Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn

Original Citation:

Availability:
This version is available at: 11577/3167713 since: 2017-01-05T09:20:07Z

Publisher:
Birkhäuser Verlag Viaduktstr. 40-44 P.O.Box 1334010 Basel Switzerland

Published version:
DOI: 10.1007/s00033-014-0439-0

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Poisson problems for semilinear Brinkman systems on Lipschitz domains in \mathbb{R}^{n}

Mirela Kohr, Massimo Lanza de Cristoforis and Wolfgang L. Wendland

Abstract

The purpose of this paper is to combine a layer potential analysis with the Schauder fixed point theorem to show the existence of solutions of the Poisson problem for a semilinear Brinkman system on bounded Lipschitz domains in $\mathbb{R}^{n}(n \geq 2)$ with Dirichlet or Robin boundary conditions and data in L^{2}-based Sobolev spaces. We also obtain an existence and uniqueness result for the Dirichlet problem for a special semilinear elliptic system, called the Darcy-ForchheimerBrinkman system.

Mathematics Subject Classification (2010). Primary 35J25, 42B20, 46E35; Secondary 76D, 76M.
Keywords. Semilinear Brinkman system • Lipschitz domain • Poisson problem • Layer potential operators • Sobolev spaces • Fixed point theorem.

1. Introduction

The layer potential methods have a well-known role in the analysis of boundary value problems for the Stokes system, but also of other elliptic boundary value problems (see, e.g., $[6,17,25,31,33,40,43,50]$). The Dirichlet and Neumann problems for the Laplace equation in Lipschitz domains have been investigated by Dahlberg and Kenig [7]. Fabes et al. [14] used a layer potential method to treat the Neumann problem for the Poisson equation on Lipschitz domains. Lanzani and Méndez [27] shown the existence and uniqueness of the solution to the Poisson problem for the Laplace equation with Robin boundary condition on Lipschitz domains in $\mathbb{R}^{n}(n \geq 3)$ and with boundary data in Besov spaces, by exploiting a layer potential method. Lanzani and Shen [28] have studied the Laplace equation with Robin boundary conditions in a bounded Lipschitz domain $\Omega \subseteq \mathbb{R}^{n}(n \geq 3)$, by considering the boundary data in $L^{p}(\partial \Omega)$ spaces, $p \in(1,2+\varepsilon)$, for some $\varepsilon>0$. They have exploited a single-layer potential technique to obtain existence and uniqueness results with non-tangential maximal function estimate. The authors obtained similar results for the Poisson problem for the three-dimensional Lamé system with Robin boundary condition. All solutions have been expressed in terms of layer potentials. Mitrea and Mitrea [35] obtained sharp well-posedness results for the Poisson problem for the Laplace equation with mixed boundary conditions on bounded Lipschitz domains. The authors generalized previous results obtained in [14,18]. The Robin problem for the Laplace-Beltrami operator on Lipschitz domains in compact Riemannian manifolds has been studied by Mitrea and Taylor [39, Theorem 4.2]. Fabes et al. [13] developed a layer potential method in order to show the solvability of the Dirichlet problem for the Stokes system on Lipschitz domains in $\mathbb{R}^{n}, n \geq 3$, with L^{2}-boundary data. Dahlberg et al. [8] studied the Dirichlet and Neumann problems for the Lamé system in Lipschitz domains in $\mathbb{R}^{n}(n \geq 3)$. Russo and Tartaglione [44] studied the Robin problem associated with the Stokes system in a bounded or exterior Lipschitz domain $\Omega \subseteq \mathbb{R}^{n}$, by using a double-layer potential approach (see also [4, 43, 46]). Medková studied in [32, Theorems 4.3, 5.6] the Robin

[^0][^1]problem for the homogeneous Stokes system in a bounded domain $G \subseteq \mathbb{R}^{3}$ with connected boundary ∂G of class $C^{1, \alpha}, \alpha \in(0,1)$, and the boundary data in $C^{\alpha}\left(\partial G, \mathbb{R}^{3}\right)$, or in $L^{s}\left(\partial G, \mathbb{R}^{3}\right), s \in(1, \infty)$, in terms of a single-layer potential, whose unknown density is the solution of an integral equation of the second kind. Such a solution has been obtained explicitly in terms of a Neumann series. Mitrea and Wright [40] exploited layer potential methods to develop a powerful analysis of the main boundary value problems for the Stokes system in arbitrary Lipschitz domains in $\mathbb{R}^{n}, n \geq 2$ (see also [29]). Mitrea et al. [36] defined the Stokes operator on Lipschitz domains in \mathbb{R}^{n} in the case of Neumann boundary conditions. By using a single-layer potential technique, Mitrea and Taylor [38] studied the L^{2}-Dirichlet problem for the Stokes system in arbitrary Lipschitz domains on a smooth compact Riemannian manifold and extended the results obtained in [13] on Lipschitz domains in Euclidean setting. In addition, Dindos̆ and Mitrea [12] used a layer potential approach to treat the Poisson problems for the Stokes and Navier-Stokes systems on C^{1} and Lipschitz domains in smooth compact Riemannian manifolds with data in Sobolev or Besov spaces. The authors in [23] constructed pseudodifferential Brinkman operators as operators with variable coefficients that extend the differential Brinkman operator from the Euclidean setting to compact Riemannian manifolds. They shown existence and uniqueness results for related transmission problems on C^{1} domains of arbitrary dimension, or on Lipschitz domains of dimension ≤ 3, on a compact Riemannian manifold. In [24], these results were extended to the case of Lipschitz domains on compact Riemannian manifolds of arbitrary dimension, with data in L^{2}-based Sobolev spaces.

Existence results for boundary value problems with nonlinear boundary conditions are known, and we mention the work of Klingelhöfer [20,21], the contributions of Begehr and Hsiao [2], and Begehr and Hile [1]. Nonlinear boundary value problems for elliptic systems have been also studied in [9,26]. The authors in [22] combined a layer potential analysis with a fixed point theorem to show the existence result for a nonlinear Neumann-transmission problem for the Stokes and Brinkman systems on Euclidean Lipschitz domains with boundary data in L^{p} spaces, Sobolev spaces, and also in Besov spaces. A nonlinear Neumann condition has been imposed on an external Lipschitz boundary together with transmission conditions on the interface between two adjacent Lipschitz domains. Dindos̆ [10] obtained existence and uniqueness results for semilinear elliptic problems on Lipschitz domains in Riemannian manifolds. The author extended results for L^{p} Dirichlet and Neumann boundary value problems associated with linear second-order elliptic equations on Lipschitz domains to a class of semilinear elliptic problems. Dindos̆ and Mitrea [11] combined various results from the linear theory for the Poisson problem associated with the Laplace operator in the framework of Sobolev-Besov spaces on Lipschitz domains, which have been obtained in $[14,18,37]$, with a fixed point theorem, and developed a sharp theory for semilinear Poisson problems of the type $\Delta u-N(x, u)=F(x)$ on Lipschitz domains in compact Riemannian manifolds, equipped with Dirichlet and Neumann boundary conditions. Fitzpatrick and Pejsachowicz [15] developed an additive, integer-valued degree theory for a class of quasilinear Fredholm mappings between real Banach spaces of the form $f(x)=L(x) x+C(x)$, where C is a compact operator and, for each $x, L(x)$ is a Fredholm operator of index zero. Such a class does not possess a homotopy-invariant degree. The authors introduced a homotopy invariant of paths of linear Fredholm operators with invertible end- points, called the parity, which provides a complete description of the possible changes in sign of the degree. Then the authors proved existence, multiplicity and bifurcation results. Applications have been given for fully nonlinear elliptic operators with general nonlinear elliptic boundary conditions when the coefficients are sufficiently smooth.

The purpose of this paper was to use a layer potential analysis and the Schauder fixed point theorem in order to show the existence of solutions of a Poisson problem for a semilinear Brinkman system on a bounded Lipschitz domain $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ with Dirichlet or Robin boundary condition and data in Sobolev spaces. The nonlinear term in the semilinear Brinkman system is written in terms of an essentially bounded Carathéodory function \mathcal{P} from $\mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R}$ to $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$, which satisfies a nonnegativity condition [see (4.36)]. First, we show the well-posedness of the corresponding linear Poisson problem, i.e., the existence and uniqueness of the solution in the aforementioned spaces (see Theorems 4.1, 5.2), together
with some useful regularity estimates (see Lemmas 4.2, 5.3). Then, by using the well-posedness result from the linear case and the Schauder fixed point theorem, we show the desired existence result for the semilinear Poisson problem (see Theorems 4.4 and 5.4). Theorem 6.1 provides an existence and uniqueness result for the Dirichlet problem associated with the semilinear Darcy-Forchheimer-Brinkman system (6.1) with small boundary data.

2. Preliminaries

Consider a bounded Lipschitz domain ${ }^{1} \mathfrak{D}:=\mathfrak{D}_{-} \subseteq \mathbb{R}^{n}(n \geq 2)$ with boundary Γ, and let $\mathfrak{D}_{+}:=\mathbb{R}^{n} \backslash \overline{\mathfrak{D}}$. Also, let ν be the outward unit normal to Γ. For fixed $\kappa=\kappa(\Gamma)>1$, sufficiently large, define the non-tangential maximal operator (see, e.g., [40])

$$
\begin{equation*}
\mathcal{N}(u)(\mathbf{x}):=\mathcal{N}_{\kappa}(u)(\mathbf{x}):=\sup \left\{|u(\mathbf{y})|: \mathbf{y} \in \gamma_{ \pm}(\mathbf{x})\right\}, \quad \mathbf{x} \in \Gamma, \tag{2.1}
\end{equation*}
$$

for arbitrary $u: \mathfrak{D}_{ \pm} \rightarrow \mathbb{R}$, where $\gamma_{ \pm}(\mathbf{x}):=\left\{\mathbf{y} \in \mathfrak{D}_{ \pm}: \operatorname{dist}(\mathbf{x}, \mathbf{y})<\kappa\right.$ dist $\left.(\mathbf{y}, \Gamma)\right\}$, $\mathbf{x} \in \Gamma$, are nontangential approach regions lying in \mathfrak{D}_{+}and \mathfrak{D}_{-}, respectively. Also, consider the non-tangential boundary trace operators $\operatorname{Tr}^{ \pm}$on Γ, as ${ }^{2}$

$$
\begin{align*}
& \left(\operatorname{Tr}^{ \pm} u\right)(\mathbf{x}):=\lim _{\gamma_{ \pm}(\mathbf{x}) \ni \mathbf{y} \rightarrow \mathbf{x}} u(\mathbf{y}), \quad \text { a.e. } \mathbf{x} \in \Gamma, \tag{2.2}\\
& \operatorname{Tr}^{ \pm}: C^{\infty}\left(\overline{\mathfrak{D}}_{ \pm}\right) \rightarrow C^{0}(\Gamma), \quad \operatorname{Tr}^{ \pm} u=\left.u\right|_{\Gamma} . \tag{2.3}
\end{align*}
$$

For $p \in[1, \infty), L^{p}\left(\mathbb{R}^{n}\right)$ denotes the Lebesgue space of (equivalence classes of) measurable, p-th power integrable functions on \mathbb{R}^{n}, and $L^{\infty}\left(\mathbb{R}^{n}\right)$ consists of (equivalence classes of) essentially bounded measurable functions on \mathbb{R}^{n}. For $p \in(1, \infty)$ and $s \in \mathbb{R}$, the Bessel potential space $L_{s}^{p}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\begin{equation*}
L_{s}^{p}\left(\mathbb{R}^{n}\right):=\left\{(I-\triangle)^{-\frac{s}{2}} f: f \in L^{p}\left(\mathbb{R}^{n}\right)\right\}=\left\{\mathcal{F}^{-1}\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \mathcal{F} f: f \in L^{p}\left(\mathbb{R}^{n}\right)\right\}, \tag{2.4}
\end{equation*}
$$

with the norm $\|f\|_{L_{s}^{p}\left(\mathbb{R}^{n}\right)}:=\left\|(I-\triangle)^{-\frac{s}{2}} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|\mathcal{F}^{-1}\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \mathcal{F} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}$, where \mathcal{F} is the Fourier transform defined on the space of tempered distributions to itself, and \mathcal{F}^{-1} is its inverse. Also, $L_{s}^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right):=\left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{j} \in L_{s}^{p}\left(\mathbb{R}^{n}\right), j=1, \ldots, n\right\}$. In addition, $L_{s}^{p}(\mathfrak{D})$ denotes the Sobolev (or Bessel potential) space in \mathfrak{D}, defined by

$$
\begin{equation*}
L_{s}^{p}(\mathfrak{D}):=\left\{f \in \mathcal{D}^{\prime}(\mathfrak{D}): \exists g \in L_{s}^{p}\left(\mathbb{R}^{n}\right) \text { such that }\left.g\right|_{\mathfrak{D}}=f\right\}, \tag{2.5}
\end{equation*}
$$

with the norm $\|f\|_{L_{s}^{p}(\mathfrak{D})}:=\inf \left\{\|g\|_{L_{s}^{p}\left(\mathbb{R}^{n}\right)}: g \in L_{s}^{p}\left(\mathbb{R}^{n}\right),\left.g\right|_{\mathfrak{D}}=f\right\}$, where $\mathcal{D}^{\prime}(\mathfrak{D})$ is the space of distributions, i.e., the dual of $C_{\text {comp }}^{\infty}(\mathfrak{D})$ equipped with the inductive limit topology.

For $s \in \mathbb{R}$ and $p \in(1, \infty)$, define $L_{s ; 0}^{p}(\mathfrak{D})$ as the space of all distributions $f \in L_{s}^{p}\left(\mathbb{R}^{n}\right)$ with support in $\overline{\mathfrak{D}}$ and the norm inherited from $L_{s}^{p}\left(\mathbb{R}^{n}\right)$ (see [18, Definition 2.6]). Note that the space $C_{\text {comp }}^{\infty}(\mathfrak{D})$ is dense in $L_{s ; 0}^{p}(\mathfrak{D})$ for all $s \in \mathbb{R}$ and $p \in(1, \infty)$ (see [18, Remark 2.7], [37, p. 23]). For $p, p^{\prime} \in(1, \infty)$, with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, and for $s>0, L_{-s}^{p}(\mathfrak{D})$ can be defined as the space of linear functionals on $C_{\text {comp }}^{\infty}(\mathfrak{D})$ with finite norm

$$
\begin{equation*}
\|f\|_{L_{-s}^{p}(\mathfrak{D})}:=\sup \left\{|\langle f, \varphi\rangle|: \varphi \in C_{\mathrm{comp}}^{\infty}(\mathfrak{D}) \text { with }\|\tilde{\varphi}\|_{L_{s}^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \leq 1\right\}, \tag{2.6}
\end{equation*}
$$

where tilde denotes the extension by zero outside \mathfrak{D} (see [18, Definition 2.8], [37, (4.13)]). For $s \in \mathbb{R}$ and $p \in(1, \infty), C^{\infty}(\overline{\mathfrak{D}})$ is dense in $L_{s}^{p}(\mathfrak{D})$, and (see [18, Proposition 2.9], [37, (4.14)], [14, (1.9)])

$$
\begin{equation*}
\left(L_{s}^{p}(\mathfrak{D})\right)^{\prime}=L_{-s ; 0}^{p^{\prime}}(\mathfrak{D}), \quad L_{-s}^{p}(\mathfrak{D})=\left(L_{s ; 0}^{p^{\prime}}(\mathfrak{D})\right)^{\prime}, \tag{2.7}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. The spaces $L_{s}^{p}\left(\mathfrak{D}, \mathbb{R}^{n}\right), L_{s ; 0}^{p}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ can be defined similarly (for a more detailed presentation of these spaces, we refer the reader to [18, 19, 37, 40, 49]).

[^2]For $p \in(1, \infty)$ and $s \in[0,1]$, the boundary Sobolev space $L_{s}^{p}(\Gamma)$ can be defined by using the space $L_{s}^{p}\left(\mathbb{R}^{n-1}\right)$, a partition of unity and pullback, and $L_{-s}^{p}(\Gamma)$ is the dual of $L_{s}^{p}(\Gamma)$.

Next, the notation $\langle\cdot, \cdot\rangle$ is used for the inner product in \mathbb{R}^{n}. For a subset $X \subseteq \mathbb{R}^{n}$, the notation $\langle\cdot, \cdot\rangle_{X}:={ }_{\left(L_{s}^{p}(X)\right)^{\prime}}\langle\cdot, \cdot\rangle_{L_{s}^{p}(X)}$ stands for the pairing between the space $L_{s}^{p}(X)$ and its dual $\left(L_{s}^{p}(X)\right)^{\prime}$.

We now refer to the case $p=2$. Then, for $n \geq 2$ and $s \in(0,1)$, we define the space

$$
\begin{equation*}
L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{0}\right):=\left\{(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}): \mathcal{L}_{0}(\mathbf{u}, \pi)=\mathbf{0}, \operatorname{div} \mathbf{u}=0 \text { in } \mathfrak{D}\right\} \tag{2.8}
\end{equation*}
$$

where $\mathcal{L}_{0}(\mathbf{u}, \pi):=\Delta \mathbf{u}-\nabla \pi$, and $\|(\mathbf{u}, \pi)\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{0}\right)}:=\|\mathbf{u}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\pi\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}$.
Let us mention the following trace lemma for bounded Lipschitz domains (see [18, Proposition 3.1], [40, Theorem 2.5.2], [6], [30, Theorem 3.38], [34, Lemma 2.6]):

Lemma 2.1. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with boundary Γ. Let $s \in(0,1)$. Then there exists a linear and bounded operator $\operatorname{Tr}^{-}: L_{s+\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s}^{2}(\Gamma)$ whose action is compatible to that of the restriction to the boundary in (2.3). This operator is onto and has a linear and bounded right inverse $\mathcal{Z}^{-}: L_{s}^{2}(\Gamma) \rightarrow L_{s+\frac{1}{2}}^{2}(\mathfrak{D})$. In addition, the space $L_{s+\frac{1}{2} ; 0}^{2}(\mathfrak{D})$ is the kernel of the trace operator $\operatorname{Tr}^{-}: L_{s+\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s}^{2}(\Gamma)$. The following operator is also well defined, linear and bounded:

$$
\begin{equation*}
\operatorname{Tr}^{-}: L_{r}^{2}(\mathfrak{D}) \rightarrow L_{1}^{2}(\Gamma), \quad r>\frac{3}{2} . \tag{2.9}
\end{equation*}
$$

A similar result holds for the trace operators defined on Sobolev spaces of vector and tensor fields. For brevity, we use the same notation for them as in Lemma 2.1, but their meaning will be understood from the context.

2.1. The conormal derivative for the Stokes system on Sobolev spaces

Let $s \in[0,1]$. Let $d \sigma$ be the surface measure on Γ. Let ν denote the outward unit normal, which is defined a.e. with respect to $d \sigma$ on Γ. Note that $\nu \in L^{\infty}\left(\Gamma, \mathbb{R}^{n}\right)$.

The result below defines the conormal derivative for the Stokes system on Sobolev spaces as it has been introduced by Mitrea and Wright in [40, Theorem 10.4.1] (see also [36, Proposition 3.6], [23, Lemma 2.2] for the extension to the Brinkman operators in Lipschitz domains on compact Riemannian manifolds, and [34, Definition 3.1]):

Lemma 2.2. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with boundary Γ. Then for any $s \in(0,1)$ the conormal derivative operator ${ }^{3} \partial_{\nu}^{-}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{0}\right) \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, given by

$$
\begin{equation*}
\left\langle\partial_{\nu}^{-}(\mathbf{u}, \pi), \Psi\right\rangle_{\Gamma}:=2\left\langle\mathbb{E}(\mathbf{u}), \mathbb{E}\left(\mathcal{Z}^{-} \Psi\right)\right\rangle_{\mathfrak{D}}-\left\langle\pi, \operatorname{div}\left(\mathcal{Z}^{-} \Psi\right)\right\rangle_{\mathfrak{D}}, \forall \Psi \in L_{1-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \tag{2.10}
\end{equation*}
$$

is well defined, linear and bounded, where $\mathbb{E}(\mathbf{u}):=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}\right)$ and $(\nabla \mathbf{u})^{\top}$ is the transpose of $\nabla \mathbf{u}=\left(\frac{\partial u_{j}}{\partial x_{k}}\right)_{j, k=1, \ldots, n}$. In addition, for all $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{0}\right)$, one has the Green formula

$$
\begin{equation*}
2\left\langle E_{j k}(\mathbf{u}), E_{j k}(\mathbf{w})\right\rangle_{\mathfrak{D}}=\langle\pi, \operatorname{div} \mathbf{w}\rangle_{\mathfrak{D}}+\left\langle\partial_{\nu}^{-}(\mathbf{u}, \pi), \operatorname{Tr}^{-} \mathbf{w}\right\rangle_{\Gamma}, \forall \mathbf{w} \in L_{\frac{3}{2}-s}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{2.11}
\end{equation*}
$$

[^3][^4]
2.2. Generalized Brinkman system and the corresponding conormal derivative

Let $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ be a matrix-valued function with the entries $\mathcal{P}_{i j} \in L^{\infty}(\mathfrak{D}), i, j=1, \ldots, n$, such that

$$
\begin{equation*}
\langle\mathcal{P}(\mathbf{x}) \xi, \xi\rangle:=\sum_{i, j=1}^{n} \mathcal{P}_{i j}(\mathbf{x}) \xi_{i} \xi_{j} \geq 0, \quad \forall \xi \in \mathbb{R}^{n} \tag{2.12}
\end{equation*}
$$

for almost all $\mathbf{x} \in \mathfrak{D}$. The condition (2.12) implies that

$$
\begin{equation*}
\langle\mathcal{P} \mathbf{v}, \mathbf{v}\rangle_{\mathfrak{D}} \geq 0, \quad \forall \mathbf{v} \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{2.13}
\end{equation*}
$$

In the sequel, we use the same notation for the matrix value function \mathcal{P} and the corresponding multiplication operator $\mathcal{M}_{\mathcal{P}}: L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \mathcal{M}_{\mathcal{P}}(\mathbf{v})=\mathcal{P} \mathbf{v}$. Then the generalized Brinkman operator, i.e., the following L^{∞}-perturbation of the Stokes operator ${ }^{4}$

$$
\mathcal{B}_{\mathcal{P}}:=\left(\begin{array}{cc}
-(\triangle-\mathcal{P}) & \nabla \tag{2.14}\\
\operatorname{div} & 0
\end{array}\right): L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})
$$

is well defined, linear and bounded, for any $s \in(0,1)$.
Let us now mention the significance of the conormal derivative

$$
\begin{equation*}
\operatorname{Tr}^{-}(-\pi \mathbb{I}+2 \mathbb{E}(\mathbf{u})) \nu \text { a.e. on } \Gamma \tag{2.15}
\end{equation*}
$$

when the following Sobolev space is involved:

$$
\begin{align*}
\mathfrak{B}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right):= & \left\{(\mathbf{u}, \pi, \mathbf{f}, g) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}):\right. \\
& \left.\mathcal{L}_{\mathcal{P}}(\mathbf{u}, \pi)=\left.\mathbf{f}\right|_{\mathfrak{D}} \text { and } \operatorname{div} \mathbf{u}=g \text { in } \mathfrak{D}\right\}, \tag{2.16}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{\mathcal{P}}(\mathbf{u}, \pi):=(\triangle-\mathcal{P}) \mathbf{u}-\nabla \pi . \tag{2.17}
\end{equation*}
$$

Then we have the following result (see also Lemma 2.2 for the Stokes system).
Lemma 2.3. Let \mathfrak{D} be a bounded Lipschitz domain in $\mathbb{R}^{n}(n \geq 2)$ with boundary Γ. Let $s \in(0,1)$. Then the operator

$$
\begin{align*}
& \partial_{\nu ; \mathcal{P}}^{-}: \mathfrak{B}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right) \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \\
& \mathfrak{B}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right) \ni(\mathbf{u}, \pi, \mathbf{f}, g) \longmapsto \partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \tag{2.18}
\end{align*}
$$

given by

$$
\begin{align*}
\left\langle\partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g}, \Phi\right\rangle_{\Gamma}:= & 2\left\langle\mathbb{E}(\mathbf{u}), \mathbb{E}\left(\mathcal{Z}^{-} \Phi\right)\right\rangle_{\mathfrak{D}}-\left\langle\pi, \operatorname{div}\left(\mathcal{Z}^{-} \Phi\right)\right\rangle_{\mathfrak{D}}+\left\langle\nabla g, \mathcal{Z}^{-} \Phi\right\rangle_{\mathfrak{D}} \\
& +\left\langle\mathbf{f}, \mathcal{Z}^{-} \Phi\right\rangle_{\mathfrak{D}}+\left\langle\mathcal{P} \mathbf{u}, \mathcal{Z}^{-} \Phi\right\rangle_{\mathfrak{D}}, \forall \Phi \in L_{1-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \tag{2.19}
\end{align*}
$$

is well defined and bounded. In addition, for any $(\mathbf{u}, \pi, \mathbf{f}, g) \in \mathfrak{B}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right)$, one has the Green formula

$$
\begin{align*}
\left\langle\partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g}, \operatorname{Tr}^{-} \mathbf{w}\right\rangle_{\Gamma}= & 2\langle\mathbb{E}(\mathbf{u}), \mathbb{E}(\mathbf{w})\rangle_{\mathfrak{D}}-\langle\pi, \operatorname{div}(\mathbf{w})\rangle_{\mathfrak{D}}+\langle\nabla g, \mathbf{w}\rangle_{\mathfrak{D}} \\
& +\langle\mathbf{f}, \mathbf{w}\rangle_{\mathfrak{D}}+\langle\mathcal{P} \mathbf{u}, \mathbf{w}\rangle_{\mathfrak{D}}, \forall \mathbf{w} \in L_{\frac{3}{2}-s}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . \tag{2.20}
\end{align*}
$$

Proof. Since $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ the last duality pairing in the right-hand side of (2.19) is well defined. Also, by $[36,(3.11),(3.13)], L_{\frac{1}{2}-s}^{2}(\mathfrak{D})=L_{\frac{1}{2}-s ; 0}^{2}(\mathfrak{D})$ and, by duality, $L_{s-\frac{1}{2}}^{2}(\mathfrak{D})=L_{s-\frac{1}{2} ; 0}^{2}(\mathfrak{D})$. In addition, the property $[36,(3.14)]$ implies that $\nabla g \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)=\left(L_{\frac{3}{2}-s}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)\right)^{\prime}$, and hence, the third duality pairing is well defined. All other duality pairings are also well defined. Hence, the operator $\partial_{\nu ; \mathcal{P}}^{-}$given

[^5][^6]by (2.18), (2.19) is well defined. The boundedness of $\partial_{\nu ; \mathcal{P}}^{-}$and the formula (2.20) can be obtained with similar arguments as for [40, Proposition 10.2.1, Theorem 10.4.1]. Also, let us mention the important property that the definition of $\partial_{\nu ; \mathcal{P}}^{-}$is independent of the choice of a bounded right inverse \mathcal{Z}^{-}of the trace operator Tr^{-}. Such a property can be obtained with arguments similar to those in the proof of [34, Theorem 3.2]. We omit these arguments for the sake of brevity.

Let us now consider the Sobolev space

$$
\begin{align*}
\mathfrak{L}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right):=\{(\mathbf{u}, \pi, \mathbf{f}): \mathbf{u} & \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \pi \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \mathbf{f} \in L_{s-\frac{3}{2} ; ;}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \\
& \text { such that } \left.\mathcal{L}_{\mathcal{P}}(\mathbf{u}, \pi)=\left.\mathbf{f}\right|_{\mathfrak{D}} \text { and div } \mathbf{u}=0 \text { in } \mathfrak{D}\right\} . \tag{2.21}
\end{align*}
$$

The following useful result is a direct consequence of Lemma 2.3 in the special case $g=0$.
Corollary 2.4. Let \mathfrak{D} be a bounded Lipschitz domain in $\mathbb{R}^{n}(n \geq 2)$ with boundary Γ. Let $s \in(0,1)$. Then the conormal derivative operator

$$
\begin{align*}
& \partial_{\nu ; \mathcal{P}}^{-}: \mathfrak{L}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right) \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \\
& \mathfrak{L}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right) \ni(\mathbf{u}, \pi, \mathbf{f}) \longmapsto \partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \tag{2.22}
\end{align*}
$$

given by

$$
\begin{equation*}
\left\langle\partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}}, \Phi\right\rangle_{\Gamma}:=2\left\langle\mathbb{E}(\mathbf{u}), \mathbb{E}\left(\mathcal{Z}^{-} \Phi\right)_{\mathfrak{D}}-\left\langle\pi, \operatorname{div}\left(\mathcal{Z}^{-} \Phi\right)\right\rangle_{\mathfrak{D}}+\left\langle\mathcal{P} \mathbf{u}, \mathcal{Z}^{-} \Phi\right\rangle_{\mathfrak{D}}+\left\langle\mathbf{f}, \mathcal{Z}^{-} \Phi\right\rangle_{\mathfrak{D}}\right. \tag{2.23}
\end{equation*}
$$

for any $\Phi \in L_{1-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, is well defined and bounded. Also, for all $(\mathbf{u}, \pi, \mathbf{f}) \in \mathfrak{L}_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathcal{L}_{\mathcal{P}}\right)$ and $\mathbf{w} \in$ $L_{\frac{3}{2}-s}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, one has the Green formula:

$$
\begin{equation*}
\left\langle\partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}}, \operatorname{Tr}^{-} \mathbf{w}\right\rangle_{\Gamma}=2\langle\mathbb{E}(\mathbf{u}), \mathbb{E}(\mathbf{w})\rangle_{\mathfrak{D}}-\langle\pi, \operatorname{div} \mathbf{w}\rangle_{\mathfrak{D}}+\langle\mathbf{f}, \mathbf{w}\rangle_{\mathfrak{D}}+\langle\mathcal{P} \mathbf{u}, \mathbf{w}\rangle_{\mathfrak{D}} . \tag{2.24}
\end{equation*}
$$

Remark 2.5. (a) For $s \in(0,1)$, the conormal derivative $\partial_{\nu ; \mathcal{P}}^{+}$, corresponding to $\mathfrak{D}_{+}:=\mathbb{R}^{n} \backslash \overline{\mathfrak{D}}$, can be defined by a variational formula similar to (2.19), by using a linear and continuous right inverse $\mathcal{Z}^{+}: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2}}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of the trace operator $\operatorname{Tr}: L_{s+\frac{1}{2}}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ such that the supports of the images of \mathcal{Z}^{+}are contained in a ball which contains $\overline{\mathfrak{D}}$ (for also [6,34]).
(b) Next, for $\mathcal{P}=0$, we use the short notation $\partial_{\nu}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g}$, and, for $\mathcal{P}=0, \mathbf{f}=\mathbf{0}$ and $g=0$, the notation $\partial_{\nu}^{-}(\mathbf{u}, \pi)$.

3. Layer potential operators for the Stokes system

Let us denote by $\mathcal{G}(\cdot, \cdot) \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ and $\Pi(\cdot, \cdot) \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ the fundamental tensor and the fundamental vector, respectively, for the Stokes system in $\mathbb{R}^{n}, n \geq 2$. Therefore, ${ }^{5}$

$$
\begin{equation*}
\triangle_{\mathbf{x}} \mathcal{G}(\mathbf{x}, \mathbf{y})-\nabla_{\mathbf{x}} \Pi(\mathbf{x}, \mathbf{y})=-\delta_{\mathbf{y}}(\mathbf{x}) \mathbb{I}, \quad \operatorname{div}_{\mathbf{x}} \mathcal{G}(\mathbf{x}, \mathbf{y})=0 \tag{3.1}
\end{equation*}
$$

where \mathbb{I} is the identity matrix and $\delta_{\mathbf{y}}$ is the Dirac distribution with mass at \mathbf{y}. Note that (see, e.g., [25, p. 38, 39]):

$$
\begin{array}{ll}
\mathcal{G}_{j k}(\mathbf{x})=\frac{1}{2 \omega_{n}}\left\{\frac{\delta_{j k}}{(n-2)|\mathbf{x}|^{n-2}}+\frac{x_{j} x_{k}}{|\mathbf{x}|^{n}}\right\}, \quad \Pi_{j}(\mathbf{x})=\frac{1}{\omega_{n}} \frac{x_{j}}{|\mathbf{x}|^{n}}, \quad n \geq 3 \tag{3.2}\\
\mathcal{G}_{j k}(\mathbf{x})=\frac{1}{4 \pi}\left(\frac{x_{j} x_{k}}{|\mathbf{x}|^{2}}-\delta_{j k}\left(\ln |\mathbf{x}|+\ln \alpha_{0}\right)\right), \quad \Pi_{j}(\mathbf{x})=\frac{1}{2 \pi} \frac{x_{j}}{|\mathbf{x}|^{2}}, \quad n=2
\end{array}
$$

[^7]where ω_{n} is the area of the unit sphere in \mathbb{R}^{n} and $\alpha_{0}>0$ is a constant (for details about the choice of such a constant, we refer the reader to [22, Appendix] and [48, (3.4)]). The components of the stress and pressure tensors \mathbf{S} and Λ are given by (see [25, p. 38, 39, 132]):
\[

$$
\begin{align*}
& S_{j k \ell}(\mathbf{x})=-\Pi_{j}(\mathbf{x}) \delta_{k \ell}+\frac{\partial \mathcal{G}_{j k}(\mathbf{x})}{\partial x_{\ell}}+\frac{\partial \mathcal{G}_{\ell k}(\mathbf{x})}{\partial x_{j}}=-\frac{n}{\omega_{n}} \frac{x_{j} x_{k} x_{\ell}}{|\mathbf{x}|^{n+2}} \\
& \Lambda_{j k}(\mathbf{x}, \mathbf{y})=-\frac{2}{\omega_{n}}\left(-\frac{\delta_{j k}}{|\mathbf{x}|^{n}}+n \frac{x_{j} x_{k}}{|\mathbf{x}|^{n+2}}\right) \tag{3.3}\\
& \triangle_{\mathbf{x}} S_{j k \ell}(\mathbf{y}, \mathbf{x})-\frac{\partial \Lambda_{j \ell}(\mathbf{x}, \mathbf{y})}{\partial x_{k}}=0, \frac{\partial S_{j k \ell}(\mathbf{y}, \mathbf{x})}{\partial x_{k}}=0 \text { for } \mathbf{x} \neq \mathbf{y} \tag{3.4}
\end{align*}
$$
\]

3.1. The single- and double-layer potential operators

We now assume that $\mathfrak{D}:=\mathfrak{D}_{-} \subseteq \mathbb{R}^{n}(n \geq 2)$ is a bounded Lipschitz domain with connected boundary Γ. Let $\mathfrak{D}_{+}:=\mathbb{R}^{n} \backslash \overline{\mathfrak{D}}$. Let $r \in[0,1]$. If $\mathbf{g} \in L_{r-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, the single-layer potential for the Stokes system $\mathbf{V}_{\Gamma} \mathbf{g}$ and the corresponding pressure potential $\mathcal{Q}_{\Gamma}^{s} \mathbf{g}$ are given by

$$
\begin{equation*}
\left(\mathbf{V}_{\Gamma} \mathbf{g}\right)(\mathbf{x}):=\langle\mathcal{G}(\mathbf{x}, \cdot), \mathbf{g}\rangle_{\Gamma}, \quad\left(\mathcal{Q}_{\Gamma}^{s} \mathbf{g}\right)(\mathbf{x}):=\langle\Pi(\mathbf{x}, \cdot), \mathbf{g}\rangle_{\Gamma}, \mathbf{x} \in \mathbb{R}^{n} \backslash \Gamma . \tag{3.5}
\end{equation*}
$$

Let $\nu_{\ell}, \ell=1, \ldots, n$, be the components of the outward unit normal ν to Γ. Let $\mathbf{h} \in L_{r}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. Then the double-layer potential $\mathbf{W}_{\Gamma} \mathbf{h}$ and the corresponding pressure potential $\mathcal{Q}_{\Gamma}^{d} \mathbf{h}$ are given by

$$
\begin{equation*}
\left(\mathbf{W}_{\Gamma} \mathbf{h}\right)_{k}(\mathbf{x}):=\int_{\Gamma} S_{j k \ell}(\mathbf{y}, \mathbf{x}) \nu_{\ell}(\mathbf{y}) h_{j}(\mathbf{y}) d \sigma(\mathbf{y}),\left(\mathcal{Q}_{\Gamma}^{d} \mathbf{h}\right)(\mathbf{x}):=\int_{\Gamma} \Lambda_{j \ell}(\mathbf{x}, \mathbf{y}) \nu_{\ell}(\mathbf{y}) h_{j}(\mathbf{y}) d \sigma(\mathbf{y}), \mathbf{x} \in \mathbb{R}^{n} \backslash \Gamma \tag{3.6}
\end{equation*}
$$

In addition, the (principal value) boundary version of $\mathbf{W}_{\Gamma} \mathbf{h}$ is given for a.e. $\mathbf{x} \in \Gamma$ by

$$
\begin{equation*}
\left(\mathbf{K}_{\Gamma} \mathbf{h}\right)_{k}(\mathbf{x}):=\text { p.v. } \int_{\Gamma} S_{j k \ell}(\mathbf{y}, \mathbf{x}) \nu_{\ell}(\mathbf{y}) h_{j}(\mathbf{y}) d \sigma(\mathbf{y}) \tag{3.7}
\end{equation*}
$$

where the notation p.v. means the principal value of a singular integral operator.
By (3.1) and (3.4), the pairs $\left(\mathbf{V}_{\Gamma} \mathbf{g}, \mathcal{Q}_{\Gamma}^{s} \mathbf{g}\right)$ and $\left(\mathbf{W}_{\Gamma} \mathbf{h}, \mathcal{Q}_{\Gamma}^{d} \mathbf{h}\right)$ satisfy the Stokes system in $\mathbb{R}^{n} \backslash \Gamma$.
As usual, denote by $\partial_{\nu}^{ \pm}\left(\mathbf{V}_{\Gamma} \mathbf{g}, \mathcal{Q}_{\Gamma}^{s} \mathbf{g}\right)$ the conormal derivatives of the layer potentials $\mathbf{V}_{\Gamma} \mathbf{g}$ and $\mathcal{Q}_{\Gamma}^{s} \mathbf{g}$, with a similar interpretation for $\partial_{\nu}^{ \pm}\left(\mathbf{W}_{\Gamma} \mathbf{h}, \mathcal{Q}_{\Gamma}^{d} \mathbf{h}\right)$.

The main properties of layer potentials for the Stokes system are given below (see [13], [40, Proposition 10.5.2, Theorem 10.5.3]):

Lemma 3.1. Let $\mathfrak{D}:=\mathfrak{D}_{-} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ, and let $\mathfrak{D}_{+}:=\mathbb{R}^{n} \backslash \overline{\mathfrak{D}}$. Let $s \in[0,1]$. Then for all $\mathbf{h} \in L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ and $\mathbf{g} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, the following relations hold a.e. on Γ :

$$
\begin{align*}
& \operatorname{Tr}^{+}\left(\mathbf{V}_{\Gamma} \mathbf{g}\right)=\operatorname{Tr}^{-}\left(\mathbf{V}_{\Gamma} \mathbf{g}\right):=\mathcal{V}_{\Gamma} \mathbf{g}, \operatorname{Tr}^{ \pm}\left(\mathbf{W}_{\Gamma} \mathbf{h}\right)=\left(\pm \frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}\right) \mathbf{h}, \tag{3.8}\\
& \partial_{\nu}^{ \pm}\left(\mathbf{V}_{\Gamma} \mathbf{g}, \mathcal{Q}_{\Gamma}^{s} \mathbf{g}\right)=\left(\mp \frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}\right) \mathbf{g}, \partial_{\nu}^{+}\left(\mathbf{W}_{\Gamma} \mathbf{h}, \mathcal{Q}_{\Gamma}^{d} \mathbf{h}\right)=\partial_{\nu}^{-}\left(\mathbf{W}_{\Gamma} \mathbf{h}, \mathcal{Q}_{\Gamma}^{d} \mathbf{h}\right):=\mathbf{D}_{\Gamma} \mathbf{h}, \tag{3.9}
\end{align*}
$$

where $\mathbf{K}_{\mathrm{r}}^{*}$ is the formal transpose of \mathbf{K}_{r}. In addition, the following operators

$$
\begin{aligned}
& \mathcal{V}_{\Gamma}: L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathbf{K}_{\Gamma}: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \\
& \mathbf{K}_{\Gamma}^{*}: L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathbf{D}_{\Gamma}: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right),
\end{aligned}
$$

are well defined, linear and continuous. Also, $\mathcal{V}_{\Gamma}: L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is a Fredholm operator with index zero having the kernel

$$
\begin{equation*}
\operatorname{Ker}\left\{\mathcal{V}_{\Gamma}: L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right\}:=\left\{\varphi \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right): \mathcal{V}_{\Gamma} \varphi=0 \text { a.e. on } \Gamma\right\}=\mathbb{R} \nu \tag{3.10}
\end{equation*}
$$

For the property (3.10), we refer the reader to [40, Theorems 5.4.1, 5.4.3, 10.5.1] and [22, (A.27)]. A useful result for the next arguments is the following ${ }^{6}$ (see, e.g., [40, Lemma 11.9.21], [12]):

Proposition 3.2. Let $X_{j}, Y_{j}, j=1,2$, be Banach spaces such that the inclusions $X_{1} \hookrightarrow X_{2}, Y_{1} \hookrightarrow Y_{2}$ are continuous. Let the latter of the inclusions has dense range. Assume that $T \in \mathcal{L}\left(X_{1}, Y_{1}\right) \cap \mathcal{L}\left(X_{2}, Y_{2}\right)$ is Fredholm, as an operator defined on the space X_{1} and on the space X_{2}, respectively. If the condition index $\left(T: X_{1} \rightarrow Y_{1}\right)=\operatorname{index}\left(T: X_{2} \rightarrow Y_{2}\right)$ holds, then $\operatorname{Ker}\left(T: X_{1} \rightarrow Y_{1}\right)=\operatorname{Ker}\left(T: X_{2} \rightarrow Y_{2}\right)$.

In the sequel, we remove the superscript - from the operators $\operatorname{Tr}^{-}, \mathcal{Z}^{-}, \partial_{\nu ; \mathcal{P}}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g}$ and $\partial_{\nu}^{-}(\mathbf{u}, \pi)_{\mathbf{f}, g}$.

4. The Poisson problem for the generalized Brinkman system with Dirichlet boundary condition

The main purpose of this section is to show the existence of a solution of the Poisson problem for a semilinear Brinkman system with Dirichlet boundary condition and data in L^{2}-based Sobolev spaces.

4.1. The linear Poisson problem with Dirichlet boundary condition for the generalized Brinkman system

First, we show the well-posedness of the linear Poisson problem for the generalized Brinkman system in Lipschitz domains in $\mathbb{R}^{n}(n \geq 2)$ with Dirichlet boundary condition and data in L^{2}-based Sobolev spaces.

Theorem 4.1. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Assume that the matrix-valued function $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ satisfies the nonnegativity condition (2.12). For $s \in(0,1)$, consider the linear Poisson problem with Dirichlet boundary condition for the generalized Brinkman system:

$$
\left\{\begin{array}{l}
\triangle \mathbf{u}-\mathcal{P} \mathbf{u}-\nabla \pi=\mathbf{f} \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{4.1}\\
\operatorname{div} \mathbf{u}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\operatorname{Tr} \mathbf{u}=\mathbf{h} \in L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \\
\langle\pi, 1\rangle_{\mathfrak{D}}=0
\end{array}\right.
$$

subject to the necessary condition

$$
\begin{equation*}
\langle\nu, \mathbf{h}\rangle_{\Gamma}=\langle g, 1\rangle_{\mathfrak{D}} . \tag{4.2}
\end{equation*}
$$

Then, there exists a constant $C \equiv C(\mathcal{P}, s, \mathfrak{D})>0$, independent of \mathbf{f}, g and \mathbf{h}, such that the Poisson problem (4.1) has a unique solution $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, which satisfies the inequality

$$
\begin{equation*}
\|\mathbf{u}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\pi\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})} \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) . \tag{4.3}
\end{equation*}
$$

Proof. Let us consider the matrix operator

$$
\mathfrak{B}_{\mathcal{P}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathfrak{B}_{\mathcal{P}}:=\left(\begin{array}{cc}
\triangle-\mathcal{P} & -\nabla \tag{4.4}\\
\operatorname{div} & 0 \\
\operatorname{Tr} & 0
\end{array}\right) .
$$

We show that $\mathfrak{B}_{\mathcal{P}}$ is an isomorphism on a subspace of $L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$. First, note that

[^8][^9]\[

$$
\begin{equation*}
\mathfrak{B}_{\mathcal{P}}=\mathfrak{B}_{0}+\mathfrak{P}, \tag{4.5}
\end{equation*}
$$

\]

where

$$
\begin{align*}
& \mathfrak{B}_{0}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathfrak{B}_{0}:=\left(\begin{array}{cc}
\triangle & -\nabla \\
\operatorname{div} & 0 \\
\operatorname{Tr} & 0
\end{array}\right), \tag{4.6}\\
& \mathfrak{P}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathfrak{P}:=\left(\begin{array}{cc}
-\mathcal{P} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) . \tag{4.7}
\end{align*}
$$

By [40, Theorem 10.6.2], [12, Theorem 5.6], the Poisson problem for the Stokes system is well-posed. Therefore, $\mathfrak{B}_{0}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is a Fredholm operator with index zero. In addition, the operator $\mathfrak{P}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times$ $L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is compact, as the compactness of the product $L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right) \cdot L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ shows. Hence, $\mathfrak{B}_{\mathcal{P}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is a Fredholm operator with index zero, for any $s \in(0,1)$. Such a property and Proposition 3.2 imply that

$$
\begin{align*}
& \operatorname{Ker}\left(\mathfrak{B}_{\mathcal{P}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right) \\
& \quad=\operatorname{Ker}\left(\mathfrak{B}_{\mathcal{P}}: L_{1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L^{2}(\mathfrak{D}) \rightarrow L_{-1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L^{2}(\mathfrak{D}) \times L_{\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right), \forall s \in(0,1) . \tag{4.8}
\end{align*}
$$

In addition, by using the Green formula (2.20), we obtain that

$$
\begin{equation*}
\operatorname{Ker}\left(\mathfrak{B}_{\mathcal{P}}: L_{1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L^{2}(\mathfrak{D}) \rightarrow L_{-1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L^{2}(\mathfrak{D}) \times L_{\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right)=\{\mathbf{0}\} \times \mathbb{R} \tag{4.9}
\end{equation*}
$$

By (4.8) and (4.9), we find that the kernel of $\mathfrak{B}_{\mathcal{P}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times$ $L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is $\{\mathbf{0}\} \times \mathbb{R}$, for any $s \in(0,1)$. Hence, the range of $\mathfrak{B}_{\mathcal{P}}$ has the codimension one in $\mathcal{Y}_{s}:=$ $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. On the other hand, the Divergence Theorem yields that the range of $\mathfrak{B}_{\mathcal{P}}$ is contained in the subspace

$$
\begin{equation*}
\tilde{\mathcal{Z}}_{s}:=\left\{(\mathbf{F}, G, \mathbf{H}) \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right):\langle G, 1\rangle_{\mathfrak{D}}=\langle\nu, \mathbf{H}\rangle_{\Gamma}\right\} \tag{4.10}
\end{equation*}
$$

of codimension one in \mathcal{Y}_{s}. Thus, for any $s \in(0,1)$, the range of $\mathfrak{B}_{\mathcal{P}}$ is $\tilde{\mathcal{Z}}_{s}$, and its kernel is the set $\{\mathbf{0}\} \times \mathbb{R}$. Consequently, for any $s \in(0,1)$ and for all $(\mathbf{f}, g, \mathbf{h}) \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, satisfying the condition (4.2), there exists a pair $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ such that

$$
\left\{\begin{array}{l}
(\triangle-\mathcal{P}) \mathbf{u}-\nabla \pi=\mathbf{f}, \operatorname{div} \mathbf{u}=g \text { in } \mathfrak{D}, \tag{4.11}\\
\operatorname{Tr} \mathbf{u}=\mathbf{h} \text { on } \Gamma .
\end{array}\right.
$$

If we require the condition $\langle\pi, 1\rangle_{\mathfrak{D}}=0$, then the solution becomes unique. Hence, the problem (4.1) has a unique solution $(\mathbf{u}, \pi) \in \tilde{\mathcal{X}}_{s}$, where

$$
\begin{equation*}
\tilde{\mathcal{X}}_{s}:=\left\{(\mathbf{v}, q) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}):\langle q, 1\rangle_{\mathfrak{O}}=0\right\} . \tag{4.12}
\end{equation*}
$$

Consequently, the operator $\mathfrak{B}_{\mathcal{P}}: \tilde{\mathcal{X}}_{s} \rightarrow \tilde{\mathcal{Z}}_{s}$ is an isomorphism.
In addition, there exist two constants $c>0$ and $C \equiv C(\mathcal{P}, s, \mathfrak{D})>0$ such that

$$
\begin{align*}
\|(\mathbf{u}, \pi)\|_{\tilde{\mathcal{X}}_{s}} & =\left\|\mathfrak{B}_{\mathcal{P}}^{-1}(\mathbf{f}, g, \mathbf{h})^{\top}\right\|_{\tilde{\mathcal{X}}_{s}} \\
& \leq c\left\|\mathfrak{B}_{\mathcal{P}}^{-1}\right\|_{\mathcal{L}\left(\tilde{\mathcal{Z}}_{s}, \tilde{\mathcal{X}}_{s}\right)}\|(\mathbf{f}, g, \mathbf{h})\|_{\tilde{\mathcal{Z}}_{s}} \\
& \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2}}^{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right)+\|g\|_{L_{s-\frac{1}{2}}^{2}}(\mathfrak{D})+\|\mathbf{h}\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right), \tag{4.13}
\end{align*}
$$

where $\tilde{\mathcal{Z}}_{s}$ is the space defined in (4.10). Hence, we have obtained the inequality (4.3), as asserted.

Next, we consider the operators

$$
\begin{align*}
& \mathfrak{L}_{1}: \mathcal{X}_{s} \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \mathfrak{L}_{1}(\mathbf{u}, \pi):=\triangle \mathbf{u}-\mathcal{P} \mathbf{u}-\nabla \pi, \\
& \mathfrak{L}_{2}: \mathcal{X}_{s} \rightarrow L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \mathfrak{L}_{2}(\mathbf{u}, \pi):=\operatorname{div} \mathbf{u} \tag{4.14}\\
& \mathfrak{L}_{3}: \mathcal{X}_{s} \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathfrak{L}_{3}(\mathbf{u}, \pi):=\operatorname{Tr} \mathbf{u},
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{X}_{s}:=L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \quad \mathcal{Y}_{s}:=L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \tag{4.15}
\end{equation*}
$$

Recalling that $\tilde{\mathcal{X}}_{s}$ is the space defined in (4.12), we show the following result.
Lemma 4.2. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in(0,1)$ and $a \in(0, \infty)$. Then, there exists a constant $C \equiv C(a, s, \mathfrak{D})>0$ such that

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|_{\tilde{\mathcal{X}}_{s}} \leq C\left(\left\|\mathfrak{L}_{1}(\mathbf{u}, \pi)\right\|_{L_{s-\frac{3}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)+\left\|\mathfrak{L}_{2}(\mathbf{u}, \pi)\right\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\left\|\mathfrak{L}_{3}(\mathbf{u}, \pi)\right\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{4.16}
\end{equation*}
$$

for all $(\mathbf{u}, \pi) \in \tilde{\mathcal{X}}_{s}$ and for each matrix-valued function $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, which satisfies the nonnegativity condition (2.12) and the inequality

$$
\begin{equation*}
\|\mathcal{P}\|_{L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a \tag{4.17}
\end{equation*}
$$

Proof. Let us assume by contradiction that such a constant C does not exist. Thus, we assume that the inequality (4.16) does not hold. Then, there exist two sequences $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ in $\tilde{\mathcal{X}}_{s}$ and $\left\{\mathcal{P}_{j}\right\}_{j \in \mathbb{N}}$ in $L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, such that \mathcal{P}_{j} satisfies the nonnegativity condition (2.12) and the inequalities

$$
\begin{align*}
& \left\|\mathcal{P}_{j}\right\|_{L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a, \quad \forall j \geq 1, \tag{4.18}\\
& \left\|\left(\mathbf{u}_{j}, \pi_{j}\right)\right\|_{\tilde{\mathcal{X}}_{s}}>j\left(\left\|\left(\triangle-\mathcal{P}_{j}\right) \mathbf{u}_{j}-\nabla \pi_{j}\right\|_{L_{s-\frac{3}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}+\left\|\mathfrak{L}_{2}\left(\mathbf{u}_{j}, \pi_{j}\right)\right\|_{L_{s-\frac{1}{2}}^{2}}(\mathfrak{D})+\left\|\mathfrak{L}_{3}\left(\mathbf{u}_{j}, \pi_{j}\right)\right\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right), j \geq 1 \tag{4.19}
\end{align*}
$$

Let $\left(\mathbf{w}_{j}, r_{j}\right) \in \tilde{\mathcal{X}}_{s}$ be such that

$$
\begin{equation*}
\left(\mathbf{w}_{j}, r_{j}\right):=\frac{1}{\left\|\left(\mathbf{u}_{j}, \pi_{j}\right)\right\|_{\tilde{\chi}_{s}}}\left(\mathbf{u}_{j}, \pi_{j}\right), \quad j \geq 1 . \tag{4.20}
\end{equation*}
$$

Thus, $\left\|\left(\mathbf{w}_{j}, r_{j}\right)\right\|_{\tilde{\mathcal{X}}_{s}}=1$ and, for any $j \geq 1$,

$$
\begin{equation*}
j^{-1}>\left\|\left(\triangle-\mathcal{P}_{j}\right) \mathbf{w}_{j}-\nabla r_{j}\right\|_{L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\left\|\mathfrak{L}_{2}\left(\mathbf{w}_{j}, r_{j}\right)\right\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\left\|\mathfrak{L}_{3}\left(\mathbf{w}_{j}, r_{j}\right)\right\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \tag{4.21}
\end{equation*}
$$

On the other hand, by the Banach-Alaoglu Theorem (cf. [5, Chap. 5, Sect. 3]), the closed ball of radius a in the space $L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, which is the dual of the separable Banach space $L^{1}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, is sequentially compact in the weak-* topology. Since the sequence $\left\{\mathcal{P}_{j}\right\}_{j \in \mathbb{N}}$ is bounded in the space $L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, as each term \mathcal{P}_{j} belongs to the closed ball of radius a of this space (see (4.18)), we then can select a weak-* convergent subsequence $\left\{\mathcal{P}_{j_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{\mathcal{P}_{j}\right\}_{j \in \mathbb{N}}$ with the limit in the same closed ball. Therefore, there exists $\mathcal{P}_{0} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ such that $\left\|\mathcal{P}_{0}\right\|_{L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{P}_{j_{k}}(\varphi)=\mathcal{P}_{0}(\varphi), \quad \forall \varphi \in L^{1}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right) \tag{4.22}
\end{equation*}
$$

where

$$
\mathcal{P}_{j_{k}}(\varphi):=\int_{\mathcal{D}} \mathcal{P}_{j_{k}}(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x} .
$$

[^10]In addition, \mathcal{P}_{0} satisfies the nonnegativity condition (2.13). Indeed, for any $\mathbf{v} \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, we have $v_{r} v_{s} \in L^{1}(\mathfrak{D})$ for all $r, s=1, \ldots, n$, and accordingly the condition (4.22) implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle\mathcal{P}_{j_{k}} \mathbf{v}, \mathbf{v}\right\rangle_{\mathcal{O}}=\lim _{k \rightarrow \infty} \int_{\mathcal{D}}\left(\mathcal{P}_{j_{k}}\right)_{r s} v_{r} v_{s} d \mathbf{x}=\int_{\mathcal{D}}\left(\mathcal{P}_{0}\right)_{r s} v_{r} v_{s} d \mathbf{x}, \tag{4.23}
\end{equation*}
$$

where $\left(\mathcal{P}_{j_{k}}\right)_{r s}$ are the components of $\mathcal{P}_{j_{k}}$, and $\left(\mathcal{P}_{0}\right)_{r s}$ are the components of $\mathcal{P}_{0}, r, s=1, \ldots, n$. Since each $\mathcal{P}_{j_{k}} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ satisfies the nonnegativity condition (2.12), the limit in (4.23) is nonnegative as well.

On the other hand, since the embedding $\tilde{\mathcal{X}}_{s} \hookrightarrow \tilde{\mathcal{X}}_{t}$ is compact whenever $t, s \in(0,1), t<s$ (see, e.g., [19, Theorem 7.10]), there exists a subsequence $\left\{\left(\mathbf{w}_{j_{k}}, r_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of the bounded sequence $\left\{\left(\mathbf{w}_{j}, r_{j}\right)\right\}_{j \in \mathbb{N}}$ of $\tilde{\mathcal{X}}_{s}$ and an element $(\mathbf{w}, r) \in \tilde{\mathcal{X}}_{t}$ such that

$$
\begin{equation*}
\left\|\left(\mathbf{w}_{j_{k}}, r_{j_{k}}\right)-(\mathbf{w}, r)\right\|_{\tilde{\mathcal{X}}_{t}} \rightarrow 0 \quad \text { as } k \rightarrow \infty . \tag{4.24}
\end{equation*}
$$

Recall that $\tilde{\mathcal{X}}_{t}=\left\{(\mathbf{v}, q) \in L_{t+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{t-\frac{1}{2}}^{2}(\mathfrak{D}):\langle q, 1\rangle_{\mathfrak{O}}=0\right\}$.
Taking into account of the relations (4.18), (4.22) and (4.24) (and, possibly, extracting further subsequences of $\left\{\mathcal{P}_{j_{k}}\right\}_{k \in \mathbb{N}}$ and $\left\{\mathbf{w}_{j_{k}}\right\}_{k \in \mathbb{N}}$ denoted, for the sake of brevity, as the sequences), one obtains that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{P}_{j_{k}} \mathbf{w}_{j_{k}}=\mathcal{P}_{0} \mathbf{w} \tag{4.25}
\end{equation*}
$$

weakly in $L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ and accordingly, in the sense of distributions in \mathfrak{D}. Indeed, for any $\varphi \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, one has the equality

$$
\int_{\mathfrak{D}}\left\langle\mathcal{P}_{j_{k}} \mathbf{w}_{j_{k}}-\mathcal{P}_{0} \mathbf{w}, \varphi\right\rangle d \mathbf{x}=\int_{\mathcal{D}}\left(\mathcal{P}_{j_{k}}-\mathcal{P}_{0}\right)_{r s} w_{r} \varphi_{s} d \mathbf{x}+\int_{\mathcal{D}}\left\langle\mathcal{P}_{j_{k}}\left(\mathbf{w}_{j_{k}}-\mathbf{w}\right), \varphi\right\rangle d \mathbf{x} .
$$

The first integral in the right-hand side of the above equality tends to zero, as (4.22) and the property $w_{r} \varphi_{s} \in L^{1}(\mathfrak{D})$ show. In addition, the properties (4.18) and (4.24) imply that the second integral also tends to zero as $k \rightarrow \infty$.

By (4.24), the continuous embedding of $\tilde{\mathcal{X}}_{t}$ into the space of distributions, and by (4.25), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\left(\triangle-\mathcal{P}_{j_{k}}\right) \mathbf{w}_{j_{k}}-\nabla r_{j_{k}}\right)=\left(\triangle-\mathcal{P}_{0}\right) \mathbf{w}-\nabla r \tag{4.26}
\end{equation*}
$$

in the sense of distributions in \mathfrak{D}. In addition, we obtain the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{div} \mathbf{w}_{j_{k}}=\operatorname{div} \mathbf{w} \tag{4.27}
\end{equation*}
$$

in $L_{t-\frac{1}{2}}^{2}(\mathfrak{D})$ and accordingly in the sense of distributions in \mathfrak{D}. Also, we have the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{Tr} \mathbf{w}_{j_{k}}=\operatorname{Tr} \mathbf{w} \tag{4.28}
\end{equation*}
$$

in $L_{t}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ and accordingly in the sense of distributions in Γ.
By (4.21), $\left\{\left(\triangle-\mathcal{P}_{j_{k}}\right) \mathbf{w}_{j_{k}}-\nabla r_{j_{k}}\right\}_{k \in \mathbb{N}}$ converges to zero in $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ and accordingly, in the sense of distributions in \mathfrak{D}. Comparing this result with (4.26), we find that

$$
\begin{equation*}
\left(\triangle-\mathcal{P}_{0}\right) \mathbf{w}-\nabla r=\mathbf{0} \quad \text { in } \mathfrak{D} . \tag{4.29}
\end{equation*}
$$

Similarly, we get div $\mathbf{w}=0$ in $\mathfrak{D}, \operatorname{Tr} \mathbf{w}=\mathbf{0}$ on Γ, and $\langle r, 1\rangle_{\mathfrak{D}}=0$. Consequently, the pair $(\mathbf{w}, r) \in \tilde{\mathcal{X}}_{t}$ is a solution of the homogeneous problem for the generalized Brinkman system

$$
\begin{cases}\triangle \mathbf{w}-\mathcal{P}_{0} \mathbf{w}-\nabla r=\mathbf{0} & \text { in } \mathfrak{D}, \tag{4.30}\\ \operatorname{div} \mathbf{w}=0 & \text { in } \mathfrak{D}, \\ \operatorname{Tr} \mathbf{w}=\mathbf{0} & \text { on } \Gamma, \\ \langle r, 1\rangle_{\mathfrak{O}}=0 . & \end{cases}
$$

The uniqueness of the solution to this problem in the space $\mathcal{X}_{t}:=L_{t+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{t-\frac{1}{2}}^{2}(\mathfrak{D})$ (see Theorem 4.1) implies that $(\mathbf{w}, r)=(\mathbf{0}, 0)$. Then, by (4.24), we obtain the limiting relations

$$
\begin{equation*}
\left\|\mathbf{w}_{j_{k}}\right\|_{L_{t+\frac{1}{2}}^{2}\left(\mathfrak{P}, \mathbb{R}^{n}\right)} \rightarrow 0, \quad\left\|r_{j_{k}}\right\|_{L_{t-\frac{1}{2}}^{2}}(\mathfrak{D}) \rightarrow 0 \text { as } k \rightarrow \infty . \tag{4.31}
\end{equation*}
$$

Combining (4.31) with the uniform boundedness of the sequence $\left\{\mathcal{P}_{j_{k}}\right\}_{k \in \mathbb{N}}$ in $L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, we obtain the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{P}_{j_{k}} \mathbf{w}_{j_{k}}=\mathbf{0} \quad \text { in } L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . \tag{4.32}
\end{equation*}
$$

Indeed, there exists a constant $c \equiv c(\mathfrak{D}, s)>0$, such that

$$
\left.\begin{array}{rl}
\left\|\mathcal{P}_{j_{k}} \mathbf{w}_{j_{k}}\right\|_{L_{s-\frac{3}{2}}^{2}}\left(\mathfrak{P}, \mathbb{R}^{n}\right) & \leq c\left\|\mathcal{P}_{j_{k}} \mathbf{w}_{j_{k}}\right\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \leq c\left\|\mathcal{P}_{j_{k}}\right\|_{L^{\infty}\left(\mathfrak{O}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)}\left\|\mathbf{w}_{j_{k}}\right\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \leq c a\left\|\mathbf{w}_{j_{k}}\right\|_{L_{t+\frac{1}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{4.33}
\end{array}\right) 0 \text { as } k \rightarrow \infty .
$$

Now, by (4.21) and (4.32), we get $\triangle \mathbf{w}_{j_{k}}-\nabla r_{j_{k}} \rightarrow \mathbf{0}$ in $L_{s-\frac{3}{2}}^{2}(\mathfrak{D}), \operatorname{Tr} \mathbf{w}_{j_{k}} \rightarrow \mathbf{0}$ in $L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, as $k \rightarrow \infty$. Therefore,

$$
\left\{\begin{array}{l}
\triangle \mathbf{w}_{j_{k}}-\nabla r_{j_{k}} \rightarrow \mathbf{0} \text { in } L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{4.34}\\
\operatorname{div} \mathbf{w}_{j_{k}} \rightarrow 0 \text { in } L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\operatorname{Tr} \mathbf{w}_{j_{k}} \rightarrow \mathbf{0} \text { in } L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
\end{array} \text { as } k \rightarrow \infty\right.
$$

Finally, by exploiting the well-posedness of the Dirichlet problem for the Stokes system in the space $\tilde{\mathcal{X}}_{s}:=\left\{(\mathbf{v}, q) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}):\langle q, 1\rangle_{\mathfrak{D}}=0\right\}$ (see [40, Theorem 10.6.2]), we obtain the limiting relation

$$
\begin{equation*}
\left\|\left(\mathbf{w}_{j_{k}}, r_{j_{k}}\right)\right\|_{\tilde{\mathcal{X}}_{s}} \rightarrow 0 \text { as } k \rightarrow \infty, \tag{4.35}
\end{equation*}
$$

which contradicts the choice of the sequence $\left\{\left(\mathbf{w}_{j_{k}}, r_{j_{k}}\right)\right\}_{k \geq 1}$ in $\tilde{\mathcal{X}}_{s}$, i.e., the relation $\left\|\left(\mathbf{w}_{j_{k}}, r_{j_{k}}\right)\right\|_{\tilde{\mathcal{X}}_{s}}=1$ for any $k \geq 1$. Thus, the proof is complete.

4.2. Poisson problem for the semilinear Brinkman system with Dirichlet boundary condition

Next, we introduce the semilinear Poisson problem with Dirichlet boundary condition in L^{2}-based Sobolev spaces on the Lipschitz domain $\mathfrak{D} \subseteq \mathbb{R}^{n}$. We take $s \in\left(\frac{1}{2}, 1\right)$, and we consider a function $\mathcal{P} \in L^{\infty}(\mathfrak{D} \times$ $\mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}$), which satisfies the Carathéodory condition, i.e., $\mathcal{P}(\cdot, \mathbf{v}, \xi)$ is measurable for almost all $(\mathbf{v}, \xi) \in \mathbb{R}^{n} \times \mathbb{R}$ and $\mathcal{P}(\mathbf{x}, \cdot, \cdot)$ is continuous for all $\mathbf{x} \in \mathfrak{D}$. In addition, we assume that \mathcal{P} satisfies the following nonnegativity condition: There exists a subset $N_{\mathcal{P}}$ of measure zero of \mathfrak{D} such that

$$
\begin{equation*}
\langle\mathcal{P}(\mathbf{x}, \mathbf{v}, \xi) \mathbf{b}, \mathbf{b}\rangle \geq 0, \quad \forall \mathbf{b} \in \mathbb{R}^{n},(\mathbf{x}, \mathbf{v}, \xi) \in\left(\mathfrak{D} \backslash N_{\mathcal{P}}\right) \times \mathbb{R}^{n} \times \mathbb{R} . \tag{4.36}
\end{equation*}
$$

Finally, we assume that $(\mathbf{f}, g, \mathbf{h}) \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ satisfies the compatibility condition

$$
\begin{equation*}
\langle\nu, \mathbf{h}\rangle_{\Gamma}=\langle g, 1\rangle_{\mathfrak{D}}, \tag{4.37}
\end{equation*}
$$

and we consider the semilinear Poisson problem

$$
\begin{cases}(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{u}-\nabla \pi=\mathbf{f} & \text { in } \mathfrak{D} \tag{4.38}\\ \operatorname{div} \mathbf{u}=g & \text { in } \mathfrak{D} \\ \operatorname{Tr} \mathbf{u}=\mathbf{h} & \text { on } \Gamma, \\ \langle\pi, 1\rangle_{\mathfrak{D}}=0 & \end{cases}
$$

with the unknown $(\mathbf{u}, \pi) \in \mathcal{X}_{s}:=L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$. In order to have an existence result for the problem (4.38), we resort to the well-known Schauder Fixed Point Theorem (see, e.g., [16, Theorem 11.1]):

Theorem 4.3. Let K be a closed convex subset of a Banach space X. If $T: K \rightarrow K$ is a continuous mapping such that $T(K)$ is a relatively compact subset of K, then T has a fixed point.

Then, we prove the following existence result.
Theorem 4.4. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $a>0$ and $s \in\left(\frac{1}{2}, 1\right)$. Then, there exists a constant $C \equiv C(a, s, \mathfrak{D})>0$ such that for each $(\mathbf{f}, g, \mathbf{h}) \in$ $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ satisfying the compatibility condition (4.37) and for each essentially bounded Carathéodory function \mathcal{P} from $\mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R}$ to $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$ satisfying the nonnegativity condition (4.36) and the inequality

$$
\begin{equation*}
\|\mathcal{P}\|_{L^{\infty}\left(\mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a \tag{4.39}
\end{equation*}
$$

the semilinear Poisson problem (4.38) has at least a solution $(\mathbf{u}, \pi) \in \mathcal{X}_{s}$ such that

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|_{\mathcal{X}_{s}} \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{4.40}
\end{equation*}
$$

Proof. For a fixed $(\mathbf{u}, \pi) \in \tilde{\mathcal{X}}_{s}$, where $\tilde{\mathcal{X}}_{s}$ is the space defined in (4.12), we first consider the auxiliary linear Poisson problem with Dirichlet boundary condition

$$
\left\{\begin{array}{l}
(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{v}-\nabla \zeta=\mathbf{f} \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{4.41}\\
\operatorname{div} \mathbf{v}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\operatorname{Tr} \mathbf{v}=\mathbf{h} \in L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
\end{array}\right.
$$

Note that \mathbf{f}, g and \mathbf{h} are the given data of the semilinear Poisson problem (4.38). By Theorem 4.1, there exists a constant $C \equiv C(a, s, \mathfrak{D})>0$ such that the problem (4.41) has a unique solution $(\mathbf{v}, \zeta) \in \tilde{\mathcal{X}}_{s}$, which satisfies the inequality [see (4.16)]

$$
\begin{equation*}
\|(\mathbf{v}, \zeta)\|_{\tilde{\mathcal{X}}_{s}} \leq C\left(\|(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{v}-\nabla \zeta\|_{L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\left\|\mathfrak{L}_{2}(\mathbf{v}, \zeta)\right\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\left\|\mathfrak{L}_{3}(\mathbf{v}, \zeta)\right\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{4.42}
\end{equation*}
$$

where \mathfrak{L}_{2} and \mathfrak{L}_{3} are the operators given in (4.14). By (4.41) and (4.42), we obtain that

$$
\begin{equation*}
\|(\mathbf{v}, \zeta)\|_{\tilde{\mathcal{X}}_{s}} \leq A \tag{4.43}
\end{equation*}
$$

where

$$
\begin{equation*}
A:=C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right)>0 \tag{4.44}
\end{equation*}
$$

Therefore, $(\mathbf{v}, \zeta) \in B_{A}$, where $B_{A}:=\left\{z \in \tilde{\mathcal{X}}_{s}:\|z\|_{\tilde{\mathcal{X}}_{s}} \leq A\right\}$. We now consider the nonlinear operator

$$
\begin{equation*}
\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}, \quad B_{A} \ni(\mathbf{u}, \pi) \stackrel{\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}}{\longmapsto}(\mathbf{v}, \zeta) \tag{4.45}
\end{equation*}
$$

which associates to $(\mathbf{u}, \pi) \in B_{A}$ the unique solution $(\mathbf{v}, \zeta) \in B_{A}$ of the linear Poisson problem of Dirichlet type (4.41). Such an operator is well defined, as the inequality (4.43) shows. We now turn to show that $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$ is continuous and compact.

Let $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ be a sequence in $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{s}}\right)$, and let $t \in\left(\frac{1}{2}, 1\right), t<s$. Since the embedding $\tilde{\mathcal{X}}_{s} \hookrightarrow \tilde{\mathcal{X}}_{t}$ is compact, there exists a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ that converges to an element $(\tilde{\mathbf{u}}, \tilde{\pi}) \in \tilde{\mathcal{X}}_{t}$, i.e.,

$$
\begin{equation*}
\left\|\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-(\tilde{\mathbf{u}}, \tilde{\pi})\right\|_{\tilde{\mathcal{X}}_{t}} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{4.46}
\end{equation*}
$$

In addition, since $\tilde{\mathcal{X}}_{s}$ is a reflexive Banach space (as a closed subspace of the reflexive Banach space \mathcal{X}_{s}), we can select a further subsequence of the bounded sequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ in B_{A}, still denoted by $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$, which converges weakly to an element $\left(\mathbf{u}_{0}, \pi_{0}\right) \in B_{A}$, i.e.,

$$
\begin{equation*}
\left\langle\varphi,\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\rangle_{\mathfrak{D}}-\left\langle\varphi,\left(\mathbf{u}_{0}, \pi_{0}\right)\right\rangle_{\mathfrak{D}} \rightarrow 0, \quad \forall \varphi \in\left(\tilde{\mathcal{X}}_{s}\right)^{\prime} \tag{4.47}
\end{equation*}
$$

By (4.47) and the property that the convergence in norm of $\tilde{\mathcal{X}}_{t}$ implies the weak convergence, we obtain for any $\varphi \in\left(\tilde{\mathcal{X}}_{t}\right)^{\prime} \hookrightarrow\left(\tilde{\mathcal{X}}_{s}\right)^{\prime}$ that

$$
\begin{equation*}
\left\langle\varphi,\left(\mathbf{u}_{0}, \pi_{0}\right)-(\tilde{\mathbf{u}}, \tilde{\pi})\right\rangle_{\mathfrak{D}}=\left\langle\varphi,\left(\mathbf{u}_{0}, \pi_{0}\right)-\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\rangle_{\mathfrak{D}}+\left\langle\varphi,\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-(\tilde{\mathbf{u}}, \tilde{\pi})\right\rangle_{\mathfrak{D}} \rightarrow 0 \text { as } k \rightarrow \infty \tag{4.48}
\end{equation*}
$$

Therefore, $\left(\mathbf{u}_{0}, \pi_{0}\right)=(\tilde{\mathbf{u}}, \tilde{\pi})$. Consequently, the proof of the continuity and compactness of the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ in $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{s}}\right)$ reduces to the continuity of $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ from $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{s}}\right)$ whenever $\frac{1}{2}<t<s<1$.

Before we prove such a continuity, we show an intermediate statement. Indeed, we next turn to prove that the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ is continuous from $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$.

The continuity of the operator $\mathcal{T}_{f, g, \mathrm{~h}}$ from $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$
Let $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ be a sequence in $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$, which converges to $(\mathbf{u}, \pi) \in B_{A}$ in the $\tilde{\mathcal{X}}_{t}$-norm, i.e.,

$$
\begin{equation*}
\left\|\left(\mathbf{u}_{j}, \pi_{j}\right)-(\mathbf{u}, \pi)\right\|_{\tilde{\mathcal{X}}_{t}} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty . \tag{4.49}
\end{equation*}
$$

In particular, we note that for $\frac{1}{2}<t<s<1$, the convergence in norm of \mathcal{X}_{t} implies the L^{2}-convergence. Therefore, there exists a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of the sequence $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$, which converges to (\mathbf{u}, π) a.e. in \mathfrak{D}, i.e.,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=(\mathbf{u}, \pi) \text { a.e. in } \mathfrak{D} . \tag{4.50}
\end{equation*}
$$

In addition, in view of the inequality (4.16), the sequence $\left\{\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)\right)\right\}_{j \in \mathbb{N}}$ is bounded in $\tilde{\mathcal{X}}_{s}$, where $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}=\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}, \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\right)$. Then, by the compactness of the embedding $\tilde{\mathcal{X}}_{s} \hookrightarrow \tilde{\mathcal{X}}_{t}$, possibly considering a subsequence, we can assume that $\left\{\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)\right\}_{k \in \mathbb{N}}$ converges to an element $(\tilde{\mathbf{v}}, \tilde{\xi}) \in \tilde{\mathcal{X}}_{t}$. Thus,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)-(\tilde{\mathbf{v}}, \tilde{\xi})\right\|_{\tilde{\mathcal{X}}_{t}}=0 \tag{4.51}
\end{equation*}
$$

We now consider the semilinear Poisson problem

$$
\begin{cases}\left(\triangle-\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right)\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathbf{f} & \text { in } \mathfrak{D}, \tag{4.52}\\ \operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=g & \text { in } \mathfrak{D}, \\ \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathbf{h} & \text { on } \Gamma,\end{cases}
$$

and note that $\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. In addition, by the uniform boundedness of \mathcal{P} in $L^{\infty}\left(\mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ and (4.45), the sequence $\left\{\left(\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}\right.$ is bounded in $L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Then, possibly extracting a subsequence, still denoted as the sequence, we obtain the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \tilde{\mathbf{v}} \tag{4.53}
\end{equation*}
$$

[^11]in the weak-* topology of $L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Indeed, for any $\varphi \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, we have the inequality
\[

$$
\begin{align*}
& \left|\int_{\mathcal{D}}\left\langle\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \tilde{\mathbf{v}}, \varphi\right\rangle d \mathbf{x}\right| \\
& \quad \leq\left\|\mathcal{P}\left(\cdot, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\|_{L^{\infty}\left(\mathcal{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \int_{\mathcal{D}}\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\tilde{\mathbf{v}} \| \boldsymbol{\varphi}\right| d \mathbf{x} \\
& \quad+\int_{\mathcal{D}}|\tilde{\mathbf{v}}||\varphi|\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right| d \mathbf{x} . \tag{4.54}
\end{align*}
$$
\]

In addition, $\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right| \leq 2\|\mathcal{P}\|_{L^{\infty}\left(\mathcal{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)}$ and, by the continuity of $\mathcal{P}(\mathbf{x}, \mathbf{v}, q)$ with respect to $(\mathbf{v}, q) \in \mathbb{R}^{n} \times \mathbb{R}$, we have

$$
\lim _{k \rightarrow \infty}|\tilde{\mathbf{v}}||\varphi|\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right|=0 \text { a.e. } \mathbf{x} \in \mathfrak{D} .
$$

Then, by the Lebesgue Dominated Convergence Theorem (see, e.g., [42]), we deduce the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathcal{D}}|\tilde{\mathbf{v}}||\varphi|\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right| d \mathbf{x}=0 \tag{4.55}
\end{equation*}
$$

It remains to prove that the first integral in the right-hand side of (4.54) tends to 0 as $k \rightarrow \infty$. To this aim, we use the Hölder inequality and the relation (4.51) and obtain a constant $c>0$ such that

$$
\begin{align*}
\int_{\mathcal{O}}\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\tilde{\mathbf{v}} \| \varphi\right| d \mathbf{x} & \leq c\left\|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\tilde{\mathbf{v}}\right\|_{L^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}\|\varphi\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \leq c\left\|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\tilde{\mathbf{v}}\right\|_{L_{t+\frac{1}{2}}^{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right)\|\varphi\|_{L^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)} \rightarrow 0 \text { as } k \rightarrow \infty . \tag{4.56}
\end{align*}
$$

In view of (4.54), (4.55) and (4.56), we obtain the limiting relation

$$
\lim _{k \rightarrow \infty} \int_{\mathcal{D}}\left\langle\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \tilde{\mathbf{v}}, \varphi\right\rangle d \mathbf{x}=0, \quad \forall \varphi \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)
$$

which leads to the property (4.53). In addition, (4.51) implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\Delta \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}} \mathbf{u}_{j_{k}}-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}} \mathbf{u}_{j_{k}}\right)=\triangle \tilde{\mathbf{v}}-\nabla \tilde{\xi}, \lim _{k \rightarrow \infty} \operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}} \mathbf{u}_{j_{k}}=\operatorname{div} \tilde{\mathbf{v}}, \lim _{k \rightarrow \infty} \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}} \mathbf{u}_{j_{k}}=\operatorname{Tr} \tilde{\mathbf{v}}, \tag{4.57}
\end{equation*}
$$

in the sense of distributions.
Now, by (4.52), (4.53) and (4.57), we obtain that ($\tilde{\mathbf{v}}, \tilde{\xi})$ satisfies the linear Poisson problem

$$
\begin{cases}(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \tilde{\mathbf{v}}-\nabla \tilde{\xi}=\mathbf{f} & \text { in } \mathfrak{D} \tag{4.58}\\ \operatorname{div} \tilde{\mathbf{v}}=g & \text { in } \mathfrak{D} \\ \operatorname{Tr} \tilde{\mathbf{v}}=\mathbf{h} & \text { on } \Gamma\end{cases}
$$

in the sense of distributions. On the other hand, in view of (4.41) and (4.45), we have

$$
\begin{cases}(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\mathbf{f} & \text { in } \mathfrak{D}, \tag{4.59}\\ \operatorname{div} \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=g & \text { in } \mathfrak{D}, \\ \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\mathbf{h} & \text { on } \Gamma\end{cases}
$$

Then, comparing (4.58) and (4.59), and using the uniqueness of the solution to the linear Poisson problem for the generalized Brinkman system in the space $\tilde{\mathcal{X}}_{t}$ (see Theorem 4.1), we obtain

$$
\begin{equation*}
\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\tilde{\mathbf{v}}, \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\tilde{\xi} \tag{4.60}
\end{equation*}
$$

[^12]Consequently, we have shown that if $s>\frac{1}{2}$ and if $\left(\mathbf{u}_{j}, \pi_{j}\right) \rightarrow(\mathbf{u}, \pi)$ in $\tilde{\mathcal{X}}_{t}$, then there exists a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ such that

$$
\begin{equation*}
\mathcal{T}_{f, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \rightarrow \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } \tilde{\mathcal{X}}_{t} . \tag{4.61}
\end{equation*}
$$

By using the same method as above, we can show that each subsequence of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ contains a further subsequence such that its image by the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ converges to $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ in $\tilde{\mathcal{X}}_{t}$. Therefore,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } \tilde{\mathcal{X}}_{t} . \tag{4.62}
\end{equation*}
$$

The continuity of the operator $\mathcal{T}_{f, g, \mathrm{~h}}$ from $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{s}}\right)$
Next, we show that if $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ is a sequence in $\left(B_{A},\|\cdot\|_{\tilde{\mathcal{X}}_{s}}\right)$, which converges to $(\mathbf{u}, \pi) \in B_{A}$ in $\tilde{\mathcal{X}}_{t}$, then each subsequence of $\left\{\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ has a further subsequence which converges to $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ in $\tilde{\mathcal{X}}_{s}$. To shorten our notation, we still denote by $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ a subsequence of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$.

To show the desired property, we now consider the Poisson problem

$$
\begin{cases}\triangle \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathbf{f}+\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}(\mathbf{x}), \pi_{j}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right) & \text { in } \mathfrak{D} \tag{4.63}\\ \operatorname{div} \mathcal{T}_{1 ; \mathbf{h}}, \text { in }^{2}\left(\mathbf{u}_{j}, \pi_{j}\right)=g & \text { on } \Gamma \\ \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathbf{h} & \end{cases}
$$

and we turn to prove the limiting relation

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right) \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{4.64}
\end{equation*}
$$

Possibly selecting a further subsequence, we can assume that (4.50) holds (with \mathbf{u}_{j} instead of $\mathbf{u}_{j_{k}}$). Next, we prove the limiting relation (4.64) by duality and by exploiting the equality $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)=$ $\left(L_{\frac{3}{2}-s ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)\right)^{\prime}$. Indeed, for any $\Psi \in L_{\frac{3}{2}-s ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, we have

$$
\begin{align*}
& \left|\int_{\mathcal{D}}\left\langle\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), \Psi\right\rangle d \mathbf{x}\right| \\
& \quad \leq \int_{\mathcal{D}}\left|\left(\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right)\right||\Psi| d \mathbf{x} \\
& \leq \int_{\mathcal{D}}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)\right|\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right||\Psi| d \mathbf{x} \\
& \quad+\int_{\mathcal{D}}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right|\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right||\Psi| d \mathbf{x} . \tag{4.65}
\end{align*}
$$

In addition, by using the Hölder inequality and the inequality (4.39), we obtain that

$$
\begin{aligned}
& \int_{\mathfrak{D}}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)\right|\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right||\Psi| d \mathbf{x} \\
& \quad \leq a\left\|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}\|\Psi\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \quad \leq a^{\prime}\left\|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right\|_{L_{t+\frac{1}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)\|\Psi\|_{L_{\frac{3}{2}-s ; 0}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty,
\end{aligned}
$$

with a constant $a^{\prime} \equiv a^{\prime}(\mathfrak{D}, t)>0$. Hence, for any $\Psi \in L_{\frac{3}{2}-s ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, one has the limiting relation

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\mathcal{D}}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)\right|\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right||\Psi| d \mathbf{x}=0 \tag{4.66}
\end{equation*}
$$

which holds uniformly when Ψ ranges in the unit ball of $L_{\frac{3}{2}-s ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. On the other hand, in view of (4.50) and the property that \mathcal{P} is a Carathéodory function, we obtain the limiting relation

$$
\lim _{j \rightarrow \infty}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right|=0 \text { a.e. } \mathbf{x} \in \mathfrak{D}
$$

Combining such a property with the Hölder inequality, the membership of $\left|\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right|$ in $L^{2}(\mathfrak{D})$, the inequality (4.39), and with the Lebesgue Dominated Convergence Theorem, one obtains the limiting relation

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\mathcal{D}}\left|\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi)\right|\left|\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right||\Psi| d \mathbf{x}=0 \tag{4.67}
\end{equation*}
$$

which holds uniformly when Ψ ranges in the unit ball of $L_{\frac{3}{2}-s ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. The limiting relations (4.65), (4.66) and (4.67) lead to the desired limiting relation (4.64). Hence, the right-hand side of the problem (4.63) converges to $\left(\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), g, \mathbf{h}\right)$ in the space $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. Then, the well-posedness of the linear Poisson problem for the Stokes system with Dirichlet condition in $\tilde{\mathcal{X}}_{s}$ (see [40, Theorem 10.6.2]) yields the desired property

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } \quad \tilde{\mathcal{X}}_{s} \tag{4.68}
\end{equation*}
$$

Consequently, the nonlinear operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$ is continuous and compact, as asserted.

Existence of a solution to the semilinear Poisson problem (4.38)

Finally, the Schauder Fixed Point Theorem (see Theorem 4.3) applied to the continuous and compact nonlinear operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$, and to the closed, bounded and convex subset B_{A} of the Banach space $\tilde{\mathcal{X}}_{s}$, implies that $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ has a fixed point $(\mathbf{u}, \pi) \in B_{A}$. This is a solution of the semilinear Poisson problem (4.38) in the space $\tilde{\mathcal{X}}_{s}$, which satisfies the inequality $\|(\mathbf{u}, \pi)\|_{\tilde{\mathcal{X}}_{s}} \leq A$, where A is the constant given by (4.44). Thus, the proof is complete.

Remark 4.5. The results of Theorem 4.4 can be extended to other Sobolev and Besov spaces by using [40, Theorem 10.6.2], i.e., the well-posedness result in such spaces for the Poisson problem for the Stokes system with Dirichlet boundary condition, embedding results, as well as an argument similar to those in the proof of Theorem 4.4, which we omit for the sake of brevity.

5. The semilinear Brinkman system with nonlinear Robin condition

In this section, we show the existence of a solution of the Poisson problem for the generalized Brinkman system with nonlinear Robin boundary condition and data in L^{2}-based Sobolev spaces.

5.1. The linear Poisson problem for the Stokes system with Robin boundary condition

Let us first prove the well-posedness of the Poisson problem for the Stokes system with Robin boundary condition, by using a single-layer potential approach. Note that the existence of a solution to a Robin problem for the Stokes system in a bounded or an exterior Lipschitz domain in $\mathbb{R}^{n}(n \geq 2)$, with a non-connected compact boundary, has been proved in [44, Theorem 4.1], by exploiting a double-layer potential approach. In particular, the Robin problem for the homogeneous Stokes system in a bounded domain $G \subseteq \mathbb{R}^{3}$ with Lyapunov boundary $\partial G \in C^{1, \alpha}, \alpha \in(0,1)$, and boundary data in $C^{\alpha}\left(\partial G, \mathbb{R}^{3}\right)$, or in $L^{s}\left(\partial G, \mathbb{R}^{3}\right), s \in(1, \infty)$, has been studied in [32, Theorem 4.3].

Theorem 5.1. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in(0,1)$. Let $\lambda \in L^{\infty}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ be a symmetric matrix-valued function, such that

$$
\begin{equation*}
\langle\lambda \mathbf{v}, \mathbf{v}\rangle_{\Gamma} \geq 0, \forall \mathbf{v} \in L^{2}\left(\Gamma, \mathbb{R}^{n}\right) \text { and }\langle\lambda \mathbf{v}, \mathbf{v}\rangle_{\Gamma}=0 \Longleftrightarrow \mathbf{v}=\mathbf{0} . \tag{5.1}
\end{equation*}
$$

Then, there exists a constant $C \equiv C(\lambda, s, \mathfrak{D})>0$ such that the Poisson problem for the Stokes system with Robin boundary condition:

$$
\left\{\begin{array}{l}
\triangle \mathbf{v}-\nabla p=\left.\mathbf{f}\right|_{\mathfrak{D}}, \mathbf{f} \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \tag{5.2}\\
\operatorname{div} \mathbf{v}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \\
\partial_{\nu}(\mathbf{v}, p)_{\mathbf{f}, g}+\lambda \operatorname{Tr}^{\mathbf{v}}=\mathbf{h} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
\end{array}\right.
$$

has a unique solution $(\mathbf{v}, p) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, which satisfies the inequality

$$
\begin{equation*}
\|\mathbf{v}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}+\|p\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})} \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) . \tag{5.3}
\end{equation*}
$$

Proof. First, we show that the problem (5.2) has at most one solution $(\mathbf{v}, p) \in \mathcal{X}_{s}$, where $\mathcal{X}_{s}:=$ $L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$. Indeed, assuming that the pair $\left(\mathbf{v}_{0}, p_{0}\right) \in \mathcal{X}_{s}$ is a solution of the homogeneous problem associated with (5.2), one has the layer potential representation (see, e.g., [40, (10.95)])

$$
\begin{equation*}
\mathbf{v}_{0}=\mathbf{V}_{\Gamma}\left(\partial_{\nu}\left(\mathbf{v}_{0}, p_{0}\right)\right)-\mathbf{W}_{\Gamma}\left(\operatorname{Tr} \mathbf{v}_{0}\right)=-\mathbf{V}_{\text {Г }}\left(\lambda \operatorname{Tr} \mathbf{v}_{0}\right)-\mathbf{W}_{\text {Г }}\left(\operatorname{Tr} \mathbf{v}_{0}\right) \text { in } \mathfrak{D}, \tag{5.4}
\end{equation*}
$$

which leads to the following equation with the unknown $\operatorname{Tr} \mathbf{v}_{0} \in L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$:

$$
\begin{equation*}
\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}+\mathcal{V}_{\Gamma} \lambda\right) \operatorname{Tr} \mathbf{v}_{0}=\mathbf{0} . \tag{5.5}
\end{equation*}
$$

Since $\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is Fredholm with index zero (see, e.g., [40, Theorem 10.5.3]) and $\mathcal{V}_{\Gamma} \lambda: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is compact, the operator $\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}+\mathcal{V}_{\Gamma} \lambda: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is Fredholm with index zero as well, for any $s \in(0,1)$. Therefore, this operator is invertible if and only if

$$
\begin{equation*}
\operatorname{Ker}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}: L_{-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right)=\{\mathbf{0}\} . \tag{5.6}
\end{equation*}
$$

On the other hand, by using again Proposition 3.2, we obtain the equality

$$
\begin{equation*}
\operatorname{Ker}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}: L_{-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{-s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right)=\operatorname{Ker}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}: L_{-\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{-\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right) \tag{5.7}
\end{equation*}
$$

for any $s \in(0,1)$. Hence, the proof of the property (5.6) reduces to show that

$$
\begin{equation*}
\operatorname{Ker}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}: L_{-\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{-\frac{1}{2}}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right)=\{\mathbf{0}\} . \tag{5.8}
\end{equation*}
$$

This property follows by means of the Green formula (2.11) and standard arguments of the potential theory, which we omit for the sake of brevity. Consequently, $\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}+\mathcal{V}_{\Gamma} \lambda: L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is an isomorphism for any $s \in(0,1)$. Hence, the equation (5.5) has only the solution $\operatorname{Tr} \mathbf{v}_{0}=\mathbf{0}$. By (5.4)

[^13]and by $\partial_{\nu}\left(\mathbf{v}_{0}, p_{0}\right)+\lambda \operatorname{Tr} \mathbf{v}_{0}=\mathbf{0}$, we obtain that $\left(\mathbf{v}_{0}, p_{0}\right)=(\mathbf{0}, 0)$. Therefore, the problem (5.2) has at most one solution. It remains to observe that the pair $(\mathbf{v}, p) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$,
\[

$$
\begin{align*}
\mathbf{v} & :=\mathcal{N}_{\mathfrak{D}}(\mathbf{f}-\nabla g)+\nabla \mathcal{N}_{\triangle} g+\mathbf{V}_{\Gamma}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}\right)^{-1} \mathbf{h}_{1}, \tag{5.9}\\
p & :=\mathcal{Q}_{\mathfrak{D}}(\mathbf{f}-\nabla g)+\mathcal{Q}_{\Gamma}\left(\frac{1}{2} \mathbb{I}+\mathbf{K}_{\Gamma}^{*}+\lambda \mathcal{V}_{\Gamma}\right)^{-1} \mathbf{h}_{1},
\end{align*}
$$
\]

is the unique solution of the Poisson problem with Robin boundary condition (5.2), where $\mathcal{N}_{\mathfrak{D}}$ and $\mathcal{Q}_{\mathfrak{D}}$ are the Newtonian potential and its corresponding pressure potential for the Stokes system in \mathfrak{D}, and \mathcal{N}_{\triangle} is the Newtonian potential for the Laplace operator in \mathfrak{D}. In addition, we have that

$$
\mathbf{h}_{1}:=\mathbf{h}-\partial_{\nu}\left(\mathcal{N}_{\mathfrak{D}}(\mathbf{f}-\nabla g), \mathcal{Q}_{\mathfrak{D}}(\mathbf{f}-\nabla g)\right)-\partial_{\nu}\left(\nabla \mathcal{N}_{\triangle} g, 0\right) \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
$$

On the other hand, the boundedness of the involved layer potentials in (5.9) shows that this solution satisfies the estimate (5.3) in terms of data $(\mathbf{f}, g, \mathbf{h}) \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, with a constant $C \equiv C(\lambda, s, \mathfrak{D})>0$ independent of these data.

5.2. The linear Poisson problem for the generalized Brinkman system with Robin boundary condition

Theorem 5.2. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in(0,1)$. Let $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ be a matrix-valued function, which satisfies the nonnegativity condition (2.12), and let $\lambda \in L^{\infty}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ be a symmetric matrix-valued function, which satisfies the strong positivity condition (5.1). Then, there exists a constant $C \equiv C(\mathcal{P}, \lambda, s, \mathfrak{D})>0$ such that the linear Poisson problem for the generalized Brinkman system with Robin boundary condition:

$$
\left\{\begin{array}{l}
\triangle \mathbf{u}-\mathcal{P} \mathbf{u}-\nabla \pi=\left.\mathbf{f}\right|_{\mathfrak{D}}, \mathbf{f} \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{5.10}\\
\operatorname{div} \mathbf{u}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\partial_{\nu}(\mathbf{u}, \pi)_{\mathbf{f}+\mathcal{P} \mathbf{u}, g}+\lambda \operatorname{Tr} \mathbf{u}=\mathbf{h} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
\end{array}\right.
$$

has a unique solution $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, which satisfies the inequality

$$
\begin{equation*}
\|\mathbf{u}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\pi\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})} \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{5.11}
\end{equation*}
$$

Proof. Let us consider the following operator associated with the Poisson problem (5.10):

$$
\begin{equation*}
A_{\lambda ; \mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}, \quad A_{\lambda ; \mathcal{P}}(\mathbf{u}, \pi)=\left(\triangle \mathbf{u}-\mathcal{P} \mathbf{u}-\nabla \pi, \operatorname{div} \mathbf{u}, \partial_{\nu}(\mathbf{u}, \pi)_{\triangle \mathbf{u}-\nabla \pi, \operatorname{div} \mathbf{u}}+\lambda \operatorname{Tr} \mathbf{u}\right) \tag{5.12}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{X}_{s}:=L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \tag{5.13}\\
& \mathcal{W}_{s}:=\left\{\left(\left.\mathbf{F}\right|_{\mathfrak{D}}, G, \mathbf{H}\right): \mathbf{F} \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), G \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \mathbf{H} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)\right\} . \tag{5.14}
\end{align*}
$$

Note that for any $s \in(0,1)$, we have the equality (see, e.g., $[36,(3.13)])$

$$
\begin{equation*}
L_{s-\frac{3}{2} ; z}^{2}(\mathfrak{D})=L_{s-\frac{3}{2}}^{2}(\mathfrak{D}) \tag{5.15}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{s-\frac{3}{2} ; z}^{2}(\mathfrak{D}):=\left\{f \in \mathcal{D}^{\prime}(\mathfrak{D}): \exists g \in L_{s-\frac{3}{2} ; 0}^{2}(\mathfrak{D}) \text { such that } f=\left.g\right|_{\mathfrak{D}}\right\} \tag{5.16}
\end{equation*}
$$

Also, note that $\triangle \mathbf{v}-\mathcal{P} \mathbf{v}-\nabla q \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ for any $(\mathbf{v}, q) \in \mathcal{X}_{s}$. In addition, by using Lemma 2.3 (see also Remark 2.5), we obtain the useful relation

$$
\begin{equation*}
\partial_{\nu ; \mathcal{P}}(\mathbf{v}, q)_{\mathbf{F}, G}=\partial_{\nu}(\mathbf{v}, q)_{\mathbf{F}+\mathcal{P} \mathbf{v}, G}, \tag{5.17}
\end{equation*}
$$

for any $(\mathbf{v}, q, \mathbf{F}, G) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ such that

$$
\begin{equation*}
\triangle \mathbf{v}-\mathcal{P} \mathbf{v}-\nabla q=\left.\mathbf{F}\right|_{\mathfrak{D}}, \quad \operatorname{div} \mathbf{v}=G \text { in } \mathfrak{D} \tag{5.18}
\end{equation*}
$$

This relation has suggested the expression of the Robin condition in (5.10). Therefore, the operator $A_{\lambda ; \mathcal{P}}$ given by (5.12) can be written as

$$
\begin{equation*}
A_{\lambda ; \mathcal{P}}=\mathcal{A}_{\lambda}+\mathcal{C}_{\mathcal{P}} \tag{5.19}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{A}_{\lambda}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}, \quad \mathcal{A}_{\lambda}(\mathbf{u}, \pi):=\left(\triangle \mathbf{u}-\nabla \pi, \text { div } \mathbf{u}, \partial_{\nu}(\mathbf{u}, \pi)_{\triangle \mathbf{u}-\nabla \pi, \text { div } \mathbf{u}}+\lambda \operatorname{Tr} \mathbf{u}\right), \tag{5.20}\\
& \mathcal{C}_{\mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}, \quad \mathcal{C}_{\mathcal{P}}(\mathbf{u}, \pi):=(-\mathcal{P} \mathbf{u}, 0, \mathbf{0}) . \tag{5.21}
\end{align*}
$$

The well-posedness of the Poisson problem for the Stokes system with Robin condition (5.2) (see Theorem 5.1) shows that for any $\left(\left.\mathbf{F}\right|_{\mathfrak{D}}, \mathbf{G}, \mathbf{H}\right) \in \mathcal{W}_{s}$, there is a unique pair $(\mathbf{v}, p) \in \mathcal{X}_{s}$ such that

$$
\begin{equation*}
\Delta \mathbf{v}-\nabla p=\left.\mathbf{F}\right|_{\mathfrak{D}}, \operatorname{div} \mathbf{u}=G \text { in } \mathfrak{D}, \partial_{\nu}(\mathbf{v}, p)_{\mathbf{F}, G}+\lambda \operatorname{Tr} \mathbf{v}=\mathbf{H} \text { on } \Gamma, \tag{5.22}
\end{equation*}
$$

i.e., the associated operator $\mathcal{A}_{\lambda}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}$ is an isomorphism, and hence Fredholm with index zero. In addition, since $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, the corresponding multiplication operator from $L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ to $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, denoted in the same manner as the matrix-valued function \mathcal{P}, is compact. Indeed, the diagram

$$
\begin{align*}
L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) & \stackrel{\mathcal{P}}{\longrightarrow} & L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{5.23}\\
\left.\mathcal{I}_{0 ; s-\frac{3}{2}} \circ \mathcal{P} \right\rvert\, & & \downarrow \mathcal{I}_{0 ; s-\frac{3}{2}} \\
L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) & \stackrel{\mathbb{I}}{\longleftarrow} & L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)
\end{align*}
$$

is commutative and the imbedding of $L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ into $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is compact, i.e., the inclusion operator $\mathcal{I}_{0 ; s-\frac{3}{2}}: L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is compact. Therefore, the operator $\mathcal{C}_{\mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}$ given by (5.21) is compact as well. Consequently, the operator $A_{\lambda ; \mathcal{P}}=\mathcal{A}_{\lambda}+\mathcal{C}_{\mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}$ is Fredholm with index zero, for any $s \in(0,1)$. By Proposition 3.2, one then obtains the following equality

$$
\begin{equation*}
\operatorname{Ker}\left(A_{\lambda ; \mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}\right)=\operatorname{Ker}\left(A_{\lambda ; \mathcal{P}}: \mathcal{X}_{\frac{1}{2}} \rightarrow \mathcal{W}_{\frac{1}{2}}\right), \forall s \in(0,1) \tag{5.24}
\end{equation*}
$$

Next, we turn to show that

$$
\begin{equation*}
\operatorname{Ker}\left(A_{\lambda ; \mathcal{P}}: \mathcal{X}_{\frac{1}{2}} \rightarrow \mathcal{W}_{\frac{1}{2}}\right)=\{(\mathbf{0}, 0)\} \tag{5.25}
\end{equation*}
$$

To show this property, assume that $\left(\mathbf{u}_{0}, \pi_{0}\right) \in \operatorname{Ker}\left(A_{\lambda ; \mathcal{P}}: \mathcal{X}_{\frac{1}{2}} \rightarrow \mathcal{W}_{\frac{1}{2}}\right)$. By Lemma 2.3, one has the identity

$$
\begin{equation*}
2 \int_{\mathcal{D}} E_{j k}\left(\mathbf{u}_{0}\right) E_{j k}\left(\mathbf{u}_{0}\right) d \mathbf{x}+\left\langle\mathcal{P} \mathbf{u}_{0}, \mathbf{u}_{0}\right\rangle_{\mathcal{D}}=\left\langle\partial_{\nu}\left(\mathbf{u}_{0}, \pi_{0}\right)_{\mathcal{P} \mathbf{u}_{0}}, \operatorname{Tr} \mathbf{u}_{0}\right\rangle_{\Gamma}=\left\langle-\lambda \operatorname{Tr} \mathbf{u}_{0}, \operatorname{Tr} \mathbf{u}_{0}\right\rangle_{\Gamma} \tag{5.26}
\end{equation*}
$$

where the left-hand side of (5.26) is nonnegative, as $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ satisfies the nonnegativity condition (2.12), and the right-hand side is less or equal to zero, as $\lambda \in L^{\infty}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ satisfies the strong positivity condition (5.1). Therefore,

$$
\begin{equation*}
E_{j k}\left(\mathbf{u}_{0}\right)=0 \quad \text { in } \mathfrak{D}, j, k=1, \ldots, n, \text { and } \operatorname{Tr} \mathbf{u}_{0}=\mathbf{0} \quad \text { on } \Gamma . \tag{5.27}
\end{equation*}
$$

The first condition in (5.27) implies that \mathbf{u}_{0} is a rigid body motion field, i.e., $\mathbf{u}_{0}=\mathcal{A} \mathbf{x}+\mathbf{b}$, where $\mathbf{b} \in \mathbb{R}^{n}$ and \mathcal{A} is a skew symmetric matrix $\left(\mathcal{A}^{\top}=-\mathcal{A}\right)$ of type $n \times n$. But $\operatorname{Tr} \mathbf{u}_{0}=\mathbf{0}$ a.e. on Γ, and thus $\mathcal{A}=0$ and $\mathbf{b}=\mathbf{0}$, i.e., $\mathbf{u}_{0}=\mathbf{0}$ in \mathfrak{D}. This result combined with the generalized Brinkman equation $\triangle \mathbf{u}_{0}-\mathcal{P} \mathbf{u}_{0}-\nabla \pi_{0}=0$ implies that $\pi_{0}=c_{0} \in \mathbb{R}$ in \mathfrak{D}. However, the second condition in (5.27) implies that $\partial_{\nu}\left(\mathbf{u}_{0}, \pi_{0}\right)_{\mathcal{P} \mathbf{u}_{0}}=-\lambda \operatorname{Tr} \mathbf{u}_{0}=\mathbf{0}$ a.e. on Γ, and hence $c_{0}=0$. Therefore, $\mathbf{u}_{0}=\mathbf{0}$ and

[^14]$\pi_{0}=0$ in \mathfrak{D}. This result shows the property (5.25). Then, by (5.24), the Fredholm operator with index zero $A_{\lambda ; \mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}$ is one-to-one, i.e., an isomorphism, for any $s \in(0,1)$. This property implies that the linear Poisson problem for the generalized Brinkman system with Robin boundary condition (5.10) has a unique solution $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$. In addition, the boundedness of the operator $A_{\lambda ; \mathcal{P}}: \mathcal{X}_{s} \rightarrow \mathcal{W}_{s}$ and of the restriction operator from $L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ to $L_{s-\frac{3}{2} ; z}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ (see, e.g., $\left.[36,3.6]\right)$ implies that there exists a constant $C \equiv C(\mathcal{P}, \lambda, s, \mathfrak{D})>0$ such that
\[

\left.$$
\begin{array}{rl}
\|\mathbf{u}\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right)
\end{array}
$$\right)\|\pi\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}=\left\|A_{\lambda ; \mathcal{P}}^{-1}\left(\left.\mathbf{f}\right|_{\mathfrak{D}}, g, \mathbf{h}\right)\right\|_{\mathcal{X}_{s}} .
\]

Hence, the solution (\mathbf{u}, π) satisfies the desired estimate (5.11), and the proof is complete.
Recalling that \mathcal{X}_{s} is the space defined in (5.14), we now consider the operators

$$
\begin{align*}
& \mathfrak{L}_{1 ; \mathfrak{R}}: \mathcal{X}_{s} \rightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \mathfrak{L}_{1 ; \mathfrak{R}}(\mathbf{u}, \pi):=(\triangle-\mathcal{P}) \mathbf{u}-\nabla \pi, \\
& \mathfrak{L}_{2 ; \mathfrak{R}}: \mathcal{X}_{s} \rightarrow L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \mathfrak{L}_{2 ; \mathfrak{R}}(\mathbf{u}, \pi):=\operatorname{div} \mathbf{u} \tag{5.29}\\
& \mathfrak{L}_{3 ; \mathfrak{R}}: \mathcal{X}_{s} \rightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right), \mathfrak{L}_{3 ; \mathfrak{R}}(\mathbf{u}, \pi):=\partial_{\nu}(\mathbf{u}, \pi)_{\mathfrak{L}_{1 ; \mathfrak{R}}(\mathbf{u}, \pi)+\mathcal{P} \mathbf{u}, \mathfrak{L}_{2 ; \mathfrak{R}}(\mathbf{u}, \pi)}+\lambda \operatorname{Tr} \mathbf{u} .
\end{align*}
$$

Then, we have the following result.
Lemma 5.3. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in$ $(0,1), \alpha, a \in(0,+\infty), \alpha \leq a$. Then, there exists a constant $C \equiv C(a, \alpha, s, \mathfrak{D})>0$ such that

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|_{\mathcal{X}_{s}} \leq C\left(\left\|\mathfrak{L}_{1 ; \mathfrak{R}}(\mathbf{u}, \pi)\right\|_{L_{s-\frac{3}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}+\left\|\mathfrak{L}_{2 ; \mathfrak{R}}(\mathbf{u}, \pi)\right\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\left\|\mathfrak{L}_{3 ; \mathfrak{R}}(\mathbf{u}, \pi)\right\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right), \tag{5.30}
\end{equation*}
$$

for all $(\mathbf{u}, \pi) \in \mathcal{X}_{s}$, for any $\mathcal{P} \in L^{\infty}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, which satisfies the nonnegativity condition (2.12) and the inequality

$$
\begin{equation*}
\|\mathcal{P}\|_{L^{\infty}\left(\mathcal{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a, \tag{5.31}
\end{equation*}
$$

and for any symmetric matrix-valued function $\lambda \in L^{\infty}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$, which satisfies the conditions

$$
\begin{align*}
& \langle\lambda \mathbf{v}, \mathbf{v}\rangle_{\Gamma} \geq \alpha\|\mathbf{v}\|_{L^{2}\left(\Gamma, \mathbb{R}^{n}\right)}^{2}, \forall \mathbf{v} \in L^{2}\left(\Gamma, \mathbb{R}^{n}\right), \tag{5.32}\\
& \|\lambda\|_{L^{\infty}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a \tag{5.33}
\end{align*}
$$

The proof of Lemma 5.3 is based on the well-posedness result in Theorem 5.2 and on arguments similar to those in the proof of Lemma 4.2, which we omit for the sake of brevity.

5.3. Existence result for the Poisson problem for the semilinear Brinkman system with nonlinear Robin boundary condition

Next, we consider a semilinear Poisson problem with nonlinear Robin boundary condition in L^{2}-based Sobolev spaces on a bounded Lipschitz domain $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$. This problem requires to show the existence of a pair $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, such that:

$$
\left\{\begin{array}{l}
(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{u}-\nabla \pi=\left.\mathbf{f}\right|_{\mathfrak{D}}, \mathbf{f} \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \tag{5.34}\\
\operatorname{div} \mathbf{u}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\partial_{\nu}(\mathbf{u}, \pi)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathbf{u}, g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathbf{u}=\mathbf{h} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) .
\end{array}\right.
$$

Assume that $\mathcal{P}: \mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ and $\lambda: \Gamma \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ are two essentially bounded matrix-valued Carathéodory functions, such that \mathcal{P} satisfies the nonnegativity condition (4.36) and λ

[^15]satisfies the following condition: There exists a constant $\alpha>0$ and a subset N_{Γ} of measure zero of Γ such that
\[

$$
\begin{equation*}
\langle\lambda(\mathbf{x}, \mathbf{v}) \mathbf{b}, \mathbf{b}\rangle \geq \alpha|\mathbf{b}|^{2}, \forall \mathbf{b} \in \mathbb{R}^{n},(\mathbf{x}, \mathbf{v}) \in\left(\Gamma \backslash N_{\Gamma}\right) \times \mathbb{R}^{n} \tag{5.35}
\end{equation*}
$$

\]

Based on Lemma 5.3 and the Schauder Fixed Point Theorem (see Theorem 4.3), we obtain the following existence result for the semilinear Poisson problem (5.34).

Theorem 5.4. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}(n \geq 2)$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in\left(\frac{1}{2}, 1\right), \alpha, a \in(0,+\infty), \alpha \leq a$. Then, there exists a constant $C \equiv C(a, \alpha, s, \mathfrak{D})>0$ with the following property: For any $(\mathbf{f}, g, \mathbf{h}) \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{p}(\mathfrak{D}) \times L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, for any essentially bounded Carathéodory function \mathcal{P} from $\mathfrak{D} \times \mathbb{R}^{n} \times \mathbb{R}$ to $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$, satisfying the nonnegativity condition (4.36) and the inequality $\|\mathcal{P}\|_{L^{\infty}\left(\mathcal{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a$, and for any essentially bounded Carathéodory function λ from $\Gamma \times \mathbb{R}^{n}$ to the set of symmetric elements of $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$, satisfying the condition (5.35) and the inequality $\|\lambda\|_{L^{\infty}\left(\Gamma \times \mathbb{R}^{n}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a$, there exists at least a solution $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ of the semilinear Poisson problem (5.34) such that

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})} \leq C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{5.36}
\end{equation*}
$$

Proof. First, for a fixed $(\mathbf{u}, \pi) \in \mathcal{X}_{s}$, where $\mathcal{X}_{s}=L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, we consider the auxiliary linear Poisson problem with the Robin boundary condition

$$
\left\{\begin{array}{l}
(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{v}-\nabla \zeta=\left.\mathbf{f}\right|_{\mathfrak{D}}, \mathbf{f} \in L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{5.37}\\
\operatorname{div} \mathbf{v}=g \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \\
\partial_{\nu}(\mathbf{v}, \zeta)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathbf{v}, g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathbf{v}=\mathbf{h} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
\end{array}\right.
$$

with the same given data \mathbf{f}, g and \mathbf{h} as in the semilinear Poisson problem (5.34). This problem has a unique solution $(\mathbf{v}, \zeta) \in \mathcal{X}_{s}$, which satisfies the inequality (see (5.30))

$$
\begin{align*}
\|(\mathbf{v}, \zeta)\|_{\mathcal{X}_{s}} \leq C & \left(\|(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathbf{v}-\nabla \zeta\|_{L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\operatorname{div} \mathbf{v}\|_{L_{s-\frac{1}{2}}^{2}}(\mathfrak{D})\right. \\
& \left.+\left\|\partial_{\nu}(\mathbf{v}, \zeta)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathbf{v}, g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathbf{v}\right\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right) \tag{5.38}
\end{align*}
$$

with some constant $C \equiv C(a, \alpha, s, \mathfrak{D})>0$. Let $\mathcal{R}_{\mathfrak{D}} \mathbf{v}:=\left.\mathbf{v}\right|_{\mathfrak{D}}$ denote the operator of restriction to \mathfrak{D}. In view of (5.37) and by the boundedness of the operator $\mathcal{R}_{\mathfrak{D}}: L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s-\frac{3}{2} ; z}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, where $L_{s-\frac{3}{2} ; z}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right):=\left\{\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right): F_{i} \in L_{s-\frac{3}{2} ; z}^{2}(\mathfrak{D}), i=1, \ldots, n\right\}$ (see $\left.[36,(3.6),(3.12)]\right)$, the inequality (5.38) becomes

$$
\begin{equation*}
\|(\mathbf{v}, \zeta)\|_{\mathcal{X}_{s}} \leq A \tag{5.39}
\end{equation*}
$$

where

$$
\begin{equation*}
A:=C\left(\|\mathbf{f}\|_{L_{s-\frac{3}{2} ; 0}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|g\|_{L_{s-\frac{1}{2}}^{2}(\mathfrak{D})}+\|\mathbf{h}\|_{L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}\right)>0 \tag{5.40}
\end{equation*}
$$

Therefore, $(\mathbf{v}, \zeta) \in B_{A}$, where $B_{A}:=\left\{z \in \mathcal{X}_{s}:\|z\|_{\mathcal{X}_{s}} \leq A\right\}$. We now consider the nonlinear operator

$$
\begin{equation*}
\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}, \quad B_{A} \ni(\mathbf{u}, \pi) \stackrel{\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}}{\longmapsto}(\mathbf{v}, \zeta) \tag{5.41}
\end{equation*}
$$

which maps $(\mathbf{u}, \pi) \in B_{A}$ to the unique solution $(\mathbf{v}, \zeta) \in B_{A}$ of the linear Poisson problem with the Robin boundary condition (5.37). This operator is well defined, as follows from the a priori estimate (5.30) in the linear case. We now show that $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$ is a continuous and compact operator.

Let $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ be a bounded sequence in $\left(B_{A},\|\cdot\|_{\mathcal{X}_{s}}\right)$. Let $t \in\left(\frac{1}{2}, 1\right), t<s$. Since the embedding $\mathcal{X}_{s} \hookrightarrow \mathcal{X}_{t}$ is compact, there exists a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ that converges to an element $(\tilde{\mathbf{u}}, \tilde{\pi}) \in \mathcal{X}_{t}$, i.e.,

$$
\begin{equation*}
\left\|\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-(\tilde{\mathbf{u}}, \tilde{\pi})\right\|_{\mathcal{X}_{t}} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{5.42}
\end{equation*}
$$

[^16]In addition, since \mathcal{X}_{s} is a reflexive Banach space, one can select a further subsequence of the bounded sequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ in \mathcal{X}_{s}, still denoted by $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$, which converges weakly to an element $\left(\mathbf{u}_{0}, \pi_{0}\right) \in B_{A}$, i.e.,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle\varphi,\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\left(\mathbf{u}_{0}, \pi_{0}\right)\right\rangle_{\mathfrak{D}}=0, \quad \forall \varphi \in\left(\mathcal{X}_{s}\right)^{\prime} \tag{5.43}
\end{equation*}
$$

In view of (5.43) and the property that the convergence in norm of \mathcal{X}_{t} implies the weak convergence, one obtains the equality $\left(\mathbf{u}_{0}, \pi_{0}\right)=(\tilde{\mathbf{u}}, \tilde{\pi})$, which shows that the proof of compactness of the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ on $\left(B_{A},\|\cdot\|_{\mathcal{X}_{s}}\right)$ reduces to the continuity of $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ from $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\mathcal{X}_{s}}\right)$, whenever $\frac{1}{2}<t<s<1$.

Before we show such a continuity, we prove an intermediate statement. Indeed, we prove that $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ is continuous from $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$.

The continuity of the operator $\mathcal{T}_{\mathrm{f}, \mathrm{g}, \mathrm{h}}$ from $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$
Let $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ be a sequence in B_{A} which converges to $(\mathbf{u}, \pi) \in B_{A}$ with respect to the norm of \mathcal{X}_{t}, i.e.,

$$
\begin{equation*}
\left\|\left(\mathbf{u}_{j}, \pi_{j}\right)-(\mathbf{u}, \pi)\right\|_{\mathcal{X}_{t}} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty \tag{5.44}
\end{equation*}
$$

In particular, we note that for $\frac{1}{2}<t<s<1$, the convergence in norm of \mathcal{X}_{t} implies the L^{2}-convergence. Then, one can extract a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of the sequence $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$, which converges a.e. to (\mathbf{u}, π). Therefore,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=(\mathbf{u}, \pi) \text { a.e. in } \mathfrak{D} . \tag{5.45}
\end{equation*}
$$

In addition, in view of $(5.41),\left\{\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)\right)\right\}_{j \in \mathbb{N}} \subseteq \mathcal{X}_{s}$ is a bounded sequence in \mathcal{X}_{s}, where $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}=\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}, \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\right)$. Then, by the compactness of the embedding $\mathcal{X}_{s} \hookrightarrow \mathcal{X}_{t}$, possibly considering a subsequence, we can assume that $\left\{\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)\right\}_{k \in \mathbb{N}}$ converges to an element $(\tilde{\mathbf{v}}, \tilde{\xi}) \in \mathcal{X}_{t}$. Thus,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)-(\tilde{\mathbf{v}}, \tilde{\xi})\right\|_{\mathcal{X}_{t}}=0 \tag{5.46}
\end{equation*}
$$

We now consider the semilinear Poisson problem

$$
\left\{\begin{array}{l}
\left(\triangle-\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right)\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\left.\mathbf{f}\right|_{\mathfrak{D}} \tag{5.47}\\
\operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}=g \operatorname{in} \mathfrak{D},\right. \\
\partial_{\nu}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)_{\mathbf{f}+\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}, \pi_{j}}\right), g} \\
\quad+\lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathbf{h} \text { on } \Gamma .
\end{array}\right.
$$

Note that $\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Since \mathcal{P} is a Carathéodory function, the inequality $\|\mathcal{P}\|_{L^{\infty}\left(\mathcal{D} \times \mathbb{R}^{n} \times \mathbb{R}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)} \leq a$ and (5.41) imply that the sequence $\left\{\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ is bounded in $L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Then, possibly selecting a subsequence, we obtain the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \tilde{\mathbf{v}} \tag{5.48}
\end{equation*}
$$

in the weak-* topology of $L^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)$ (see the proof of the property (4.53)). By (5.44) we also have

$$
\left\|\operatorname{Tr} \mathbf{u}_{j_{k}}-\operatorname{Tr} \mathbf{u}\right\|_{L_{t}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Then, possibly selecting a subsequence, we can assume that $\lim _{k \rightarrow \infty} \operatorname{Tr} \mathbf{u}_{j_{k}}=\operatorname{Tr} \mathbf{u}$ a.e. on Γ. Since $\lambda(\cdot, \cdot)$ is a Carathéodory function, we deduce that $\lim _{k \rightarrow \infty} \lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right)=\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x}))$ a.a. $\mathbf{x} \in \Gamma$. In addition, λ is essentially bounded, and then, by the Lebesgue Dominated Convergence Theorem,

$$
\lim _{k \rightarrow \infty} \lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right)=\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \text { in } L^{2}(\Gamma)
$$

By (5.46), we have $\lim _{k \rightarrow \infty} \operatorname{Tr} \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\operatorname{Tr} \tilde{\mathbf{v}}$ in $L_{t}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. Thus,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \tilde{\mathbf{v}} \text { in } L^{1}\left(\Gamma, \mathbb{R}^{n}\right) \tag{5.49}
\end{equation*}
$$

and hence in the sense of distributions in Γ.
Now let $\mathcal{Z}: L_{1-t}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \rightarrow L_{\frac{3}{2}-t}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)$ be a right inverse of the non-tangential trace operator $\operatorname{Tr}: L_{\frac{3}{2}-t}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{1-t}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. Then for any $k \in \mathbb{N}$ we have (see (2.19))

$$
\begin{align*}
& \left\langle\partial_{\nu}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)_{\mathbf{f}+\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{\left.j_{k}, \pi_{j_{k}}\right), g}, \Phi\right\rangle_{\Gamma}}=2\left\langle\mathbb{E}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right), \mathbb{E}(\mathcal{Z} \Phi)\right\rangle_{\mathfrak{D}}-\left\langle\mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \operatorname{div} \mathcal{Z} \Phi\right)\right\rangle_{\mathfrak{D}}+\langle\nabla g, \mathcal{Z} \Phi\rangle_{\mathfrak{D}} \\
& \quad+\langle\mathbf{f}, \mathcal{Z} \Phi\rangle_{\mathfrak{D}}+\int_{j_{k}}\left\langle\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right),(\mathcal{Z} \Phi)(\mathbf{x})\right\rangle d \mathbf{x}
\end{align*}
$$

for all $\Phi \in C_{\text {comp }}^{\infty}\left(\Gamma, \mathbb{R}^{n}\right)$. Also, if $\Phi \in C_{\text {comp }}^{\infty}\left(\Gamma, \mathbb{R}^{n}\right)$ then $\mathcal{Z} \Phi \in L_{\frac{3}{2}-t}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, $\mathbb{E}(\mathcal{Z} \Phi) \in L_{\frac{1}{2}-t}^{2}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$ and $\operatorname{div}(\mathcal{Z} \Phi) \in L_{\frac{1}{2}-t}^{2}(\mathfrak{D})$.

Now, by (5.46), we have

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)=\mathbb{E} \tilde{\mathbf{V}} \text { in } L_{t-\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right), \lim _{k \rightarrow \infty} \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\tilde{\xi} \text { in } L_{t-\frac{1}{2}}^{2}(\mathfrak{D}),
$$

and, thus, the limiting relations (5.48), (5.49) and the equality (5.50) imply that

$$
\begin{align*}
& \lim _{k \rightarrow \infty}\left(\partial_{\nu}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)_{\mathbf{f}+\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j_{k}}(\mathbf{x}), \pi_{j_{k}}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), g}\right. \\
& \left.\quad+\lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)=\partial_{\nu}(\tilde{\mathbf{v}}, \tilde{\xi})_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \tilde{\mathbf{v}}, g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \tilde{\mathbf{v}} \tag{5.51}
\end{align*}
$$

in the sense of distributions in Γ. Also, by the limiting relation (5.46), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\triangle \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)=\triangle \tilde{\mathbf{v}}-\nabla \tilde{\xi}, \lim _{k \rightarrow \infty} \operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\operatorname{div} \tilde{\mathbf{v}} \tag{5.52}
\end{equation*}
$$

in the sense of distributions in \mathfrak{D}.
By (5.47)-(5.52), we obtain that $(\tilde{\mathbf{v}}, \tilde{\xi})$ satisfies the linear Poisson problem with Robin boundary condition

$$
\begin{cases}(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \tilde{\mathbf{v}}-\nabla \tilde{\xi}=\left.\mathbf{f}\right|_{\mathfrak{D}} & \text { in } \mathfrak{D} \tag{5.53}\\ \operatorname{div} \tilde{\mathbf{v}}=g & \text { in } \mathfrak{D} \\ \partial_{\nu}(\tilde{\mathbf{v}}, \tilde{\xi})_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \tilde{\mathbf{v}}, g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \tilde{\mathbf{v}}=\mathbf{h} & \text { on } \Gamma\end{cases}
$$

in the sense of distributions.
On the other hand, in view of (5.37) and (5.41), we have

$$
\left\{\begin{array}{l}
(\triangle-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x}))) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\left.\mathbf{f}\right|_{\mathfrak{D}} \text { in } \mathfrak{D}, \tag{5.54}\\
\operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=g \text { in } \mathfrak{D}, \\
\partial_{\nu}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{I}_{1 ; f, g, \mathbf{h}}(\mathbf{u}, \pi), g}+\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\mathbf{h} \text { on } \Gamma .
\end{array}\right.
$$

Then, by (5.53) and (5.54), Theorem 5.2 implies that

$$
\begin{equation*}
\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\tilde{\mathbf{v}}, \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)=\tilde{\xi} \tag{5.55}
\end{equation*}
$$

Consequently, for $s \in\left(\frac{1}{2}, 1\right)$ given, we have shown that if $\left(\mathbf{u}_{j}, \pi_{j}\right) \rightarrow(\mathbf{u}, \pi)$ in B_{A}, with respect to the norm of \mathcal{X}_{t}, then there exists a subsequence $\left\{\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right\}_{k \in \mathbb{N}}$ of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ such that

$$
\begin{equation*}
\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right) \rightarrow \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } \mathcal{X}_{t} . \tag{5.56}
\end{equation*}
$$

In fact, we can show that each subsequence of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ contains a further subsequence such that its image by the operator $\mathcal{I}_{\mathbf{f}, g, \mathbf{h}}$ converges to $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ with respect to the norm of \mathcal{X}_{t}. Therefore, we obtain the limiting relation

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{I}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } \mathcal{X}_{t} . \tag{5.57}
\end{equation*}
$$

The continuity of the operator $\mathcal{T}_{\mathrm{f}, \mathrm{g}, \mathrm{h}}$ from $\left(B_{A},\|\cdot\|_{\mathcal{X}_{t}}\right)$ to $\left(B_{A},\|\cdot\|_{\mathcal{X}_{s}}\right)$

Next, we show that if $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ is a sequence in B_{A} which converges to $(\mathbf{u}, \pi) \in B_{A}$, with respect to the norm of \mathcal{X}_{t}, then $\left\{\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ converges to $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ with respect to the norm of \mathcal{X}_{s}.

To do so, we first observe that the definition of the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ and the formula (5.17) imply

$$
\left\{\begin{array}{l}
\triangle \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\nabla \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\left.\mathbf{f}\right|_{\mathfrak{D}}+\mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}(\mathbf{x}), \pi_{j}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right), \tag{5.58}\\
\operatorname{div} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=g \text { in } \mathfrak{D}, \\
\partial_{\nu}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)\right)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathcal{T}_{1, \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), g}+\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right) \\
=--\partial_{\nu}(0,0) \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}(\mathbf{x}), \pi_{j}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), 0} \quad+\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j}(\mathbf{x})\right) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)+\mathbf{h} \text { on } \Gamma .
\end{array}\right.
$$

By using arguments similar to those in the proof of the limiting relation (4.64), we can prove that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}, \pi_{j}\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \quad \text { in } L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . \tag{5.59}
\end{equation*}
$$

In addition, by the convergence of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ to (\mathbf{u}, π) in \mathcal{X}_{t}, and by the definition (2.19) of the conormal derivative and by (5.59), we obtain the limiting relations

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \text { in } L_{t}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \hookrightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \\
& \lim _{j \rightarrow \infty}\left\{\partial_{\nu}(0,0) \mathcal{P}\left(\mathbf{x}, \mathbf{u}_{j}(\mathbf{x}), \pi_{j}(\mathbf{x})\right) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)-\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), 0\right\}=0 \text { in } L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \tag{5.60}
\end{align*}
$$

Then the Sobolev Embedding Theorem implies the limiting relations

$$
\begin{array}{ll}
\lim _{j \rightarrow \infty} \operatorname{Tr} \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) & \text { in } L^{\frac{2(n-1)}{n-1-2 t}}\left(\Gamma, \mathbb{R}^{n}\right), \tag{5.61}\\
\text { if } n \geq 3 \\
\lim _{j \rightarrow \infty} \operatorname{Tr} \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) & \text { in } L^{\infty}\left(\Gamma, \mathbb{R}^{n}\right), \\
\text { if } n=2
\end{array}
$$

On the other hand, by the convergence of $\left\{\operatorname{Tr} \mathbf{u}_{j}\right\}_{j \in \mathbb{N}}$ to $\operatorname{Tr} \mathbf{u}$ in $L_{t}^{2}\left(\Gamma, \mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\Gamma, \mathbb{R}^{n}\right)$, there exists a subsequence $\left\{\mathbf{u}_{j_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{\mathbf{u}_{j}\right\}_{j \in \mathbb{N}}$ such that $\lim _{k \rightarrow \infty} \operatorname{Tr} \mathbf{u}_{j_{k}}=\operatorname{Tr} \mathbf{u}$ a.e. on Γ. Now, if $n \geq 3$, we choose $t^{*} \in(2,+\infty)$ such that $\frac{(n-1)-2 t}{2(n-1)}+\frac{1}{t^{*}}<\frac{1}{2}$. Instead, if $n=2$, we choose $t^{*} \in(2,+\infty)$ arbitrarily. Since λ is essentially bounded, the Dominated Convergence Theorem yields the limiting relation

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right)=\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \quad \text { in } L^{t^{*}}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right) \tag{5.62}
\end{equation*}
$$

Then, by (5.61), (5.62) and the Hölder inequality, we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lambda\left(\mathbf{x}, \operatorname{Tr} \mathbf{u}_{j_{k}}(\mathbf{x})\right) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \text { in } L^{2}\left(\Gamma, \mathbb{R}^{n}\right) \tag{5.63}
\end{equation*}
$$

Moreover, we know that $L^{2}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right) \hookrightarrow L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n} \otimes \mathbb{R}^{n}\right)$.
By (5.59), (5.60) and (5.63), the right-hand side of (5.58) (with $\mathbf{u}_{j_{k}}$ instead of \mathbf{u}_{j}) converges to

$$
\left(\left.\mathbf{f}\right|_{\mathfrak{D}}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathcal{I}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), g, \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)-\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)+\mathbf{h}\right)
$$

in $L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D}) \times L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$. Also, by Theorem 5.1, the linear Poisson problem for the Stokes system with Robin boundary condition

$$
\left\{\begin{array}{l}
\triangle \mathbf{v}-\nabla q=\left.\mathbf{f}\right|_{\mathfrak{D}}+\mathcal{P}(\mathbf{x}, \mathbf{u}(\mathbf{x}), \pi(\mathbf{x})) \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi) \tag{5.64}\\
\operatorname{div} \mathbf{v}=g \quad \text { in } \mathfrak{D}, \\
\partial_{\nu}(\mathbf{v}, q)_{\mathbf{f}+\mathcal{P}(\mathbf{x}, \mathbf{u}, \pi) \mathcal{I}_{1 ; f, g, \mathbf{h}}(\mathbf{u}, \pi), g}+\operatorname{Tr} \mathbf{v}=\mathfrak{R}_{0}
\end{array}\right.
$$

where

$$
\mathfrak{R}_{0}:=\operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)-\lambda(\mathbf{x}, \operatorname{Tr} \mathbf{u}(\mathbf{x})) \operatorname{Tr} \mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)+\mathbf{h} \in L_{s-1}^{2}\left(\Gamma, \mathbb{R}^{n}\right)
$$

is well-posed in the space \mathcal{X}_{s}. Therefore, the following limiting relation holds

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)\right)=\left(\mathcal{T}_{1 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi), \mathcal{T}_{2 ; \mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)\right) \text { in } \mathcal{X}_{s}, \tag{5.65}
\end{equation*}
$$

i.e., $\lim _{k \rightarrow \infty} \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j_{k}}, \pi_{j_{k}}\right)=\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ in \mathcal{X}_{s}. By the same method, we can show that each subsequence of $\left\{\left(\mathbf{u}_{j}, \pi_{j}\right)\right\}_{j \in \mathbb{N}}$ has a further subsequence such that its image by $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}$ converges to $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ in \mathcal{X}_{s}. Hence, $\lim _{j \rightarrow \infty} \mathcal{T}_{\mathbf{f}, g, \mathbf{h}}\left(\mathbf{u}_{j}, \pi_{j}\right)=\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}(\mathbf{u}, \pi)$ in \mathcal{X}_{s}. Consequently, the operator $\mathcal{T}_{\mathbf{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$ is continuous and compact, as desired.

Finally, the Schauder Fixed Point Theorem (see Theorem 4.3) shows that the nonlinear operator $\mathcal{T}_{\mathrm{f}, g, \mathbf{h}}: B_{A} \rightarrow B_{A}$ has a fixed point (\mathbf{u}, π) in the closed, bounded and convex subset B_{A} of the Banach space \mathcal{X}_{s}. Such a fixed point is a solution of the semilinear Poisson problem (5.34) in the space \mathcal{X}_{s}, which satisfies the inequality $\|(\mathbf{u}, \pi)\|_{\mathcal{X}_{s}} \leq A$, where A is the constant given by (5.40).

6. The semilinear Darcy-Forchheimer-Brinkman model

The semilinear Poisson problems studied in this paper have been suggested by the semilinear system

$$
\begin{equation*}
\triangle \mathbf{u}-(\alpha \mathbf{u}+k|\mathbf{u}| \mathbf{u})-\nabla \pi=\mathbf{0}, \operatorname{div} \mathbf{u}=0 \tag{6.1}
\end{equation*}
$$

where $\alpha, k>0$ are given constants. For $n=2,3$, the first equation in (6.1) is a generalization of the Darcy and Brinkman equations for viscous incompressible flows in saturated porous media, called the semilinear Darcy-Forchheimer-Brinkman equation (for more details see, e.g., [3,41]).

6.1. The Dirichlet problem for the semilinear Darcy-Forchheimer-Brinkman system

Let $s \in\left(\frac{1}{2}, 1\right)$. We consider the space

$$
L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right):=\left\{\mathbf{F} \in L_{s}^{2}\left(\Gamma, \mathbb{R}^{n}\right): \int_{\Gamma}\langle\nu, \mathbf{F}\rangle d \sigma=0\right\}
$$

Note that for $n \leq 4$, the map which takes $(\mathbf{x}, \mathbf{v}, \xi)$ to $\alpha \mathbf{v}+k|\mathbf{v}| \mathbf{v}$ is not essentially bounded on $\mathfrak{D} \times$ $\mathbb{R}^{n} \times \mathbb{R}$. Hence, the result of Theorem 4.4 cannot be applied to the Dirichlet problem for the semilinear Darcy-Forchheimer-Brinkman system (6.1). However, by exploiting an idea similar to that of Russo and Tartaglione [44, Theorem 5.1], which gives the existence of a solution of the Robin problem for the Navier-Stokes system on a Lipschitz (or C^{1}) domain in \mathbb{R}^{3} (for related results, see [12, Theorems 7.1 and 7.3] and [4, Theorems 25 and 26, Lemma 29]), we obtain the following result.

Theorem 6.1. Let $n \leq 4$. Let $\mathfrak{D} \subseteq \mathbb{R}^{n}$ be a bounded Lipschitz domain with connected boundary Γ. Let $s \in\left(\frac{1}{2}, 1\right)$. Let $\alpha, k>0$ be given constants. Then, there exist two constants $\tilde{\alpha}_{0}, \gamma>0$, which depend
only on \mathfrak{D}, α, k and s, such that the Dirichlet problem for the semilinear Darcy-Forchheimer-Brinkman system

$$
\begin{cases}\triangle \mathbf{u}-\alpha \mathbf{u}-k|\mathbf{u}| \mathbf{u}-\nabla \pi=\mathbf{0} & \text { in } \mathfrak{D}, \tag{6.2}\\ \operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D}, \\ \operatorname{Tr} \mathbf{u}=\mathbf{h} \in L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right), & \end{cases}
$$

with $\|\mathbf{h}\|_{L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \leq \tilde{\alpha}_{0}$, has a unique solution $(\mathbf{u}, \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, which satisfies the inequality $\|\mathbf{u}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{P}, \mathbb{R}^{n}\right)} \leq \gamma$.

Proof. First, note that for $n \leq 4$ and $s \in\left(\frac{1}{2}, 1\right)$, the Sobolev Embedding Theorem yields the continuous embeddings

$$
\begin{equation*}
L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L_{1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L^{p^{*}}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L^{4}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{6.3}
\end{equation*}
$$

where the first of them is compact. In addition, $p^{*}=\frac{2 n}{n-2} \geq 4$ for $2<n \leq 4$, while, for $n=2$, we choose $p^{*} \geq 4$ arbitrarily. Indeed, if $n=2$, the embedding $L_{1}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L^{q}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is continuous for any $q \geq 1$. Therefore, there exists a constant $c_{*}=c_{*}(s, \mathfrak{D})>0$ such that

$$
\begin{equation*}
\||\mathbf{v}| \mathbf{v}\|_{L^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}=\|\mathbf{v}\|_{L^{4}\left(\mathcal{D}, \mathbb{R}^{n}\right)}^{2} \leq c_{*}\|\mathbf{v}\|_{L^{2}+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \forall \mathbf{v} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{6.4}
\end{equation*}
$$

Hence, $|\mathbf{v}| \mathbf{v} \in L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ for any $\mathbf{v} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$.
Let $\left(\mathcal{G}_{\alpha}, \Pi_{\alpha}\right)$ be the fundamental solution of the Brinkman system in \mathbb{R}^{n}, i.e.,

$$
\begin{equation*}
\left(\triangle_{\mathbf{x}}-\alpha \mathbb{I}\right) \mathcal{G}_{\alpha}(\mathbf{x}, \mathbf{y})-\nabla_{\mathbf{x}} \Pi_{\alpha}(\mathbf{x}, \mathbf{y})=-\delta_{\mathbf{y}}(\mathbf{x}) \mathbb{I}, \quad \operatorname{div}_{\mathbf{x}} \mathcal{G}_{\alpha}(\mathbf{x}, \mathbf{y})=0 \tag{6.5}
\end{equation*}
$$

where \mathbb{I} is the identity matrix and $\delta_{\mathbf{y}}$ is the Dirac distribution with mass at \mathbf{y}. The components of \mathcal{G}_{α} and those of Π_{α} are given in [50, Chapter 2] and [25, Chapter 2]. Now, for a fixed $\mathbf{u} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, such that $\operatorname{div} \mathbf{u}=0$ in \mathfrak{D}, consider the potentials on \mathfrak{D} with the density $k|\mathbf{u}| \mathbf{u}$, given by

$$
\begin{equation*}
\mathfrak{N}_{\alpha}(\mathbf{u})(\mathbf{x})=-\left\langle\mathcal{G}_{\alpha}(\mathbf{x}, \cdot \cdot), k\right| \mathbf{u}|\mathbf{u}\rangle_{\mathfrak{D}}, \mathfrak{Q}_{\alpha}(\mathbf{u})(\mathbf{x})=-\left\langle\Pi_{\alpha}(\mathbf{x}, \cdot), k\right| \mathbf{u}|\mathbf{u}\rangle_{\mathfrak{D}} . \tag{6.6}
\end{equation*}
$$

Let us mention the following relation

$$
\begin{equation*}
\mathfrak{N}_{\alpha}=\mathcal{N}_{\alpha ; \mathfrak{D}} \mathcal{I}_{\mathfrak{D}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{6.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{N}_{\alpha ; \mathfrak{D}}: L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right),\left(\mathcal{N}_{\alpha ; \mathfrak{D}} \mathbf{f}\right)(\mathbf{x})=-\left\langle\mathcal{G}_{\alpha}(\mathbf{x}, \cdot), \mathbf{f}\right\rangle_{\mathfrak{D}}, \mathbf{x} \in \mathfrak{D} \tag{6.8}
\end{equation*}
$$

is the Newtonian potential operator in \mathfrak{D}, and

$$
\mathcal{I}_{\mathfrak{D}}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \mathcal{I}_{\mathfrak{D}}(\mathbf{v}):=k|\mathbf{v}| \mathbf{v} .
$$

Note that for $s \in\left(\frac{1}{2}, 1\right)$ and $n \leq 4$, the embedding $L_{s+\frac{1}{2}}^{2}(\mathfrak{D}) \hookrightarrow L^{4}(\mathfrak{D})$ is compact. Then, one can prove that the nonlinear operator $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is continuous and compact (see also [43, p. 483] and the argument below (6.17)). Also, for a fixed $\mathbf{u} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, such that div $\mathbf{u}=0$ in \mathfrak{D}, we have

$$
\left\{\begin{array}{l}
(\triangle-\alpha \mathbb{I}) \mathfrak{N}_{\alpha}(\mathbf{u})-\nabla \mathfrak{Q}_{\alpha}(\mathbf{u})=k|\mathbf{u}| \mathbf{u} \in L_{s-\frac{3}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \tag{6.9}\\
\operatorname{div} \mathfrak{N}_{\alpha}(\mathbf{u})=0 \text { in } \mathfrak{D}, \\
\operatorname{Tr}\left(\mathfrak{N}_{\alpha}(\mathbf{u})\right) \in L_{s ; \nu}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) .
\end{array}\right.
$$

[^17]Let $\left(\mathfrak{M}_{\alpha}(\mathbf{u}), \mathfrak{P}_{\alpha}(\mathbf{u})\right) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ be the unique solution (up to a constant pressure) of the Dirichlet problem ${ }^{7}$

$$
\left\{\begin{array}{l}
(\triangle-\alpha \mathbb{I}) \mathfrak{M}_{\alpha}(\mathbf{u})-\mathfrak{P}_{\alpha}(\mathbf{u})=\mathbf{0} \text { in } \mathfrak{D}, \tag{6.10}\\
\operatorname{div} \mathfrak{M}_{\alpha}(\mathbf{u})=0 \text { in } \mathfrak{D}, \\
\operatorname{Tr}\left(\mathfrak{M}_{\alpha}(\mathbf{u})\right)=-\operatorname{Tr}\left(\mathfrak{N}_{\alpha}(\mathbf{u})\right) \in L_{s ; \nu}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) .
\end{array}\right.
$$

In addition, there exist two constants $C_{i}^{\prime} \equiv C_{i}^{\prime}(s, \alpha, \mathfrak{D})>0, i=0,1$, such that

$$
\begin{equation*}
\left\|\mathfrak{M}_{\alpha}(\mathbf{u})\right\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathfrak{P}, \mathbb{R}^{n}\right) \leq C_{0}^{\prime}\left\|\operatorname{Tr}\left(\mathfrak{N}_{\alpha}(\mathbf{u})\right)\right\|_{L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \leq C_{1}^{\prime}\left\|\mathfrak{N}_{\alpha}(\mathbf{u})\right\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . \tag{6.11}
\end{equation*}
$$

Moreover, there exists a constant $C_{2} \equiv C_{2}(s, \alpha, \mathfrak{D})>0$ such that the Dirichlet problem

$$
\left\{\begin{array}{l}
(\triangle-\alpha \mathbb{I}) \mathbf{u}_{0}-\nabla \pi_{0}=\mathbf{0} \text { in } \mathfrak{D}, \tag{6.12}\\
\operatorname{div} \mathbf{u}_{0}=0 \text { in } \mathfrak{D}, \\
\operatorname{Tr} \mathbf{u}_{0}=\mathbf{h} \in L_{s ; \nu}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) .
\end{array}\right.
$$

has a unique solution $\left(\mathbf{u}_{0}, \pi_{0}\right) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ (up to a constant pressure), which satisfies the inequality

$$
\begin{equation*}
\left\|\mathbf{u}_{0}\right\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{O}, \mathbb{R}^{n}\right)} \leq C_{2}\|\mathbf{h}\|_{L_{s, \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \tag{6.13}
\end{equation*}
$$

We now consider the nonlinear operator

$$
\begin{equation*}
\mathfrak{F}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right), \mathfrak{F}(\mathbf{v}):=\mathbf{u}_{0}+\mathfrak{M}_{\alpha}(\mathbf{v})+\mathfrak{N}_{\alpha}(\mathbf{v}) \tag{6.14}
\end{equation*}
$$

and, for $\mathbf{u} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ fixed, we define the pressure term $\pi=\pi(\mathbf{u})$,

$$
\begin{equation*}
\pi:=\pi_{0}+\mathfrak{P}_{\alpha}(\mathbf{u})+\mathfrak{Q}_{\alpha}(\mathbf{u}) \in L_{s-\frac{1}{2}}^{2}(\mathfrak{D}), \tag{6.15}
\end{equation*}
$$

where

$$
L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right):=\left\{\mathbf{v} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right): \operatorname{div} \mathbf{v}=0 \text { in } \mathfrak{D}\right\} .
$$

For a fixed $\mathbf{u} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, the pair $(\mathfrak{F}(\mathbf{u}), \pi) \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ is, in view of (6.9), (6.10) and (6.12), a solution of the Dirichlet problem

$$
\begin{cases}(\triangle-\alpha \mathbb{I}) \mathfrak{F}(\mathbf{u})-k|\mathbf{u}| \mathbf{u}-\nabla \pi=\mathbf{0} & \text { in } \mathfrak{D}, \tag{6.16}\\ \operatorname{div} \mathfrak{F}(\mathbf{u})=0 & \text { in } \mathfrak{D}, \\ \operatorname{Tr}(\mathfrak{F}(\mathbf{u}))=\mathbf{h} \in L_{s ; \nu}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . & \end{cases}
$$

Consequently, a fixed point $\mathbf{u} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ of the operator \mathfrak{F} together with the associated pressure π given by (6.15) determine a solution of the Dirichlet problem for the semilinear Darcy-ForchheimerBrinkman system (6.2). We now turn to show that \mathfrak{F} maps a suitable closed ball B_{γ} of the space $L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ to B_{γ}.

The decomposition (6.7) of the nonlinear operator $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, the boundedness of the linear operator $\mathcal{N}_{\alpha ; \mathcal{D}}: L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ given by (6.8) (see, e.g., [14, Proposition 2.1] in the case of the Laplace equation, while for the Brinkman system, the boundedness of the Newtonian operator $\mathcal{N}_{\alpha ; \mathcal{D}}$ can be obtained by using properties of Calderón-Zygmund operators, namely [47, Theorem

[^18]2, Chapter II] $)$, the continuity of the embedding $L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ and the inequality (6.4) yield the inequalities

$$
\begin{align*}
\left\|\mathfrak{N}_{\alpha}(\mathbf{v})\right\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right) & =\left\|\mathcal{N}_{\alpha ; \mathfrak{D}}(k|\mathbf{v}| \mathbf{v})\right\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right) \leq c_{0 ; *}\left\|\mathcal{N}_{\alpha ; \mathfrak{D}}(k|\mathbf{v}| \mathbf{v})\right\|_{L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \leq c_{1 ; *}\||\mathbf{v}| \mathbf{v}\|_{L^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)} \leq c_{2 ; *}\|\mathbf{v}\|_{L_{s+\frac{1}{2}}^{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \tag{6.17}
\end{align*}
$$

with some constants $c_{0 ; *} \equiv c_{0 ; *}(s, \mathfrak{D})>0$ and $c_{j ; *} \equiv c_{j ; *}(s, k, \alpha, \mathfrak{D})>0, j=1,2$. In addition, the nonlinear operators $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ and $\mathfrak{M}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ are compact and continuous. To prove the continuity of $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$, we first show the continuity of \mathfrak{N}_{α} from $L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ to $L_{2 ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right):=\left\{\mathbf{v} \in L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right): \operatorname{div} \mathbf{v}=0\right.$ in $\left.\mathfrak{D}\right\}$. Let $\left\{\mathbf{v}_{j}\right\}_{j \in \mathbb{N}}$ be a convergent sequence in $L_{s+\frac{1}{2} ; *}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)$ to an element $\mathbf{v} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Then, the continuity of the embedding $L_{s+\frac{1}{2} ; *}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right) \hookrightarrow L^{4}\left(\mathfrak{D}, \mathbb{R}^{3}\right)$, the integral form (6.8) of the operator \mathfrak{N}_{α} and the Hölder inequality show that there exists some constant $c_{3 ; *}>0$, such that

$$
\left\|\mathfrak{N}_{\alpha}\left(\mathbf{v}_{j}\right)-\mathfrak{N}_{\alpha}(\mathbf{v})\right\|_{L_{2}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \leq c_{3 ; *}\left\|\mathbf{v}_{j}-\mathbf{v}\right\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}\left(\left\|\mathbf{v}_{j}\right\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\mathbf{v}\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)\right) \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Thus, $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{2 ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is continuous. Then, the compactness of the embedding $L_{2: *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \hookrightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ yields that the nonlinear operator $\mathfrak{N}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is continuous and compact. In addition, the nonlinear operator $\mathfrak{M}_{\alpha}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is also continuous and compact, as (6.10) and the relation $\left(\mathfrak{M}_{\alpha}(\mathbf{v}),\left(\mathfrak{P}_{\alpha}(\mathbf{v})\right)=\mathfrak{B}_{\alpha}^{-1}\left(\mathbf{0}, 0,-\operatorname{Tr}\left(\mathfrak{N}_{\alpha}(\mathbf{v})\right)\right)^{\top}\right.$ show, where \mathfrak{B}_{α} is the isomorphism given by (4.4) with $\mathcal{P}=\alpha \mathbb{I}$. Consequently, the nonlinear operator $\mathfrak{F}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ given by (6.14) is continuous and compact as well.

Now, by (6.11), (6.13), (6.14) and (6.17), there exist some constants $C \equiv C(s, \alpha, \mathfrak{D})>0$ and $C_{*} \equiv$ $C_{*}(k, s, \alpha, \mathfrak{D})>0$ such that

$$
\begin{equation*}
\|\mathfrak{F}(\mathbf{v})\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)} \leq C\|\mathbf{h}\|_{L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}+C_{*}\|\mathbf{v}\|_{L_{s+\frac{1}{2}}^{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right), \forall \mathbf{v} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) . \tag{6.18}
\end{equation*}
$$

By using an argument similar to that in the proof of [44, Theorem 5.1] (see also [43, p. 506], [45]), we assume that the norm of the given datum $\mathbf{h} \in L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)$ is small, such that

$$
\begin{equation*}
\|\mathbf{h}\|_{L_{s, \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)} \leq \tilde{\alpha}_{0}, \quad \tilde{\alpha}_{0}:=\frac{1}{C C_{*}(2+\beta)^{2}}, \tag{6.19}
\end{equation*}
$$

with some constant $\beta>0$. Also, consider the closed ball

$$
\begin{equation*}
B_{\gamma}:=\left\{\mathbf{v} \in L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right): \operatorname{div} \mathbf{v}=0 \text { in } \mathfrak{D},\|\mathbf{v}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \leq \gamma\right\}, \gamma:=\frac{1}{C_{*}(2+\beta)}>0 . \tag{6.20}
\end{equation*}
$$

By (6.18) and (6.19), one has $\|\mathfrak{F}(\mathbf{u})\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)} \leq \gamma$ for any $\mathbf{u} \in B_{\gamma}$, and hence \mathfrak{F} maps the closed ball B_{γ} to B_{γ}. In addition, we have shown that $\mathfrak{F}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ is continuous and compact. Hence, $\mathfrak{F}: B_{\gamma} \rightarrow B_{\gamma}$ is also continuous and compact. Then, by the Schauder Fixed Point Theorem, \mathfrak{F} has a fixed point $\mathbf{u} \in B_{\gamma}$, and the pair $(\mathbf{u}, \pi) \in B_{\gamma} \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, with π given by (6.15), is a solution of the Dirichlet problem (6.2). We now turn to show that for a given boundary datum \mathbf{h} such that $\|\mathbf{h}\|_{L_{s ; \nu}^{2}\left(\Gamma, \mathbb{R}^{n}\right)}$ is sufficiently small (i.e., for a special choice of the constant β), the solution of the Dirichlet problem (6.2) is unique. To do so, we note that the inequality (6.11) and the argument before (6.17) imply that there exist two constants $C_{0} \equiv C_{0}(k, s, \alpha, \mathfrak{D})>0$ and $C_{* ; s+\frac{1}{2}} \equiv C_{* ; s+\frac{1}{2}}(s, \mathfrak{D})>0$ such that the map
$\mathfrak{F}: L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \rightarrow L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$ given by (6.14) satisfies the inequalities

$$
\begin{align*}
\|\mathfrak{F}(\mathbf{v})-\mathfrak{F}(\mathbf{w})\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{P}, \mathbb{R}^{n}\right)} & \leq\left\|\mathfrak{N}_{\alpha}(\mathbf{v})-\mathfrak{N}_{\alpha}(\mathbf{w})\right\|_{L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\left\|\mathfrak{M}_{\alpha}(\mathbf{v})-\mathfrak{M}_{\alpha}(\mathbf{w})\right\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)} \\
& \leq C_{0}\|\mathbf{v}|\mathbf{v}|-|\mathbf{w}| \mathbf{w}\|_{L^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)} \\
& \leq C_{0} C_{* ; s+\frac{1}{2}}^{2}\|\mathbf{v}-\mathbf{w}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{D}, \mathbb{R}^{n}\right)}\left(\|\mathbf{v}\|_{L_{s+\frac{1}{2}}\left(\mathfrak{D}, \mathbb{R}^{n}\right)}+\|\mathbf{w}\|_{L_{s+\frac{1}{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right)}\right), \tag{6.21}
\end{align*}
$$

for all $\mathbf{v}, \mathbf{w} \in L_{s+\frac{1}{2} ; *}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right)$. Consequently,

$$
\begin{equation*}
\|\mathfrak{F}(\mathbf{v})-\mathfrak{F}(\mathbf{w})\|_{L_{s+\frac{1}{2}}^{2}}\left(\mathcal{D}, \mathbb{R}^{n}\right) \leq 2 \gamma C_{0} C_{* ; s+\frac{1}{2}}^{2}\|\mathbf{v}-\mathbf{w}\|_{L_{s+\frac{1}{2}}^{2}\left(\mathcal{P}, \mathbb{R}^{n}\right)}, \quad \forall \mathbf{v}, \mathbf{w} \in B_{\gamma}, \tag{6.22}
\end{equation*}
$$

where γ is defined in (6.20). If we choose the constant $\beta>0$ in the expression of γ such that

$$
\begin{equation*}
(2+\beta)^{-1}<C_{*}\left(2 C_{0} C_{* ; s+\frac{1}{2}}^{2}\right)^{-1} \tag{6.23}
\end{equation*}
$$

then $2 \gamma C_{0} C_{* ; s+\frac{1}{2}}^{2}<1$. Therefore, for $n \leq 4, s \in\left(\frac{1}{2}, 1\right)$ and for a constant $\beta>0$ as in (6.23), the map $\mathfrak{F}: B_{\gamma} \rightarrow B_{\gamma}$ is a contraction in B_{γ}. Then, the Banach-Caccioppoli Contraction Theorem implies that \mathfrak{F} has a unique fixed point $\mathbf{u} \in B_{\gamma}$. In addition, the pair $(\mathbf{u}, \pi) \in B_{\gamma} \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, with π given by (6.15), is a solution of the semilinear Dirichlet problem (6.2). We now turn to show that such a solution is unique (up to a constant pressure) in $B_{\gamma} \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$. To do so, we assume that $(\mathbf{v}, q) \in B_{\gamma} \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$ is another solution of the problem (6.2), and let $(\mathfrak{F}(\mathbf{v}), p)$, where $\mathfrak{F}(\mathbf{v})$ and $p=\pi(\mathbf{v})$ are defined as in (6.14) and (6.15), respectively. Then, $\mathfrak{F}(\mathbf{v}) \in B_{\gamma}$, and we obtain the problem

$$
\begin{cases}(\triangle-\alpha \mathbb{I})(\mathfrak{F}(\mathbf{v})-\mathbf{v})-\nabla(p-q)=\mathbf{0} & \text { in } \mathfrak{D}, \tag{6.24}\\ \operatorname{div}(\mathfrak{F}(\mathbf{v})-\mathbf{v})=0 & \text { in } \mathfrak{D}, \\ \operatorname{Tr}(\mathfrak{F}(\mathbf{v})-\mathbf{v})=\mathbf{0} & \text { on } \Gamma .\end{cases}
$$

By Theorem 4.1, (6.24) has the unique solution $(\mathfrak{F}(\mathbf{v})-\mathbf{v}, p-q)=(\mathbf{0}, 0)$ (up to a constant pressure) in $L_{s+\frac{1}{2}}^{2}\left(\mathfrak{D}, \mathbb{R}^{n}\right) \times L_{s-\frac{1}{2}}^{2}(\mathfrak{D})$, i.e., $\mathfrak{F}(\mathbf{v})=\mathbf{v}$. Consequently, $\mathbf{v}=\mathbf{u}$, as \mathfrak{F} has a unique fixed point in B_{γ}. Thus, the proof is complete.

Remark 6.2. If $n \in\{2,3\}$, the existence statement of Theorem 6.1 holds also for any $s \in\left[\frac{1}{2}, 1\right)$. The proof of such a result is based on the Sobolev Embedding Theorem and on arguments similar to those for Theorem 6.1, which we omit for sake of brevity.

Acknowledgments

The work of Mirela Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0994. Massimo Lanza de Cristoforis acknowledges the support of 'GNAMPA - Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni' and of the project 'Singular perturbation problems for differential operators' of the University of Padua. Some of the research for this paper was done in April and May, 2013, while Mirela Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for the hospitality during that visit.

References

1. Begehr, H., Hile, G.N.: Nonlinear Riemann boundary value problems for a nonlinear elliptic system in the plane. Math. Z. 179, 241-261 (1982)
2. Begehr, H., Hsiao, G.C.: Nonlinear boundary value problems of Riemann-Hilbert type. Contemp. Math. 11, 139153 (1982)
3. Çelebi, A.O., Kalantarov, V.K., Ugurlu, D.: On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 19, 801-807 (2006)
4. Choe, H.J., Kim, H.: Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains. Commun. Partial Differ. Equ. 36, 1919-1944 (2011)
5. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Berlin (1994)
6. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613626 (1988)
7. Dahlberg, B.E.J., Kenig, C.: Hardy spaces and the Neumann problem in L^{p} for Laplace's equation in Lipschitz domains. Ann. Math. 125, 437-465 (1987)
8. Dahlberg, B.E.J., Kenig, C., Verchota, G.C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, 795-818 (1988)
9. Dalla Riva, M., Lanza de Cristoforis, M.: Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach. Complex Var. Elliptic Equ. 55, 771-794 (2010)
10. Dindos̆, M.: Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds. Commun. Partial Differ. Equ. 27, 219-281 (2002)
11. Dindos̆, M., Mitrea, M.: Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains. Publ. Math. 46, 353-403 (2002)
12. Dindos̆, M., Mitrea, M.: The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C^{1} domains. Arch. Ration. Mech. Anal. 174, 1-47 (2004)
13. Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769-793 (1988)
14. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323-368 (1998)
15. Fitzpatrick, P., Pejsachowicz, J.: Orientation and the Leray-Schauder theory for fully nonlinear elliptic boundary value problems. Mem. Am. Math. Soc. 101(483), vi+131 pp (1993)
16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
17. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)
18. Jerison, D.S., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161-219 (1995)
19. Kalton, N.J., Mayboroda, S., Mitrea, M.: Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. Contemp. Math. 445, 121-177 (2007)
20. Klingelhöfer, K.: Nonlinear harmonic boundary value problems. I. Arch. Ration. Mech. Anal. 31, 364-371 (1968)/(1969)
21. Klingelhöfer, K.: Nonlinear harmonic boundary value problems. II. Modified Hammerstein integral equations. J. Math. Anal. Appl. 25, 592-606 (1969)
22. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123-1171 (2013)
23. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds: transmission problems in Lipschitz and C^{1} domains. Potential Anal. 32, 229-273 (2010)
24. Kohr, M., Pintea, C., Wendland, W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Notices. 2013(19), 4499-4588 (2013)
25. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)
26. Lanza de Cristoforis, M., Musolino, P.: Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52, 945977 (2007)
27. Lanzani, L., Méndez, O.: The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains. Rev. Mat. Iberoamericana. 22, 181-204 (2006)
28. Lanzani, L., Shen, Z.: On the Robin boundary condition for Laplace's equation in Lipschitz domains. Commun. Partial Differ. Equ. 29, 91-109 (2004)
29. Maz'ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO. Funct. Anal. Appl. 43, 217-235 (2009)
30. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)
31. Medková, D.: The integral equation method and the Neumann problem for the Poisson equation on NTA domains. Int. Equations. Oper. Theory. 63, 227-247 (2009)
32. Medková, D.: The Third Problem for the Stokes System in Bounded Domain. Preprint. Institute of Mathematics, AS CR, Prague. 2010-3-25
33. Medková, D.: Integral equation method for the first and second problems of the Stokes system. Potential Anal. 39, 389409 (2013)
34. Mikhailov, S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324-342 (2011)
35. Mitrea, I., Mitrea, M.: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in nonsmooth domains. Trans. Am. Math. Soc. 359, 4143-4182 (2007)
36. Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York) 176(3), 409-457 (2011)
37. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176, 1-79 (2000)
38. Mitrea, M., Taylor, M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955987 (2001)
39. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: the case of Dini metric tensors. Trans. Am. Math. Soc. 355, 1961-1985 (2003)
40. Mitrea M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 344, viii+241 pp. (2012)
41. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, Berlin (1992)
42. Royden, H.L.: Real Analysis. Prentice Hall, Englewood Cliffs, NJ (1988)
43. Russo, R.: On Stokes' problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473-511. Springer, Berlin (2010)
44. Russo, R., Tartaglione, A.: On the Robin problem for Stokes and Navier-Stokes systems. Math. Models Methods Appl. Sci. 19, 701-716 (2006)
45. Russo, R., Tartaglione, A.: On the Oseen and Navier-Stokes systems with a slip boundary condition. Appl. Math. Lett. 29, 674-678 (2009)
46. Russo, R., Tartaglione, A.: On the Navier problem for the stationary Navier-Stokes equations. J. Differ. Equ. 251, 23872408 (2011)
47. Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton, NJ (1970)
48. Steinbach, O.: A note on the ellipticity of the single layer potential in two-dimensional elastostatics. J. Math. Anal. Appl. 294, 1-6 (2004)
49. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publ. Co., Amsterdam (1978)
50. Varnhorn, W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

Mirela Kohr
Faculty of Mathematics and Computer Science
Babeş-Bolyai University
1 M. Kogălniceanu Str.
400084 Cluj-Napoca
Romania
e-mail: mkohr@math.ubbcluj.ro
Massimo Lanza de Cristoforis
Dipartimento di Matematica
Università degli Studi di Padova
Via Trieste 63
35121 Padua
Italy
e-mail: mldc@math.unipd.it
Wolfgang L. Wendland
Institut für Angewandte Analysis und Numerische Simulation
Universität Stuttgart
Pfaffenwaldring, 57
70569 Stuttgart
Germany
e-mail: wendland@mathematik.uni-stuttgart.de
(Received: January 22, 2014; revised: June 24, 2014)

[^0]: The authors dedicate their work to Professor Miloslav Feistauer on the occasion of his 70th birthday.

[^1]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^2]: ${ }^{1}$ The connected open subset $\mathfrak{D} \subseteq \mathbb{R}^{n}$ is a Lipschitz domain if its boundary is locally the graph of a Lipschitz function.
 ${ }^{2}$ The superscripts - and + apply to non-tangential limits evaluated from \mathfrak{D}_{-}and \mathfrak{D}_{+}, respectively.

[^3]: ${ }^{3}$ Hereafter one uses the Einstein repeated-index summation rule. Also $E_{j k}(\mathbf{u})$ are the components of $\mathbb{E}(\mathbf{u})$.

[^4]: 〇 Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^5]: ${ }^{4}$ In the special case $\mathcal{P}=\lambda \mathbb{I}, \lambda>0$, (2.14) reduces to the well-known Brinkman operator that describes the flows of viscous incompressible fluids in porous media (see, e.g., $[22,25]$ for further details).

[^6]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^7]: 5 The subscript \mathbf{x} added to an operator shows that the operator acts with respect to \mathbf{x}.

[^8]: ${ }^{6}$ If X and Y are Banach spaces, then $\mathcal{L}(X, Y)$ is the set of linear and bounded operators from X to Y.

[^9]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^10]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^11]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^12]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^13]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^14]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^15]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^16]: 〇 Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^17]: Journal: 33 Article No.: $439 \square$ TYPESET \square DISK \square LE \square CP Disp.:2014/7/26 Pages: 32

[^18]: ${ }^{7}$ The well-posedness result of the Dirichlet problem for the Brinkman system in a Lipschitz domain with boundary data in Sobolev spaces follows from Theorem 4.1, by considering $\mathcal{P}=\alpha \mathbb{I}, \mathbf{f}=\mathbf{0}$ and $g=0$ in (4.1) (see also [40, Theorem 10.6.2] in the case of the Stokes system).

