{\phi}^{-1}(A)\right)=0$ for all $\phi \in$ Diff K, where $T_{\psi}: x=$ $\left(x_{1}, \cdots, x_{l}\right) \in \widetilde{K}^{\prime} \longrightarrow\left(\psi\left(x_{1}\right), \cdots, \psi\left(x_{l}\right)\right) \in \widetilde{K}^{l}$ and Diff $K=\{\psi \in \operatorname{Diff} X \mid \phi=$ identity on $\left.K^{c}\right\}$. Suppose that $\mathrm{m}_{K}^{l}(A)>0$ and put $\mu(B)=m_{K}^{l}(B \cap A)$ for all Borel sets B in \widetilde{K}^{l}. By the assumption μ is Diff K-quasi-invariant and Diff K acts transitively on \widetilde{K}^{l}. Thus we have $\mu\left(U_{1} \times \cdots \times U_{l}\right)>0$ for all disjoint open subset $U_{i} \subset K(i=1, \cdots, l)$. Take an arbitrary point $\left(x_{1}, \cdots, x_{l}\right) \in \widetilde{K}^{l}$ and take disjoint neighbourhood U_{i} of $x_{i}(i=1, \cdots, l)$ which are diffeomorphic to disks $D_{i} \subset \mathbf{R}^{\operatorname{dim}(X)}$ under maps ψ_{i}, and put $\phi_{i}\left(m \mid U_{i}\right)=\lambda_{i}$. $\lambda_{1} \times \cdots \times \lambda_{i}$ is equivalent to the Lebesque measure λ on $D_{1} \times \cdots \times D_{l}$. Further we put ϕ $=\left(\phi_{1}, \cdots, \psi_{l}\right): U_{1} \times \cdots \times U_{l} \longrightarrow D_{1} \times \cdots \times D_{l}$ and $\widehat{A}=\phi\left(A \cap U_{1} \times \cdots \times U_{l}\right)$. Now consider a group $\widehat{\operatorname{Diff}}\left(D_{1} \times \cdots \times D_{l}\right)$ of all diffeomorphisms ϕ on $D_{1} \times \cdots \times D_{l}$ such that $\phi\left(t_{1}, \cdots, t_{l}\right)=\left(\phi_{1}\left(t_{1}\right), \cdots, \phi_{l}\left(t_{l}\right)\right)$ for all $\left(t_{1}, \cdots, t_{l}\right) \in D_{1} \times \cdots \times D_{l}$, where ϕ_{i} is a diffeomorphism on D_{i} with compact support $(i=1, \cdots, l)$. It is not difficult to show that $\lambda \mid D_{1} \times \cdots \times D_{1}$ is $\widehat{\text { Diff }}\left(D_{1} \times \cdots \times D_{1}\right)$-ergodic. (It is even $\widehat{\operatorname{Diff}}\left(D_{1} \times \cdots \times D_{l}, \lambda\right)$-ergodic in case $\operatorname{dim}(X)>1$, where $\widehat{\text { Diff }}\left(D_{1} \times \cdots \times D_{l}\right.$, $\lambda)=\left\{\phi \in \widehat{\operatorname{Diff}}\left(D_{1} \times \cdots \times D_{l}\right) \mid \phi \lambda=\lambda\right\}$.) Since $\phi^{-1} \phi \psi$ is regarded naturally as an element of Diff K, it follows that $\left(\lambda_{1} \times \cdots \times \lambda_{l}\right)(\hat{A} \ominus \phi(\widehat{A}))=m_{K}^{L}\left(A \cap U_{1} \times \cdots\right.$ $\left.\left.\times U_{l}\right) \ominus \phi^{-1} \phi \phi\left(A \cap U_{1} \times \cdots \times U_{l}\right)\right)=m_{K}^{l}\left(\left(A \ominus T_{\phi^{-1}}^{-1}(A)\right) \cap U_{1} \times \cdots \times U_{l}\right)=0$, and therefore $\lambda(\widehat{A} \ominus \phi(\widehat{A}))=0$. Hence we have $\lambda(\widehat{A})=0$ or $\lambda\left(\widehat{A}^{c} \cap D_{1} \times \cdots \times D_{l}\right)$ $=0$. However $\lambda(\widehat{A})>0$ which follows from $\mu\left(U_{1} \times \cdots \times U_{l}\right)>0$. It follows that $m_{K}^{l}\left(A^{c} \cap U_{1} \times \cdots \times U_{l}\right)=\left(\lambda_{1} \times \cdots \times \lambda_{l}\right)\left(\widehat{A}^{c} \cap D_{1} \times \cdots \times D_{l}\right)=0$.
By the second countable axiom we have $m_{K}^{l}\left(A^{c}\right)=0$.
Remark 3. In a similar but rather complicated way we can show that P_{m} is Diff (X, m)-ergodic under the same situation with $\operatorname{dim}(X)>1$, where Diff (X, m) is the set of all $\psi \in$ Diff X which preserve m.

3. Elementary representations of Diff X generated by Poisson measures

3.1. Elementary representations. From now on we shall assume that
(a) X is a connected para-compact but not compact C^{∞}-manifold,
(b) the basic sequence $\left\{X_{n}\right\}$ is a sequence of connected open sets with compact closure,
(c) m is a locally Euclidean infinite measure with smooth local densities,
(d) $G=\operatorname{Diff} X$.

In [6], Vershik-Gel'fand-Graev defined elementary representations and discussed their several properties. Here we pick up a problem of their mutual equivalence and extend their results.

Now consider the following canonical representation of Diff X in $L_{P m}^{2}\left(\Gamma_{X}\right)$

$$
\begin{equation*}
U_{m}(\psi): f(\gamma) \longrightarrow \sqrt{\frac{d P_{\psi_{m}}}{d P_{m}}}(\gamma) f\left(\psi^{-1}(\gamma)\right) \tag{8}
\end{equation*}
$$

U_{m} is an irreducible unitary representation of Diff X (See, [6]). Moreover let us consider the following representation V^{p} of another type. For this let $n \geqq 1$ be an integer and $p_{n}: \widetilde{X}_{n} \longrightarrow B_{X}^{n}$ be a map such that $\left(x_{1}, \cdots, x_{n}\right) \longrightarrow\left\{x_{1}\right.$, $\left.\cdots, x_{n}\right\}$. Then a function σ on Diff $X \times B_{X}^{n}$ with values in the symmetric group, \mathfrak{C}_{n} is defined by the formula, $s_{n}\left(\psi^{-1}(\gamma)\right)=\psi^{-1}\left(s_{n}(\gamma)\right) \sigma(\phi, \gamma)$, where $\left(x_{1}, \cdots, x_{n}\right) \sigma=\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)$ and $s_{n}: B_{X}^{n} \longrightarrow \widetilde{X}_{n}$ is a measurable cross sec. tion of p_{n}. Now we associate with each pair (n, ρ), where ρ is a unitary representation of \mathfrak{S}_{n} in a Hilbert space W, a unitary representation V^{ρ} of Diff X in $L_{m n}^{2}\left(B_{X}^{n}, W\right)$ such that

$$
\begin{equation*}
V^{\rho}(\psi): f(\gamma) \longrightarrow \sqrt{\frac{d \psi m_{n}}{d m_{n}}}(\gamma) \rho(\sigma(\psi, \gamma)) f\left(\psi^{-1}(\gamma)\right), \tag{9}
\end{equation*}
$$

where m_{n} is the image measure of the direct product of n copies of m by the $\operatorname{map} p_{n}$ and ψm_{n} is the image measure of m_{n} by a map : $\gamma \in B_{X}^{n} \longrightarrow \phi(\gamma) \in B_{X}^{n}$. If ρ is irreducible, then so is V^{ρ}, and two representations $V^{\rho_{1}}$ and $V^{\rho_{2}}$, where ρ_{1} and ρ_{2} are irreducible representations of $\mathbb{S}_{n_{1}}$ and $\mathbb{S}_{n_{2}}$, respectively, are equivalent, if and only if $n_{1}=n_{2}$ and ρ_{1} and ρ_{2} are equivalent (See, [6]). Vershik-Gel'fand-Graev called a representation of Diff X of the form

$$
\begin{equation*}
U_{m}^{o}=U_{m} \otimes V^{o} \tag{10}
\end{equation*}
$$

elementary representation associated with the Poisson measure and obtained the following results
(a) U_{m}^{p} is irreducible if ρ is so, and
(b) $U_{c_{1} m}^{\rho_{1}}$ is equivalent to $U_{c_{2} m}^{\rho_{2}}$, where c_{1} and c_{2} are positive constants, if and only if $c_{1}=c_{2}$ and ρ_{1} and ρ_{2} are equivalent.

In this section we shall consider the equivalence of U_{m}^{ρ}, varying m among all locally Eucidean infinite measures with smooth local densities. To see this, it is convenient to deform the representation U_{m}^{p} to another form. Put
$\widetilde{\mathbf{N}}^{n}=\left\{a=\left(i_{1}, \cdots, i_{n}\right) \mid i_{j} \in \mathbf{N}\right.$ such that $\left.i_{p} \neq i_{q}(p \neq q)\right\}, l^{2}\left(\widetilde{\mathbf{N}}^{n}, W\right)=\{\phi \mid \phi$ is a $W-$ valued function defined on $\widetilde{\mathbf{N}}^{n}$ such that $\left.\|\phi\|^{2} \equiv \sum_{a \in \tilde{\mathbf{N}}^{2}}\|\phi(a)\|_{W}^{2}<\infty\right\}$ and $H^{\rho}=$ $\left\{\phi \in l^{2}(\mathbf{N}, W) \mid \phi\left(i_{\sigma(1)}, \cdots, i_{\sigma(n)}\right)=\rho^{-1}(\sigma) \phi\left(i_{1}, \cdots, i_{n}\right)\right.$ for all $\left.\sigma \in \mathbb{S}_{n}\right\}$, where ρ is a unitary representation of \mathfrak{S}_{n} in a Hilbert space W. Further let \mathfrak{S}^{∞} be the set of all permutations on \mathbf{N} and put $\sigma a=\left(\sigma\left(i_{1}\right), \cdots, \sigma\left(i_{n}\right)\right)$ for $\sigma \in \mathbb{S}^{\infty}$ and for $a \in \widetilde{\mathbf{N}}^{n}$. As before we define a function σ on Diff $X \times \Gamma_{X}$ with values in \mathbb{S}^{∞} by the formula, $s\left(\psi^{-1}(\gamma)\right)=\psi^{-1}(s(\gamma)) \sigma(\psi, \gamma)$, where s is a measurable (admissible) cross section of the map $p: \widetilde{X}^{\infty} \ni\left(x_{1}, x_{2}, \cdots\right) \longrightarrow\left\{x_{1}, x_{2}, \cdots\right\} \in \Gamma_{X}$ with the following property : If we have $\left|\gamma \cap X_{1}\right|=k_{1},\left|\gamma \cap\left(X_{2} \backslash X_{1}\right)\right|=k_{2}, \mid \gamma \cap$ $\left(X_{n} \backslash X_{n-1}\right) \mid=k_{n}, \cdots$, then the first k_{1} element of $s(\gamma)$ are in $\gamma \cap X_{1}$, the next k_{2} element of $s(\gamma)$ are in $\gamma \cap\left(X_{2} \backslash X_{1}\right)$ and so on. It will be useful to notice that if $\left|\gamma \cap X_{k}\right|=r$ and $\psi \in \operatorname{Diff} X_{k}=\left\{\psi \in \operatorname{Diff} X \mid \psi\right.$ identity on $\left.X_{k}^{c}\right\}$, then we have $\sigma(\psi, \gamma) \in \Xi_{r}$.
Now let U_{m}^{ρ} be a unitary representation of Diff X in the space $L_{P_{m}}^{2}\left(\Gamma_{X}\right) \times H^{\rho}$ defined by

$$
\begin{equation*}
U_{m}^{\rho}(\psi): F(\gamma, a) \longrightarrow \sqrt{\frac{d P_{\psi m}}{d P_{m}}}(\gamma) F\left(\psi^{-1}(\gamma), \sigma(\psi, \gamma)^{-1} a\right) \tag{11}
\end{equation*}
$$

In [6] it was shown that this U_{m}^{p} is equivalent to that U_{m}^{p} defined in (10). So we shall work on ($\left.U_{m}^{\rho}, L_{P m}^{2}\left(\Gamma_{X}\right) \otimes H^{\rho}\right)$.

Theorem 3.1. (Whether ρ and ρ^{\prime} are irreducible or not)

If there exists a bounded operator $T: L_{P_{m}}^{2}\left(\Gamma_{X}\right) \otimes H^{\rho} \longrightarrow L_{P_{m^{\prime}}}^{2}\left(\Gamma_{X}\right) \otimes H^{\rho^{\prime}}$ such that
(a) $T U_{m}^{\rho}(\psi)=U_{m^{\prime}}^{\rho^{\prime}}(\psi) T$ for all $\phi \in \operatorname{Diff} X$,
(b) $\exists \phi \in H^{\rho}$ such that $T(1 \otimes \phi) \neq 0$,
then P_{m} and $P_{m^{\prime}}$ are equivalent.
Proof. We shall divide the proof into four steps.
(I) Without loss of generality we may assume that $\|\phi\|=1$ and T is a contraction. First of all we take X_{k} (connected open set with compact closure) and fix it for a little while. So we put $X_{k}=Y$.
Further we put $P_{m}=\mu, P_{m^{\prime}}=\mu^{\prime}$ and put μ_{1}, μ_{2} equal to the image measure of μ by the map : $\gamma \longrightarrow \gamma \cap Y=\gamma_{1}, \gamma \longrightarrow \gamma \cap Y^{c}=\gamma_{2}$, respectively. Now we consider a bounded operator $L_{\mu 1}^{2}\left(\Gamma_{Y}\right) \otimes H^{\rho} \longrightarrow L_{\mu^{\prime} 1}^{2}\left(\Gamma_{Y}\right) \otimes H^{\rho^{\prime}}$ defined by

$$
\begin{equation*}
T_{Y} F\left(\gamma_{,} a^{\prime}\right)=\int_{r_{Y} c} T F\left(\gamma_{1}, \gamma_{2}, a^{\prime}\right) \mu_{2}^{\prime}\left(d \gamma_{2}\right) \tag{12}
\end{equation*}
$$

Here we identify an element $f \in L_{\mu_{1}}^{2}\left(\Gamma_{Y}\right)$ with $\widehat{f} \in L_{\mu}^{2}\left(\Gamma_{X}\right)$ through $\widehat{f}(\gamma)=$ $f(\gamma \cap Y)$. So $L_{\mu_{1}}^{2}\left(\Gamma_{Y}\right)$ is regarded as a closed subspace of $L_{\mu}^{2}\left(\Gamma_{X}\right)$.
It is easily checked that $T_{Y} F$ is really a function of (γ_{1}, a^{\prime}) and that $T_{Y} F\left(\gamma, a_{\sigma}^{\prime}\right)=\rho^{\prime}(\sigma)^{-1} T_{Y} F\left(\gamma, a^{\prime}\right)$ for all $\sigma \in \mathbb{S}_{n^{\prime}}$, where $a_{\sigma}^{\prime}=\left(i_{\sigma(1)}, \cdots, i_{\sigma\left(n^{\prime}\right)}\right)$ for an element $a^{\prime}=\left(i_{1}, \cdots, i_{n^{\prime}}\right) \in \widetilde{\mathbf{N}^{n^{\prime}}}$. Moreover,

$$
\begin{aligned}
& \sum_{a^{\prime} \in \tilde{\mathbf{N}}^{\prime}} \int_{\Gamma_{X}}\left\|T_{Y} F\left(\gamma, a^{\prime}\right)\right\|_{W^{\prime}}^{2} \mu^{\prime}(d \gamma) \leqq \\
& \int_{\Gamma_{Y}} \int_{\Gamma_{Y}} \sum_{a^{\prime} \in \tilde{\mathbf{N}}^{\prime}}\left\|T F\left(\gamma_{1}, \gamma_{2}, a^{\prime}\right)\right\|_{W^{\prime}}^{2} \mu_{1}^{\prime}\left(d \gamma_{1}\right) \mu_{2}^{\prime}\left(d \gamma_{2}\right)=\|T F\|^{2} \leqq\|F\|^{2} .
\end{aligned}
$$

Thus T_{Y} is also a contraction. Now observe that for $\phi \in \operatorname{Diff} Y, \sigma(\psi, \gamma)$ is independent of γ_{2}. So we have,

$$
\begin{equation*}
T_{Y} U_{m}^{o}(\psi)=U_{m^{\prime}}^{\rho^{\prime}}(\psi) T_{Y} \quad \text { for } \psi \in \operatorname{Diff} Y \tag{13}
\end{equation*}
$$

Because

$$
\begin{aligned}
& \left(T_{Y} U_{m}^{\rho}(\phi) F\right)\left(\gamma, a^{\prime}\right)=\int_{\Gamma_{Y}}\left(U_{m^{\prime}}^{\rho^{\prime}}(\psi) T F\right)\left(\gamma_{1}, \gamma_{2}, a^{\prime}\right) \mu_{2}^{\prime}\left(d \gamma_{2}\right)= \\
& \int_{\Gamma_{Y}{ }^{c}} \sqrt{\frac{d T_{\phi} \mu_{1}^{\prime}}{d \mu_{1}^{\prime}}}\left(\gamma_{1}\right) T F\left(\phi^{-1}\left(\gamma_{1}\right), \gamma_{2}, \sigma(\psi, \gamma)^{-1} a^{\prime}\right) \mu_{2}^{\prime}\left(d \gamma_{2}\right) \\
& =\left(U_{m^{\prime}}^{\rho^{\prime}}(\psi) T_{Y} F\right)\left(\gamma, a^{\prime}\right)
\end{aligned}
$$

(II) Let us consider a unitary representation $Q(\sigma)$ of \mathbb{S}^{∞} in the space H^{ρ}, $Q(\sigma): \phi(a) \longrightarrow \phi\left(\sigma^{-1} a\right)$. According to section 3 in [6] We split H^{ρ} into the direct sum of subspaces that are primary with respect to the symmetric group $\mathfrak{S}_{r} \subset \mathfrak{S}^{\infty}$. This decomposition can be presented in the following way, $H^{\rho}=$ $\sum_{i}^{\oplus} W_{r}^{i} \otimes C_{r}^{i}$, where W_{r}^{i} are the spaces in which the irreducible and pairwise inequivalent representations ρ_{r}^{i} of \mathbb{S}_{r} act. C_{r}^{i} is the space on which \mathbb{S}_{r} acts trivially. More exactly we have $Q(\sigma) \phi=\sum_{i}\left\{\rho_{r}^{i}(\sigma) \otimes i d\right\} \phi_{r, i}$ with the decomposition $\phi=\sum_{i} \phi_{r, i}, \phi_{r, i} \in W_{r}^{i} \otimes C_{r}^{i}$. Further using a natural decomposition, $L_{\mu 1}^{2}\left(\Gamma_{Y}\right)=\sum_{r}^{\oplus} L_{\mu_{1}}^{2}\left(B_{Y}^{r}\right)$ (Note that $\Gamma_{Y}=\cup_{r=0}^{\infty} B_{Y}^{r}$: disjoint union), we have an orthogonal decomposition $L_{\mu_{1}}^{2}\left(\Gamma_{Y}\right) \otimes H^{\rho}=\sum_{r, i}^{\oplus} \phi_{\mu}(r, i)$, where $\phi_{\mu}(r, i)=L_{\mu 1}^{2}\left(B_{Y}^{r}\right)$ $\otimes W_{r}^{i} \otimes C_{r}^{i}$ is an invariant subspace of the representation $U_{m}^{p}(\psi), \psi \in \operatorname{Diff} Y$ whose form on $\phi_{\mu}(r, i)$ are as follows.

$$
\begin{align*}
& U_{m}^{o}(\phi)\left(F \otimes w_{r}^{i} \otimes c_{r}^{i}\right)(\gamma, a) \tag{14}\\
& =\sqrt{\frac{d T_{\phi} \mu_{1}}{d \mu_{1}}}\left(\gamma_{1}\right) F\left(\phi^{-1}\left(\gamma_{1}\right)\right)\left(\rho_{r}^{i}(\sigma(\phi, \gamma)) \otimes i d\right)\left(w_{r}^{i} \otimes c_{r}^{i}\right) \quad(a)
\end{align*}
$$

Now let us put for $\psi \in \operatorname{Diff} Y$

$$
\begin{equation*}
U_{\mu}^{\gamma, i}(\psi)\left(F \otimes w_{r}^{i}\right) \quad\left(\gamma_{1}\right)=\sqrt{\frac{d T_{\varphi} \mu_{1}}{d \mu_{1}}}\left(\gamma_{1}\right) F\left(\psi^{-1}\left(\gamma_{1}\right)\right) \rho_{r}^{i}(\sigma(\phi, \gamma)) w_{r}^{i} \tag{15}
\end{equation*}
$$

for $F \in L_{\mu_{1}}^{2}\left(B_{Y}^{r}\right)$ and for $w_{r}^{i} \in W_{r}^{i}$.
Then we have

$$
\begin{equation*}
U_{m}^{o}(\phi)=U_{\mu}^{r, i}(\phi) \otimes_{i d} \quad \text { on } \phi_{\mu}(r, i) \tag{16}
\end{equation*}
$$

$U_{\mu,}^{\gamma, i}$ are irreducible unitary representations of Diff Y in the space $L_{\mu_{1}}^{2}\left(B_{Y}^{r}\right) \otimes$ W_{r}^{i}, and $U_{\mu}^{r, i}$ and $U_{\mu}^{r^{\prime}, i^{\prime}}$ are inequivalent unless $i=i^{\prime}$ and $r=r^{\prime}$. (See [6].) So it follows from (13) that there exists a unique integer J_{i} such $T_{Y} \phi_{\mu}(r, i) \subseteq$ $\phi_{\mu^{\prime}}\left(r, J_{i}\right)$ unless $T_{Y} \phi_{\mu}(r, i)=0$, and the representations ρ_{r}^{i} and $\rho_{r}^{\prime J_{i}}$ are equivalent. Hence we have $J_{i} \neq J_{k}$ for $i \neq k$. Let $\omega_{r, i}: W_{r}^{i} \longrightarrow W_{r}^{\prime J_{i}}$ be an intertwining unitary operator of the representations ρ_{r}^{i} and $\rho_{r}^{\prime J_{i}}$, and $J_{Y}: L_{\mu_{1}}^{2}\left(B_{Y}^{r}\right) \longrightarrow$ $L_{\mu_{1}}^{2}\left(B_{Y}^{\gamma}\right)$ be a unitary operator defined by $J_{Y} F\left(\gamma_{1}\right)=\sqrt{\frac{d \mu_{1}}{d \mu_{1}^{\prime}}}\left(\gamma_{1}\right) F\left(\gamma_{1}\right)$.
Then it is easy to see that a unitary operator $T_{r, i}=J_{Y} \otimes \omega_{r, 1}: L_{\mu 1}^{2}\left(B_{Y}^{r}\right) \otimes$ $W_{r}^{i} \longrightarrow L_{\mu_{1}}^{\prime^{\prime}}\left(B_{Y}^{r}\right) \otimes W_{r}^{\prime J_{t}}$ satisfies

$$
\begin{equation*}
U_{\mu}^{r, J^{\prime}}(\psi) T_{r, i}=T_{r, i} U_{\mu}^{r, i}(\psi) \quad \text { for all } \psi \in \operatorname{Diff} Y \tag{17}
\end{equation*}
$$

(III) Here we list up the following fact in the representation theory. The proof will be done at the end of this section.

Fact: Let $E_{i}, H_{i},(i=1,2)$ be Hilbert spaces, U_{1} and U_{2} be two equivalent irreducible unitary representations of a group G in the spaces H_{1} and H_{2}, and $T: H_{1} \longrightarrow H_{2}$ be an intertwining unitary operator of the representations U_{1} and U_{2}. Suppose that a bounded operator $\widetilde{A}: H_{1} \otimes E_{1} \longrightarrow H_{2} \otimes E_{2}$ satisfies $\left(U_{2}(g) \otimes i d_{E_{2}}\right) \widetilde{A}=\widetilde{A}\left(U_{1}(g) \otimes i d_{E_{1}}\right)$ for all $g \in G$. Then there exists a bounded operator $A: E_{1} \longrightarrow E_{2}$ such that $\tilde{A}=T \otimes A$.

Applying this fact to the operator $T_{Y} \mid \phi_{\mu}(r, i)$, it follows from (13) (16) and (17) that there exists a bounded operator $U_{r, i}: C_{r}^{i} \longrightarrow C_{r}^{\prime J_{i}}$ such that $T_{Y} \mid \phi_{\mu}(r, i)=T_{r, i} \otimes U_{r, i}$ for all (r, i) unless $T_{Y} \phi_{\mu}(r, i)=\{0\}$. As is easily seen, $U_{r, i}$ is a contraction. Consequently for $\phi=\sum_{i} \phi_{r, i}, \phi_{r, i} \in W_{r, i} \otimes C_{r, i}$ we have

$$
\begin{align*}
& T_{Y}(1 \otimes \phi) \quad\left(\gamma, a^{\prime}\right)=\sum_{r, i}^{\prime} T_{r, i} \otimes U_{r, i}\left(\chi_{B_{r}^{r}} \otimes \phi_{r, i}\right) \quad\left(\gamma, a^{\prime}\right)= \tag{18}\\
& \sqrt{\frac{d \mu_{1}}{d \mu_{1}^{\prime}}}\left(\gamma_{1}\right) \sum_{r, i}^{\prime} \chi_{B_{r}^{\prime}}\left(\gamma_{1}\right)\left(\omega_{r, i} \otimes U_{r, i}\right)\left(\phi_{r, i}\right)\left(a^{\prime}\right)
\end{align*}
$$

where \sum^{\prime} is a sum for (r, i) such that $T_{Y} \phi_{\mu}(r, i) \neq 0$.
Let us evaluate the norm of the right hand side of (18).

$$
\begin{aligned}
& \left\|\sum_{r, i}^{\prime} \chi_{B_{r}^{\prime}}\left(r_{1}\right) \quad\left(\omega_{r, i} \otimes U_{r, i}\right)\left(\phi_{r, i}\right) \quad\left(a^{\prime}\right)\right\|_{W^{\prime}}^{2} \\
& =\sum_{r} \chi_{B_{r}^{\prime}}\left(\gamma_{1}\right)\left\|\sum_{i}^{\prime}\left(\omega_{r, i} \otimes U_{r, i}\right) \quad\left(\phi_{r, i}\right)\left(a^{\prime}\right)\right\|_{W^{\prime}}^{2} \\
& \leqq \sum_{r} \chi_{B_{r}^{\prime}}\left(\gamma_{1}\right)\left\|\sum_{i}^{\prime}\left(\omega_{r, i} \otimes U_{r, i}\right) \quad\left(\phi_{r, i}\right)\right\|^{2} \\
& =\sum_{r} \chi_{B_{r}^{\prime}}\left(r_{1}\right) \sum_{i}^{\prime}\left\|\left(\omega_{r, i} \otimes U_{r, i}\right)\left(\phi_{r, i}\right)\right\|^{2} \\
& \leqq \sum_{r} \chi_{B_{r}^{\prime}}\left(\gamma_{1}\right) \sum_{i}\left\|\phi_{r, i}\right\|^{2}=1
\end{aligned}
$$

(IV) Therefore if it would hold that P_{m} and $P_{m^{\prime}}$ are mutually singular, then the right hand of (18) tends to 0 for P_{m}-a.e. γ as $Y=X_{k} \uparrow X(\Longleftrightarrow k \longrightarrow \infty)$. On the other hand the left hand of (18) converges to $T(1 \otimes \phi)\left(\gamma, a^{\prime}\right)$ for
$P_{m^{\prime}}-$ a.e. γ as $k \longrightarrow \infty$ by the martingale convergence theorem. Thus we have $T(1 \otimes \phi)=0$ which contradicts to the assumption.

Corollary. (Whether ρ and ρ^{\prime} are irreducible or not)
If U_{m}^{ρ} and $U_{m^{\prime}}^{\rho^{\prime}}$ are equivalent as unitary representation, then P_{m} and $P_{m^{\prime}}$ are equivalent as measure.

By the above Collorary and theorem 4 of section 4 in [6] we have,
Theorem 3.2. If ρ and ρ^{\prime} are irreducible unitary representations of \mathbb{S}_{n} and $\Im_{n^{\prime}}$ and $\operatorname{dim}(X)>1$, then the unitary representations U_{m}^{ρ} and $U_{m^{\prime}}^{\rho^{\prime}}$ are equivalent if and only if the measure P_{m} and $P_{m^{\prime}}$ are equivalent, $n=n^{\prime}$ and ρ and ρ^{\prime} are equivalent.
3.2. Proof of the fact. We shall start from the following theorem which is well-known.

Theorem 3.3. Let H, E be complex Hilbert spaces and U be an irreducible unitary representation of a group G in the space H. And suppose that a bounded operator \bar{A} on $H \otimes E$ satisfies $\widetilde{A}\left(U(g) \otimes i d_{E}\right)=\left(U(g) \otimes i d_{E}\right) \widetilde{A}$ for all $g \in G$. Then there exists a bounded operator A on E such that $A=i d_{H} \otimes A$.

Theorem 3.4. Let $H, E_{i}(i=1,2)$ be complex Hilbert spaces, U be an irre. ducible unitary representation of a group G in the space H and put $\widetilde{U}_{i}(g)=$ $U(g) \otimes i d_{E_{i}}(i=1,2)$. Suppose that a bounded operator $\widetilde{A}: H \otimes E_{1} \longrightarrow H \otimes E_{2}$ satisfies $\widetilde{U}_{2}(g) \widetilde{A}=\widetilde{A} \widetilde{U}_{1}(g)$ for all $g \in G$. Then there exists a bounded operator $A: E_{1} \longrightarrow E_{2}$ such that $A=i d_{H} \otimes A$.

Proof. Case 1. First we shall assume that \widetilde{A} is unitary. Without loss of generality we may assume that $\operatorname{dim}\left(E_{2}\right) \leqq \operatorname{dim}\left(E_{1}\right)$. We consider A^{-1}, if the reverse inequality holds. Take an isometric operator $V: E_{2} \longrightarrow E_{1}$. Then we have $\widetilde{U}_{1}(g)\left(i d_{H} \otimes V\right)=\left(i d_{H} \otimes V\right) \widetilde{I}_{2}(g)$ for all $g \in G$, so $\left(i d_{H} \otimes V\right) \widetilde{A}$ is an in. tertwining operator of the representation $\left(\widetilde{U}_{1}, H \otimes E_{1}\right)$. It follows from Theorem 3.3 that there exists a bounded operator B on E_{1} such that $\left(i d_{H} \otimes V\right) \widetilde{A}$ $=i d_{H} \otimes B$. Hence $\widetilde{A}=i d_{H} \otimes V^{*} B$.

General case. Consider an orthogonal decomposition : $H \otimes E_{1}=\operatorname{ker} \tilde{A} \oplus$ $(\operatorname{ker} \widetilde{A})^{\perp}$. Since $(\operatorname{ker} \widetilde{A})^{\perp}$ is an invariant subspace of the representation $\left(\widetilde{U}_{1^{\prime}}, H \otimes E_{1}\right)$, so there exists a closed subspace F_{1} of E_{1} such that $(\operatorname{ker} \widetilde{A})^{\perp}=$ $H \otimes F_{1}$. Similarly a closed subspace $F_{2}\left(\subseteq E_{2}\right)$ arises such that $\overline{\widetilde{A}\left(H \otimes E_{1}\right)}=$ $H \otimes F_{2}$. Put $\widetilde{A} \mid(\operatorname{ker} \widetilde{A})^{\perp}=\widetilde{T}$ and $\widetilde{U}_{i}(g) \mid H \otimes F_{i}=\widetilde{W}_{i}(g)$. Then $\widetilde{T}: H \otimes F_{1} \longrightarrow$ $H \otimes F_{2}$ is one-to-one and has a dense range, and $\widetilde{W}_{2}(g) \widetilde{T}=\widetilde{T} \widetilde{W}_{1}(g)$ for all g $\in G$. It follows from Theorem 3.3 that $\widetilde{T}^{*} \widetilde{T}=i d_{H} \otimes T$ for some positive-definite bounded operator T on F_{1}. Hence \widetilde{T} is decomposed as $\widetilde{T}=$ $\widetilde{V}\left(i d_{H} \otimes \sqrt{T}\right)$ with an isometric operator $\tilde{V}: \overline{\operatorname{Im}\left(i d_{H} \otimes \sqrt{T}\right)} \longrightarrow \overline{\operatorname{Im}(\widetilde{T})}=H \otimes F_{2}$. Since \sqrt{T} is one-to-one, so \widetilde{V} is unitary from $H \otimes F_{1}$ to $H \otimes F_{2}$.

Moreover it is easily checked that $\widetilde{W}_{2}(g) \widetilde{V}=\widetilde{V} \widetilde{W}_{1}(g)$ for all $g \in G$.
By virtue of case 1, we have $\widetilde{V}=i d_{H} \otimes V$ for some bounded operator $V: F_{1} \longrightarrow$ F_{2}. Thus, $\widetilde{A}=\left(i d_{H} \otimes i\right) \widetilde{T}\left(i d_{H} \otimes P_{F_{1}}\right)=i d_{H} \otimes i V \sqrt{T} P_{F_{1}}$, where i is the natural injection from F_{2} to E_{2} and $P_{F_{1}}$ is a projection.
(Q.E.D.)

Proof of the fact : Put $\widetilde{B}=\widetilde{A}\left(T \otimes i d_{E_{1}}\right)^{-1}=\widetilde{A}\left(T^{-1} \otimes i d_{E_{1}}\right)$. Then the bounded operator $B: H_{2} \otimes E_{1} \longrightarrow H_{2} \otimes E_{2}$ satisfies $\widetilde{B}\left(U_{2}(g) \otimes i d_{E_{1}}\right)=\left(U_{2}(g) \otimes\right.$ $\left.i d_{E_{2}}\right) \widetilde{B}$ for all $g \in G$. It follows from Theorem 3.4 that there exists a bounded operator $A: E_{1} \longrightarrow E_{2}$ such that $\widetilde{B}=i d_{H_{2}} \otimes A$, and therefore $\widetilde{A}=T \otimes A$.
(Q.E.D.)

Acknowledgement. The author wishes his thanks to Professors T. Hirai and S. Mikami for their useful suggestions and kind advices in the representation theory. The author is also grateful to the referee who read carefully the first draft of this paper and gave many valuable comments.

Department of Mathematics Fukui University

References

[1] T. Hirai, lrreducible unitary representations of the group of diffeomorphisms of a non-compact manifold, J. of Math. Kyoto Univ., 33 (1993), 827-864.
[2] T. Hirai, On unitary representations of the group of diffeomorphisms and of the infinite symmetric group. Sûrikagaku Kôkyuroku, 816(1992), 46-70. (in Japanese)
[3] N. Obata, Measures on the configuration space, 1-42, unpublished.
[4] K. R. Parthasarathy, Probability measure on metric spaces, Academic Press, 1967.
[5] Y. Takahashi, Absolute continuity of Poisson random fields, Publ RIMS, Kyoto Univ., 26 (1990). 629-647.
[6] A. M. Vershik, I. M. Gel'fand and M. I. Graev, Representations of the group of diffeomorphisms, Usp. Mat. Nauk, 30 (1975) , 3-50 (=Russ. Math. Surv., 30 (1975) , 1-50).
[7] Y. Yamasaki, Measures on infinite dimensional spaces, World Scientific 1985.

[^0]: Communicated by Prof. T. Hirai, August 6, 1993 Revised February 3, 1994

