
Original Citation:

Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn

Birkhäuser Verlag Viaduktstr. 40-44 P.O.Box 133 4010 Basel Switzerland
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as
described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3167713 since: 2017-01-05T09:20:07Z

10.1007/s00033-014-0439-0

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



R
ev

is
ed

 P
ro

of

Z. Angew. Math. Phys.
c© 2014 Springer Basel
DOI 10.1007/s00033-014-0439-0

Zeitschrift für angewandte
Mathematik und Physik ZAMP
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1

Mirela Kohr, Massimo Lanza de Cristoforis and Wolfgang L. Wendland2

Abstract. The purpose of this paper is to combine a layer potential analysis with the Schauder fixed point theorem to3

show the existence of solutions of the Poisson problem for a semilinear Brinkman system on bounded Lipschitz domains in4

R
n (n ≥ 2) with Dirichlet or Robin boundary conditions and data in L2-based Sobolev spaces. We also obtain an existence5

and uniqueness result for the Dirichlet problem for a special semilinear elliptic system, called the Darcy–Forchheimer–6

Brinkman system.7

Mathematics Subject Classification (2010). Primary 35J25, 42B20, 46E35; Secondary 76D, 76M.8

Keywords. Semilinear Brinkman system · Lipschitz domain · Poisson problem · Layer potential operators · Sobolev spaces ·9

Fixed point theorem.10

1. Introduction11

The layer potential methods have a well-known role in the analysis of boundary value problems for the12

Stokes system, but also of other elliptic boundary value problems (see, e.g., [6,17,25,31,33,40,43,50]). The13

Dirichlet and Neumann problems for the Laplace equation in Lipschitz domains have been investigated by14

Dahlberg and Kenig [7]. Fabes et al. [14] used a layer potential method to treat the Neumann problem for15

the Poisson equation on Lipschitz domains. Lanzani and Méndez [27] shown the existence and uniqueness16

of the solution to the Poisson problem for the Laplace equation with Robin boundary condition on17

Lipschitz domains in R
n (n ≥ 3) and with boundary data in Besov spaces, by exploiting a layer potential18

method. Lanzani and Shen [28] have studied the Laplace equation with Robin boundary conditions in19

a bounded Lipschitz domain Ω ⊆ R
n (n ≥ 3), by considering the boundary data in Lp(∂Ω) spaces,20

p ∈ (1, 2 + ε), for some ε > 0. They have exploited a single-layer potential technique to obtain existence21

and uniqueness results with non-tangential maximal function estimate. The authors obtained similar22

results for the Poisson problem for the three-dimensional Lamé system with Robin boundary condition.23

All solutions have been expressed in terms of layer potentials. Mitrea and Mitrea [35] obtained sharp24

well-posedness results for the Poisson problem for the Laplace equation with mixed boundary conditions25

on bounded Lipschitz domains. The authors generalized previous results obtained in [14,18]. The Robin26

problem for the Laplace–Beltrami operator on Lipschitz domains in compact Riemannian manifolds has27

been studied by Mitrea and Taylor [39, Theorem 4.2]. Fabes et al. [13] developed a layer potential method28

in order to show the solvability of the Dirichlet problem for the Stokes system on Lipschitz domains in29

R
n, n ≥ 3, with L2-boundary data. Dahlberg et al. [8] studied the Dirichlet and Neumann problems for30

the Lamé system in Lipschitz domains in R
n (n ≥ 3). Russo and Tartaglione [44] studied the Robin31

problem associated with the Stokes system in a bounded or exterior Lipschitz domain Ω ⊆ R
n, by using a32

double-layer potential approach (see also [4,43,46]). Medková studied in [32, Theorems 4.3, 5.6] the Robin33

The authors dedicate their work to Professor Miloslav Feistauer on the occasion of his 70th birthday.
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problem for the homogeneous Stokes system in a bounded domain G ⊆ R
3 with connected boundary ∂G34

of class C1,α, α ∈ (0, 1), and the boundary data in Cα(∂G, R3), or in Ls(∂G, R3), s ∈ (1,∞), in terms35

of a single-layer potential, whose unknown density is the solution of an integral equation of the second36

kind. Such a solution has been obtained explicitly in terms of a Neumann series. Mitrea and Wright [40]37

exploited layer potential methods to develop a powerful analysis of the main boundary value problems38

for the Stokes system in arbitrary Lipschitz domains in R
n, n ≥ 2 (see also [29]). Mitrea et al. [36]39

defined the Stokes operator on Lipschitz domains in R
n in the case of Neumann boundary conditions.40

By using a single-layer potential technique, Mitrea and Taylor [38] studied the L2-Dirichlet problem41

for the Stokes system in arbitrary Lipschitz domains on a smooth compact Riemannian manifold and42

extended the results obtained in [13] on Lipschitz domains in Euclidean setting. In addition, Dindos̆ and43

Mitrea [12] used a layer potential approach to treat the Poisson problems for the Stokes and Navier–Stokes44

systems on C1 and Lipschitz domains in smooth compact Riemannian manifolds with data in Sobolev45

or Besov spaces. The authors in [23] constructed pseudodifferential Brinkman operators as operators46

with variable coefficients that extend the differential Brinkman operator from the Euclidean setting to47

compact Riemannian manifolds. They shown existence and uniqueness results for related transmission48

problems on C1 domains of arbitrary dimension, or on Lipschitz domains of dimension ≤3, on a compact49

Riemannian manifold. In [24], these results were extended to the case of Lipschitz domains on compact50

Riemannian manifolds of arbitrary dimension, with data in L2-based Sobolev spaces.51

Existence results for boundary value problems with nonlinear boundary conditions are known, and52

we mention the work of Klingelhöfer [20,21], the contributions of Begehr and Hsiao [2], and Begehr and53

Hile [1]. Nonlinear boundary value problems for elliptic systems have been also studied in [9,26]. The54

authors in [22] combined a layer potential analysis with a fixed point theorem to show the existence55

result for a nonlinear Neumann-transmission problem for the Stokes and Brinkman systems on Euclidean56

Lipschitz domains with boundary data in Lp spaces, Sobolev spaces, and also in Besov spaces. A nonlinear57

Neumann condition has been imposed on an external Lipschitz boundary together with transmission58

conditions on the interface between two adjacent Lipschitz domains. Dindos̆ [10] obtained existence and59

uniqueness results for semilinear elliptic problems on Lipschitz domains in Riemannian manifolds. The60

author extended results for Lp Dirichlet and Neumann boundary value problems associated with linear61

second-order elliptic equations on Lipschitz domains to a class of semilinear elliptic problems. Dindos̆62

and Mitrea [11] combined various results from the linear theory for the Poisson problem associated with63

the Laplace operator in the framework of Sobolev–Besov spaces on Lipschitz domains, which have been64

obtained in [14,18,37], with a fixed point theorem, and developed a sharp theory for semilinear Poisson65

problems of the type �u − N(x, u) = F (x) on Lipschitz domains in compact Riemannian manifolds,66

equipped with Dirichlet and Neumann boundary conditions. Fitzpatrick and Pejsachowicz [15] developed67

an additive, integer-valued degree theory for a class of quasilinear Fredholm mappings between real68

Banach spaces of the form f(x) = L(x)x+C(x), where C is a compact operator and, for each x, L(x) is a69

Fredholm operator of index zero. Such a class does not possess a homotopy-invariant degree. The authors70

introduced a homotopy invariant of paths of linear Fredholm operators with invertible end- points, called71

the parity, which provides a complete description of the possible changes in sign of the degree. Then72

the authors proved existence, multiplicity and bifurcation results. Applications have been given for fully73

nonlinear elliptic operators with general nonlinear elliptic boundary conditions when the coefficients are74

sufficiently smooth.75

The purpose of this paper was to use a layer potential analysis and the Schauder fixed point theorem76

in order to show the existence of solutions of a Poisson problem for a semilinear Brinkman system on77

a bounded Lipschitz domain D ⊆ R
n (n ≥ 2) with Dirichlet or Robin boundary condition and data in78

Sobolev spaces. The nonlinear term in the semilinear Brinkman system is written in terms of an essentially79

bounded Carathéodory function P from D×R
n×R to R

n⊗R
n, which satisfies a nonnegativity condition80

[see (4.36)]. First, we show the well-posedness of the corresponding linear Poisson problem, i.e., the81

existence and uniqueness of the solution in the aforementioned spaces (see Theorems 4.1, 5.2), together82
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with some useful regularity estimates (see Lemmas 4.2, 5.3). Then, by using the well-posedness result83

from the linear case and the Schauder fixed point theorem, we show the desired existence result for84

the semilinear Poisson problem (see Theorems 4.4 and 5.4). Theorem 6.1 provides an existence and85

uniqueness result for the Dirichlet problem associated with the semilinear Darcy–Forchheimer–Brinkman86

system (6.1) with small boundary data.87

2. Preliminaries88

Consider a bounded Lipschitz domain1 D := D− ⊆ R
n (n ≥ 2) with boundary Γ, and let D+ := R

n \D.89

Also, let ν be the outward unit normal to Γ. For fixed κ = κ(Γ) > 1, sufficiently large, define the90

non-tangential maximal operator (see, e.g., [40])91

N (u)(x) := Nκ(u)(x) := sup {|u(y)| : y ∈ γ±(x)} , x ∈ Γ, (2.1)92

for arbitrary u : D± → R, where γ±(x) := {y ∈ D± : dist(x,y) < κ dist (y,Γ)}, x ∈ Γ, are non-93

tangential approach regions lying in D+ and D−, respectively. Also, consider the non-tangential boundary94

trace operators Tr± on Γ, as295

(Tr±u)(x) := lim
γ±(x)�y→x

u(y), a.e. x ∈ Γ, (2.2)96

Tr± : C∞(D±)→ C0(Γ), Tr±u = u|Γ . (2.3)97
98

For p ∈ [1,∞), Lp(Rn) denotes the Lebesgue space of (equivalence classes of) measurable, p-th power in-99

tegrable functions on R
n, and L∞(Rn) consists of (equivalence classes of) essentially bounded measurable100

functions on R
n. For p ∈ (1,∞) and s ∈ R, the Bessel potential space Lp

s(R
n) is defined by101

Lp
s(R

n) :=
{
(I −�)− s

2 f : f ∈ Lp(Rn)
}

=
{
F−1(1 + |ξ|2) s

2Ff : f ∈ Lp(Rn)
}

, (2.4)102
103

with the norm ‖f‖Lp
s(Rn) := ‖(I − �)− s

2 f‖Lp(Rn) = ‖F−1(1 + |ξ|2) s
2Ff‖Lp(Rn), where F is the Fourier104

transform defined on the space of tempered distributions to itself, and F−1 is its inverse. Also,105

Lp
s(R

n, Rn) := {f = (f1, . . . , fn) : fj ∈ Lp
s(R

n), j = 1, . . . , n}. In addition, Lp
s(D) denotes the Sobolev106

(or Bessel potential) space in D, defined by107

Lp
s(D) := {f ∈ D′(D) : ∃ g ∈ Lp

s(R
n) such that g|D = f} , (2.5)108

with the norm ‖f‖Lp
s(D) := inf

{
‖g‖Lp

s(Rn) : g ∈ Lp
s(R

n), g|D = f
}

, where D′(D) is the space of distrib-109

utions, i.e., the dual of C∞
comp(D) equipped with the inductive limit topology.110

For s ∈ R and p ∈ (1,∞), define Lp
s;0(D) as the space of all distributions f ∈ Lp

s(R
n) with support111

in D and the norm inherited from Lp
s(R

n) (see [18, Definition 2.6]). Note that the space C∞
comp(D) is112

dense in Lp
s;0(D) for all s ∈ R and p ∈ (1,∞) (see [18, Remark 2.7], [37, p. 23]). For p, p′ ∈ (1,∞), with113

1
p + 1

p′ = 1, and for s > 0, Lp
−s(D) can be defined as the space of linear functionals on C∞

comp(D) with114

finite norm115

‖f‖Lp
−s(D) := sup

{
|〈f, ϕ〉| : ϕ ∈ C∞

comp(D) with ‖ϕ̃‖
Lp′

s (Rn)
≤ 1
}

, (2.6)116

where tilde denotes the extension by zero outside D (see [18, Definition 2.8], [37, (4.13)]). For s ∈ R and117

p ∈ (1,∞), C∞(D) is dense in Lp
s(D), and (see [18, Proposition 2.9], [37, (4.14)], [14, (1.9)])118

(Lp
s(D))′ = Lp′

−s;0(D), Lp
−s(D) =

(
Lp′

s;0(D)
)′

, (2.7)119

where 1
p + 1

p′ = 1. The spaces Lp
s(D, Rn), Lp

s;0(D, Rn) can be defined similarly (for a more detailed120

presentation of these spaces, we refer the reader to [18,19,37,40,49]).121

1 The connected open subset D⊆R
n is a Lipschitz domain if its boundary is locally the graph of a Lipschitz function.

2 The superscripts − and + apply to non-tangential limits evaluated from D− and D+, respectively.
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For p ∈ (1,∞) and s ∈ [0, 1], the boundary Sobolev space Lp
s(Γ) can be defined by using the space122

Lp
s(R

n−1), a partition of unity and pullback, and Lp
−s(Γ) is the dual of Lp

s(Γ).123

124

Next, the notation 〈·, ·〉 is used for the inner product in R
n. For a subset X ⊆ R

n, the notation125

〈·, ·〉X := (Lp
s(X))′〈·, ·〉Lp

s(X) stands for the pairing between the space Lp
s(X) and its dual (Lp

s(X))′.126

We now refer to the case p = 2. Then, for n ≥ 2 and s ∈ (0, 1), we define the space127

L2
s+ 1

2
(D,L0) :=

{
(u, π) ∈ L2

s+ 1
2
(D, Rn)× L2

s− 1
2
(D) : L0(u, π) = 0,div u = 0 in D

}
, (2.8)128

where L0(u, π) := Δu−∇π, and ‖(u, π)‖L2
s+ 1

2
(D,L0) := ‖u‖L2

s+ 1
2
(D,Rn) + ‖π‖L2

s− 1
2
(D).129

Let us mention the following trace lemma for bounded Lipschitz domains (see [18, Proposition 3.1],130

[40, Theorem 2.5.2], [6], [30, Theorem 3.38], [34, Lemma 2.6]):131

Lemma 2.1. Let D ⊆ R
n(n ≥ 2) be a bounded Lipschitz domain with boundary Γ. Let s ∈ (0, 1). Then132

there exists a linear and bounded operator Tr− : L2
s+ 1

2
(D) → L2

s(Γ) whose action is compatible to that133

of the restriction to the boundary in (2.3). This operator is onto and has a linear and bounded right134

inverse Z− : L2
s(Γ) → L2

s+ 1
2
(D). In addition, the space L2

s+ 1
2 ;0

(D) is the kernel of the trace operator135

Tr− : L2
s+ 1

2
(D)→ L2

s(Γ). The following operator is also well defined, linear and bounded:136

Tr− : L2
r(D)→ L2

1(Γ), r >
3
2
. (2.9)137

A similar result holds for the trace operators defined on Sobolev spaces of vector and tensor fields.138

For brevity, we use the same notation for them as in Lemma 2.1, but their meaning will be understood139

from the context.140

2.1. The conormal derivative for the Stokes system on Sobolev spaces141

Let s ∈ [0, 1]. Let dσ be the surface measure on Γ. Let ν denote the outward unit normal, which is defined142

a.e. with respect to dσ on Γ. Note that ν ∈ L∞(Γ, Rn).143

The result below defines the conormal derivative for the Stokes system on Sobolev spaces as it has144

been introduced by Mitrea and Wright in [40, Theorem 10.4.1] (see also [36, Proposition 3.6], [23, Lemma145

2.2] for the extension to the Brinkman operators in Lipschitz domains on compact Riemannian manifolds,146

and [34, Definition 3.1]):147

Lemma 2.2. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with boundary Γ. Then for any s ∈ (0, 1)148

the conormal derivative operator3 ∂−
ν : L2

s+ 1
2
(D,L0)→ L2

s−1(Γ, Rn), given by149

〈∂−
ν (u, π),Ψ〉Γ := 2〈E(u), E(Z−Ψ)〉D − 〈π,div (Z−Ψ)〉D, ∀ Ψ ∈ L2

1−s(Γ, Rn) (2.10)150
151

is well defined, linear and bounded, where E(u) := 1
2

(
∇u + (∇u)�) and (∇u)� is the transpose of152

∇u =
(

∂uj

∂xk

)

j,k=1,...,n
. In addition, for all (u, π) ∈ L2

s+ 1
2
(D,L0), one has the Green formula153

2〈Ejk(u), Ejk(w)〉D = 〈π,div w〉D + 〈∂−
ν (u, π),Tr−w〉Γ , ∀ w ∈ L2

3
2 −s(D, Rn). (2.11)154

3 Hereafter one uses the Einstein repeated-index summation rule. Also Ejk(u) are the components of E(u).
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2.2. Generalized Brinkman system and the corresponding conormal derivative155

Let P ∈ L∞(D, Rn⊗R
n) be a matrix-valued function with the entries Pij ∈ L∞(D), i, j = 1, . . . , n, such156

that157

〈P(x)ξ, ξ〉 :=
n∑

i,j=1

Pij(x)ξiξj ≥ 0, ∀ ξ ∈ R
n (2.12)158

for almost all x ∈ D. The condition (2.12) implies that159

〈Pv,v〉D ≥ 0, ∀ v ∈ L2(D, Rn). (2.13)160

In the sequel, we use the same notation for the matrix value function P and the corresponding multipli-161

cation operator MP : L2(D, Rn)→ L2(D, Rn), MP(v) = Pv. Then the generalized Brinkman operator,162

i.e., the following L∞-perturbation of the Stokes operator4163

BP :=
(
− (�−P) ∇

div 0

)
: L2

s+ 1
2
(D, Rn)× L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)× L2

s− 1
2
(D) (2.14)164

is well defined, linear and bounded, for any s ∈ (0, 1).165

Let us now mention the significance of the conormal derivative166

Tr− (−πI + 2E(u)) ν a.e. on Γ (2.15)167

when the following Sobolev space is involved:168

B2
s+ 1

2
(D,LP) :=

{
(u, π, f , g) ∈ L2

s+ 1
2
(D, Rn)× L2

s− 1
2
(D)× L2

s− 3
2 ;0(D, Rn)× L2

s− 1
2
(D) :169

LP(u, π) = f |D and div u = g in D
}
, (2.16)170

171

where172

LP(u, π) := (�−P)u−∇π. (2.17)173

Then we have the following result (see also Lemma 2.2 for the Stokes system).174

Lemma 2.3. Let D be a bounded Lipschitz domain in R
n (n ≥ 2) with boundary Γ. Let s ∈ (0, 1). Then175

the operator176

∂−
ν;P : B2

s+ 1
2
(D,LP)→ L2

s−1(Γ, Rn),
B2

s+ 1
2
(D,LP) � (u, π, f , g) �−→ ∂−

ν;P(u, π)f ,g ∈ L2
s−1(Γ, Rn),

(2.18)177

given by178

〈
∂−

ν;P(u, π)f ,g,Φ
〉

Γ

:= 2〈E(u), E(Z−Φ)〉D − 〈π,div(Z−Φ)〉D + 〈∇g,Z−Φ〉D179

+ 〈f ,Z−Φ〉D + 〈Pu,Z−Φ〉D, ∀ Φ ∈ L2
1−s(Γ, Rn) (2.19)180

181

is well defined and bounded. In addition, for any (u, π, f , g) ∈ B2
s+ 1

2
(D,LP), one has the Green formula182

〈
∂−

ν;P(u, π)f ,g,Tr− w
〉

Γ

= 2〈E(u), E(w)〉D − 〈π,div(w)〉D + 〈∇g,w〉D183

+ 〈f ,w〉D + 〈Pu,w〉D, ∀ w ∈ L2
3
2 −s(D, Rn). (2.20)184

185

Proof. Since P ∈ L∞(D, Rn⊗R
n) the last duality pairing in the right-hand side of (2.19) is well defined.186

Also, by [36, (3.11), (3.13)], L2
1
2 −s

(D) = L2
1
2 −s;0

(D) and, by duality, L2
s− 1

2
(D) = L2

s− 1
2 ;0

(D). In addition,187

the property [36, (3.14)] implies that ∇g ∈ L2
s− 3

2 ;0
(D, Rn) =

(
L2

3
2 −s

(D, Rn)
)′, and hence, the third duality188

pairing is well defined. All other duality pairings are also well defined. Hence, the operator ∂−
ν;P given189

4 In the special case P = λI, λ > 0, (2.14) reduces to the well-known Brinkman operator that describes the flows of
viscous incompressible fluids in porous media (see, e.g., [22,25] for further details).
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by (2.18), (2.19) is well defined. The boundedness of ∂−
ν;P and the formula (2.20) can be obtained with190

similar arguments as for [40, Proposition 10.2.1, Theorem 10.4.1]. Also, let us mention the important191

property that the definition of ∂−
ν;P is independent of the choice of a bounded right inverse Z− of the192

trace operator Tr−. Such a property can be obtained with arguments similar to those in the proof of [34,193

Theorem 3.2]. We omit these arguments for the sake of brevity. �194

Let us now consider the Sobolev space195

L2
s+ 1

2
(D,LP) :=

{
(u, π, f) : u ∈ L2

s+ 1
2
(D, Rn), π ∈ L2

s− 1
2
(D), f ∈ L2

s− 3
2 ;0(D, Rn)196

such that LP(u, π) = f |D and div u = 0 in D
}
. (2.21)197

198

The following useful result is a direct consequence of Lemma 2.3 in the special case g = 0.199

Corollary 2.4. Let D be a bounded Lipschitz domain in R
n (n ≥ 2) with boundary Γ. Let s ∈ (0, 1). Then200

the conormal derivative operator201

∂−
ν;P : L2

s+ 1
2
(D,LP)→ L2

s−1(Γ, Rn),
L2

s+ 1
2
(D,LP) � (u, π, f) �−→ ∂−

ν;P(u, π)f ∈ L2
s−1(Γ, Rn),

(2.22)202

given by203

〈
∂−

ν;P(u, π)f ,Φ
〉

Γ

:= 2〈E(u), E(Z−Φ)D − 〈π,div(Z−Φ)〉D + 〈Pu,Z−Φ〉D + 〈f ,Z−Φ〉D, (2.23)204

205

for any Φ ∈ L2
1−s(Γ, Rn), is well defined and bounded. Also, for all (u, π, f) ∈ L2

s+ 1
2
(D,LP) and w ∈206

L2
3
2 −s

(D, Rn), one has the Green formula:207

〈∂−
ν;P(u, π)f ,Tr− w〉Γ =2〈E(u), E(w)〉D − 〈π,div w〉D + 〈f ,w〉D + 〈Pu,w〉D. (2.24)208

209

Remark 2.5. (a) For s ∈ (0, 1), the conormal derivative ∂+
ν;P , corresponding to D+ := R

n \ D, can210

be defined by a variational formula similar to (2.19), by using a linear and continuous right inverse211

Z+ : L2
s(Γ, Rn) → L2

s+ 1
2
(Rn, Rn) of the trace operator Tr : L2

s+ 1
2
(Rn, Rn) → L2

s(Γ, Rn) such that the212

supports of the images of Z+ are contained in a ball which contains D (for also [6,34]).213

(b) Next, for P = 0, we use the short notation ∂−
ν (u, π)f ,g, and, for P = 0, f = 0 and g = 0, the214

notation ∂−
ν (u, π).215

3. Layer potential operators for the Stokes system216

Let us denote by G(·, ·) ∈ D′(Rn × R
n, Rn ⊗ R

n) and Π(·, ·) ∈ D′(Rn × R
n, Rn) the fundamental tensor217

and the fundamental vector, respectively, for the Stokes system in R
n, n ≥ 2. Therefore,5218

�xG(x,y)−∇xΠ(x,y) = −δy(x)I, divxG(x,y) = 0, (3.1)219

where I is the identity matrix and δy is the Dirac distribution with mass at y. Note that (see, e.g., [25,220

p. 38, 39]):221

Gjk(x) =
1

2ωn

{
δjk

(n− 2)|x|n−2
+

xjxk

|x|n
}

, Πj(x) =
1

ωn

xj

|x|n , n ≥ 3

Gjk(x) =
1
4π

(
xjxk

|x|2 − δjk (ln |x|+ ln α0)
)

, Πj(x) =
1
2π

xj

|x|2 , n = 2,

(3.2)222

5 The subscript x added to an operator shows that the operator acts with respect to x.
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where ωn is the area of the unit sphere in R
n and α0 > 0 is a constant (for details about the choice of223

such a constant, we refer the reader to [22, Appendix] and [48, (3.4)]). The components of the stress and224

pressure tensors S and Λ are given by (see [25, p. 38, 39, 132]):225

Sjk�(x) = −Πj(x)δk� +
∂Gjk(x)

∂x
�

+
∂G�k(x)

∂xj
= − n

ωn

xjxkx�

|x|n+2
,226

Λjk(x,y) = − 2
ωn

(
− δjk

|x|n + n
xjxk

|x|n+2

)
, (3.3)227

�xSjk�(y,x)− ∂Λj�(x,y)
∂xk

= 0,
∂Sjk�(y,x)

∂xk
= 0 for x �= y. (3.4)228

3.1. The single- and double-layer potential operators229

We now assume that D := D− ⊆ R
n (n ≥ 2) is a bounded Lipschitz domain with connected boundary230

Γ. Let D+ := R
n \D. Let r ∈ [0, 1]. If g ∈ L2

r−1(Γ, Rn), the single-layer potential for the Stokes system231

VΓg and the corresponding pressure potential Qs
Γ
g are given by232

(
VΓg

)
(x) :=

〈
G(x, ·),g

〉
Γ
,

(
Qs

Γ
g
)
(x) :=

〈
Π(x, ·),g

〉
Γ
, x ∈ R

n \ Γ. (3.5)233

Let ν
�
, � = 1, . . . , n, be the components of the outward unit normal ν to Γ. Let h ∈ L2

r(Γ, Rn). Then the234

double-layer potential WΓh and the corresponding pressure potential Qd
Γh are given by235

(
WΓh

)
k
(x) :=

∫

Γ

Sjk�(y,x)ν
�
(y)hj(y)dσ(y),

(
Qd

Γ
h
)
(x) :=

∫

Γ

Λj�(x,y)ν
�
(y)hj(y)dσ(y), x ∈ R

n \ Γ.

(3.6)

236

237

In addition, the (principal value) boundary version of WΓh is given for a.e. x ∈ Γ by238

(KΓh)k(x) := p.v.

∫

Γ

Sjk�(y,x)ν
�
(y)hj(y)dσ(y), (3.7)239

where the notation p.v. means the principal value of a singular integral operator.240

By (3.1) and (3.4), the pairs (VΓg,Qs
Γ
g) and (WΓh,Qd

Γ
h) satisfy the Stokes system in R

n \ Γ.241

As usual, denote by ∂±
ν (VΓg,Qs

Γ
g) the conormal derivatives of the layer potentials VΓg and Qs

Γ
g, with242

a similar interpretation for ∂±
ν (WΓh,Qd

Γ
h).243

The main properties of layer potentials for the Stokes system are given below (see [13], [40, Proposition244

10.5.2, Theorem 10.5.3]):245

Lemma 3.1. Let D := D− ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ, and246

let D+ := R
n \D. Let s ∈ [0, 1]. Then for all h ∈ L2

s(Γ, Rn) and g ∈ L2
s−1(Γ, Rn), the following relations247

hold a.e. on Γ:248

Tr+
(
VΓg

)
= Tr−(VΓg

)
:= VΓg, Tr±(WΓh) =

(
±1

2
I + KΓ

)
h, (3.8)249

∂±
ν (VΓg,Qs

Γg) =
(
∓1

2
I + K∗

Γ

)
g, ∂+

ν

(
WΓh,Qd

Γ
h
)

= ∂−
ν

(
WΓh,Qd

Γ
h
)

:= DΓh, (3.9)250

251

where K∗
Γ

is the formal transpose of KΓ . In addition, the following operators252

VΓ : L2
s−1(Γ, Rn)→ L2

s(Γ, Rn), KΓ : L2
s(Γ, Rn)→ L2

s(Γ, Rn),253

K∗
Γ

: L2
s−1(Γ, Rn)→ L2

s−1(Γ, Rn), DΓ : L2
s(Γ, Rn)→ L2

s−1(Γ, Rn),254
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are well defined, linear and continuous. Also, VΓ : L2
s−1(Γ, Rn)→ L2

s(Γ, Rn) is a Fredholm operator with255

index zero having the kernel256

Ker
{
VΓ : L2

s−1(Γ, Rn)→ L2
s(Γ, Rn)

}
:=
{
ϕ ∈ L2

s−1(Γ, Rn) : VΓϕ = 0 a.e. on Γ
}

= Rν. (3.10)257

For the property (3.10), we refer the reader to [40, Theorems 5.4.1, 5.4.3, 10.5.1] and [22, (A.27)].258

A useful result for the next arguments is the following6 (see, e.g., [40, Lemma 11.9.21], [12]):259

Proposition 3.2. Let Xj , Yj , j = 1, 2, be Banach spaces such that the inclusions X1 ↪→ X2, Y1 ↪→ Y2260

are continuous. Let the latter of the inclusions has dense range. Assume that T ∈ L(X1, Y1) ∩ L(X2, Y2)261

is Fredholm, as an operator defined on the space X1 and on the space X2, respectively. If the condition262

index(T : X1 → Y1) = index(T : X2 → Y2) holds, then Ker(T : X1 → Y1) = Ker(T : X2 → Y2).263

In the sequel, we remove the superscript − from the operators Tr−, Z−, ∂−
ν;P(u, π)f ,g and ∂−

ν (u, π)f ,g.264

4. The Poisson problem for the generalized Brinkman system with Dirichlet boundary265

condition266

The main purpose of this section is to show the existence of a solution of the Poisson problem for a267

semilinear Brinkman system with Dirichlet boundary condition and data in L2-based Sobolev spaces.268

4.1. The linear Poisson problem with Dirichlet boundary condition for the generalized Brinkman system269

First, we show the well-posedness of the linear Poisson problem for the generalized Brinkman system in270

Lipschitz domains in R
n (n ≥ 2) with Dirichlet boundary condition and data in L2-based Sobolev spaces.271

Theorem 4.1. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Assume272

that the matrix-valued function P ∈ L∞(D, Rn ⊗ R
n) satisfies the nonnegativity condition (2.12). For273

s ∈ (0, 1), consider the linear Poisson problem with Dirichlet boundary condition for the generalized274

Brinkman system:275 ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u− Pu−∇π = f ∈ L2
s− 3

2
(D, Rn),

div u = g ∈ L2
s− 1

2
(D),

Tr u = h ∈ L2
s(Γ, Rn),

〈π, 1〉
D

= 0,

(4.1)276

subject to the necessary condition277

〈ν,h〉Γ = 〈g, 1〉
D

. (4.2)278

Then, there exists a constant C ≡ C(P, s,D) > 0, independent of f , g and h, such that the Poisson279

problem (4.1) has a unique solution (u, π) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), which satisfies the inequality280

‖u‖L2
s+ 1

2
(D,Rn) + ‖π‖L2

s− 1
2
(D) ≤ C

(
‖f‖L2

s− 3
2
(D,Rn) + ‖g‖L2

s− 1
2
(D) + ‖h‖L2

s(Γ,Rn)

)
. (4.3)281

Proof. Let us consider the matrix operator282

BP : L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn), BP :=

⎛

⎝
�−P −∇

div 0
Tr 0

⎞

⎠ . (4.4)283

We show that BP is an isomorphism on a subspace of L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D). First, note that284

6 If X and Y are Banach spaces, then L(X, Y ) is the set of linear and bounded operators from X to Y .
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BP = B0 + P, (4.5)285

where286

B0 : L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn), B0 :=

⎛

⎝
� −∇
div 0
Tr 0

⎞

⎠ , (4.6)287

P : L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)× L2

s− 1
2
(D)× L2

s(Γ, Rn), P :=

⎛

⎝
−P 0
0 0
0 0

⎞

⎠ . (4.7)288

289

By [40, Theorem 10.6.2], [12, Theorem 5.6], the Poisson problem for the Stokes system is well-posed.290

Therefore, B0 : L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn) is a Fredholm operator291

with index zero. In addition, the operator P : L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D) → L2

s− 3
2
(D, Rn) × L2

s− 1
2
(D) ×292

L2
s(Γ, Rn) is compact, as the compactness of the product L∞(D, Rn⊗R

n) ·L2
s+ 1

2
(D, Rn) ↪→ L2

s− 3
2
(D, Rn)293

shows. Hence, BP : L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D) → L2

s− 3
2
(D, Rn) × L2

s− 1
2
(D) × L2

s(Γ, Rn) is a Fredholm294

operator with index zero, for any s ∈ (0, 1). Such a property and Proposition 3.2 imply that295

Ker
(
BP : L2

s+ 1
2
(D, Rn)× L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)× L2

s− 1
2
(D)× L2

s(Γ, Rn)
)

296

= Ker
(
BP : L2

1(D, Rn)× L2(D)→ L2
−1(D, Rn)× L2(D)× L2

1
2
(Γ, Rn)

)
, ∀ s ∈ (0, 1). (4.8)297

298

In addition, by using the Green formula (2.20), we obtain that299

Ker
(
BP : L2

1(D, Rn)× L2(D)→ L2
−1(D, Rn)× L2(D)× L2

1
2
(Γ, Rn)

)
= {0} × R. (4.9)300

By (4.8) and (4.9), we find that the kernel of BP : L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D)→ L2

s− 3
2
(D, Rn)×L2

s− 1
2
(D)×301

L2
s(Γ, Rn) is {0} × R, for any s ∈ (0, 1). Hence, the range of BP has the codimension one in Ys :=302

L2
s− 3

2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn). On the other hand, the Divergence Theorem yields that the range303

of BP is contained in the subspace304

Z̃s :=
{

(F, G,H) ∈ L2
s− 3

2
(D, Rn)× L2

s− 1
2
(D)× L2

s(Γ, Rn) : 〈G, 1〉
D

= 〈ν,H〉Γ
}

(4.10)305

of codimension one in Ys. Thus, for any s ∈ (0, 1), the range of BP is Z̃s, and its kernel is the set {0}×R.306

Consequently, for any s ∈ (0, 1) and for all (f , g,h) ∈ L2
s− 3

2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn), satisfying the307

condition (4.2), there exists a pair (u, π) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D) such that308

{
(�−P)u−∇π = f , div u = g in D,
Tr u = h on Γ.

(4.11)309

If we require the condition 〈π, 1〉
D

= 0, then the solution becomes unique. Hence, the problem (4.1) has310

a unique solution (u, π) ∈ X̃s, where311

X̃s :=
{
(v, q) ∈ L2

s+ 1
2
(D, Rn)× L2

s− 1
2
(D) : 〈q, 1〉

D
= 0
}
. (4.12)312

Consequently, the operator BP : X̃s → Z̃s is an isomorphism.313

In addition, there exist two constants c > 0 and C ≡ C(P, s,D) > 0 such that314

‖(u, π)‖X̃s
= ‖B−1

P (f , g,h)�‖X̃s
315

≤ c‖B−1
P ‖L(Z̃s,X̃s)‖(f , g,h)‖Z̃s

316

≤ C
(
‖f‖L2

s− 3
2
(D,Rn) + ‖g‖L2

s− 1
2
(D) + ‖h‖L2

s(Γ,Rn)

)
, (4.13)317

318

where Z̃s is the space defined in (4.10). Hence, we have obtained the inequality (4.3), as asserted. �319

Journal: 33 Article No.: 439 TYPESET DISK LE CP Disp.:2014/7/26 Pages: 32



R
ev

is
ed

 P
ro

of

M. Kohr, M. Lanza de Cristoforis and W. L. Wendland ZAMP

Next, we consider the operators320

L1 : Xs→L2
s− 3

2
(D, Rn), L1(u, π) := �u− Pu−∇π,

L2 : Xs→L2
s− 1

2
(D), L2(u, π) := div u,

L3 : Xs→L2
s(Γ, Rn), L3(u, π) := Tr u,

(4.14)321

where322

Xs := L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), Ys := L2

s− 3
2
(D, Rn)× L2

s− 1
2
(D)× L2

s(Γ, Rn). (4.15)323

Recalling that X̃s is the space defined in (4.12), we show the following result.324

Lemma 4.2. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let s ∈ (0, 1)

and a ∈ (0,∞). Then, there exists a constant C ≡ C(a, s,D) > 0 such that

‖(u, π)‖X̃s
≤ C

(
‖L1(u, π)‖L2

s− 3
2
(D,Rn) + ‖L2(u, π)‖L2

s− 1
2
(D) + ‖L3(u, π)‖L2

s(Γ,Rn)

)
, (4.16)

for all (u, π) ∈ X̃s and for each matrix-valued function P ∈ L∞(D, Rn⊗R
n), which satisfies the nonneg-325

ativity condition (2.12) and the inequality326

‖P‖L∞(D,Rn⊗Rn) ≤ a. (4.17)327

Proof. Let us assume by contradiction that such a constant C does not exist. Thus, we assume that the328

inequality (4.16) does not hold. Then, there exist two sequences
{
(uj , πj)

}
j∈N

in X̃s and
{
Pj

}
j∈N

in329

L∞(D, Rn ⊗ R
n), such that Pj satisfies the nonnegativity condition (2.12) and the inequalities330

‖Pj‖L∞(D,Rn⊗Rn) ≤ a, ∀ j ≥ 1, (4.18)331

‖(uj , πj)‖X̃s
>j
(
‖(�−Pj)uj −∇πj‖L2

s− 3
2
(D,Rn)+‖L2(uj , πj)‖L2

s− 1
2
(D)+‖L3(uj , πj)‖L2

s(Γ,Rn)

)
, j ≥ 1.

(4.19)

332

333

Let (wj , rj) ∈ X̃s be such that334

(wj , rj) :=
1

‖(uj , πj)‖χ̃s

(uj , πj), j ≥ 1. (4.20)335

Thus, ‖(wj , rj)‖X̃s
= 1 and, for any j ≥ 1,336

j−1 >‖(�−Pj)wj−∇rj‖L2
s− 3

2
(D,Rn) + ‖L2(wj , rj)‖L2

s− 1
2
(D)+‖L3(wj , rj)‖L2

s(Γ,Rn). (4.21)337

338

On the other hand, by the Banach–Alaoglu Theorem (cf. [5, Chap. 5, Sect. 3]), the closed ball of radius a in339

the space L∞(D, Rn⊗R
n), which is the dual of the separable Banach space L1(D, Rn⊗R

n), is sequentially340

compact in the weak-∗ topology. Since the sequence
{
Pj

}
j∈N

is bounded in the space L∞(D, Rn ⊗ R
n),341

as each term Pj belongs to the closed ball of radius a of this space (see (4.18)), we then can select a342

weak-∗ convergent subsequence {Pjk
}k∈N of {Pj}j∈N with the limit in the same closed ball. Therefore,343

there exists P0 ∈ L∞(D, Rn ⊗ R
n) such that ‖P0‖L∞(D,Rn⊗Rn) ≤ a and344

lim
k→∞

Pjk
(ϕ) = P0(ϕ), ∀ ϕ ∈ L1(D, Rn ⊗ R

n), (4.22)345

where346

Pjk
(ϕ) :=

∫

D

Pjk
(x)ϕ(x)dx.347
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In addition, P0 satisfies the nonnegativity condition (2.13). Indeed, for any v ∈ L2(D, Rn), we have348

vrvs ∈ L1(D) for all r, s = 1, . . . , n, and accordingly the condition (4.22) implies that349

lim
k→∞

〈Pjk
v,v〉

D
= lim

k→∞

∫

D

(Pjk
)rs vrvsdx =

∫

D

(P0)rs vrvsdx, (4.23)350

351

where (Pjk
)rs are the components of Pjk

, and (P0)rs are the components of P0, r, s = 1, . . . , n. Since352

each Pjk
∈ L∞(D, Rn⊗R

n) satisfies the nonnegativity condition (2.12), the limit in (4.23) is nonnegative353

as well.354

On the other hand, since the embedding X̃s ↪→ X̃t is compact whenever t, s ∈ (0, 1), t < s (see, e.g., [19,355

Theorem 7.10]), there exists a subsequence {(wjk
, rjk

)}k∈N of the bounded sequence {(wj , rj)}j∈N of X̃s356

and an element (w, r) ∈ X̃t such that357

‖(wjk
, rjk

)− (w, r)‖X̃t
→ 0 as k →∞. (4.24)358

Recall that X̃t =
{
(v, q) ∈ L2

t+ 1
2
(D, Rn)× L2

t− 1
2
(D) : 〈q, 1〉

D
= 0
}
.359

Taking into account of the relations (4.18), (4.22) and (4.24) (and, possibly, extracting further sub-360

sequences of {Pjk
}k∈N and {wjk

}k∈N denoted, for the sake of brevity, as the sequences), one obtains361

that362

lim
k→∞

Pjk
wjk

= P0w, (4.25)363

weakly in L2(D, Rn) and accordingly, in the sense of distributions in D. Indeed, for any ϕ ∈ L2(D, Rn),364

one has the equality365

∫

D

〈Pjk
wjk
− P0w, ϕ〉 dx =

∫

D

(Pjk
− P0)rswrϕsdx +

∫

D

〈
Pjk

(wjk
−w), ϕ

〉
dx.366

The first integral in the right-hand side of the above equality tends to zero, as (4.22) and the property367

wrϕs ∈ L1(D) show. In addition, the properties (4.18) and (4.24) imply that the second integral also368

tends to zero as k →∞.369

By (4.24), the continuous embedding of X̃t into the space of distributions, and by (4.25), we have370

lim
k→∞

((�−Pjk
)wjk

−∇rjk
) = (�−P0)w −∇r (4.26)371

in the sense of distributions in D. In addition, we obtain the limiting relation372

lim
k→∞

div wjk
= div w (4.27)373

in L2
t− 1

2
(D) and accordingly in the sense of distributions in D. Also, we have the limiting relation374

lim
k→∞

Tr wjk
= Tr w (4.28)375

in L2
t (Γ, Rn) and accordingly in the sense of distributions in Γ.376

By (4.21), {(�−Pjk
)wjk

−∇rjk
}k∈N converges to zero in L2

s− 3
2
(D, Rn) and accordingly, in the sense377

of distributions in D. Comparing this result with (4.26), we find that378

(�−P0)w −∇r = 0 in D. (4.29)379

Similarly, we get div w = 0 in D, Tr w = 0 on Γ, and 〈r, 1〉
D

= 0. Consequently, the pair (w, r) ∈ X̃t is380

a solution of the homogeneous problem for the generalized Brinkman system381

⎧
⎪⎪⎨

⎪⎪⎩

�w − P0w −∇r = 0 in D,
div w = 0 in D,
Tr w = 0 on Γ,
〈r, 1〉

D
= 0.

(4.30)382
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The uniqueness of the solution to this problem in the space Xt := L2
t+ 1

2
(D, Rn) × L2

t− 1
2
(D) (see Theo-383

rem 4.1) implies that (w, r) = (0, 0). Then, by (4.24), we obtain the limiting relations384

‖wjk
‖L2

t+ 1
2
(D,Rn) → 0, ‖rjk

‖L2
t− 1

2
(D) → 0 as k →∞. (4.31)385

Combining (4.31) with the uniform boundedness of the sequence
{
Pjk

}
k∈N

in L∞(D, Rn⊗R
n), we obtain386

the limiting relation387

lim
k→∞

Pjk
wjk

= 0 in L2
s− 3

2
(D, Rn). (4.32)388

Indeed, there exists a constant c ≡ c(D, s) > 0, such that389

‖Pjk
wjk
‖L2

s− 3
2
(D,Rn) ≤ c‖Pjk

wjk
‖L2(D,Rn)390

≤ c‖Pjk
‖L∞(D,Rn⊗Rn)‖wjk

‖L2(D,Rn)391

≤ ca‖wjk
‖L2

t+ 1
2
(D,Rn) → 0 as k →∞. (4.33)392

393

Now, by (4.21) and (4.32), we get �wjk
−∇rjk

→ 0 in L2
s− 3

2
(D), Tr wjk

→ 0 in L2
s(Γ, Rn), as k → ∞.394

Therefore,395 ⎧
⎪⎨

⎪⎩

�wjk
−∇rjk

→ 0 in L2
s− 3

2
(D, Rn)

div wjk
→ 0 in L2

s− 1
2
(D)

Tr wjk
→ 0 in L2

s(Γ, Rn)
as k →∞. (4.34)396

Finally, by exploiting the well-posedness of the Dirichlet problem for the Stokes system in the space397

X̃s :=
{
(v, q) ∈ L2

s+ 1
2
(D, Rn)×L2

s− 1
2
(D) : 〈q, 1〉

D
= 0
}

(see [40, Theorem 10.6.2]), we obtain the limiting398

relation399

‖(wjk
, rjk

)‖X̃s
→ 0 as k →∞, (4.35)400

which contradicts the choice of the sequence {(wjk
, rjk

)}k≥1 in X̃s, i.e., the relation ‖(wjk
, rjk

)‖X̃s
= 1401

for any k ≥ 1. Thus, the proof is complete. �402

4.2. Poisson problem for the semilinear Brinkman system with Dirichlet boundary condition403

Next, we introduce the semilinear Poisson problem with Dirichlet boundary condition in L2-based Sobolev404

spaces on the Lipschitz domain D ⊆ R
n. We take s ∈ ( 1

2 , 1), and we consider a function P ∈ L∞(D ×405

R
n ×R, Rn ⊗R

n), which satisfies the Carathéodory condition, i.e., P(·,v, ξ) is measurable for almost all406

(v, ξ) ∈ R
n × R and P(x, ·, ·) is continuous for all x ∈ D. In addition, we assume that P satisfies the407

following nonnegativity condition: There exists a subset NP of measure zero of D such that408

〈P(x,v, ξ)b,b〉 ≥ 0, ∀ b ∈ R
n, (x,v, ξ) ∈ (D \NP)× R

n × R. (4.36)409

Finally, we assume that (f , g,h) ∈ L2
s− 3

2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn) satisfies the compatibility condi-410

tion411

〈ν,h〉Γ = 〈g, 1〉
D

, (4.37)412

and we consider the semilinear Poisson problem413

⎧
⎪⎪⎨

⎪⎪⎩

(
�−P

(
x,u(x), π(x)

))
u−∇π = f in D

div u = g in D
Tr u = h on Γ,
〈π, 1〉

D
= 0

(4.38)414

with the unknown (u, π) ∈ Xs := L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D). In order to have an existence result for the415

problem (4.38), we resort to the well-known Schauder Fixed Point Theorem (see, e.g., [16, Theorem 11.1]):416
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Theorem 4.3. Let K be a closed convex subset of a Banach space X. If T : K → K is a continuous417

mapping such that T (K) is a relatively compact subset of K, then T has a fixed point.418

Then, we prove the following existence result.419

Theorem 4.4. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let420

a > 0 and s ∈ ( 1
2 , 1). Then, there exists a constant C ≡ C(a, s,D) > 0 such that for each (f , g,h) ∈421

L2
s− 3

2
(D, Rn)×L2

s− 1
2
(D)×L2

s(Γ, Rn) satisfying the compatibility condition (4.37) and for each essentially422

bounded Carathéodory function P from D × R
n × R to R

n ⊗ R
n satisfying the nonnegativity condition423

(4.36) and the inequality424

‖P‖L∞(D×Rn×R,Rn⊗Rn) ≤ a, (4.39)425

the semilinear Poisson problem (4.38) has at least a solution (u, π) ∈ Xs such that426

‖(u, π)‖Xs
≤ C

(
‖f‖L2

s− 3
2
(D,Rn) + ‖g‖L2

s− 1
2
(D) + ‖h‖L2

s(Γ,Rn)

)
. (4.40)427

Proof. For a fixed (u, π) ∈ X̃s, where X̃s is the space defined in (4.12), we first consider the auxiliary428

linear Poisson problem with Dirichlet boundary condition429

⎧
⎪⎨

⎪⎩

(
�−P

(
x,u(x), π(x)

))
v −∇ζ = f ∈ L2

s− 3
2
(D, Rn),

div v = g ∈ L2
s− 1

2
(D),

Tr v = h ∈ L2
s(Γ, Rn).

(4.41)430

Note that f , g and h are the given data of the semilinear Poisson problem (4.38). By Theorem 4.1, there431

exists a constant C ≡ C(a, s,D) > 0 such that the problem (4.41) has a unique solution (v, ζ) ∈ X̃s,432

which satisfies the inequality [see (4.16)]433

‖(v, ζ)‖X̃s
≤ C

(
‖
(
�−P

(
x,u(x), π(x)

))
v−∇ζ‖L2

s− 3
2
(D,Rn)+‖L2(v, ζ)‖L2

s− 1
2
(D)+‖L3(v, ζ)‖L2

s(Γ,Rn)

)

(4.42)

434

435

where L2 and L3 are the operators given in (4.14). By (4.41) and (4.42), we obtain that436

‖(v, ζ)‖X̃s
≤ A, (4.43)437

where438

A := C
(
‖f‖L2

s− 3
2
(D,Rn) + ‖g‖L2

s− 1
2
(D) + ‖h‖L2

s(Γ,Rn)

)
> 0. (4.44)439

Therefore, (v, ζ) ∈ BA, where BA := {z ∈ X̃s : ‖z‖X̃s
≤ A}. We now consider the nonlinear operator440

Tf ,g,h : BA → BA, BA � (u, π)
Tf,g,h�−→ (v, ζ), (4.45)441

which associates to (u, π) ∈ BA the unique solution (v, ζ) ∈ BA of the linear Poisson problem of Dirichlet442

type (4.41). Such an operator is well defined, as the inequality (4.43) shows. We now turn to show that443

Tf ,g,h : BA → BA is continuous and compact.444

Let {(uj , πj)}j∈N be a sequence in
(
BA, ‖ · ‖X̃s

)
, and let t ∈ ( 1

2 , 1), t < s. Since the embedding445

X̃s ↪→ X̃t is compact, there exists a subsequence {(ujk
, πjk

)}k∈N of {(uj , πj)}j∈N that converges to an446

element (ũ, π̃) ∈ X̃t, i.e.,447

‖(ujk
, πjk

)− (ũ, π̃)‖X̃t
→ 0 as k →∞. (4.46)448

In addition, since X̃s is a reflexive Banach space (as a closed subspace of the reflexive Banach space Xs),449

we can select a further subsequence of the bounded sequence {(ujk
, πjk

)}k∈N in BA, still denoted by450

{(ujk
, πjk

)}k∈N, which converges weakly to an element (u0, π0) ∈ BA, i.e.,451
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〈ϕ, (ujk
, πjk

)〉
D
− 〈ϕ, (u0, π0)〉

D
→ 0, ∀ ϕ ∈

(
X̃s

)′
. (4.47)452

By (4.47) and the property that the convergence in norm of X̃t implies the weak convergence, we obtain453

for any ϕ ∈
(
X̃t

)′
↪→
(
X̃s

)′
that454

〈ϕ, (u0, π0)− (ũ, π̃)〉
D

= 〈ϕ, (u0, π0)− (ujk
, πjk

)〉
D

+ 〈ϕ, (ujk
, πjk

)− (ũ, π̃)〉
D
→ 0 as k →∞. (4.48)455

456

Therefore, (u0, π0) = (ũ, π̃). Consequently, the proof of the continuity and compactness of the operator457

Tf ,g,h in (BA, ‖ · ‖X̃s
) reduces to the continuity of Tf ,g,h from (BA, ‖ · ‖X̃t

) to (BA, ‖ · ‖X̃s
) whenever458

1
2 < t < s < 1.459

Before we prove such a continuity, we show an intermediate statement. Indeed, we next turn to prove460

that the operator Tf ,g,h is continuous from (BA, ‖ · ‖X̃t
) to (BA, ‖ · ‖X̃t

).461

The continuity of the operator Tf ,g,h from
(
BA, ‖ · ‖X̃t

)
to
(
BA, ‖ · ‖X̃t

)
462

Let {(uj , πj)}j∈N be a sequence in (BA, ‖ · ‖X̃t
), which converges to (u, π) ∈ BA in the X̃t-norm, i.e.,463

‖(uj , πj)− (u, π)‖X̃t
→ 0 as j →∞. (4.49)464

In particular, we note that for 1
2 < t < s < 1, the convergence in norm of Xt implies the L2-convergence.465

Therefore, there exists a subsequence {(ujk
, πjk

)}k∈N of the sequence {(uj , πj)}j∈N, which converges to466

(u, π) a.e. in D, i.e.,467

lim
k→∞

(ujk
, πjk

) = (u, π) a.e. in D. (4.50)468

In addition, in view of the inequality (4.16), the sequence {(T1;f ,g,h(uj , πj), T2;f ,g,h(uj , πj))}j∈N is bounded469

in X̃s, where Tf ,g,h = (T1;f ,g,h, T2;f ,g,h). Then, by the compactness of the embedding X̃s ↪→ X̃t, possibly470

considering a subsequence, we can assume that {(T1;f ,g,h(ujk
, πjk

), T2;f ,g,h(ujk
, πjk

))}k∈N
converges to an471

element (ṽ, ξ̃) ∈ X̃t. Thus,472

lim
k→∞

∥
∥
∥(T1;f ,g,h(ujk

, πjk
), T2;f ,g,h(ujk

, πjk
))− (ṽ, ξ̃)

∥
∥
∥

X̃t

= 0. (4.51)473

We now consider the semilinear Poisson problem474

⎧
⎨

⎩

(
�−P

(
x,ujk

(x), πjk
(x)
))
T1;f ,g,h(ujk

, πjk
)−∇T2;f ,g,h(ujk

, πjk
) = f in D,

div T1;f ,g,h(ujk
, πjk

) = g in D,
TrT1;f ,g,h(ujk

, πjk
) = h on Γ,

(4.52)475

and note that P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
) ∈ L2(D, Rn). In addition, by the uniform boundedness of P476

in L∞(D×R
n×R, Rn⊗R

n) and (4.45), the sequence {(P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
)}k∈N is bounded in477

L2(D, Rn). Then, possibly extracting a subsequence, still denoted as the sequence, we obtain the limiting478

relation479

lim
k→∞

P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
) = P

(
x,u, π

)
ṽ (4.53)480
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in the weak-∗ topology of L2(D, Rn). Indeed, for any ϕ ∈ L2(D, Rn), we have the inequality481

∣
∣
∣
∫

D

〈
P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
)− P

(
x,u, π

)
ṽ,ϕ

〉
dx
∣
∣
∣482

≤ ‖P
(
·,ujk

, πjk

)
‖L∞(D×Rn×R,Rn⊗Rn)

∫

D

|T1;f ,g,h(ujk
, πjk

)− ṽ||ϕ|dx483

+
∫

D

|ṽ| |ϕ| |P
(
x,ujk

, πjk

)
− P

(
x,u, π

)
|dx. (4.54)484

485

In addition, |P
(
x,ujk

, πjk

)
− P

(
x,u, π

)
| ≤ 2‖P‖L∞(D×Rn×R,Rn⊗Rn) and, by the continuity of P(x,v, q)486

with respect to (v, q) ∈ R
n × R, we have487

lim
k→∞

|ṽ| |ϕ| |P
(
x,ujk

, πjk

)
− P

(
x,u, π

)
| = 0 a.e. x ∈ D.488

Then, by the Lebesgue Dominated Convergence Theorem (see, e.g., [42]), we deduce the limiting relation489

lim
k→∞

∫

D

|ṽ| |ϕ| |P
(
x,ujk

, πjk

)
− P

(
x,u, π

)
|dx = 0. (4.55)490

It remains to prove that the first integral in the right-hand side of (4.54) tends to 0 as k → ∞. To this491

aim, we use the Hölder inequality and the relation (4.51) and obtain a constant c > 0 such that492

∫

D

|T1;f ,g,h(ujk
, πjk

)− ṽ||ϕ|dx ≤ c‖T1;f ,g,h(ujk
, πjk

)− ṽ‖L2(D,Rn)‖ϕ‖L2(D,Rn)493

≤ c‖T1;f ,g,h(ujk
, πjk

)− ṽ‖L2
t+ 1

2
(D,Rn)‖ϕ‖L2(D,Rn) → 0 as k →∞. (4.56)494

495

In view of (4.54), (4.55) and (4.56), we obtain the limiting relation496

lim
k→∞

∫

D

〈
P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
)− P (x,u, π) ṽ, ϕ

〉
dx = 0, ∀ ϕ ∈ L2(D, Rn),497

which leads to the property (4.53). In addition, (4.51) implies that498

lim
k→∞

(�T1;f ,g,hujk
−∇T2;f ,g,hujk

)=�ṽ −∇ξ̃, lim
k→∞

divT1;f ,g,hujk
=div ṽ, lim

k→∞
TrT1;f ,g,hujk

=Tr ṽ,

(4.57)

499

500

in the sense of distributions.501

Now, by (4.52), (4.53) and (4.57), we obtain that (ṽ, ξ̃) satisfies the linear Poisson problem502

⎧
⎨

⎩

(
�−P

(
x,u(x), π(x)

))
ṽ −∇ξ̃ = f in D,

div ṽ = g in D,
Tr ṽ = h on Γ,

(4.58)503

in the sense of distributions. On the other hand, in view of (4.41) and (4.45), we have504

⎧
⎨

⎩

(
�−P

(
x,u(x), π(x)

))
T1;f ,g,h(u, π)−∇T2;f ,g,h(u, π) = f in D,

divT1;f ,g,h(u, π) = g in D,
TrT1;f ,g,h(u, π) = h on Γ.

(4.59)505

Then, comparing (4.58) and (4.59), and using the uniqueness of the solution to the linear Poisson problem506

for the generalized Brinkman system in the space X̃t (see Theorem 4.1), we obtain507

T1;f ,g,h(u, π) = ṽ, T2;f ,g,h(u, π) = ξ̃. (4.60)508
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Consequently, we have shown that if s > 1
2 and if (uj , πj)→ (u, π) in X̃t, then there exists a subsequence509

{(ujk
, πjk

)}k∈N of {(uj , πj)}j∈N such that510

Tf ,g,h(ujk
, πjk

)→ Tf ,g,h(u, π) in X̃t. (4.61)511

By using the same method as above, we can show that each subsequence of {(uj , πj)}j∈N contains a512

further subsequence such that its image by the operator Tf ,g,h converges to Tf ,g,h(u, π) in X̃t. Therefore,513

lim
j→∞

Tf ,g,h(uj , πj) = Tf ,g,h(u, π) in X̃t. (4.62)514

The continuity of the operator Tf ,g,h from
(
BA, ‖ · ‖X̃t

)
to
(
BA, ‖ · ‖X̃s

)
515

Next, we show that if {(uj , πj)}j∈N is a sequence in (BA, ‖ · ‖X̃s
), which converges to (u, π) ∈ BA in X̃t,516

then each subsequence of {Tf ,g,h(uj , πj)}j∈N
has a further subsequence which converges to Tf ,g,h(u, π) in517

X̃s. To shorten our notation, we still denote by {(uj , πj)}j∈N
a subsequence of {(uj , πj)}j∈N

.518

To show the desired property, we now consider the Poisson problem519

⎧
⎨

⎩

�T1;f ,g,h(uj , πj)−∇T2;f ,g,h(uj , πj)= f+P
(
x,uj(x), πj(x)

)
T1;f ,g,h(uj , πj) in D,

divT1;f ,g,h(uj , πj) = g in D,
TrT1;f ,g,h(uj , πj) = h on Γ,

(4.63)520

and we turn to prove the limiting relation521

lim
j→∞

P
(
x,uj , πj

)
T1;f ,g,h(uj , πj) = P

(
x,u, π

)
T1;f ,g,h(u, π) in L2

s− 3
2
(D, Rn). (4.64)522

523

Possibly selecting a further subsequence, we can assume that (4.50) holds (with uj instead of ujk
).524

Next, we prove the limiting relation (4.64) by duality and by exploiting the equality L2
s− 3

2
(D, Rn) =525

(
L2

3
2 −s;0

(D, Rn)
)′

. Indeed, for any Ψ ∈ L2
3
2 −s;0

(D, Rn), we have526

∣
∣
∣
∫

D

〈
P
(
x,uj , πj

)
T1;f ,g,h(uj , πj)− P

(
x,u, π

)
T1;f ,g,h(u, π),Ψ

〉
dx
∣
∣
∣527

≤
∫

D

∣
∣ (P
(
x,uj , πj

)
T1;f ,g,h(uj , πj)− P

(
x,u, π

)
T1;f ,g,h(u, π)

) ∣∣ |Ψ|dx528

≤
∫

D

|P
(
x,uj , πj

)
| |T1;f ,g,h(uj , πj)− T1;f ,g,h(u, π)| |Ψ|dx529

+
∫

D

∣
∣P
(
x,uj , πj

)
− P

(
x,u, π

)∣∣ |T1;f ,g,h(u, π)| |Ψ|dx. (4.65)530

531

In addition, by using the Hölder inequality and the inequality (4.39), we obtain that532

∫

D

|P
(
x,uj , πj

)
| |T1;f ,g,h(uj , πj)− T1;f ,g,h(u, π)| |Ψ|dx533

≤ a‖T1;f ,g,h(uj , πj)− T1;f ,g,h(u, π)‖L2(D,Rn)‖Ψ‖L2(D,Rn)534

≤ a′‖T1;f ,g,h(uj , πj)− T1;f ,g,h(u, π)‖L2
t+ 1

2
(D,Rn)‖Ψ‖L2

3
2 −s;0

(D,Rn) → 0 as j →∞,535

536
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with a constant a′ ≡ a′(D, t) > 0. Hence, for any Ψ ∈ L2
3
2 −s;0

(D, Rn), one has the limiting relation537

lim
j→∞

∫

D

|P
(
x,uj , πj

)
| |T1;f ,g,h(uj , πj)− T1;f ,g,h(u, π)| |Ψ|dx = 0, (4.66)538

which holds uniformly when Ψ ranges in the unit ball of L2
3
2 −s;0

(D, Rn). On the other hand, in view of539

(4.50) and the property that P is a Carathéodory function, we obtain the limiting relation540

lim
j→∞

∣
∣P
(
x,uj , πj

)
− P

(
x,u, π

)∣∣ = 0 a.e. x ∈ D.541

Combining such a property with the Hölder inequality, the membership of |Tf ,g,h(u, π)| in L2(D), the542

inequality (4.39), and with the Lebesgue Dominated Convergence Theorem, one obtains the limiting543

relation544

lim
j→∞

∫

D

∣
∣P
(
x,uj , πj

)
− P

(
x,u, π

)∣∣ |T1;f ,g,h(u, π)| |Ψ|dx = 0, (4.67)545

which holds uniformly when Ψ ranges in the unit ball of L2
3
2 −s;0

(D, Rn). The limiting relations (4.65),546

(4.66) and (4.67) lead to the desired limiting relation (4.64). Hence, the right-hand side of the problem547

(4.63) converges to
(
f + P

(
x,u, π

)
T1;f ,g,h(u, π), g,h

)
in the space L2

s− 3
2
(D, Rn)× L2

s− 1
2
(D)× L2

s(Γ, Rn).548

Then, the well-posedness of the linear Poisson problem for the Stokes system with Dirichlet condition in549

X̃s (see [40, Theorem 10.6.2]) yields the desired property550

lim
j→∞

Tf ,g,h(uj , πj) = Tf ,g,h(u, π) in X̃s. (4.68)551

Consequently, the nonlinear operator Tf ,g,h : BA → BA is continuous and compact, as asserted.552

Existence of a solution to the semilinear Poisson problem (4.38)553

Finally, the Schauder Fixed Point Theorem (see Theorem 4.3) applied to the continuous and compact554

nonlinear operator Tf ,g,h : BA → BA, and to the closed, bounded and convex subset BA of the Banach555

space X̃s, implies that Tf ,g,h has a fixed point (u, π) ∈ BA. This is a solution of the semilinear Poisson556

problem (4.38) in the space X̃s, which satisfies the inequality ‖(u, π)‖X̃s
≤ A, where A is the constant557

given by (4.44). Thus, the proof is complete. �558

Remark 4.5. The results of Theorem 4.4 can be extended to other Sobolev and Besov spaces by using [40,559

Theorem 10.6.2], i.e., the well-posedness result in such spaces for the Poisson problem for the Stokes560

system with Dirichlet boundary condition, embedding results, as well as an argument similar to those in561

the proof of Theorem 4.4, which we omit for the sake of brevity.562

5. The semilinear Brinkman system with nonlinear Robin condition563

In this section, we show the existence of a solution of the Poisson problem for the generalized Brinkman564

system with nonlinear Robin boundary condition and data in L2-based Sobolev spaces.565
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5.1. The linear Poisson problem for the Stokes system with Robin boundary condition566

Let us first prove the well-posedness of the Poisson problem for the Stokes system with Robin boundary567

condition, by using a single-layer potential approach. Note that the existence of a solution to a Robin568

problem for the Stokes system in a bounded or an exterior Lipschitz domain in R
n(n ≥ 2), with a569

non-connected compact boundary, has been proved in [44, Theorem 4.1], by exploiting a double-layer570

potential approach. In particular, the Robin problem for the homogeneous Stokes system in a bounded571

domain G ⊆ R
3 with Lyapunov boundary ∂G ∈ C1,α, α ∈ (0, 1), and boundary data in Cα(∂G, R3), or572

in Ls(∂G, R3), s ∈ (1,∞), has been studied in [32, Theorem 4.3].573

Theorem 5.1. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let574

s ∈ (0, 1). Let λ ∈ L∞(Γ, Rn ⊗ R
n) be a symmetric matrix-valued function, such that575

〈λv,v〉Γ ≥ 0, ∀ v ∈ L2(Γ, Rn) and 〈λv,v〉Γ = 0 ⇐⇒ v = 0. (5.1)576

Then, there exists a constant C ≡ C(λ, s,D) > 0 such that the Poisson problem for the Stokes system577

with Robin boundary condition:578
⎧
⎪⎨

⎪⎩

�v −∇p = f |D, f ∈ L2
s− 3

2 ;0
(D, Rn),

div v = g ∈ L2
s− 1

2
(D),

∂ν(v, p)
f,g

+ λTr v = h ∈ L2
s−1(Γ, Rn)

(5.2)579

has a unique solution (v, p) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), which satisfies the inequality580

‖v‖L2
s+ 1

2
(D,Rn) + ‖p‖L2

s− 1
2
(D) ≤ C

(
‖f‖L2

s− 3
2 ;0

(D,Rn) + ‖g‖L2
s− 1

2
(D) + ‖h‖L2

s−1(Γ,Rn)

)
. (5.3)581

Proof. First, we show that the problem (5.2) has at most one solution (v, p) ∈ Xs, where Xs :=582

L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D). Indeed, assuming that the pair (v0, p0) ∈ Xs is a solution of the homogeneous583

problem associated with (5.2), one has the layer potential representation (see, e.g., [40, (10.95)])584

v0 = VΓ (∂ν(v0, p0))−WΓ (Tr v0) = −VΓ (λTr v0)−WΓ (Tr v0) in D, (5.4)585
586

which leads to the following equation with the unknown Tr v0 ∈ L2
s(Γ, Rn):587

(
1
2

I + KΓ + VΓλ

)
Tr v0 = 0. (5.5)588

Since 1
2 I + KΓ : L2

s(Γ, Rn) → L2
s(Γ, Rn) is Fredholm with index zero (see, e.g.,[40, Theorem 10.5.3])589

and VΓλ : L2
s(Γ, Rn) → L2

s(Γ, Rn) is compact, the operator 1
2 I + KΓ + VΓλ : L2

s(Γ, Rn) → L2
s(Γ, Rn) is590

Fredholm with index zero as well, for any s ∈ (0, 1). Therefore, this operator is invertible if and only if591

Ker
(

1
2

I + K∗
Γ

+ λVΓ : L2
−s(Γ, Rn)→ L2

−s(Γ, Rn)
)

= {0}. (5.6)592

On the other hand, by using again Proposition 3.2, we obtain the equality593

Ker
(

1
2

I+K∗
Γ
+λVΓ : L2

−s(Γ, Rn)→ L2
−s(Γ, Rn)

)
=Ker

(
1
2

I+K∗
Γ
+λVΓ : L2

− 1
2
(Γ, Rn)→ L2

− 1
2
(Γ, Rn)

)
,

(5.7)

594

595

for any s ∈ (0, 1). Hence, the proof of the property (5.6) reduces to show that596

Ker
(

1
2

I + K∗
Γ

+ λVΓ : L2
− 1

2
(Γ, Rn)→ L2

− 1
2
(Γ, Rn)

)
= {0}. (5.8)597

This property follows by means of the Green formula (2.11) and standard arguments of the potential598

theory, which we omit for the sake of brevity. Consequently, 1
2 I + KΓ + VΓλ : L2

s(Γ, Rn) → L2
s(Γ, Rn) is599

an isomorphism for any s ∈ (0, 1). Hence, the equation (5.5) has only the solution Tr v0 = 0. By (5.4)600
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and by ∂ν(v0, p0) + λTr v0 = 0, we obtain that (v0, p0) = (0, 0). Therefore, the problem (5.2) has at601

most one solution. It remains to observe that the pair (v, p) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D),602

v := ND(f −∇g) +∇N�g + VΓ

(
1
2 I + K∗

Γ
+ λVΓ

)−1
h1,

p := QD(f −∇g) +QΓ

(
1
2 I + K∗

Γ
+ λVΓ

)−1
h1,

(5.9)603

is the unique solution of the Poisson problem with Robin boundary condition (5.2), where ND and QD604

are the Newtonian potential and its corresponding pressure potential for the Stokes system in D, and605

N� is the Newtonian potential for the Laplace operator in D. In addition, we have that606

h1 := h− ∂ν (ND(f −∇g),QD(f −∇g))− ∂ν (∇N�g, 0) ∈ L2
s−1(Γ, Rn).607

On the other hand, the boundedness of the involved layer potentials in (5.9) shows that this solution608

satisfies the estimate (5.3) in terms of data (f , g,h) ∈ L2
s− 3

2 ;0
(D, Rn) × L2

s− 1
2
(D) × L2

s−1(Γ, Rn), with a609

constant C ≡ C(λ, s,D) > 0 independent of these data. �610

5.2. The linear Poisson problem for the generalized Brinkman system with Robin boundary condition611

Theorem 5.2. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let612

s ∈ (0, 1). Let P ∈ L∞(D, Rn⊗R
n) be a matrix-valued function, which satisfies the nonnegativity condition613

(2.12), and let λ ∈ L∞(Γ, Rn ⊗ R
n) be a symmetric matrix-valued function, which satisfies the strong614

positivity condition (5.1). Then, there exists a constant C ≡ C(P, λ, s,D) > 0 such that the linear615

Poisson problem for the generalized Brinkman system with Robin boundary condition:616

⎧
⎪⎨

⎪⎩

�u− Pu−∇π = f |D, f ∈ L2
s− 3

2 ;0
(D, Rn),

div u = g ∈ L2
s− 1

2
(D),

∂ν(u, π)
f+Pu,g

+ λTr u = h ∈ L2
s−1(Γ, Rn)

(5.10)617

has a unique solution (u, π) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), which satisfies the inequality618

‖u‖L2
s+ 1

2
(D,Rn) + ‖π‖L2

s− 1
2
(D) ≤ C

(
‖f‖L2

s− 3
2 ;0

(D,Rn) + ‖g‖L2
s− 1

2
(D) + ‖h‖L2

s−1(Γ,Rn)

)
. (5.11)619

Proof. Let us consider the following operator associated with the Poisson problem (5.10):620

Aλ;P : Xs →Ws, Aλ;P(u, π) =
(
�u− Pu−∇π,div u, ∂ν(u, π)�u−∇π, div u

+ λTr u
)
, (5.12)621

where622

Xs := L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), (5.13)623

Ws :=
{

(F|D, G,H) : F ∈ L2
s− 3

2 ;0(D, Rn), G ∈ L2
s− 1

2
(D), H ∈ L2

s−1(Γ, Rn)
}

. (5.14)624
625

Note that for any s ∈ (0, 1), we have the equality (see, e.g., [36, (3.13)])626

L2
s− 3

2 ;z(D) = L2
s− 3

2
(D), (5.15)627

where628

L2
s− 3

2 ;z(D) :=
{

f ∈ D′(D) : ∃ g ∈ L2
s− 3

2 ;0(D) such that f = g|D
}

. (5.16)629

Also, note that �v−Pv−∇q ∈ L2
s− 3

2
(D, Rn) for any (v, q) ∈ Xs. In addition, by using Lemma 2.3 (see630

also Remark 2.5), we obtain the useful relation631
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∂ν;P(v, q)
F,G

= ∂ν(v, q)
F+Pv,G

, (5.17)632
633

for any (v, q,F, G) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D)× L2

s− 3
2 ;0

(D, Rn)× L2
s− 1

2
(D) such that634

�v − Pv −∇q = F|D, div v = G in D. (5.18)635
636

This relation has suggested the expression of the Robin condition in (5.10). Therefore, the operator Aλ;P637

given by (5.12) can be written as638

Aλ;P = Aλ + CP , (5.19)639

where640

Aλ : Xs →Ws, Aλ(u, π) :=
(
�u−∇π,div u, ∂ν(u, π)�u−∇π, div u

+ λTr u
)
, (5.20)641

CP : Xs →Ws, CP(u, π) := (−Pu, 0,0) . (5.21)642

The well-posedness of the Poisson problem for the Stokes system with Robin condition (5.2) (see Theo-643

rem 5.1) shows that for any (F|D,G,H) ∈ Ws, there is a unique pair (v, p) ∈ Xs such that644

�v −∇p = F|D, div u = G in D, ∂ν(v, p)
F,G

+ λTr v = H on Γ, (5.22)645

i.e., the associated operator Aλ : Xs → Ws is an isomorphism, and hence Fredholm with index zero.646

In addition, since P ∈ L∞(D, Rn ⊗ R
n), the corresponding multiplication operator from L2

s+ 1
2
(D, Rn)647

to L2
s− 3

2
(D, Rn), denoted in the same manner as the matrix-valued function P, is compact. Indeed, the648

diagram649

L2
s+ 1

2
(D, Rn) P−→ L2(D, Rn)

I0;s− 3
2
◦ P
⏐
⏐
�

⏐
⏐
�I0;s− 3

2

L2
s− 3

2
(D, Rn) I←− L2

s− 3
2
(D, Rn)

(5.23)650

is commutative and the imbedding of L2(D, Rn) into L2
s− 3

2
(D, Rn) is compact, i.e., the inclusion operator651

I0;s− 3
2

: L2(D, Rn)→ L2
s− 3

2
(D, Rn) is compact. Therefore, the operator CP : Xs →Ws given by (5.21) is652

compact as well. Consequently, the operator Aλ;P = Aλ + CP : Xs → Ws is Fredholm with index zero,653

for any s ∈ (0, 1). By Proposition 3.2, one then obtains the following equality654

Ker (Aλ;P : Xs →Ws) = Ker
(
Aλ;P : X 1

2
→W 1

2

)
, ∀ s ∈ (0, 1). (5.24)655

Next, we turn to show that656

Ker
(
Aλ;P : X 1

2
→W 1

2

)
= {(0, 0)} . (5.25)657

To show this property, assume that (u0, π0) ∈ Ker
(
Aλ;P : X 1

2
→W 1

2

)
. By Lemma 2.3, one has the658

identity659

2
∫

D

Ejk(u0)Ejk(u0)dx + 〈Pu0,u0〉D = 〈∂ν(u0, π0)Pu0 ,Tr u0〉Γ = 〈−λTr u0,Tr u0〉Γ , (5.26)660

661

where the left-hand side of (5.26) is nonnegative, as P ∈ L∞(D, Rn ⊗ R
n) satisfies the nonnegativity662

condition (2.12), and the right-hand side is less or equal to zero, as λ ∈ L∞(Γ, Rn ⊗ R
n) satisfies the663

strong positivity condition (5.1). Therefore,664

Ejk(u0) = 0 in D, j, k = 1, . . . , n, and Tr u0 = 0 on Γ. (5.27)665

The first condition in (5.27) implies that u0 is a rigid body motion field, i.e., u0 = Ax + b, where666

b ∈ R
n and A is a skew symmetric matrix (A� = −A) of type n × n. But Tr u0 = 0 a.e. on Γ,667

and thus A = 0 and b = 0, i.e., u0 = 0 in D. This result combined with the generalized Brinkman668

equation �u0 − Pu0 − ∇π0 = 0 implies that π0 = c0 ∈ R in D. However, the second condition in669

(5.27) implies that ∂ν(u0, π0)Pu0 = −λTr u0 = 0 a.e. on Γ, and hence c0 = 0. Therefore, u0 = 0 and670
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π0 = 0 in D. This result shows the property (5.25). Then, by (5.24), the Fredholm operator with index671

zero Aλ;P : Xs → Ws is one-to-one, i.e., an isomorphism, for any s ∈ (0, 1). This property implies that672

the linear Poisson problem for the generalized Brinkman system with Robin boundary condition (5.10)673

has a unique solution (u, π) ∈ L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D). In addition, the boundedness of the operator674

Aλ;P : Xs →Ws and of the restriction operator from L2
s− 3

2 ;0
(D, Rn) to L2

s− 3
2 ;z

(D, Rn) (see, e.g., [36, 3.6])675

implies that there exists a constant C ≡ C(P, λ, s,D) > 0 such that676

‖u‖L2
s+ 1

2
(D,Rn) + ‖π‖L2

s− 1
2
(D) = ‖A−1

λ;P(f |D, g,h)‖Xs
677

≤ C
(
‖f‖L2

s− 3
2 ;0

(D,Rn) + ‖g‖L2
s− 1

2
(D) + ‖h‖L2

s−1(Γ,Rn)

)
. (5.28)678

679

Hence, the solution (u, π) satisfies the desired estimate (5.11), and the proof is complete. �680

Recalling that Xs is the space defined in (5.14), we now consider the operators681

L1;R : Xs→L2
s− 3

2
(D, Rn), L1;R(u, π) := (�−P)u−∇π,

L2;R : Xs→L2
s− 1

2
(D), L2;R(u, π) := div u,

L3;R : Xs→L2
s−1(Γ, Rn), L3;R(u, π) := ∂ν(u, π)L1;R(u,π)+Pu,L2;R(u,π) + λTr u.

(5.29)682

Then, we have the following result.683

Lemma 5.3. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let s ∈684

(0, 1), α, a ∈ (0,+∞), α ≤ a. Then, there exists a constant C ≡ C(a, α, s,D) > 0 such that685

‖(u, π)‖Xs
≤ C

(
‖L1;R(u, π)‖L2

s− 3
2
(D,Rn) + ‖L2;R(u, π)‖L2

s− 1
2
(D) + ‖L3;R(u, π)‖L2

s−1(Γ,Rn)

)
, (5.30)686

687

for all (u, π) ∈ Xs, for any P ∈ L∞(D, Rn ⊗ R
n), which satisfies the nonnegativity condition (2.12) and688

the inequality689

‖P‖L∞(D×Rn×R,Rn⊗Rn) ≤ a, (5.31)690

and for any symmetric matrix-valued function λ ∈ L∞(Γ, Rn ⊗ R
n), which satisfies the conditions691

〈λv,v〉Γ ≥ α‖v‖2L2(Γ,Rn), ∀ v ∈ L2(Γ, Rn), (5.32)692

‖λ‖L∞(Γ,Rn⊗Rn) ≤ a. (5.33)693
694

The proof of Lemma 5.3 is based on the well-posedness result in Theorem 5.2 and on arguments similar695

to those in the proof of Lemma 4.2, which we omit for the sake of brevity.696

5.3. Existence result for the Poisson problem for the semilinear Brinkman system with nonlinear Robin697

boundary condition698

Next, we consider a semilinear Poisson problem with nonlinear Robin boundary condition in L2-based699

Sobolev spaces on a bounded Lipschitz domain D ⊆ R
n (n ≥ 2). This problem requires to show the700

existence of a pair (u, π) ∈ L2
s+ 1

2
(D, Rn)× L2

s− 1
2
(D), such that:701

⎧
⎪⎨

⎪⎩

(
�−P

(
x,u(x), π(x)

))
u−∇π = f |D, f ∈ L2

s− 3
2 ;0

(D, Rn),
div u = g ∈ L2

s− 1
2
(D),

∂ν(u, π)f+P(x,u(x),π(x))u, g + λ (x,Tr u(x)) Tr u = h ∈ L2
s−1(Γ, Rn).

(5.34)702

Assume that P : D × R
n × R → R

n ⊗ R
n and λ : Γ × R

n → R
n ⊗ R

n are two essentially bounded703

matrix-valued Carathéodory functions, such that P satisfies the nonnegativity condition (4.36) and λ704
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satisfies the following condition: There exists a constant α > 0 and a subset NΓ of measure zero of Γ such705

that706

〈λ(x,v)b,b〉 ≥ α|b|2, ∀ b ∈ R
n, (x,v) ∈ (Γ \NΓ)× R

n. (5.35)707
708

Based on Lemma 5.3 and the Schauder Fixed Point Theorem (see Theorem 4.3), we obtain the following709

existence result for the semilinear Poisson problem (5.34).710

Theorem 5.4. Let D ⊆ R
n (n ≥ 2) be a bounded Lipschitz domain with connected boundary Γ. Let711

s ∈ ( 1
2 , 1), α, a ∈ (0,+∞), α ≤ a. Then, there exists a constant C ≡ C(a, α, s,D) > 0 with the follow-712

ing property: For any (f , g,h) ∈ L2
s− 3

2 ;0
(D, Rn) × Lp

s− 1
2
(D) × L2

s−1(Γ, Rn), for any essentially bounded713

Carathéodory function P from D×R
n ×R to R

n ⊗R
n, satisfying the nonnegativity condition (4.36) and714

the inequality ‖P‖L∞(D×Rn×R,Rn⊗Rn) ≤ a, and for any essentially bounded Carathéodory function λ from715

Γ × R
n to the set of symmetric elements of R

n ⊗ R
n, satisfying the condition (5.35) and the inequality716

‖λ‖L∞(Γ×Rn,Rn⊗Rn) ≤ a, there exists at least a solution (u, π) ∈ L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D) of the semilinear717

Poisson problem (5.34) such that718

‖(u, π)‖L2
s+ 1

2
(D,Rn)×L2

s− 1
2
(D) ≤ C

(
‖f‖L2

s− 3
2 ;0

(D,Rn) + ‖g‖L2
s− 1

2
(D) + ‖h‖L2

s−1(Γ,Rn)

)
. (5.36)719

Proof. First, for a fixed (u, π) ∈ Xs, where Xs = L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D), we consider the auxiliary720

linear Poisson problem with the Robin boundary condition721

⎧
⎪⎨

⎪⎩

(
�−P

(
x,u(x), π(x)

))
v −∇ζ = f |D, f ∈ L2

s− 3
2 ;0

(D, Rn),
div v = g ∈ L2

s− 1
2
(D),

∂ν(v, ζ)f+P(x,u(x),π(x))v, g + λ (x,Tr u(x)) Tr v = h ∈ L2
s−1(Γ, Rn)

(5.37)722

with the same given data f , g and h as in the semilinear Poisson problem (5.34). This problem has a723

unique solution (v, ζ) ∈ Xs, which satisfies the inequality (see (5.30))724

‖(v, ζ)‖Xs
≤ C

(
‖
(
�−P

(
x,u(x), π(x)

))
v −∇ζ‖L2

s− 3
2
(D,Rn) + ‖div v‖L2

s− 1
2
(D)725

+ ‖∂ν(v, ζ)f+P(x,u(x),π(x))v, g + λ (x,Tr u(x)) Tr v‖L2
s−1(Γ,Rn)

)
(5.38)726

727

with some constant C ≡ C(a, α, s,D) > 0. Let RDv := v|D denote the operator of restriction to D.728

In view of (5.37) and by the boundedness of the operator RD : L2
s− 3

2 ;0
(D, Rn) → L2

s− 3
2 ;z

(D, Rn), where729

L2
s− 3

2 ;z
(D, Rn) := {F = (F1, . . . , Fn) : Fi ∈ L2

s− 3
2 ;z

(D), i = 1, . . . , n} (see [36, (3.6),(3.12)]), the inequality730

(5.38) becomes731

‖(v, ζ)‖Xs
≤ A, (5.39)732

where733

A := C
(
‖f‖L2

s− 3
2 ;0

(D,Rn) + ‖g‖L2
s− 1

2
(D) + ‖h‖L2

s−1(Γ,Rn)

)
> 0. (5.40)734

Therefore, (v, ζ) ∈ BA, where BA := {z ∈ Xs : ‖z‖Xs
≤ A}. We now consider the nonlinear operator735

Tf ,g,h : BA → BA, BA � (u, π)
Tf,g,h�−→ (v, ζ), (5.41)736

which maps (u, π) ∈ BA to the unique solution (v, ζ) ∈ BA of the linear Poisson problem with the Robin737

boundary condition (5.37). This operator is well defined, as follows from the a priori estimate (5.30) in738

the linear case. We now show that Tf ,g,h : BA → BA is a continuous and compact operator.739

Let {(uj , πj)}j∈N be a bounded sequence in (BA, ‖ · ‖Xs
). Let t ∈ ( 1

2 , 1), t < s. Since the embedding740

Xs ↪→ Xt is compact, there exists a subsequence {(ujk
, πjk

)}k∈N of {(uj , πj)}j∈N that converges to an741

element (ũ, π̃) ∈ Xt, i.e.,742

‖(ujk
, πjk

)− (ũ, π̃)‖Xt
→ 0 as k →∞. (5.42)743
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In addition, since Xs is a reflexive Banach space, one can select a further subsequence of the bounded744

sequence {(ujk
, πjk

)}k∈N in Xs, still denoted by {(ujk
, πjk

)}k∈N, which converges weakly to an element745

(u0, π0) ∈ BA, i.e.,746

lim
k→∞

〈ϕ, (ujk
, πjk

)− (u0, π0)〉D = 0, ∀ ϕ ∈ (Xs)
′
. (5.43)747

In view of (5.43) and the property that the convergence in norm of Xt implies the weak convergence,748

one obtains the equality (u0, π0) = (ũ, π̃), which shows that the proof of compactness of the operator749

Tf ,g,h on (BA, ‖ · ‖Xs
) reduces to the continuity of Tf ,g,h from (BA, ‖ · ‖Xt

) to (BA, ‖ · ‖Xs
), whenever750

1
2 < t < s < 1.751

Before we show such a continuity, we prove an intermediate statement. Indeed, we prove that Tf ,g,h752

is continuous from (BA, ‖ · ‖Xt
) to (BA, ‖ · ‖Xt

).753

The continuity of the operator Tf ,g,h from
(
BA, ‖ · ‖Xt

)
to
(
BA, ‖ · ‖Xt

)
754

Let {(uj , πj)}j∈N be a sequence in BA which converges to (u, π) ∈ BA with respect to the norm of Xt,755

i.e.,756

‖(uj , πj)− (u, π)‖Xt
→ 0 as j →∞. (5.44)757

In particular, we note that for 1
2 < t < s < 1, the convergence in norm of Xt implies the L2-convergence.758

Then, one can extract a subsequence {(ujk
, πjk

)}k∈N of the sequence {(uj , πj)}j∈N, which converges a.e.759

to (u, π). Therefore,760

lim
k→∞

(ujk
, πjk

) = (u, π) a.e. in D. (5.45)761

In addition, in view of (5.41), {(T1;f ,g,h(uj , πj), T2;f ,g,h(uj , πj))}j∈N
⊆ Xs is a bounded sequence in762

Xs, where Tf ,g,h = (T1;f ,g,h, T2;f ,g,h). Then, by the compactness of the embedding Xs ↪→ Xt, possibly763

considering a subsequence, we can assume that {(T1;f ,g,h(ujk
, πjk

), T2;f ,g,h(ujk
, πjk

))}k∈N
converges to an764

element (ṽ, ξ̃) ∈ Xt. Thus,765

lim
k→∞

∥
∥ (T1;f ,g,h(ujk

, πjk
), T2;f ,g,h(ujk

, πjk
))− (ṽ, ξ̃)

∥
∥

Xt
= 0. (5.46)766

We now consider the semilinear Poisson problem767

⎧
⎪⎪⎨

⎪⎪⎩

(
�−P

(
x,ujk

(x), πjk
(x)
))
T1;f ,g,h(ujk

, πjk
)−∇T2;f ,g,h(ujk

, πjk
) = f |D,

div T1;f ,g,h(ujk
, πjk

) = g in D,
∂ν

(
T1;f ,g,h(ujk

, πjk
), T2;f ,g,h(ujk

, πjk
)
)
f+P(x,ujk

(x),πjk
(x))T1;f,g,h(ujk

,πjk
), g

+λ (x,Tr ujk
(x)) TrT1;f ,g,h(ujk

, πjk
) = h on Γ.

(5.47)768

Note that P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
) ∈ L2(D, Rn). Since P is a Carathéodory function, the inequality769

‖P‖L∞(D×Rn×R,Rn⊗Rn) ≤ a and (5.41) imply that the sequence {P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
)}k∈N is770

bounded in L2(D, Rn). Then, possibly selecting a subsequence, we obtain the limiting relation771

lim
k→∞

P
(
x,ujk

, πjk

)
T1;f ,g,h(ujk

, πjk
) = P

(
x,u, π

)
ṽ (5.48)772

in the weak-∗ topology of L2(D, Rn) (see the proof of the property (4.53)). By (5.44) we also have773

‖Tr ujk
− Tr u‖L2

t (Γ,Rn) → 0 as k →∞.774

Then, possibly selecting a subsequence, we can assume that limk→∞ Tr ujk
= Tr u a.e. on Γ. Since775

λ(·, ·) is a Carathéodory function, we deduce that limk→∞ λ (x,Tr ujk
(x)) = λ (x,Tr u(x)) a.a. x ∈ Γ.776

In addition, λ is essentially bounded, and then, by the Lebesgue Dominated Convergence Theorem,777

lim
k→∞

λ (x,Tr ujk
(x)) = λ (x,Tr u(x)) in L2(Γ).778

779
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By (5.46), we have limk→∞ TrT1;f ,g,h(ujk
, πjk

) = Tr ṽ in L2
t (Γ, Rn) ↪→ L2(Γ, Rn). Thus,780

lim
k→∞

λ(x,Tr ujk
(x))TrT1;f ,g,h(ujk

, πjk
) = λ(x,Tr u(x))Tr ṽ in L1(Γ, Rn) (5.49)781

782

and hence in the sense of distributions in Γ.783

Now let Z : L2
1−t(Γ, Rn) → L2

3
2 −t

(D, Rn) be a right inverse of the non-tangential trace operator784

Tr : L2
3
2 −t

(D, Rn)→ L2
1−t(Γ, Rn). Then for any k ∈ N we have (see (2.19))785

〈
∂ν

(
T1;f ,g,h(ujk

, πjk
), T2;f ,g,h(ujk

, πjk
)
)
f+P
(
x,ujk

(x),πjk
(x)
)
T1;f,g,h(ujk

,πjk
),g

,Φ
〉
Γ

786

= 2〈E(T1;f ,g,h(ujk
, πjk

)), E(ZΦ)〉D − 〈T2;f ,g,h(ujk
, πjk

),divZΦ)〉D + 〈∇g,ZΦ〉D787

+ 〈f ,ZΦ〉D +
∫

D

〈
P
(
x,ujk

(x), πjk
(x)
)
T1;f ,g,h(ujk

(x), πjk
(x)), (ZΦ)(x)

〉
dx, (5.50)788

789

for all Φ ∈ C∞
comp(Γ, Rn). Also, if Φ ∈ C∞

comp(Γ, Rn) then ZΦ ∈ L2
3
2 −t

(D, Rn) ↪→ L2(D, Rn),790

E(ZΦ) ∈ L2
1
2 −t

(D, Rn ⊗ R
n) and div(ZΦ) ∈ L2

1
2 −t

(D).791

Now, by (5.46), we have792

lim
k→∞

E(T1;f ,g,h(ujk
, πjk

)) = Eṽ in L2
t− 1

2
(D, Rn ⊗ R

n), lim
k→∞

T2;f ,g,h(ujk
, πjk

) = ξ̃ in L2
t− 1

2
(D),793

794

and, thus, the limiting relations (5.48), (5.49) and the equality (5.50) imply that795

lim
k→∞

(
∂ν

(
T1;f ,g,h(ujk

, πjk
), T2;f ,g,h(ujk

, πjk
)
)
f+P(x,ujk

(x),πjk
(x))T1;f,g,h(ujk

,πjk
), g

796

+ λ (x,Tr ujk
(x)) TrT1;f ,g,h(ujk

, πjk
)
)

= ∂ν(ṽ, ξ̃)f+P(x,u(x),π(x))ṽ,g + λ (x,Tr u(x)) Tr ṽ (5.51)797
798

in the sense of distributions in Γ. Also, by the limiting relation (5.46), we have799

lim
k→∞

(�T1;f ,g,h(ujk
, πjk

)−∇T2;f ,g,h(ujk
, πjk

)) = �ṽ −∇ξ̃, lim
k→∞

divT1;f ,g,h(ujk
, πjk

) = div ṽ (5.52)800
801

in the sense of distributions in D.802

By (5.47)–(5.52), we obtain that (ṽ, ξ̃) satisfies the linear Poisson problem with Robin boundary803

condition804 ⎧
⎪⎨

⎪⎩

(
�−P

(
x,u(x), π(x)

))
ṽ −∇ξ̃ = f |D in D,

div ṽ = g in D,

∂ν

(
ṽ, ξ̃
)
f+P(x,u(x),π(x))ṽ,g

+ λ (x,Tr u(x)) Tr ṽ = h on Γ
(5.53)805

in the sense of distributions.806

On the other hand, in view of (5.37) and (5.41), we have807

⎧
⎨

⎩

(
�−P

(
x,u(x), π(x)

))
T1;f ,g,h(u, π)−∇T2;f ,g,h(u, π) = f |D in D,

divT1;f ,g,h(u, π) = g in D,
∂ν

(
T1;f ,g,h(u, π), T2;f ,g,h(u, π)

)
f+P(x,u,π)T1;f,g,h(u,π),g

+λ (x,Tr u(x)) TrT1;f ,g,h(u, π)=h on Γ.
(5.54)808

Then, by (5.53) and (5.54), Theorem 5.2 implies that809

T1;f ,g,h(u, π) = ṽ, T2;f ,g,h(u, π) = ξ̃. (5.55)810

Consequently, for s ∈ (1
2 , 1) given, we have shown that if (uj , πj) → (u, π) in BA, with respect to the811

norm of Xt, then there exists a subsequence {(ujk
, πjk

)}k∈N of {(uj , πj)}j∈N such that812

Tf ,g,h(ujk
, πjk

)→ Tf ,g,h(u, π) in Xt. (5.56)813
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In fact, we can show that each subsequence of {(uj , πj)}j∈N contains a further subsequence such that814

its image by the operator Tf ,g,h converges to Tf ,g,h(u, π) with respect to the norm of Xt. Therefore, we815

obtain the limiting relation816

lim
j→∞

Tf ,g,h(uj , πj) = Tf ,g,h(u, π) in Xt. (5.57)817

The continuity of the operator Tf ,g,h from
(
BA, ‖ · ‖Xt

)
to
(
BA, ‖ · ‖Xs

)
818

Next, we show that if {(uj , πj)}j∈N is a sequence in BA which converges to (u, π) ∈ BA, with respect to819

the norm of Xt, then {Tf ,g,h(uj , πj)}j∈N
converges to Tf ,g,h(u, π) with respect to the norm of Xs.820

To do so, we first observe that the definition of the operator Tf ,g,h and the formula (5.17) imply821

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�T1;f ,g,h(uj , πj)−∇T2;f ,g,h(uj , πj) = f |D + P
(
x,uj(x), πj(x)

)
T1;f ,g,h(uj , πj),

divT1;f ,g,h(uj , πj) = g in D,
∂ν

(
T1;f ,g,h(uj , πj), T2;f ,g,h(uj , πj)

)
f+P(x,u(x),π(x))T1;f,g,h(u,π),g

+ TrT1;f ,g,h(uj , πj)
= −∂ν(0, 0)P(x,uj(x), πj(x))T1;f ,g,h(uj , πj)− P(x,u(x), π(x))T1;f ,g,h(u, π), 0

+TrT1;f ,g,h(uj , πj)− λ(x,Tr uj(x))TrT1;f ,g,h(uj , πj) + h on Γ.

(5.58)822

By using arguments similar to those in the proof of the limiting relation (4.64), we can prove that823

lim
j→∞

P
(
x,uj , πj

)
T1;f ,g,h(uj , πj)=P

(
x,u, π

)
T1;f ,g,h(u, π) in L2

s− 3
2
(D, Rn). (5.59)824

825

In addition, by the convergence of {(uj , πj)}j∈N to (u, π) in Xt, and by the definition (2.19) of the826

conormal derivative and by (5.59), we obtain the limiting relations827

lim
j→∞

TrT1;f ,g,h(uj , πj) = TrT1;f ,g,h(u, π) in L2
t (Γ, Rn) ↪→ L2

s−1(Γ, Rn),828

lim
j→∞

{∂ν(0, 0)P(x,uj(x), πj(x))T1;f ,g,h(uj , πj)− P(x,u(x), π(x))T1;f ,g,h(u, π), 0} = 0 in L2
s−1(Γ, Rn).829

(5.60)830

Then the Sobolev Embedding Theorem implies the limiting relations831

lim
j→∞

TrT1;f ,g,h(uj , πj) = TrT1;f ,g,h(u, π) in L
2(n−1)
n−1−2t (Γ, Rn), if n ≥ 3

lim
j→∞

TrT1;f ,g,h(uj , πj) = TrT1;f ,g,h(u, π) in L∞(Γ, Rn), if n = 2.
(5.61)832

On the other hand, by the convergence of {Tr uj}j∈N to Tr u in L2
t (Γ, Rn) ↪→ L2(Γ, Rn), there exists a833

subsequence {ujk
}k∈N of {uj}j∈N such that limk→∞ Tr ujk

= Tr u a.e. on Γ. Now, if n ≥ 3, we choose834

t∗ ∈ (2,+∞) such that (n−1)−2t
2(n−1) + 1

t∗ < 1
2 . Instead, if n = 2, we choose t∗ ∈ (2,+∞) arbitrarily. Since λ835

is essentially bounded, the Dominated Convergence Theorem yields the limiting relation836

lim
k→∞

λ(x,Tr ujk
(x)) = λ(x,Tr u(x)) in Lt∗

(Γ, Rn ⊗ R
n). (5.62)837

Then, by (5.61), (5.62) and the Hölder inequality, we deduce that838

lim
k→∞

λ(x,Tr ujk
(x))TrT1;f ,g,h(ujk

, πjk
) = λ(x,Tr u(x))TrT1;f ,g,h(u, π) in L2(Γ, Rn). (5.63)839

Moreover, we know that L2(Γ, Rn ⊗ R
n) ↪→ L2

s−1(Γ, Rn ⊗ R
n).840

By (5.59), (5.60) and (5.63), the right-hand side of (5.58) (with ujk
instead of uj) converges to841

(
f |D + P(x,u(x), π(x))T1;f ,g,h(u, π), g,TrT1;f ,g,h(u, π)− λ(x,Tr u(x))TrT1;f ,g,h(u, π) + h

)
842
843
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in L2
s− 3

2
(D, Rn) × L2

s− 1
2
(D) × L2

s−1(Γ, Rn). Also, by Theorem 5.1, the linear Poisson problem for the844

Stokes system with Robin boundary condition845

⎧
⎨

⎩

�v −∇q = f |D + P(x,u(x), π(x))T1;f ,g,h(u, π),
div v = g in D,
∂ν(v, q)f+P(x,u,π)T1;f,g,h(u,π),g + Tr v = R0,

(5.64)846

where847

R0 := TrT1;f ,g,h(u, π)− λ(x,Tr u(x))TrT1;f ,g,h(u, π) + h ∈ L2
s−1(Γ, Rn),848

is well-posed in the space Xs. Therefore, the following limiting relation holds849

lim
k→∞

(T1;f ,g,h(ujk
, πjk

), T2;f ,g,h(ujk
, πjk

)) = (T1;f ,g,h(u, π), T2;f ,g,h(u, π)) in Xs, (5.65)850

i.e., limk→∞ Tf ,g,h(ujk
, πjk

) = Tf ,g,h(u, π) in Xs. By the same method, we can show that each subsequence851

of {(uj , πj)}j∈N
has a further subsequence such that its image by Tf ,g,h converges to Tf ,g,h(u, π) in852

Xs. Hence, limj→∞ Tf ,g,h(uj , πj) = Tf ,g,h(u, π) in Xs. Consequently, the operator Tf ,g,h : BA → BA is853

continuous and compact, as desired.854

Finally, the Schauder Fixed Point Theorem (see Theorem 4.3) shows that the nonlinear operator855

Tf ,g,h : BA → BA has a fixed point (u, π) in the closed, bounded and convex subset BA of the Banach856

space Xs. Such a fixed point is a solution of the semilinear Poisson problem (5.34) in the space Xs, which857

satisfies the inequality ‖(u, π)‖Xs
≤ A, where A is the constant given by (5.40). �858

6. The semilinear Darcy–Forchheimer–Brinkman model859

The semilinear Poisson problems studied in this paper have been suggested by the semilinear system860

�u− (αu + k|u|u)−∇π = 0, div u = 0, (6.1)861

where α, k > 0 are given constants. For n = 2, 3, the first equation in (6.1) is a generalization of the862

Darcy and Brinkman equations for viscous incompressible flows in saturated porous media, called the863

semilinear Darcy–Forchheimer–Brinkman equation (for more details see, e.g., [3,41]).864

6.1. The Dirichlet problem for the semilinear Darcy–Forchheimer–Brinkman system865

Let s ∈ ( 1
2 , 1). We consider the space866

L2
s;ν(Γ, Rn) :=

⎧
⎨

⎩
F ∈ L2

s(Γ, Rn) :
∫

Γ

〈ν,F〉dσ = 0

⎫
⎬

⎭
.867

Note that for n ≤ 4, the map which takes (x,v, ξ) to αv + k|v|v is not essentially bounded on D ×868

R
n × R. Hence, the result of Theorem 4.4 cannot be applied to the Dirichlet problem for the semilinear869

Darcy–Forchheimer–Brinkman system (6.1). However, by exploiting an idea similar to that of Russo870

and Tartaglione [44, Theorem 5.1], which gives the existence of a solution of the Robin problem for the871

Navier–Stokes system on a Lipschitz (or C1) domain in R
3 (for related results, see [12, Theorems 7.1 and872

7.3] and [4, Theorems 25 and 26, Lemma 29]), we obtain the following result.873

Theorem 6.1. Let n ≤ 4. Let D ⊆ R
n be a bounded Lipschitz domain with connected boundary Γ. Let874

s ∈ ( 1
2 , 1). Let α, k > 0 be given constants. Then, there exist two constants α̃0, γ > 0, which depend875
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only on D, α, k and s, such that the Dirichlet problem for the semilinear Darcy–Forchheimer–Brinkman876

system877

⎧
⎨

⎩

�u− αu− k|u|u−∇π = 0 in D,
div u = 0 in D,
Tr u = h ∈ L2

s;ν(Γ, Rn),
(6.2)878

with ‖h‖L2
s;ν(Γ,Rn) ≤ α̃0, has a unique solution (u, π) ∈ L2

s+ 1
2
(D, Rn) × L2

s− 1
2
(D), which satisfies the879

inequality ‖u‖L2
s+ 1

2
(D,Rn) ≤ γ.880

Proof. First, note that for n ≤ 4 and s ∈ (1
2 , 1), the Sobolev Embedding Theorem yields the continuous881

embeddings882

L2
s+ 1

2
(D, Rn) ↪→ L2

1(D, Rn) ↪→ Lp∗
(D, Rn) ↪→ L4(D, Rn), (6.3)883

884

where the first of them is compact. In addition, p∗ = 2n
n−2 ≥ 4 for 2 < n ≤ 4, while, for n = 2, we choose885

p∗ ≥ 4 arbitrarily. Indeed, if n = 2, the embedding L2
1(D, Rn) ↪→ Lq(D, Rn) is continuous for any q ≥ 1.886

Therefore, there exists a constant c∗ = c∗(s,D) > 0 such that887

‖ |v|v ‖L2(D,Rn) = ‖v‖2L4(D,Rn) ≤ c∗‖v‖2L2
s+ 1

2
(D,Rn), ∀ v ∈ L2

s+ 1
2
(D, Rn). (6.4)888

889

Hence, |v|v ∈ L2(D, Rn) ↪→ L2
s− 3

2
(D, Rn) for any v ∈ L2

s+ 1
2
(D, Rn).890

Let (Gα,Πα) be the fundamental solution of the Brinkman system in R
n, i.e.,891

(�x − αI)Gα(x,y)−∇xΠα(x,y) = −δy(x)I, divxGα(x,y) = 0, (6.5)892

where I is the identity matrix and δy is the Dirac distribution with mass at y. The components of Gα893

and those of Πα are given in [50, Chapter 2] and [25, Chapter 2]. Now, for a fixed u ∈ L2
s+ 1

2
(D, Rn), such894

that div u = 0 in D, consider the potentials on D with the density k|u|u, given by895

Nα(u)(x) = −〈Gα(x, ·), k|u|u〉D , Qα(u)(x) = −〈Πα(x, ·), k|u|u〉D . (6.6)896

Let us mention the following relation897

Nα = Nα;DID : L2
s+ 1

2
(D, Rn)→ L2

2(D, Rn), (6.7)898

where899

Nα;D : L2(D, Rn)→ L2
2(D, Rn), (Nα;Df)(x) = −〈Gα(x, ·), f〉D , x ∈ D (6.8)900

is the Newtonian potential operator in D, and901

ID : L2
s+ 1

2
(D, Rn)→ L2(D, Rn), ID(v) := k|v|v.902

Note that for s ∈ ( 1
2 , 1) and n ≤ 4, the embedding L2

s+ 1
2
(D) ↪→ L4(D) is compact. Then, one can prove903

that the nonlinear operator Nα : L2
s+ 1

2
(D, Rn) → L2

s+ 1
2
(D, Rn) is continuous and compact (see also [43,904

p. 483] and the argument below (6.17)). Also, for a fixed u ∈ L2
s+ 1

2
(D, Rn), such that div u = 0 in D, we905

have906
⎧
⎨

⎩

(�− αI)Nα(u)−∇Qα(u) = k|u|u ∈ L2
s− 3

2
(D, Rn),

div Nα(u) = 0 in D,
Tr (Nα(u)) ∈ L2

s;ν(D, Rn).
(6.9)907
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Let (Mα(u),Pα(u)) ∈ L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D) be the unique solution (up to a constant pressure) of the908

Dirichlet problem7
909 ⎧

⎨

⎩

(�− αI)Mα(u)−Pα(u) = 0 in D,
div Mα(u) = 0 in D,
Tr (Mα(u)) = −Tr(Nα(u)) ∈ L2

s;ν(D, Rn).
(6.10)910

In addition, there exist two constants C ′
i ≡ C ′

i(s, α,D) > 0, i = 0, 1, such that

‖Mα(u)‖L2
s+ 1

2
(D,Rn) ≤ C ′

0‖Tr(Nα(u))‖L2
s;ν(Γ,Rn) ≤ C ′

1‖Nα(u)‖L2
s+ 1

2
(D,Rn). (6.11)

Moreover, there exists a constant C2 ≡ C2(s, α,D) > 0 such that the Dirichlet problem911

⎧
⎨

⎩

(�− αI)u0 −∇π0 = 0 in D,
div u0 = 0 in D,
Tr u0 = h ∈ L2

s;ν(D, Rn).
(6.12)912

has a unique solution (u0, π0) ∈ L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D) (up to a constant pressure), which satisfies the913

inequality914

‖u0‖L2
s+ 1

2
(D,Rn) ≤ C2‖h‖L2

s;ν(Γ,Rn). (6.13)915

916

We now consider the nonlinear operator917

F : L2
s+ 1

2 ;∗(D, Rn)→ L2
s+ 1

2 ;∗(D, Rn), F(v) := u0 + Mα(v) + Nα(v), (6.14)918

and, for u ∈ L2
s+ 1

2 ;∗(D, Rn) fixed, we define the pressure term π = π(u),919

π := π0 + Pα(u) + Qα(u) ∈ L2
s− 1

2
(D), (6.15)920

where921

L2
s+ 1

2 ;∗(D, Rn) :=
{
v ∈ L2

s+ 1
2
(D, Rn) : div v = 0 in D

}
.922

For a fixed u ∈ L2
s+ 1

2 ;∗(D, Rn), the pair (F(u), π) ∈ L2
s+ 1

2
(D, Rn) × L2

s− 1
2
(D) is, in view of (6.9), (6.10)923

and (6.12), a solution of the Dirichlet problem924

⎧
⎨

⎩

(�− αI)F(u)− k|u|u−∇π = 0 in D,
div F(u) = 0 in D,
Tr (F(u)) = h ∈ L2

s;ν(D, Rn).
(6.16)925

Consequently, a fixed point u ∈ L2
s+ 1

2 ;∗(D, Rn) of the operator F together with the associated pressure π926

given by (6.15) determine a solution of the Dirichlet problem for the semilinear Darcy–Forchheimer–927

Brinkman system (6.2). We now turn to show that F maps a suitable closed ball Bγ of the space928

L2
s+ 1

2 ;∗(D, Rn) to Bγ .929

The decomposition (6.7) of the nonlinear operator Nα : L2
s+ 1

2
(D, Rn)→ L2

2(D, Rn), the boundedness930

of the linear operator Nα;D : L2(D, Rn) → L2
2(D, Rn) given by (6.8) (see, e.g., [14, Proposition 2.1]931

in the case of the Laplace equation, while for the Brinkman system, the boundedness of the Newtonian932

operator Nα;D can be obtained by using properties of Calderón-Zygmund operators, namely [47, Theorem933

7 The well-posedness result of the Dirichlet problem for the Brinkman system in a Lipschitz domain with boundary
data in Sobolev spaces follows from Theorem 4.1, by considering P = αI, f = 0 and g = 0 in (4.1) (see also [40, Theorem
10.6.2] in the case of the Stokes system).

Journal: 33 Article No.: 439 TYPESET DISK LE CP Disp.:2014/7/26 Pages: 32



R
ev

is
ed

 P
ro

of

Poisson problems for semilinear Brinkman systems

2, Chapter II]), the continuity of the embedding L2
2(D, Rn) ↪→ L2

s+ 1
2
(D, Rn) and the inequality (6.4) yield934

the inequalities935

‖Nα(v)‖L2
s+ 1

2
(D,Rn) = ‖Nα;D(k|v|v)‖L2

s+ 1
2
(D,Rn) ≤ c0;∗‖Nα;D(k|v|v)‖L2

2(D,Rn)936

≤ c1;∗‖ |v|v ‖L2(D,Rn) ≤ c2;∗‖v‖2L2
s+ 1

2
(D,Rn), (6.17)937

938

with some constants c0;∗ ≡ c0;∗(s,D) > 0 and cj;∗ ≡ cj;∗(s, k, α,D) > 0, j = 1, 2. In addition, the939

nonlinear operators Nα : L2
s+ 1

2 ;∗(D, Rn) → L2
s+ 1

2 ;∗(D, Rn) and Mα : L2
s+ 1

2 ;∗(D, Rn) → L2
s+ 1

2 ;∗(D, Rn)940

are compact and continuous. To prove the continuity of Nα : L2
s+ 1

2 ;∗(D, Rn) → L2
s+ 1

2 ;∗(D, Rn), we first941

show the continuity of Nα from L2
s+ 1

2 ;∗(D, Rn) to L2
2;∗(D, Rn) :=

{
v ∈ L2

2(D, Rn) : div v = 0 in D
}
.942

Let
{
vj

}
j∈N

be a convergent sequence in L2
s+ 1

2 ;∗(D, Rn) to an element v ∈ L2
s+ 1

2 ;∗(D, Rn). Then, the943

continuity of the embedding L2
s+ 1

2 ;∗(D, Rn) ↪→ L4(D, R3), the integral form (6.8) of the operator Nα and944

the Hölder inequality show that there exists some constant c3;∗ > 0, such that945

‖Nα(vj)−Nα(v)‖L2
2(D,Rn) ≤ c3;∗‖vj−v‖L2

s+ 1
2
(D,Rn)

(
‖vj‖L2

s+ 1
2
(D,Rn)+‖v‖L2

s+ 1
2
(D,Rn)

)
→ 0 as j →∞.946

947

Thus, Nα : L2
s+ 1

2 ;∗(D, Rn) → L2
2;∗(D, Rn) is continuous. Then, the compactness of the embedding948

L2
2:∗(D, Rn) ↪→ L2

s+ 1
2 ;∗(D, Rn) yields that the nonlinear operator Nα : L2

s+ 1
2 ;∗(D, Rn) → L2

s+ 1
2 ;∗(D, Rn)949

is continuous and compact. In addition, the nonlinear operator Mα : L2
s+ 1

2 ;∗(D, Rn) → L2
s+ 1

2 ;∗(D, Rn)950

is also continuous and compact, as (6.10) and the relation (Mα(v), (Pα(v)) = B−1
α (0, 0,−Tr(Nα(v)))�

951

show, where Bα is the isomorphism given by (4.4) with P = αI. Consequently, the nonlinear operator952

F : L2
s+ 1

2 ;∗(D, Rn)→ L2
s+ 1

2 ;∗(D, Rn) given by (6.14) is continuous and compact as well.953

Now, by (6.11), (6.13), (6.14) and (6.17), there exist some constants C ≡ C(s, α,D) > 0 and C∗ ≡954

C∗(k, s, α,D) > 0 such that955

‖F(v)‖L2
s+ 1

2
(D,Rn) ≤ C‖h‖L2

s;ν(Γ,Rn) + C∗‖v‖2L2
s+ 1

2
(D,Rn), ∀ v ∈ L2

s+ 1
2 ;∗(D, Rn). (6.18)956

957

By using an argument similar to that in the proof of [44, Theorem 5.1] (see also [43, p. 506], [45]), we958

assume that the norm of the given datum h ∈ L2
s;ν(Γ, Rn) is small, such that959

‖h‖L2
s;ν(Γ,Rn) ≤ α̃0, α̃0 :=

1
CC∗(2 + β)2

, (6.19)960

961

with some constant β > 0. Also, consider the closed ball962

Bγ :=
{
v ∈ L2

s+ 1
2
(D, Rn) : div v = 0 in D, ‖v‖L2

s+ 1
2
(D,Rn) ≤ γ

}
, γ :=

1
C∗(2 + β)

> 0. (6.20)963

964

By (6.18) and (6.19), one has ‖F(u)‖L2
s+ 1

2
(D,Rn) ≤ γ for any u ∈ Bγ , and hence F maps the closed ball Bγ965

to Bγ . In addition, we have shown that F : L2
s+ 1

2 ;∗(D, Rn)→ L2
s+ 1

2 ;∗(D, Rn) is continuous and compact.966

Hence, F : Bγ → Bγ is also continuous and compact. Then, by the Schauder Fixed Point Theorem, F has967

a fixed point u ∈ Bγ , and the pair (u, π)∈ Bγ × L2
s− 1

2
(D), with π given by (6.15), is a solution of the968

Dirichlet problem (6.2). We now turn to show that for a given boundary datum h such that ‖h‖L2
s;ν(Γ,Rn)969

is sufficiently small (i.e., for a special choice of the constant β), the solution of the Dirichlet problem970

(6.2) is unique. To do so, we note that the inequality (6.11) and the argument before (6.17) imply that971

there exist two constants C0 ≡ C0(k, s, α,D) > 0 and C∗;s+ 1
2
≡ C∗;s+ 1

2
(s,D) > 0 such that the map972
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F : L2
s+ 1

2 ;∗(D, Rn)→ L2
s+ 1

2 ;∗(D, Rn) given by (6.14) satisfies the inequalities973

‖F(v)− F(w)‖L2
s+ 1

2
(D,Rn) ≤ ‖Nα(v)−Nα(w)‖L2

s+ 1
2
(D,Rn) + ‖Mα(v)−Mα(w)‖L2

s+ 1
2
(D,Rn)974

≤ C0‖v|v| − |w|w‖L2(D,Rn)975

≤ C0C
2
∗;s+ 1

2
‖v −w‖L2

s+ 1
2
(D,Rn)

(
‖v‖L

s+ 1
2
(D,Rn) + ‖w‖L

s+ 1
2
(D,Rn)

)
, (6.21)976

977

for all v,w ∈ L2
s+ 1

2 ;∗(D, Rn). Consequently,978

‖F(v)− F(w)‖L2
s+ 1

2
(D,Rn) ≤ 2γC0C

2
∗;s+ 1

2
‖v −w‖L2

s+ 1
2
(D,Rn), ∀ v,w ∈ Bγ , (6.22)979

980

where γ is defined in (6.20). If we choose the constant β > 0 in the expression of γ such that981

(2 + β)−1 < C∗
(
2C0C

2
∗;s+ 1

2

)−1
, (6.23)982

983

then 2γC0C
2
∗;s+ 1

2
< 1. Therefore, for n ≤ 4, s ∈ ( 1

2 , 1) and for a constant β > 0 as in (6.23), the map984

F : Bγ → Bγ is a contraction in Bγ . Then, the Banach-Caccioppoli Contraction Theorem implies that F985

has a unique fixed point u ∈ Bγ . In addition, the pair (u, π) ∈ Bγ × L2
s− 1

2
(D), with π given by (6.15), is986

a solution of the semilinear Dirichlet problem (6.2). We now turn to show that such a solution is unique987

(up to a constant pressure) in Bγ×L2
s− 1

2
(D). To do so, we assume that (v, q) ∈ Bγ×L2

s− 1
2
(D) is another988

solution of the problem (6.2), and let (F(v), p), where F(v) and p = π(v) are defined as in (6.14) and989

(6.15), respectively. Then, F(v) ∈ Bγ , and we obtain the problem990

⎧
⎨

⎩

(�− αI)(F(v)− v)−∇(p− q) = 0 in D,
div(F(v)− v) = 0 in D,
Tr(F(v)− v) = 0 on Γ.

(6.24)991

By Theorem 4.1, (6.24) has the unique solution (F(v)−v, p−q) = (0, 0) (up to a constant pressure) in992

L2
s+ 1

2
(D, Rn)×L2

s− 1
2
(D), i.e., F(v)=v. Consequently, v=u, as F has a unique fixed point in Bγ . Thus,993

the proof is complete. �994

Remark 6.2. If n ∈ {2, 3}, the existence statement of Theorem 6.1 holds also for any s ∈
[
1
2 , 1
)
. The995

proof of such a result is based on the Sobolev Embedding Theorem and on arguments similar to those996

for Theorem 6.1, which we omit for sake of brevity.997
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