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Poisson-odd generalized exponential family of
distributions: theory and applications
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Abstract

In this paper, we introduce a new family of distributions called
the Poisson-odd generalized exponential distribution (POGE). Vari-
ous properties of the new model are derived and studied. The new
distribution has the odd generalized exponential as its limiting distri-
bution. We present and study two special cases of the POGE family
of distributions, namely the Poisson odd generalized exponential-half
logistic and the Poisson odd generalized exponential-uniform distribu-
tions. Estimation and inference procedure for the parameters of the
new distribution are discussed by the method of maximum likelihood;
we also evaluate the proposed estimation method by simulation studies.
Applications to two real data sets are provided in order to demonstrate
the performance of the proposed family of distributions.

Keywords: Odd generalized exponential distribution, moments, maximum like-

lihood estimates.

Mathematics Subject Classi�cation (2010): 62E05, 62F10

Received : 21.08.2016 Accepted : 19.12.2016 Doi : 10.15672/HJMS.2016.393

1. Introduction

Exponential distribution is commonly used in solving many practical problems, espe-
cially in life time data analysis. In probability modeling, numerous families of distribu-
tions have been proposed and studied via di�erent directions based on the exponential
distribution. For instance, some distributions generalized (or extended) the exponential
distribution, these includes the Weibull (W) distribution, linear failure rate distribution
(LFR), generalized exponential distribution (GE) by [14], generalized linear failure rate
(GLFR) by [35], generalized linear exponential (GLE) by [20], exponentiated generalized
linear exponential (EGLE) by [34], the Nadarajah and Haghighi's (NHE) exponential-
type by [29], among other.
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In another approach, a new family of probability models with more �exibility is gener-
ated by combining the continuous and discrete probability distributions such as, the expo-
nential geometric (EG) distribution introduced by [3], [16] proposed the exponential Pois-
son (EP), exponentiated exponential Poisson (EEP) by [33], complementary exponenti-
ated exponential geometric (CEEG) by [19], exponentiated exponential binomial(GEB)
by [7], generalize exponential power series (GEPS) by [21], binomial exponential-2 (BE2)
by [6], Poisson exponential (PE) by [10], generalized Gompertz-power series (GGPS)
by [40], Lindley-Poisson (LP) by [13], bivariate Weibull-power series by [30] and Linear
failure rate-power series (LFRPS) by [22]. Others that follow the same approach in-
clude the Weibull power series(WPS), extended Weibull power series (EWPS), exponen-
tiatedWeibull-logarithmic (EWL), exponentiatedWeibull Poisson (EWP), exponentiated
Weibull geometric (EWG) and exponentiated Weibull power series (EWPS) distributions
proposed and studied by [27, 37, 24, 23, 25] and [26] respectively. Moreover, in recent
years, some new generators of distributions based on the exponential distribution such as
the odd-generalized exponential family of distributions (OGE) and odd- exponential-G
family of distributions (OEG) were proposed and analyzed by [39] and [9] respectively. In
this article, we propose a new family of distributions called the Poisson odd generalized
exponential distribution (POGE), by joining together the odd generalized exponential
family of distributions and the Poisson distribution. The rest of the paper is structured
as follows. In section 2 the new POGE family of distribution is obtained, several prop-
erties of this model are derived and studied such as the explicit algebraic expression of
its ordinary moments, order statistics, Shannon entropy, Renyi entropy and reliability.
In section 3 maximum likelihood estimation for the model parameters is discussed. Two
real applications are provided in section 4. Section 5 provides conclusions.

2. The POGE family of distributions

Let Y1, Y2, · · · , Yn be a random sample of sizeN from odd generalize exponential distri-

bution with cumulative distribution function (cdf) given by J(y, α, β, ζ) =

(
1− e−α

G(y)

Ḡ(y)

)β
,

y > 0, α, β > 0, where G(y) = G(y; ζ) is the baseline cdf, ζ a vector parameter and
Ḡ(y) = 1 − G(y). Let N be a zero-truncated Poisson random variable independent of
vector Y with probability mass function given by P (N = n) = λn((eλ − 1)n!)−1, λ >
0, n ∈ N. Let X = min{Y }Ni=1, then, the conditional random variable (X|N = n) has

the cdf F (X|N = n) = 1 −

[
1−

(
1− e−α

G(x)

Ḡ(x)

)β]n
. Hence the marginal cdf of X can

be obtained as

F (x; ξ) =
1− e

−λ

1−e
−αG(x)

Ḡ(x)

β

(1− e−λ)
x > 0,(2.1)

where α, β, λ > 0, ξ a vector parameter and ξ = (α, β, λ, ζ). A random variable X with
cdf given by ( 2.1), is denoted by X ∼ POGE(ξ), and it's probability density function
(pdf) is given by

f(x; ξ) =
αβλ g(x)

Ḡ(x)
2

(1− e−λ)
e
−αG(x)

Ḡ(x)

(
1− e−α

G(x)

Ḡ(x)

)β−1

e
−λ

1−e
−αG(x)

Ḡ(x)

β
.(2.2)



1654

The followings are some new and existing members of POGE(ξ) family of distribu-
tions.

(1) If β = 1, we have Poisson-odd exponential family of distributions (POE)
(2) If G = x

1+x
we have exponentiated exponential Poisson (EEP) by [33]

(3) If β = 1 and G = x
1+x

we have exponential Poisson (EP) by [16]

(4) If α = θc and G = xc

1+xc
we have exponentiated Weibull Poisson (EWP) with

parameters c, β, θ and λ by [26]

(5) If α = θc, β = 1 and G = xc

1+xc
we have Weibull Poisson (WP) with parameters

c, θ and λ by [27]
(6) If G = 1− e−ax, we have Poisson-generalize Gompertz (PGG) distribution
(7) If β = 1 and G = 1− e−ax, we have Poisson-Gompertz (PG)

The limiting distribution of the POGE(ξ) given by ( 2.1) when λ→ 0+ is, limλ →0+ F (x; ξ) =(
1− e−α

G(x)

Ḡ(x)

)β
, which is the cdf of OGE(α, β, ζ).

2.1. Special cases of POGE distribution. In this subsection, we present two special
cases of the POGE family of distribution namely the Poisson odd generalized exponential-
Half logistic (POGE-HL) distribution and Poisson odd generalized exponential-Uniform
(POGE-U) distribution which can be very useful in solving various problems in practical
applications in the �elds of sciences and applied sciences.

2.1.1. The POGE-Half Logistic (POGE-HL) distribution. The Poisson odd generalize
exponential-Half Logistic (POGE-HL) distribution is obtained by choosing the baseline

cdf and pdf in (2.1) and (2.2) to be Half Logistic distribution de�ned by G(x) = (1−e−x)

(1+e−x)

and g(x) = 2 e−x

(1+e−x)2
respectively. For x > 0 and parameters α, β, λ > 0, the cdf and pdf

of the POGE-HL distribution are given by

F (x;α, β, λ) =
1− e

−λ
(

1−e−α( e
x−1
2

)

)β

(1− e−λ)
,(2.3)

f(x;α, β, λ) =
αβλ ex−α( e

x−1
2

)

2 (1− e−λ)

(
1− e−α( e

x−1
2

)

)β−1

e
−λ
(

1−e−α( e
x−1
2

)

)β
,(2.4)

respectively, where its limiting distribution is the odd-generalized exponential half lo-
gistic distribution (OGE-HL) when λ → 0+. Also when the shape parameter β = 1 we
obtain a new family of Poisson odd exponential-Half Logistic (POE-HL) distribution.

2.1.2. The POGE-Uniform (POGE-U) distribution. The Poisson odd generalized expo-
nential - Uniform (POGE-U) distribution is obtained by taking the baseline cdf and pdf
in (2.1) and (2.2) to be a continuous Uniform(0, b) distribution de�ned by G(x; ζ) = x

b

and g(x; ζ) = 1
b
respectively, where ζ = b and 0 < x < b. The cdf and pdf of the

(POGE-U) distribution are given by

F (x;α, β, λ, b) =
1− e

−λ
(

1−e
−α( x

(b−x)
)
)β

(1− e−λ)
,(2.5)

(2.6) f(x;α, β, λ, b) =
αβ λ b e

−α( x
(b−x)

)

(b− x)2 (1− e−λ)

(
1− e−α( x

(b−x)
)
)β−1

e
−λ
(

1−e
−α( x

(b−x)
)
)β
,

respectively, where its limiting distribution is the odd-generalized exponential uniform
distribution (OGE-U) when λ→ 0+. When the shape parameter β = 1 we obtain a new
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class of Poisson odd exponential-Uniform (POE-U) distribution.
Figure 1 display the plots of the density functions of the POGE-HL and POGE-U distri-
butions for some selected values of parameters.
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Figure 1. pdf plots: POGE-HL (i) & (ii) and POGE-U (iii) & (iv).

2.2. Expansion of distribution. We provide a series representation of the POGE
distribution based on certain conditions. First for |z| < 1 and for a > 0 real and non
integer, we have

(1− z)a−1 =

∞∑
j=0

(−1)jΓ(a)

Γ(a− j) j!z
j =

∞∑
j=0

(−1)j
(
a− 1
j

)
zj .(2.7)

By expanding the exponential expression e
−λ

1−e
−αG(x)

Ḡ(x)

β
in (2.2), then, for β(i +

1) > 0 real and non integer we can apply (2.7), and after some algebraic manipulations,
we obtain

f(x) =

∞∑
i=0

∞∑
j=0

(−1)i+j λi+1Γ(β(i+ 1))

(1− e−λ)Γ(β(i+ 1)− j)i!j!
αg(x)

Ḡ(x)2
e
−α(j+1)

G(x)

Ḡ(x) ,(2.8)

Also by the exponential expansion of e
−α(j+1)

G(x)

Ḡ(x) =
∑∞
k=0

(−1)kαk(j+1)k

k!
G(x)k

Ḡ(x)k
in

(2.8), then, applying generalized binomial expansion of Ḡ(x)−(k+2) = (1−G(x))−(k+2) =∑∞
l=0

(
−(k + 2)

l

)
(−1)lG(x)l, we get
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f(x) =

∞∑
i,j=0

∞∑
k,l=0

(
β(i+ 1)− 1

j

)(
−(k + 2)

l

)

× (−1)i+j+k+l αk λi+1(j + 1)k

(1− e−λ)i!k!
g(x)G(x)k+l,(2.9)

thus,

f(x; ξ) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l) g
∗(x; k + l + 1, ζ),(2.10)

where,

(2.11) %(i,j,k,l) =

(
β(i+ 1)− 1

j

)(
−(k + 2)

l

)
(−1)i+j+k+l αk λi+1(j + 1)k

(1− e−λ)(k + l + 1) i! k!

and g∗(x; k + l + 1, ζ) is the density of the exponentiated G(x; ζ) to the power of k+ l+1
.

2.3. Quantile and moments. The P th quantile of the POGE(ξ) distribution can be
used for generating random data that follow the POGE family of distributions and is
given by

Q(p) = G−1(ϑ(p)),(2.12)

where

ϑ(p) =

 − log

(
1−

(
− log(1−p(1−e−λ))

λ

) 1
β

)
α− log

(
1−

(
− log(1−p(1−e−λ))

λ

) 1
β

)
(2.13)

and G−1(.) is the baseline quantile function, thus, the quantile functions of the POGE-

HL and POGE-U family of distributions are QPOGE−HL(p) = − log
(

1−ϑ(p)
1+ϑ(p)

)
and

QPOGE−U (p) = b ϑ(p), respectively, where ϑ(p) is given by (2.13).
We now compute the rth moment, moment generating function of the POGE(ξ) which

can be use to study some features and characteristics of the new distribution, such as the
mean, variance, skewness and kurtosis etc. For a random variable X ∼ POGE(ξ) then,
the rth moment of X is obtained by

E(Xr) =

∫ ∞
0

xr f(x)dx.

By applying (2.10), we have

E(Xr) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)

∫ ∞
0

xr f∗(x; k + l + 1, ζ) dx,

hence,

E(Xr) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l) E(Y re ),(2.14)
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where E(Y re ) is the rth moment of the exponentiated G(x; ζ) distribution with power
parameter k + l + 1. Therefore, we can use (2.14) to compute the rth-moment of the
POGE-HL using the rth-moment of the generalized half logistic distribution.

2.1. Lemma. Let X be a random variable that follow generalized half logistic GHL(γ)
distribution, then, for r ∈ N, the rth moment of X is given by

E(Xr)GHL = 2 γ

∞∑
w=0

(
−(γ + 1)

w

)
(−1)r B0r(γ,w + 1).(2.15)

For a random variable X that follows POGE-HL distribution, the rth moment of X
can be computed by putting (2.15) in (2.14) when γ = k + l + 1, as

E(Xr)POGE−HL =

∞∑
i,j,k=0

∞∑
l,w=0

%∗(i,j,k,l,w) B0r(k + l + 1, w + 1),(2.16)

where

%∗(i,j,k,l,w) =

(
β(i+ 1)− 1

j

)(
−(k + 2)

l

)(
−(k + l + 2)

w

)
× 2 (−1)i+j+k+r αk λi+1 (j + 1)k

(1− e−λ) i! k!
.

2.2. Lemma. Let X be a random variable that follow generalized Uniform GU(0, b)
distribution, with power parameter k + l + 1, then, for r ∈ N, the rth moment of X is
given by

E(Xr)GU =
(k + l + 1)br

k + l + r + 1
,(2.17)

hence, the rth moment of X ∼ POGE-U is obtained by substituting (2.17) in (2.14)
as

E(Xr)POGE−U =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)
(k + l + 1)br

(k + l + r + 1)
.(2.18)

Figure 2 and 3 provide the plots for the mean and variance of the POGE-HL and POGE-U
distributions.
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Figure 2. Plots of Mean and Variance: (i) for α > 0 and some values
of β and λ, (ii) for β > 0 and some values of α and λ & (iii) for λ > 0
and some values of α and β for the POGE-HL distributions.
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Figure 3. Plots of Mean and Variance: (i) for α > 0 and some values
of β, λ and b = 2 (ii) for β > 0 and some values of α, λ and b = 2
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The moment generating function (mgf) of the POGE distribution can be computed
from

MX(t) =

∞∑
r=0

tr

r!
E(Xr).(2.19)

Substituting (2.14) in (2.19) gives the mgf of the POGE distribution. Also the mgf of
the POGE-HL can be obtained by putting (2.16) in (2.19) as

MX(t)POGE−HL =

∞∑
r,i,j=0

∞∑
k,l,w=0

%̃(i,j,k,l,r,w) B0r(k + l + 1, w + 1),

where

%̃(i,j,k,l,r,w) =

(
β(i+ 1)− 1

j

)(
−(k + 2)

l

)(
−(k + l + 2)

w

)
× 2 (−1)i+j+k+r tr αk λi+1 (j + 1)k

(1− e−λ) i! k! r!
.

For the POGE-U, we get the moment generating function by substituting (2.18) in
(2.19) as

MX(t)POGE−U =

∞∑
r,i,j=0

∞∑
k,l=0

%(i,j,k,l)
(k + l + 1)(bt)r

(k + l + r + 1) r!
.(2.20)

One of the alternative measures for the skewness and kurtosis of a distribution which
can be more appropriate for the POGE distribution are the Bowley skewness (B) and
Moores kurtosis (M). These measures are de�ned as follow

B =
Q(3/4) +Q(1/4) − 2Q(2/4)

Q(3/4) −Q(1/4)

,



1659

M =
Q(3/8) −Q(1/8) +Q(7/8) −Q(5/8)

Q(6/8) −Q(2/8)

,

respectively. We now demonstrate how the parameters α and β e�ect the behavior of the
skewness and kurtosis of the POGE-HL and POGE-U distributions for �xed values of
parameters λ and b. Figure 4 illustrate the plot of Bowley skewness and Moores kurtosis
of the POGE-HL distribution while Figure 5 for the POGE-U distribution.
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Figure 4. Plots of skewness (i) & (ii) and kurtosis (iii) & (iv) of POGE-HL.



1660

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

λ=3.5, b=5

α

sk
ew

ne
ss

(i)

β=0.7
β=10
β=1.0
β=3.0

0 1 2 3 4 5

−
1.

0
−

0.
6

−
0.

2
0.

2

λ=3.5, b=5

β

sk
ew

ne
ss

(ii)

α=0.001
α=0.09
α=0.3
α=1.0

0 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

λ=3.5, b=5

α

ku
rt

os
is

(iii)

β=0.7
β=10
β=1.0
β=3.0

0 1 2 3 4 5

0
1

2
3

4

λ=3.5, b=5

β

ku
rt

os
is

(iv)

α=0.001
α=0.09
α=0.3
α=1.0

Figure 5. Plots of skewness (i) & (ii) and kurtosis (iii) & (iv) of POGE-U.

2.4. Order statistics. Order statistics are very important tool in many areas of statis-
tical theory and applications such as in quality control and reliability. LetX1, X2, · · · , Xn
be a random sample of size n obtained from POGE distribution, then, the density fj:n(x)
of the jth order statistic Xj:n, j = 1, 2, 3, · · · , n, can be express as

fxj :n(x;α, β, λ, θ) =
n!

(j − 1)!(n− j)!f(x)(F (x))j−1(1− F (x))n−j ,

=

n−j∑
i=0

n! (−1)i

(j − 1)!(n− j − i)! i!f(x)(F (x))j+i−1.

Substituting F (x) and f(x) given by (2.1) and (2.2) respectively, and using the binomial
expansion and some algebraic manipulations we have

fj:n(x; ξ) =

n−j∑
i=0

i+j−1∑
k=0

Ψi,kf(x;α, β, λ(k + 1), ζ),(2.21)

where

Ψi,k =

(
i+ j − 1

k

)
n! (−1)i+k(1− e−λ(k+1))

(k + 1)(1− e−λ)i+j(j − 1)!(n− j − i)! i! ,

and f(x;α, β, λ(k+ 1), ζ) is the pdf of POGE with parameters α, β, λ(k+ 1) and ζ. The
rth moment of the jth order statistics Xj:n is give by
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E(Xr
j:n) =

n−j∑
i=0

i+j−1∑
k=0

Ψi,k

∫ ∞
0

xrf(x;α, β, λ(k + 1), ζ)dx,(2.22)

or

E(Xr
j:n) =

n−j∑
i=0

i+j−1∑
k=0

Ψi,kE(Y rδ ),(2.23)

where Yδ ∼ POGE(α, β, λ(k + 1), ζ) and E(Y rδ ) is the rth moment of the POGE distri-
bution with parameters α, β, λ(k + 1) and ζ.

2.5. Entropy. Entropy is a measure of uncertainty of a random variable. In this section,
we consider the two important entropies known as the Shannon and Renyi entropies. The
Shannon entropy measure is de�ned by E[− log f(x)]. For a random variable X having
POGE distribution, the Shannon entropy of X can be computed by considering lemma
2.3 and proposition 2.4 as follows.

2.3. Lemma. For ρ1, ρ2, ρ3,∈ R, let

ϕ(ρ1, ρ2, ρ3, ξ) =

∫ 1

0

xρ1 e−α( x
1−x )

[
1− e−α( x

1−x )
]ρ2−1

(1− x)ρ3
e
−λ
[
1−e

−α( x
1−x )

]β
dx,(2.24)

then,

ϕ(ρ1, ρ2, ρ3, ξ) =

∞∑
i,j=0

∞∑
k,l=o

ςi,j,k,l(α, λ, ρ)

(
ρ2 + βi− 1

j

)(
−ρ3 − k

l

)
,(2.25)

where ςi,j,k,l(α, λ, ρ1) = (−1)i+j+k+l αkλi

i!j! (ρ1+k+l+1)
.

Proof. By Taylor expansion of e
−λ
[
1−e

−α( x
1−x )

]β
, and for ρ2+βi > 0 real and non integer

we apply (2.7) then, exponential expansion and generalized binomial expansions. �

2.4. Proposition. Let X be a random variable with pdf given by ( 2.2), then,

E
(
log Ḡ(X)

)
=

αβλ

(1− e−λ)

∂

∂t
ϕ(0, β, 2− t, ξ)|t=0,

E

(
G(X)

¯G(X)

)
=

αβλ

(1− e−λ)
ϕ(1, β, 3, ξ),

E

(
log

(
1− e−α

G(X)

Ḡ(X)

))
=

αβλ

(1− e−λ)

∂

∂t
ϕ(0, t+ β, 2, ξ)|t=0,

E

((
1− e−α

G(X)

Ḡ(X)

)β)
=

αβλ

(1− e−λ)
ϕ(0, 2β, 2, ξ).

Proof. Considering the transformation Y = G(x, ζ), y ∈ (0, 1), and Lemma 2.3. �
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Thus, the Shannon entropy of POGE distribution is obtained as

E[− log f(X)] = − log

(
αβλ

1− e−λ

)
− E (log g(X))− 2E

(
log Ḡ(X)

)
− αE

(
G(X)

¯G(X)

)
− (β − 1)E

(
log

(
1− e−α

G(X)

Ḡ(X)

))
+ λE

((
1− e−α

G(X)

Ḡ(X)

)β)
,(2.26)

and hence,

E[− log f(X)] = − log

(
αβλ

1− e−λ

)
− E (log g(X))

− 2αβλ

(1− e−λ)

∂

∂t
ϕ(0, β, 2− t, ξ)|t=0 +

α2βλ

(1− e−λ)
ϕ(1, β, 3, ξ)

− αβ(β − 1)λ

(1− e−λ)

∂

∂t
ϕ(0, t+ β, 2, ξ)|t=0 +

αβλ2

(1− e−λ)
ϕ(0, 2β, 2, ξ).

For a random variable X with pdf (2.2), the Renyi entropy is de�ned by
IR(ρ) = (1− ρ)−1log

[∫∞
0
f(x)ρdx

]
, where ρ > 0 and ρ 6= 1. We �rst simplify

fρ(x; ξ) =
(αβλ)ρ gρ(x)

Ḡ(x)
2ρ

(1− e−λ)ρ
e
−αρG(x)

Ḡ(x)

(
1− e−α

G(x)

Ḡ(x)

)ρ(β−1)

e
−λρ

1−e
−αG(x)

Ḡ(x)

β
,

expanding e
−λρ

1−e
−αG(x)

Ḡ(x)

β
, and then, expanding

(
1− e−α

G(x)

Ḡ(x)

)ρ(β−1)−ρ

using

(2.7) and �nally expanding the exponential function obtained, arrive at

fρ(x; ξ) = α,β,λ,ρ

∞∑
i,j=0

(−1)i+j(λρ)i

i!

(
β(ρ+ i)− ρ

j

)

×
∞∑
k=0

(−1)k(ρ+ j)k

k!

gρ(x)Gk(x)

(1−G)k+2ρ
.

In addition, expanding (1−G(x))−(k+2ρ) using generalized binomial expansion yields

fρ(x; ξ) =

∞∑
l=0

Ji,j,k(α, β, λ, ρ)gρ(x)Gk+l(x),(2.27)

where

Ji,j,k(α, β, λ, ρ) = α,β,λ,ρ

∞∑
i,j=0

(−1)i+j(λρ)i

i!

(
β(ρ+ i)− ρ

j

)

×
∞∑
k=0

(−1)k+l(ρ+ j)k

k!

(
−(k + 2ρ)

l

)
and α,β,λ,ρ =

(
αβλ

1−e−λ

)ρ
.

Thus,

IR(ρ) =
1

1− ρ log

[
∞∑
l=0

Ji,j,k(α, β, λ, ρ)

∫ ∞
−∞

gρ(x)Gk+l(x)dx

]
.(2.28)
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2.6. The stress-strength parameter. Suppose that, the random variables X1 and
X2 are independent with POGE(α, β1, λ1, ζ) and POGE(α, β2, λ2, ζ) distributions, re-
spectively. In reliability studies, the stress-strength model describes the life of a com-
ponent which has a random strength X1 that is subjected to a random stress X2. If
X1 > X2 the component will function satisfactorily and when X2 > X1 the component
will fail because the stress applied exceed the strength. The reliability of a component
R=P(X2 < X1) =

∫∞
0
f1(x; ξ)F2(x; ξ)dx, has many applications in di�erent �elds of en-

gineering such as maintenance in electric power, electronics and in study of fatigue failure
of aircraft structures. The reliability function can be computed as follows.

f1(x; ξ)F2(x; ξ) =
f1(x; ξ)

(1− e−λ2)

−


αβ1λ1 g(x) e

−αG(x)

Ḡ(x)

(
1− e−α

G(x)

Ḡ(x)

)β1−1

Ḡ(x)
2

(1− e−λ1)(1− e−λ2)

e
−λ1

1−e
−αG(x)

Ḡ(x)

β1

e
−λ2

1−e
−αG(x)

Ḡ(x)

β2
 .(2.29)

By the expansion of e
−λ2

1−e
−αG(x)

Ḡ(x)

β2

and some algebraic substitutions we have

∫ ∞
0

f1(x; ξ)F2(x; ξ)dx =
1

(1− e−λ2)
(2.30)

−

(
αβ1λ1

(1− e−λ1)(1− e−λ2)

∞∑
w=0

(−1)w λw2
w!∫ 1

0

e−α( x
1−x )

(1− x)2

(
1− e−α( x

1−x )
)β1+β2w−1

e
−λ1

(
1−e

−α( x
1−x )

)β1

dx

 .(2.31)

Considering (2.24), we obtain

R =
1

(1− e−λ2)

− αβ1λ1

(1− e−λ1)(1− e−λ2)

∞∑
w=0

(−1)w λw2
w!

ϕ∗(0, β1 + β2w, 2, ξ),(2.32)

where

ϕ∗(0, β1 + β2w, 2, ξ) =
∞∑

i,j=0

∞∑
k,l=o

ς∗i,j,k,l(α, λ1)

×
(
β2w + β1(i+ 1)− 1

j

)(
−2− k

l

)
,

ς∗i,j,k,l(α, λ1) =
(−1)i+j+k+l αkλi1

i!j! (k+l+1)
and ϕ∗(.) follow similar to ϕ(.) given in Lemma 2.3.
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3. Estimation and inference

In this section, we estimate the unknown parameters of the POGE distribution by the
method of maximum likelihood. Let Xi (i = 1, 2, · · · , n) be a random sample of size n
obtained from the POGE distribution with observed values x1, x2, ..., xn. The MLEs of
Θ = (α, β, λ, ζ)T are obtained by maximization of the log-likelihood function (log `(Θ))
given by

log `(Θ) = n logα+ n log β + n log λ+

n∑
i=1

log g(xi; ζ)− 2

n∑
i=1

log Ḡ(xi; ζ)

− n log(1− e−λ)− α
n∑
i=1

H(xi; ζ) + (β − 1)

n∑
i=1

log (1− e−αH(xi;ζ))

− λ
n∑
i=1

(1− e−αH(xi;ζ))β .

The MLEs of Θ = (α, β, λ, ζ)T say Θ̂ = (α̂, β̂, λ̂, ζ̂)T are obtained simultaneously by
solving the ∂`

∂α
= ∂`

∂β
= ∂`

∂λ
= ∂`

∂ζ
= 0 numerically.

In the case of POGE-U distribution where ζ = b the upper boundary of the distribution
support is restricted by the choice of the parameter b, therefore, for an ordered random
sample of size n, say x1:n, x2:n, x3:n, · · · , xn:n which follow POGE-U distribution, we can
obtain the estimates of α, β and λ by the numerical solutions of ∂`

∂α
= ∂`

∂β
= ∂`

∂λ
= 0

for a �xed b > Xn:n. Due to the di�erent choices of b > Xn:n, the procedure may
produces a large bias for the MLEs of α, β and λ. [4] proved using simulation study in
the estimation of the parameters of Weibull-pareto (WP) distribution, that, the modi�ed
maximum likelihood method (MMLE) may be a better choice for reducing the bias. For
the interval estimate and hypothesis tests of the parameters we required J(Θ) the 4× 4

Fisher information matrix which is given by J(Θ) = −
(
∂2(log `(Θ))

∂Θ∂ΘT

)
. The elements of

J(Θ) can be obtained from the author under request.

3.1. Simulation. Simulations have been carried out in order to investigate the estima-
tors of the parameters of the POGE-HL distribution. We generated 10,000 samples of size
n = 100, 200, 300 and 400 from the POGE-HL distribution for some values of α, β and λ.
The MLEs are determined through solving the nonlinear equations ∂`

∂α
= ∂`

∂β
= ∂`

∂λ
= 0,

where H(xi; ζ) = H(xi) = ( e
xi−1

2
). The MLEs and their standard deviations (sd) are

presented in Table 1 below. The results show that each MLE converges to its true value
in all cases when the sample size increases and the standard errors of the MLEs decrease
as the sample size increases.
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Table 1. MLEs and standard deviations for some selected values of
parameters.

Sample size Selected values Estimated values Standard deviations

n α β λ α̂ β̂ λ̂ sd(α̂) sd(β̂) sd(λ̂)

100 0.5 0.5 0.5 0.4986 0.5193 0.7250 0.1243 0.0758 0.9787
1.0 1.0 1.0 1.0075 1.0059 1.2157 0.2910 0.1380 1.3936
1.0 0.5 1.0 1.0351 0.5049 1.1099 0.3131 0.0727 1.1891
2.0 1.0 2.0 2.1947 0.9863 1.9984 0.7992 0.1249 1.6034
1.3 2.5 1.0 1.2759 2.4866 1.1932 0.3118 0.3787 1.3459
0.03 0.3 0.5 0.0309 0.3102 0.6401 0.0091 0.0478 0.7005
1.2 1.5 2.0 1.3322 1.4828 1.8496 0.4345 0.1969 1.5159
0.2 0.5 0.2 1.9424 0.5307 0.5295 0.0437 0.0770 0.8741
0.7 0.6 0.5 0.6932 0.6214 0.7430 0.1711 0.0911 1.0488
4.0 5.0 2.0 4.4856 5.2579 1.5705 1.0749 1.0748 1.4329
0.3 0.4 3.0 0.4100 0.3937 2.7477 0.2351 0.0447 1.5294

200 0.5 0.5 0.5 0.4976 0.5096 0.6143 0.0903 0.0573 0.7108
1.0 1.0 1.0 0.9935 0.9978 1.1659 0.2302 0.1032 1.2135
1.0 0.5 1.0 1.0150 0.5015 1.0543 0.2290 0.0559 0.8789
2.0 1.0 2.0 2.0804 0.9862 2.1215 0.6723 0.0884 1.4900
1.3 2.5 1.0 1.2795 2.4664 1.1990 0.2754 0.2689 1.2607
0.03 0.3 0.5 0.0306 0.3038 0.5591 0.0072 0.0367 0.5207
1.2 1.5 2.0 1.2589 1.4780 2.0325 0.3755 0.1381 1.4370
0.2 0.5 0.2 0.1960 0.5189 0.3957 0.0306 0.0568 0.5527
0.7 0.6 0.5 0.6931 0.6111 0.6321 0.1252 0.0685 0.7534
4.0 5.0 2.0 4.1441 5.0277 2.0423 1.0281 0.8107 1.6150
0.3 0.4 3.0 0.3542 0.3964 2.9379 0.1583 0.0316 1.2982

300 0.5 0.5 0.5 0.5003 0.5064 0.5602 0.0736 0.0488 0.5052
1.0 1.0 1.0 1.0002 0.9955 1.0867 0.1939 0.0867 0.9918
1.0 0.5 1.0 1.0155 0.5006 1.0164 0.1874 0.0462 0.6735
2.0 1.0 2.0 2.0403 0.9879 2.1430 0.5873 0.0723 1.3808
1.3 2.5 1.0 1.2783 2.4691 1.1893 0.2524 0.2239 1.1753
0.03 0.3 0.5 0.0302 0.3009 0.5252 0.0054 0.0341 0.4474
1.2 1.5 2.0 1.2272 1.4783 2.0887 0.3313 0.1114 1.3169
0.2 0.5 0.2 0.1966 0.5140 0.3448 0.0254 0.0463 0.4528
0.7 0.6 0.5 0.6958 0.6058 0.5734 0.1020 0.0572 0.5837
4.0 5.0 2.0 4.0995 4.9897 2.0346 0.9173 0.6676 1.4149
0.3 0.4 3.0 0.3352 0.3978 3.0026 0.1306 0.0260 1.2458

400 0.5 0.5 0.5 0.4994 0.5043 0.5467 0.0647 0.0426 0.4420
1.0 1.0 1.0 1.0009 0.9965 1.0607 0.1692 0.0773 0.8407
1.0 0.5 1.0 1.0116 0.4994 1.0036 0.1603 0.0408 0.5315
2.0 1.0 2.0 2.0109 0.9909 2.1480 0.5247 0.0628 1.2195
1.3 2.5 1.0 1.2850 2.4671 1.1314 0.2278 0.1934 1.0662
0.03 0.3 0.5 0.0301 0.3029 0.5378 0.0042 0.0248 0.3733
1.2 1.5 2.0 1.2144 1.4810 2.1164 0.3074 0.0974 1.2441
0.2 0.5 0.2 0.1965 0.5114 0.3183 0.0221 0.0415 0.3813
0.7 0.6 0.5 0.6989 0.6041 0.5441 0.0886 0.0507 0.4702
4.0 5.0 2.0 4.0629 4.9759 2.0647 0.8604 0.6116 1.3101
0.3 0.4 3.0 0.3260 0.3979 3.0115 0.1127 0.0223 1.0614
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4. Application

In this section, we provide applications of the POGE distribution to two real data set
in order to illustrate the importance of the POGE family of distributions. For compari-
son, we �tted the �rst data set with the following distributions, the POGE-HL, POE-HL,
odd generalized exponential half logistic (OGE-HL), Poisson half logistic (PHL) by [2],
exponentiated half logistic (EHL) by [15], Olapade-generalized half logistic (OLGHL)
by [32], generalized exponential (GE) by [14], generalized exponential Poisson (GEP) by
[8], BurrXII-Poisson (BXIIP) by [38] and generalized BurrXII-Poisson (GBXIIP) by [28].
For the second data we �tted the POGE-U distribution and compare the �t with the
POE-U, odd generalized exponential uniform (OGE-U), gamma-uniform (GU) by [41],
generalized modi�ed weibull (GMW) by [11], beta modi�ed weibull (BMW) by [36], beta
weibull (BW) by [18], modi�ed weibull distribution (MW) by [17], generalized linear
failure rate (GLFR) by [35], generalized linear exponential (GLE) by [20], exponenti-
ated generalized linear exponential (EGLE) by [34] and some family of the generalized
modi�ed weibull-power series (GMWPS) such as generalized modi�ed weibull-Poisson
(GMWP), generalized modi�ed weibull-Geometric (GMWG) and generalized modi�ed
weibull-Logarithmic (GMWL) distributions proposed by [5]. The MLEs of the param-
eters for each model are computed and the three criteria for model selection are used
for comparison namely the Akaike information criterion (AIC), consistent Akaike in-
formation criterion (CAIC) and Bayesian information criterion, also the goodness-of-�t
statistics known as the Kolmogorov Smirnov (KS) is used to compare the �t of the new
POGE family and other competing models. The model with the least values of AIC,
CAIC, BIC and KS �t the data better than the other models. The MLEs of each model
parameters (Θ̂) and numerical values of these measures for the �rst data set are given in
Table 2 while for the second data set in Table 3 below. The �rst data set is given by
[31] the data set are the 100 observations on breaking stress of carbon �bers (in Gba):
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59,
1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03,
2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56,
2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95,
2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31,
3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70,
4.90, 4.91, 5.08, 5.56.

The second data set is the lifetimes of �fty devices provided by [1], the data set are:
.1, .2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55,
60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

As you can see form Table 2 that, the POGE-HL distribution represent the �rst data
sets better than the other models, while Table 3 shows that, the POGE-U distribution
provide better �t than the other distributions. Figure 6 illustrate the histogram and
cdfs for the �rst data set and the �tted POGE-HL distribution, while Figure 7 give
the quantile-quantile plot and pro�le-log likelihood functions of the �tted POGE-HL
distribution for the �rst data set. Figure 8 shows the histogram and cdfs for the second
data set and the �tted POGE-U distribution, and Figure 9 provides the quantile-quantile
plot and pro�le-log likelihood functions of the �tted POGE-U distribution for the second
data set.
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Table 2. MLEs, `(Θ), AIC, CAIC, BIC, KS and P-value for the �rst data.

Model α β λ a `(Θ) AIC CAIC BIC KS P-value

First data set

POGE-HL 0.0385 1.1977 4.0520 − −143.75 293.49 287.56 301.31 0.0513 0.955
POE-HL 0.0272 − 4.3643 − −145.12 294.23 290.27 299.44 0.0695 0.720
OGE-HL 0.0809 0.9181 − − −152.57 311.13 305.20 318.95 0.1238 0.093
PHL 0.0451 − −16.9271 − −196.60 397.20 393.24 402.41 0.3195 2.7e-9
EHL 1.0796 4.9029 − − −144.75 293.50 289.54 298.71 0.0981 0.291
OLGHL 0.9713 0.5000 − − −181.17 366.34 362.38 371.55 0.2721 7.4e-7
GE 1.0132 7.7882 − − −146.18 296.37 292.41 301.58 0.1077 0.196
GEP 1.0131 7.7901 0.0008 − −146.18 298.37 292.43 306.18 0.1074 0.199
BXIIP 5.9395 0.1874 3.4e− 6 − −189.48 384.97 379.03 392.78 0.2714 8.0e-7
GBXIIP 1.3502 2.1236 1.1e− 4 13.7368 −158.77 325.54 317.62 335.96 0.1380 0.044

Table 3. MLEs, `(Θ), AIC, CAIC, BIC, KS and P-value for the second data.

Model α β λ a b γ θ `(Θ) AIC CAIC BIC KS P-value

Second data set

POGE-U 0.022 0.371 1.769 − 87.010 − − −206.68 419.34 413.47 425.08 0.0923 0.754
POE-U 0.293 − 1.638 − 97.100 − − −229.55 463.10 459.18 466.92 0.2346 0.007
OGE-U 0.034 0.282 − − 87.001 − − −207.97 421.93 416.06 427.67 0.1471 0.208
GU 0.267 51.942 − 0.09 86.713 − − −207.33 418.65 414.83 426.30 0.1520 0.198
EGLE − − − 3.3e− 3 1.7e-4 4.564 0.112 −224.34 456.67 448.85 464.32 0.1475 0.206
GLE − − − 9.6e− 3 4.5e-4 0.730 − −235.93 477.85 471.98 483.59 0.1598 0.139
GLFR − − − 3.8e− 3 3.1e-4 − 0.533 −233.15 472.29 466.42 478.03 0.1620 0.129
GMWP 5.4e− 8 0.134 0.084 − - 2.137 0.638 −220.88 451.75 441.98 461.31 0.1400 0.281
GMWL 2.130 2.682 0.013 − - 0.278 1.000 −217.77 445.53 435.76 455.09 0.1311 0.357
GMWG 9.4e− 8 0.123 0.075 − - 2.228 0.464 −220.78 451.55 441.78 461.11 0.1346 0.326
GMW 1.0e− 5 0.065 − 0.223 - 1.371 − −221.40 452.81 442.99 460.46 0.1464 0.234
BMW 2.4e− 4 0.054 − 0.197 0.165 1.380 − −220.28 450.56 440.78 460.12 0.1303 0.364
BW 1.0e− 5 − − 0.129 0.070 3.320 − −223.11 454.22 446.40 461.87 0.1246 0.419
MW 0.062 0.023 − − - 0.355 − −226.16 460.31 452.44 466.05 0.1338 0.332
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Figure 6. Fitted pdf (i) and cdf (ii) of the POGE-HL for the �rst data set.
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Figure 7. Quantile-quantile Plot and Pro�le log-likelihood function
of the POGE-HL for the �rst data set.
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Figure 8. Fitted pdf (i) and cdf (ii) of the POGE-U for the second data set.
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Figure 9. Quantile-quantile Plot and Pro�le log-likelihood function
of the POGE-U for the second data set

5. Conclusions

We have introduced a new family of lifetime distributions called the Poisson odd gen-
eralized exponential distribution (POGE). We discussed two special cases of the POGE
family of distributions, namely the Poisson odd generalized exponential-half logistic
(POGE-HL) and the Poisson odd generalized exponential-uniform (POGE-U) family of
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distributions. Several mathematical and statistical properties of this model are derived
and studied, such as in�nite series of the pdf, an explicit algebraic expression of its mo-
ments, order statistics, Shannon entropy, Renyi entropy and reliability. We discuss the
maximum likelihood estimations of the model parameters. Simulation studies are per-
formed for various sample sizes from the POGE-HL distribution in order to assess the
performance of proposed maximum likelihood method. Two real applications are used to
show the usefulness of the new POGE family of distributions. The result shows that the
POGE families (i.e POGE-HL and POGE-U) give a better �t to the two data sets than
the other competing models.
Acknowledgements The authors would like to thank the editor and referees for their
valuable comments and suggestions which greatly improve the quality of the paper.
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