

END | sate |
| :---: |
| sillep | $4-82$ DTIC

POISSON RANDOM VARIATE GENERATION
 Bruce Schmeiser
 Voratas Kachitvichyanukul
 School of Industrial Engineering
 Purdue University
 West Lafayette, Indiana 47907
 Research Memorandum 81-4

August 1981
(Revised December 1981)

This research was supported by Office of Naval Research Contract N00014-79-C-0832.

> DISTRIbUTION STATEMFNI A
> Approved tc: Fa - relocose;

$$
\begin{aligned}
& \text { Cairo } \\
& 1 v \\
& 005
\end{aligned}
$$

ABSTRACT

Abstract

Approximate algorithms have long been the only available methods for generating Poisson random variates when the mean is Large. A new algorithm is developed, which is exact, has execution time which is insensitive to the value of the mean, and is valid whenever the mean is greater than ten. This algorithm is compared to the three other. algorithms which have been developed recently for generating Poisson variates when the mean is large. Criteria used are set-up time, marginal execution time, memory requirements, and lines of code. New simple tight bounds on Poisson probabilities contribute to the speed of the algorithm, but are useful in a more general context. In addition, a survey of Poisson variate generation algorithms is given.

1. INTRODUCTION

We consider algorithms for generating random variates from the Poisson mass function

$$
\begin{aligned}
f_{p}(x) & =e^{-\mu} \mu^{x} / x! & & x=0,1,2, \ldots \\
& =0 & & \text { el sewhere }
\end{aligned}
$$

where μ denotes the expected value of the random variable X. In Section 2 existing algorithms for poisson variate generation are surveyed. A new algorithm, PTPE, is developed in Section 3. Computational results are shown in Section 4. The validity of PTPE is discussed in the Appendix.

2. LITERATURE SURVEY

Each of the four fundamental approaches to variate generation: inverse transformation, special rties, composition, and acceptance/rejection, (Schmeiser [18]) has bi=n used as the basis for existing algorithms, which we briefly survey here. $U(0,1)$ is used to denote the uniform distribution over the unit interval.

Probably the most basic approach for generating random variates of any kind is the inverse transiurmation.

Algorithm PINV

1. Generate $u \backsim u(0,1)$, set $x+0, p+e^{-\mu}$.
2. If $u \leq \rho$, then return x.
3. Set $x+x+1, u+u-p, p+p \mu / x$, and go to 2 .

When more than one variate is to be generated for a fixed value of μ, PINV may be modified to save the initial value of p in step 1 and the cumulative probabilities implicit in Step 3. Either way, the execution time per variate increases proportionally with μ. Fishman [11] developed algorithm PIF which executes in time proportional to $\mu^{1 / 2}$ by performing the inverse iransformation beginning at the mode and searching either increasingly or decreasingly for values of x. To begin the search at the mode, both the cumulative probability $p\{x \leq \mu\}$ and probability $p\{x=\mu\}$ are stored. Fishman stored these probabilities for $\mu=1,2, \ldots, 100$ to six decimal places, but the size and accuracy of the table could easily be modified. The cumulative probabilities are calculated recursively as in PINV. Snow [20] suggested explicitly storing the cumulative probabilities and using binary search to determine x. Chen and Asau [7] proposed an index table approach (for a.y discrete distribution) which searches the cumulative probabilities quickly by beginning near the appropriate value, and Atkinson [5] included an algorithm based on index tables in his computational results.

Special properties have been the basis for several Poisson algorithms. The best known and simplest is based on the exponential inter-event times of the homogeneous Poisson point process.

Algorithm PMUL

1. Set $x+0, s+1, p+e^{-\mu}$.
2. Generate $u \backsim U(0,1)$, and set $s+s u$.
3. If $s \leq p$, then return x.
4. Set $x+x+1$, and go to 2 .

As with PINV the execution time increases proportionally with μ and storing the initial value of p for future use is reasonable when the value of μ does not change each time a variate is generated. Note that PINV is faster than PMUL for all values of μ whenever the generation of a $U(0,1)$ variate requires more time than the total time required for a division, subtraction and a storage move. The authors have seen no implementation where PMUL was faster than PINV.

In addition to the inverse transformation methods, composition can be used as the basis for Poisson algorithms. Composition, or probability mixing, is used in variate generation by returning a variate from $f_{i}(x)$ with probability p_{i} when $f(x)=\sum_{i=1} p_{i} f_{i}(x)$, where n may be finite or infinite and each $f_{i}(x)$ is either a discrete probability mass function or a density function. Let I be a Poisson random variable with mean $\lambda, \lambda \geq \mu$. Then a binomial random variable, arising from I trials, each having probability of success μ / λ, has a Poisson distribution with mean μ. The proof is direct by noting

$$
f_{p}(x)=\sum_{i=x}^{\infty}\left[e^{-\lambda} \lambda^{i} / i!\right]\left[\left(\frac{i}{x}\right)(\mu / \lambda)^{x}((\lambda-\mu) / \lambda)^{i-x}\right] \quad x=0,1,2, \ldots
$$

The advantage to this composition approach is that $e^{-\mu}$ does not need to be calculated during setup. Usually $\lambda=1$ (Ahrens and Dieter [2] and fishman [11]) with the resulting algorithm being used to supply x from the fractional portion of μ when μ is not integer. A reasonable implementation for $\mu \leq 1$ "thins" a Poisson variate with unit mean. Using PINV to generate the variate with a mean of one yields

Algorithm PTH ($\mu \leq 1$)

1. Generate $u \backsim u(0,1)$, set $x+0, k+0, p+.367879441171$.
2. If $u \leq p$, then return x.
3. Set $k+k+1, u+u-p, p+p / k$. Generate $v v u(0,1)$. If $v \leq \mu$, then set $x+x+1$. Go to 2 .

Fishman [11] gives the algorithm in a form assuming the cumulative probabilities for $\mu=1$ are tabled. A similar algorithm can be created by incrementing x in Step 4 of PMUL with probability μ and initializing $p+.367879441171=e^{-1}$ in Step 1. The idea of thinning is related to the result by Bolshev [6] discussed later in this section. Lewis and Shedler [14] have developed an algorithm for nonhomogeneous poisson point processes which is also related.

Ahrens and Dieter [2] proposed algorithm PG which uses relationships between the Poisson, gamma and binomial distributions to generate Poisson variates in time increasing with $\ell n(\mu)$. In their computational results, the execution time is greater than for other algorithms unless the mean is quite large. However, newer algorithms
for gamma generation (see, e.g., Cheng [8], Schmeiser and Lal [19]) and binomial generation (see, e.g.. Devroye and Naderisamani [10]) make this algorithm more competitive.

Ahrens and Dieter [2] al so developed a third algorithm based on composition. In the Ahrens and Dieter algorithm PT, a triangular density is used to return the variate most of the time. The other parts of the distribution are more time consuming but occur infrequently. The execution time increases with $\mu^{1 / 2}$.

The acceptance/rejection algorithm is the basis for three recent Poisson generation algorithms, all of which have execution times which do not increase (and in fact decrease slightly) as $\mu+\infty$. The acceptance/rejection algorithm centers on a function $t(x)$ which majorizes $f(x)$, the density function from which variates are to be generated. The density function $r(x)=t(x) / \int_{-\infty}^{\infty} t(y) d y$ is proportional to $t(x)$. The acceptance/rejection algorithm is

1. Generate $x \sim r(x)$.
2. Generate $v \backsim U(0,1)$.
3. If $v \leq f(x) / t(x)$, then return with x as the generated variate. Otherwise, go to Step 1, thereby rejecting x.

The selection of any function $t(x)$ satisfying $t(x) \geq f(x)$ for all $x \in(-\infty, \infty)$ yields a valid algorithm. Whether the algorithm is good depends upon the speed of performing step 1, the difficulty in evaluating the ratio in Step 3, and the expected number of iterations
required to generate one variate. Atkinson [5] proposes algorithm PA which uses a logistic majorizing function and Devroye [9] proposes algorithm IP which uses a normal majorizing function for the body of the distribution and exponential distribution for the right tail. Algorithm PA uses tabled values for x ! for $x=0,1, \ldots, 200$. Algorithm IP uses preliminary comparisons to avoid calculating x ! so often that when evaluation of x ! is required, it is performed explicitly as $x=x(x-1) \ldots(3)(2)$. Ahrens and Dieter [3] develop an algorithm based on a double exponential majorizing function.

Kronmal and Peterson [13] describe the "acceptance/complement" method, which is a composition approach which requires one region to be generated using acceptance/rejection. Set-up time can be reduced by forcing the probability of rejection to be equal to the probability of generating a variate from the second composition region. Ahrens and Dieter [4] develop an acceptance/complement algorithm, KPOISS, based on the normal distribution, that dominates their earlier algorithm in [3].

Four approaches which provide variates which are approximately Poisson have been proposed. Atkinson [5] includes the approach developed in Marsaglia [15] and Norman and Cannon [16] which is based on composition and tabling many values. It inherently requires $P\{X=x\}$ to be truncated, although the amount of truncation may be limited by increasing the table size. This algorithm could be considered when memory is not a problem, a small error is acceptable, and many Poisson variates are to be generated for a fixed value of μ.

The second approximate approach is to use a normal approximation to the distribution. Pak [17] discusses the normal approximation to the
distribution of $x,(x+.375)^{1 / 2}$, and $(x-1 / 24)^{1 / 3}$, where x is the Poisson random variable.

The third approximate approach is to use Walker's [22] alias method. The method requires truncation of the right tail of the distribution, memory requirements increase linearly with the mean, and set-up time is substantial for large values of the mean. An alias algorithm was the fastest method for generating poisson variates according to Atkinson [5]. This approach could be made exact by using a composition framework to obtain the tail values.

The fourth approximate procedure is based on an exact result by Bolshev [6]: If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a multinomial random vector with parameters r and $p_{i}=1 / n$ for $i=1,2, \ldots, n$ and r is a Poisson random variable with mean n_{μ}, then $X_{1}, X_{2}, \ldots, X_{n}$ are independent Poisson random variables each with mean μ. Tadikamalla [21] suggested using the normal distribution to generate γ, noting that the error can be made arbitrarily small by selecting n large. Despite the constant execution time of generating γ from the normal distribution, the algorithm's execution time as implemented by Tadikamalla increases linearly with μ. However, the existence of a multinomial algorithm with execution time n robust to $r=\sum_{i=1} x_{i}$ would make the use of Bolshev's result very appealing. Note that Bolshev's result can be used to create an exact algorithm by generating γ by algorithm PA, IP, KPOISS, or PTPE.
3. ALGORITHM PTPE

The Poisson random variate generation algorithm PTPE is developed in this section. Generation of variates is via acceptance/rejection,
based on

$$
\begin{align*}
f(x) & =\mu^{(y-M)} M!/ y! & & -0.5<x<\infty \tag{1}\\
& =0 & & \text { el sewhere, }
\end{align*}
$$

where $M=\langle\mu\rangle, y=\langle x+.5\rangle$, and $\langle s\rangle$ denotes the integer portion of s. The function $f(x)$ is constructed by rescaling the Poisson probability function $f_{p}(y)$ by the value of the function at the mode M. This specific scaling has three advantages:

1. $f(M)=1$ for all μ, thereby reducing set-up time.
2. Machine accuracy evaluation of $f(y)$ requires fewer terms of Stirling's approximation than does $f_{p}(y)$, because the errors in M ! and Y ! tend to cancel.
3. $f(x)$ is numerically stable.

Although details wili remain, specification of the majorizing function $t(x)$ and minorizing function $b(x)$ defines the basic structure of the algorithm as shown in Figure A. The majorizing function is

$$
t(x)=\begin{array}{lr}
k_{L} \exp \left[-\lambda_{L}\left(x_{L}-x-.5\right)\right] & -\infty \leq x \leq x_{L}-.5 \\
(1+c)-|M-x+.5| / p_{1} & x_{L}-.5<x \leq x_{R}-.5 \tag{2}\\
c \exp \left[-\lambda_{R}\left(x+.5-x_{R}\right)\right] & x>x_{R}-.5
\end{array}
$$

and the minorizing function is

$$
b(x)=\begin{array}{ll}
1-|M-x+.5| / p_{1} & x_{L}-.5 \leq x \leq x_{R}-.5 \tag{3}\\
0 & \text { el sewhere. }
\end{array}
$$

The constants $k_{L}, \lambda_{L}, \lambda_{R}, c, p_{1}, x_{L}$, and x_{R} are defined as functions of μ in the set-up step of the algorithm. Proposition 1 in the Appendix
addresses the validity of $t(x)$ as a majorizing function of $f(x)$.

Figure A about here

Composition based on four regions (subdensities) is used to generate variates from the density function proportional to $t(x)$. Region 1, which is the area under $b(x)$, is triangular with zero probability of rejection. Region 2 contains the two parallelograms which can be generated as uniform variates. Regions 3 and 4 are negative exponential. ρ_{1}, p_{2}, p_{3}, and p_{4} in the set-up step are the cumulative values needed to randomly select the region to be used in each iteration. The probability of selecting each region is proportional to its area.

Algorithm PTPE $(\underline{\mu} \geq 10)$

Step 0. (Set-up constants as function of μ. Execute whenever the value of μ changes.)
$M=\langle\mu\rangle, \quad p_{1}=\langle 2.195 \sqrt{M}-2.2\rangle+0.5$,
$c=0.133+8.56 /(6.83+\mu)$.
$x_{M}=M+0.5, \quad x_{L}=x_{m}-p_{1}, x_{R}=x_{m}+p_{1}$,
$a=\left(\mu-x_{L}\right) / \mu, \quad \lambda_{L}=a(1+a / 2)$,
$a=\left(x_{R}-\mu\right) / x_{R^{\prime}} \quad \lambda_{R}=a(1+a / 2)$,
$p_{2}=p_{1}(1+2 c)$,
$p_{3}=p_{2}+(0.109+8.25 /(10.86+\mu)) / \lambda_{L}$
$p_{4}=p_{3}+c / \lambda_{R}$.

Step 1. (Begin logic to generate next variate. Generate u for selecting
the region. If region 1 is selected, generate triangularly distributed variate and return.)

Generate $u \backsim U\left(0, P_{4}\right), v \backsim U(0,1)$.
If $u>p_{1}$, go to 2. Otherwise return $y=\left\langle x_{M}-p_{1} v+u\right\rangle$.

Step 2. (Region 2. Parallelograms. Check whether Region 2 is used. If so, generate y uniformly in $\left[x_{L}-.5, x_{R}-.5\right]$ and go to Step 5 for acceptance/rejection comparison.)

```
If }u>\mp@subsup{p}{2}{\prime}\mathrm{ , go to 3.
```

Otherwise $x=x_{L}+\left(u-p_{1}\right) / c$,
$v=v c+1-|m-x+0.5| / p_{1}$.

If $v>1$, go to 1 .
Otherwise set $y=\langle x\rangle$ and go to 5.

Step 3. (Region 3, Left tail)

If $u>p_{3}$, go to 4.
Otherwise set $y=\left\langle x_{L}+\ln (v) / \lambda_{L}\right\rangle$, If $y<0$, go to 1. Otherwise set $v=v\left(u-p_{2}\right) \lambda_{L}$ and go to 5 .

Step 4. (Region 4, Right tail)

Set $y=\left\langle x_{R}-\ln (v) / \lambda_{R}\right\rangle$, $v=v\left(u-p_{3}\right) \lambda_{R}$.

Step 5. (Acceptance/Rejection comparison)

> 5.0 (Test for method of evaluating $f(y)$)
> If $M \geq 100$ and $y>50$, go to 5.2 .
5.1 (Evaluate $f(y)$ via the recursive relationship $f(y)=f(y-1)_{\mu} / y . \quad$ Start the search from the mode.)
$F=1.0$
If $M<y$,

Then set $I=M$ and
Repeat
$\mathrm{I}=\mathrm{I}+1$
$F=F \mu / I$
until $I=y$.
Otherwise
If $M>y$,
Then set $I=y$ and
Repeat
$\mathrm{I}=\mathrm{I}+1$
$F=F I / \mu$
until $I=M$
Endif.
Endif
If $v>F$, go to 1.
Otherwise return y.
5.2 (Squeezing, check the value of ℓ n v against upper

> 5.3 (Perform final acceptance/rejection test by using the expression of ℓ n $f(y)$ derived from the Stirling's formula.)
> If $A>[(M+.5) \ln (M / \mu)+(x+.5) \ln (\mu / x-M+x$
> $+(1 . / M-1 . / x) / 12$.
> $\left.+\left(1 . / x^{3}-1 . / M^{3}\right) / 360.\right]$ go to 1.
> Otherwise return y.

Remark 1.
In Step 1, Region 1 is selected. Since Region 1 lies entirely under $f(x)$, the probability of rejection is zero. Since $u \backsim U\left(0, p_{q}\right)$. then $u / p_{1} \sim U(0,1)$. The triangularly distributed variates are generated as the sum of two independent uniform variates, denoted w and v. Then

$$
\begin{aligned}
y & =m+0.5+(w+v-1) p_{1} \\
& =x_{M}+w p_{1}-(1-v) p_{1}
\end{aligned}
$$

Since $v \sim U(0,1)$, then $(1-v)$ is also $U(0,1)$. Replacing w by u / p_{1} and $(1-v)$ by v yields the expression used in Step 1.

Remark 2.
In Region 2, x is uniformly distributed between $M-p_{1}$ and $M+p_{1}$. Since u is uniformly distributed between p_{1} and p_{2} in this region, $w=\left(u-p_{1}\right) /\left(p_{2}-p_{1}\right)$ is $u(0,1)$. From the setup, $p_{2}-p_{1}$ is equal to $2 c p_{1}$. Substituting into $x=x_{L}+2 w p_{1}$ yields the expression for x used in Step 2. The expression for v results in $v \sim U(b(x), b(x)+c)$, where $b(x)=1-|M-x+.5| / p_{1}$ is the triangle of Region 1.

Remark 3 .
In Step 3, x is the negative of a negative exponential random variate. The upper bound of x is x_{L} and the mean is $x_{L}-1 / \lambda_{L}$. Similarly in Step 4, x is negative exponentially distributed with lower bound x_{R} and mean $x_{R}+1 / \lambda_{R}$.

In Region 3, the accept/reject variate $v a U(0, t(x))$, is

$$
v=w k_{L} \exp \left[-\lambda_{L}\left(x_{L}-x-.5\right)\right] \quad \text { where } w v U(0,1)
$$

The exponential variate x can be generated as $x=x_{L}-0.5+\ln \left(v^{0}\right) / \lambda_{L}$ 。 where $v^{\prime} \sim u(0,1)$. Then $v=w k_{L} \exp \left[-\lambda_{L}\left(-\ln \left(v^{\prime}\right) / \lambda_{L}\right)\right]=w k_{L} v^{\prime}$. Replacing w by $\left(u-p_{2}\right) /\left(p_{3}-p_{2}\right)$ and $\left(p_{3}-p_{2}\right)$ by k_{L} / λ_{L} yields the result in Step 3. A similar derivation leads to the expression used in Step 4.

Remark 4.

In Step 5.0, a test is made to select the method of evaluating $f(y)$. The criteria used here is based on both M and y. For small values of M and y, direct calculation using the recursive formula is
faster than evaluating the bounds derived from the Stirling's formula. Sted 5.1 is similar to algorithm Pf by Fishman with $f(y)$ in place of $f_{p}(y)$, but requires no tabled constants. In Step 5.2, a preliminary test is made by comparing $\ell(v)$ against upper and lower bounds of in $f(y)$. The expressions of in $f(y)$ and its bounds are given in the Appendix.

Remark 5.

The idea underlying the setup for Region 3 is to pass the majorizing function $t_{1}(x)$ through the point $f\left(x_{L}-.5\right)$ and $f\left(x_{L}-1.5\right)$. This same approach is used in Region 4 using $f\left(x_{R}-0.5\right)$ and $f\left(x_{R}+0.5\right)$. The result is $t_{1}(x)$ in Figure B.

Figure B about here

This exact set-up requires six logarithms and two exponential operations. These operations are slow and can be avoided. The setup in PTPE uses the majorizing function $t(x)$ as shown in Figure B, which does not require higher order operations. The use of $t(x)$ increases the probability of rejection slightly, but the gain in efficiency by avoiding higher order operations in the setup is significant in the cases where the value of mean μ changes often. That these exponential tails majorize $f(x)$ is proved in the Appendix.

Remark 6.
The expected number of $U(0,1)$ values required to generate a Poisson variate is $2\left(p_{4}\right)\left(e^{-\mu}{ }_{\mu}^{M} / M!\right)$, where M is the integer portion of μ and $p_{4}=\int_{-\infty}^{\infty} t(x) d x$ as defined in step 0 . The derivation is
straight forward. The expected number of iterations is

$$
\begin{aligned}
\int_{-\infty}^{\infty} t(x) d x / \int_{-\infty}^{\infty} f(x) d x & =p_{4} /\left[\left(M!/ e^{-\mu} \mu^{M}\right) \int_{-\infty}^{\infty} f_{p}(x) d x\right] \\
& =p_{4}\left(e^{-\mu} \mu_{\mu}^{M} / M!\right) .
\end{aligned}
$$

Multiplying by the two $U(0,1)$ values per iteration yields the result.

Remark 7 .

All four fundamental concepts are included in PTPE. The overall structure of PTPE is acceptance/rejection. The inverse transformation is used to select the region, to generate uniformly distributed variates for Region 2, and to generate exponentially distributed variates for Regions 3 and 4. The use of four regions is composition. The special property that the sum of two independent $U(a, b)$ random variables has a triangular distribution is used in Region 1.

4. COMPUTATIONAL EXPERIENCE

The four algorithms for which execution time approaches a constant as $\mu \rightarrow \infty$, PA, IP, KPOISS, and PTPE, are compared here in terms of setup times, marginal execution times, lines of code, and memory requirements. The Ahrens and Dieter algorithm in [3] is dominated by KPOISS and not discussed here. All four algorithms were implemented in FORTRAN using the MNF compiler on Purdue University's CDC 6500 computer. The uniform $(0,1)$ variates were generated using RANF, which is intrinsic in the MNF compiler.

For each combination of μ and algorithm, four replications of 3000 variates were timed. The execution times shown in Table 1 are the averages of the replication averages and are accurate to within one unit in the last decimal place. The accuracy may also be assessed by comparing the last four lines in the table, for which most of the differences in times are due to random variation rather than to changes in distribut : on shape.

The marginal execution times, shown under the heading "Fixed Mean" in Table 1, favor PTPE. The execution times for setting up the algorithm and generating one variate, shown under the heading "Incremented Means" in Table 1, were obtained by incrementing μ by 10^{-9} with each variate generated. Because KPOISS requires little more than a square root calculation to set up, it is competitive with PTPE when the mean changes with each variate generated.

Since IP and KPOISS require normal variates, their times are sensitive to the normal variate generation algorithm used. We used algorithm KR (see Kinderman and Ramage [12]) which is the fastest FORTRAN level algorithm available. For those who have a faster assembler language normal generator available, the times for KPOISS and IP would be less. Of course, all four algorithms would be faster if coded in assembler language. Another comment concerns PA. The approximation given by Atkinson [5] for the constant c is $c=.767-3.36 / \mu$ which is inaccurate when $\mu<30$. The poor approximation causes the relatively large execution times of $P A$ for small values of μ.

Table 1. Comparison of Algorithms
Fixed Mean
Incremented Mean

μ	PTPE	KPOISS a	I^{a}	$P A$	PTPE	KPOISS	IP	$P A$
10^{b}	.33	.38	.66	1.41	.35	.45	1.34	1.78
25	.29	.37	.62	1.03	.50	.45	1.31	1.41
100	.24	.36	.58	.90	.48	.44	1.27	1.27
250	.22	.35	.57	.89	.44	.43	1.26	1.26
1000	.20	.34	.55	.86	.42	.42	1.25	1.24
10,000	.20	.34	.54	.87	.42	.42	1.23	1.24
$1,000,000$.20	.34	.54	.87	.41	.41	1.23	1.23

Memory
Require$\begin{array}{lllll}\text { ments } & 279 & 309 & 282 & 146\end{array}$

Lines of
$\begin{array}{lllll}\text { Code } & 59 & 64 & 64 & 17\end{array}$
a
Using KR for the normal random variates.
b
Times for KPOISS are for $\mu=10+\varepsilon$.

The execution times were compared using a slower $U(0,1)$ generator. All times in Table 1 increased by about . 1 except for IP which had increases of about . 2 .

The execution times were also compared using the FTN compiler. For large values of μ, KPOISS required only 56% more time than PTPE (compared to 75% under MNF) for fixed means. For variable means KPOISS was 9\% faster than PTPE (compared to 0\% under MNF).

Note that several exact algorithms are faster than the four algorithms compared here for small values of the mean (approximately $\mu<50$).

While the number of lines of FORTRAN code is only a crude measure of the goodness of an algorithm, it can be important both in terms of the effort to implement the algorithm and to verify that the algorithm is working properly. PA, PTPE, KPOISS, and IP required 17, 59, 64 and 64 lines of code, respectively. This does not include the nine lines for the routine used to evaluate $e n(x!)$ needed by PA nor the 58 lines of the KR normal variate generator used here by IP and KPOISS. Algorithms PA, PTPE, IP, and KPOISS require 146, 279, 282, and 309 words of memory, respectively, again not including required support routines.

REFERENCES

1. Abramowitz, M. and Stegun, I.A., (1964). Handbook of Mathematical Functions, National Bureau of Standard, Applied Mathematics Series, 55.
2. Ahrens, J.H. and Dieter, U. (1974). "Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions", Computing, 12. 233-246.
3. Ahrens, J.H. and Dieter, U. (1980a). "Sampling from Binomial and Poisson Distributions: A Method with Bounded Computation Times", Computing, 25, 193-208.
4. Ahrens, J.H. and Dieter, U. (1980b). "Computer Generation of Poisson Deviates from Modified Normal Distributions", Technical Report, University of Kiel, West Germany.
5. Atkinson, A.C. (1979). "The Computer Generation of Poisson Random Variables", Applied Statistics, 28, 1, 29-35.
6. Bolshev, L.N. (1965). "On a Characterization of the Poisson Distribution and Its Statistical Applications", Theory of Probability and its Applications, 10, 446-456.
7. Chen, H.C. and Asau, Y. (1974). "On Generating Random Variates from an Empirical Distribution", AIIE Transactions, 6, 163-166.
8. Cheng, R.C.H. (1978). "Generating Beta Variates with Non-Integral Shape Parameters", Communications of "he ACM, 21, 4, 317-322.
9. Devroye, L. (1980). "The Computer Generation of Poisson Random Variables", Technical Report, McGill University, Canada.
10. Devroye, L. and Naderisamani, A. (1980). "A Binomial Random Variate Generator", Technical Report, McGill University, Canada.
11. Fishman, G.S. (1976). "Sampling from the Poisson Distribution on a Computer", Computing, 17, 147-156.
12. Kinderman, A.J. and Ramage, J.G. (1976). "Computer Generation of Normal Random Variables", Journal of the American Statistical Association, 71, 356, 893-896.
13. Kronmal, R.A. and Peterson, A.V. Jr. (1981). "A Variant of the Acceptance-Rejection Method for Computer Generation of Random Variables", Journal of the American Statistical Association, 76, 374, 446-451.
14. Lewis, P.A.W. and Shedler, G.S. (1979). "Simulation of Nonhomogeneous Poisson Processes by Thinning", Naval Research Logistics Quarterly, 26, 3, 403-413.
15. Marsaglia, G. (1963). "Generating Discrete Random Variables in a Computer", Communications of the ACM, 6, 37-38.
16. Norman, J.E. and Cannon, L.E. (1973). "A Computer Program for the Generation of Random Variables from any Discrete Distribution", Journal of Statistical Computation and Simulation, 1, 331-348.
17. Pak, C.H. (1975). "The Generation of Poisson Random Variates", $\frac{\text { Journal }}{87-92}$ of the Korean Institute of Industrial Engineering, 1, 1,
18. Schmeiser, B.W. (1980). "Random Variate Generation: A Survey", Simulation with $\frac{\text { Discrete }}{\text { Oren, Shub, Models: }}$ and Roth, IEEE. State of the Art View, ed.
19. Schmeiser, B.W. and Lal, R. (1980). "Squeeze Methods for Generating Gamma Variates", Journal of the American Statistical Association, 75, 371, 679-682.
20. Snow, R.H. (1968). "Algorithm 342: Generator of Random Numbers Satisfying the Poisson Distribution", Communications of the ACM, 11, 12, 819-820.
21. Tadikamalla, P.R. (1979). "A Simple Method for Sampling from the Poisson Distribution", Workiry paper 365, Graduate School of Business, University of Pittsburgh.
22. Walker, A.J. (1977). "An Efficient Method for Generating Discrete Random Variables with General Distributions", ACM Transactions on Mathematical Software, 3, 253-256.

APPENDIX: PROPERTIES OF $b(x)$ AND $t ? x)$

Four inequalities used in algorithm PTPE are discussed here. Proposition 1 considers $b(x) \leq f(x) \leq t(x)$, which is necessary for the acceptance/rejection parts of PTPE. In addition, in PTPE $f(x)$ is squeezed by upper and lower bounds which are ploved valid in Propositions 2 and 3, respectively.

Results 1-3, stated below without proof, are necessary for the proofs of Propositions 1, 2, and 3. All follow from the Taylor series expansion of the logarithm (see e.g.. Abramowitz and Stegun [1]).

Result 1. If $a \leq b$, then $\ln (b / a) \geq a+a^{2} / 2$, where $a=(b-a) / b$.

Result 2. For $a l l a>0$ and $b>0, \ln (b / a) \leq a-a^{2} / 2+a^{3} / 3$, where $q=(b-a) / a$.

Result 3. For all $a>0$ and $b>0, \quad \ln (b / a) \geq q-q^{2} / 2+q^{3} / 3-\Delta q^{4} / 4$, where $a=(b-a) / a$ and $\Delta=1$ if $a \leq b$ and $\Delta=(1+q)^{-1}$ if $a>b$.

Lemma 1 is used in the proof of Proposition 1.

Lemma 1. For all $\mu>0$,

$$
f_{M+1-\varepsilon}(x) \leq f_{\mu}(x) \leq f_{M}(x) \quad \text { if } x=0,1,2, \ldots, M
$$

and

$$
f_{m+1-\varepsilon}(x) \geq f_{\mu}(x) \geq f_{m}(x) \quad \text { if } \quad x=M, M+1, \ldots,
$$

where $M=\langle\mu\rangle$ and $f_{\mu}(x)=\mu^{x-M_{M}} M / x$!.
Proof. The ratio $f_{\mu}(x) / f_{M}(x)=(\mu / M)^{x-M}$. Since $M \leq \mu$, the right side inequalities follow. similarly, the left side inequalities follow from $f_{M+1-\varepsilon}(x) / f_{\mu}(x)=((M+1-\varepsilon) / \mu)^{x-M} \cdot \mid 1$

Proposition 1. For $\mu \geq 10$ and $x \in(-\infty, \infty), b(x) \leq f(x) \leq t(x)$, where $t(x)$ and $b(x)$ are defined in Equations (2) and (3), $f(x)$ is defined in Equation (1), and specific constants are defined in Step 0 of algorithm PIPE.

Proof. The proof is trivial for $x \varepsilon(-\infty,-.5)$, since $f(x)=0$.

$$
\begin{aligned}
\text { Consider } & x \in\left(-.5, x_{L}-.5\right) . \text { since } x_{L}>0, \\
& \left(x_{L} / x_{L}\right)\left(x_{L} /\left(x_{L}-1\right)\right) \ldots\left(x_{L} /<x+1.5>\right) \geq 1
\end{aligned}
$$

which implies

$$
x_{L}^{x_{L}-\langle x+.5>} \geq x_{L}!/<x+.5>!.
$$

Then

$$
x_{L}^{x_{L}-\langle x+.5\rangle} \geq\left(x_{L} / \mu\right)^{(x+.5)-\langle x+.5\rangle} x_{L}!/<x+.5>!
$$

since $\quad x_{L}<\mu$ and $(x+.5) \geq\langle x+.5\rangle$.
Direct algebra yields

$$
x_{L}^{x_{L}^{-(x+.5)} \geq \mu^{<x+.5>-M-\left(x_{L}-M\right)+\left(x_{L}-(x+.5)\right)}} x_{L}!/<x+.5>!
$$

which implies

$$
\left(\mu^{x_{L}-M} M!/ x_{L}!\right)\left(x_{L} / \mu\right)^{x_{L}-(x+.5)} \geq \mu^{<x+.5>-M} M!/<x+.5>!
$$

which implies

$$
\begin{equation*}
f\left(x_{L}\right) \exp \left[\left(x_{L}-(x+.5)\right) \ln \left(x_{L} / \mu\right)\right] \geq f(x) \tag{A-1}
\end{equation*}
$$

Applying Result 1 to $\ln \left(x_{L} / \mu\right)=-\ln \left(\mu / x_{L}\right)$ yields

$$
\begin{equation*}
f\left(x_{L}\right) \exp \left[-\lambda_{L}\left(x_{L}-(x+.5)\right)\right] \geq f(x), \tag{A-2}
\end{equation*}
$$

where $\lambda_{L}=a_{L}+a_{L}^{2} / 2$ with $a_{L}=\left(\mu-x_{L}\right) / \mu$.
The majorizing function used in the algorithm, valid for $\mu \geq 10$, is

$$
\begin{equation*}
k_{L} \exp \left[-\lambda_{L}\left(x_{L}-(x+.5)\right)\right] \geq f(x) \tag{A-3}
\end{equation*}
$$

where $k_{L}=.109+8.25 /(10.86+\mu)$. Inequality $(A-3)$ requires $f\left(x_{L}\right) \leq k_{L}$ for all $\mu \geq 10$. Since $k_{L} \leq M$, Lemma 1 implies that only integer values of μ need be considered. The inequality was numerically verified for $\mu=10,11, \ldots, 10000$. The proof that $f\left(x_{L}\right) \leq k_{L}$ for $\mu \in[10000, \infty)$ is based on showing $f\left(x_{L}\right) \leq z_{1}\left(x_{L}\right) \leq z_{2}\left(x_{L}\right) \leq k_{L}$, where $z_{1}\left(x_{L}\right)=\exp \left[-\left(x_{L}-\mu\right)^{2} / 2 \mu\right] \quad$ and $\quad z_{2}\left(x_{L}\right)=\exp \left[-(2.195 \quad \sqrt{\mu}-3.2)^{2} /(2 \mu)\right]$. The left inequality is from the normal majorizing function used by Ahrens and Dieter [4] for all $x \leq\langle\mu-1.1484>$. The center inequality follows from $-\left(x_{L}-\mu\right)=-<2.195 \sqrt{\mu}-2.2>^{2} \leq-(2.195 \sqrt{\mu}-3.2)^{2}$. The right inequality follows from $z_{2}(10000)=.0964<\min _{\mu} k_{L}=.109$ and that for all $\mu \in[10000, \infty), z_{2}\left(x_{L}\right)$ is a decreasing function of μ. That $z_{2}\left(x_{L}\right)$ decreases follows from $d \ln z_{2}\left(x_{L}\right) / d \mu=-3.512 \mu^{-3 / 2}+5.12 \mu^{-2}$ which is negative for all $\mu>2.1254$.

Similar logic for $x \in\left(x_{R}-.5, \infty\right)$ Leads to

$$
\begin{equation*}
c \exp \left[-\lambda_{R}\left(x+.5-x_{R}\right)\right] \geq f(x) \text {, } \tag{A-4}
\end{equation*}
$$

where $c=.133+8.56 /(6.83+\mu)$ for all $\mu \geq 10$.
Now consider $x \in\left[x_{L}-.5, x_{R}-.5\right]$, for which $b(x) \leq f(x) \leq t(x)$ must be satisfied, where $b(x)=1-|M-x+.5| / p$ and
$t(x)=(1+c)-|M-x+.5| / p_{1} . \quad$ Again, $\mu \in[10,10000]$ was checked numerically; using $\mu=M+1-\varepsilon$ when $x \leq M$ and $\mu=M$ when $x \geq M$ for $b(x) \leq f(x)$ and $\mu=M$ when $x \leq M$ and $\mu=M+1-\varepsilon$ when $x \geq M$ for $f(x) \leq t(x)$, as indicated by Lemma 1. For $\mu \geq 10,000$, consideration of limiting values and the asymptotic value of .133 for c indicates the inequality is satisfied. ||

Lemmas 2, 3, and 4 are needed for the proofs of Propositions 2 and 3, which are upper and lower bounds on $f(x)$, respectively.

Lemma 2. For $M=\langle\mu\rangle,(M+5) \ln (M / \mu) \leq M-\mu$.

Proof. Substituting $x=M / \mu$ into the well-known inequality $\ln x \leq x-1$ and multiplying by $M+.5$ yields $(M+.5) \ln (M / \mu) \leq(M / \mu)(M-\mu)+(M-\mu) /(2 \mu)$. Since $(M-\mu) /(2 \mu) \leq 0$ and $0 \leq M / \mu \leq 1$, the result is obtained. ||

Lemma 3. For $\mu \geq \mu^{*}$ and $M=\langle\mu\rangle$,

$$
M-\mu+g\left(\mu^{*}\right) \leq(M+.5) \ln (M / \mu),
$$

where $g\left(\mu^{\star}\right)=\left(\left\langle\mu^{\star}\right\rangle+.5\right)\left[\ln \left(\mu^{\star} /\left(\mu^{\star}+.5\right)\right)\right]+.5$.

Proof. The proof shows that $g\left(\mu^{*}\right)$ minimizes

$$
\begin{aligned}
& g(\mu)= \operatorname{Min}^{*}[(M+.5) \ln (M / \mu)-(M-\mu)] . \\
& \\
& ⺊^{*}<\mu \\
& M=\langle\mu\rangle
\end{aligned}
$$

First consider Min $g(\mu)$. setting $\operatorname{dg}(\mu) / d \mu=0$ and checking that $d^{2} g(\mu) / d \mu^{2}>0$ yields $\mu=M+.5$. The problem is now to find the value of M which minimizes $(M+.5) \ln (M /(M+.5))+.5$ subject to $M \geq\left\langle\mu^{*}\right\rangle$. Since the function increases with M, as can be seen graphically or by evaluating
derivatives, the optimal value is $M=\left\langle\psi^{\star}\right\rangle$. \||

Lemma 4. Consider

$$
\begin{aligned}
\delta(M \cdot y) & =\left(M^{-1}-y^{-1}\right) / 12-\left(M^{-3}-y^{-3}\right) / 360+\left(M^{-5}-y^{-5}\right) / 1260, \\
\delta\left(M^{\star}, y^{\star}\right) & =-\left(12 y^{*}\right)^{-1}-\left(360 M^{\star 3}\right)^{-1}-\left(1260 y^{\star 5}\right)^{-1},
\end{aligned}
$$

and

$$
\delta_{U}\left(M^{\star}, y^{\star}\right)=\left(12 M^{\star}\right)^{-1}+\left(360 y^{\star 3}\right)^{-1}+\left(1260 M^{\star 5}\right)^{-1}
$$

If $M \geq M^{*}$ and $y \geq y^{*}$, then $\delta\left(M^{*}, y^{*}\right) \leq \delta(M, y) \leq \delta U\left(M^{*}, y^{*}\right)$.

Proof. The lower and upper bounds are obtained directly by minimizing term by term for $\delta_{L}\left(M^{*}, y^{*}\right)$ and maximizing term by term for $\delta_{U}\left(M^{*}, y^{*}\right)$. 11

Proposition 2. Consider

$$
U_{b}=y-\mu+(y+.5) q(1+q(-.5+q / 3))+\delta_{U}\left(M^{*}, y^{*}\right)
$$

where $q=(\mu y) / y$. If $M \geq M^{*}$ and $y \geq y^{*}$, then $U_{b} \geq \ln f(y)$.

Proof. The proof algebraically simplifies $\ln f(y)$, which is evaluated using Stirling's Formula. Further simplification results from inequalities on relatively insignificant terms.

$$
\begin{aligned}
\ln f(y) & =(y-M) \ln \mu+\ln M!-\ln y! \\
& =(y-M) \ln \mu
\end{aligned}
$$

$$
+\left[(M+.5) \ln M-M+\ln \sqrt{2 \pi}+(12 M)^{-1}\right.
$$

$$
\left.-\left(360 m^{3}\right)^{-1}+\left(1260 M^{5}\right)^{-1}+o(M)^{-7}\right]
$$

$$
-\left[(y+.5) \ln y-y+\ln \sqrt{2 \pi}+(12 y)^{-1}\right.
$$

$$
\left.-\left(360 y^{3}\right)^{-1}+\left(1260 y^{5}\right)^{-1}+o(y)^{-7}\right]
$$

$$
=[(y+.5)-(M+.5)] \ln \mu+(M+.5) \ln M-(y+.5) \ln y
$$

$$
-M+y+\delta(M, y)
$$

$$
=(M+.5) \ln (M / \mu)+(y+.5) \ln (\mu / y)-M+y+\delta(M, y)
$$

$$
(A-5)
$$

where

$$
\delta(M, y)=\left(M^{-1}-y^{-1}\right) / 12-\left(M^{-3}-y^{-3}\right) / 360+\left(M^{-5}-y^{-5}\right) / 1260+o\left((M-y)^{-7}\right)
$$

Applying Lemma 2 to the first term, Result 2 to $\ln (\mu / y)$ and Lemma 4 to $\delta(M, y)$ in Equation (A-5) yields the result.

Proposition 3. For $M \geq M^{\star}$ and $y \geq y^{\star}$,

$$
U_{b}-D+g\left(y^{*}\right)-\left\{\left(M^{*}, y^{*}\right)-\left\{\left(M^{*}, y^{*}\right) \leq \ln f(y),\right.\right.
$$

where $D=(y+.5) q^{4} \Delta / 4, \Delta=1$ if $q>0$ and $\Delta=(1+q)^{-1}$ if $q<0$, and $q=(w-y) / y$.

Proof. $U_{b}-D+g\left(\mu^{*}\right)-\delta_{U}\left(M^{\star}, Y^{\star}\right)-\delta\left(M^{\star}, y^{\star}\right)$

$$
\begin{align*}
= & {\left[y-\mu+(y+.5) q(1+q(-.5+q / 3))+\left\{U^{\left.\left(M^{\star}, y^{\star}\right)\right]+g\left(\mu^{\star}\right)}\right.\right.} \\
& -\left[(y+.5) q^{4} \Delta / 4\right]-\delta_{U}\left(M^{\star}, y^{\star}\right)+\delta\left(M^{\star}, y^{\star}\right) \\
= & y-\mu+(y+.5)\left[q-q^{2} / 2+q^{3} / 3-q^{4} \Delta / 4\right]+g\left(\mu^{\star}\right)+\delta_{\left(M^{\star}, y^{\star}\right) .} \tag{A-6}
\end{align*}
$$

From Lemma 3, $g\left(\mu^{*}\right) \leq(M+.5) \ln (M / \mu)-M+\mu$; from Lemma 4, $\delta_{L}\left(M^{*}, y^{*}\right) \leq \delta(M, y)$; and from Result 3 applied to $\ln (\mu / y)$, Equation ($A-6$) is less than en $f(y) . \mid l$
(x)

FIGURE E. COHPARISON OF EXACT AND FAST SET-UP.

Computer codes used to obtain the computational results of section 4, "Poisson Randam Variate Generation" by Bruce Schmeiser and Voratas Kachitvichyanukul.

```
C THIS IS TKE MAIN PROCRA:I TO TEST VARIOUS METHODS
    C- CEIERATIIIG POISSON RANDUi1 UARIATES
    [RUCE SCHMEISER ANID URRATAS KGCHITUICHYANUKUL
    SCHOCL QF IITDUSTRIAL ENIGITIEERING
    PLSDUE UNIUERSITY, GFRIL. 1980
    DIMENSION NAME(5),XXMU(13)
    DATA NAME/'DUNY','PTPE','KPOISS','IP','PA',
    DATA XXMU/10.,25.,50.,50.5,100.,250.,500.,1000.,3000.,
    l 5000.,10000.,50000..1000000.1
        N=3000
        ISEED=0
        LRITE(6,1000)
1000 FORMAT (1H1)
    10 400 L=1,13
    Xi1U=XXMU(L)
    II=0
    TiKGAN=XXMU(L)
    TUAR=XXMU(L)
    STE=SQRT (TUGR/N)
    WRITE(6,3000) N.TMEAN,TUAR,STE
```



```
    2 IIX,'TTME TRUE MAML MEAN ,,3F15.3)
    DO 100 I=1,5
    SUMT=0.0
    DO 150 J=1,4
    SUM=0.0
    SUMZ=0.0
    CALL SECOND(TI)
C
    DO 300 K=1,N
            CO TO (1,2,3,4,5), I
        1 \text { COITIINUE}
        CO TO 200
        2 CALL PTPE(XMU,ISEED,II)
            CO TO 200
        3 CALL KPOISS(XMU,ISEED,II)
            GO TO 200
        4 \text { CALL IP(XMU,ISEED,II)}
            GO TO 200
        5 CALL PA(XMU,ISEED,II)
        200 SUM=SUM+II
            SUME=SUM2+II # II
        300 CONTINUE
C
            CALL SECOND(TZ)
            TIME=1000. E(TE-T1)/N
            SUMT=SUMT T TIME
            AUCT=SUMT/J
            XMEANYSUMM/H
            UAR:SUMM/N-XMEAN=XMEAN
            WRITE(5,2000) NAME(I),TIME,AUGT, XMEAN,UAR
2000 FORI1AT(1X,A5, 2FG.3,F15.3,F15.3)
    i50 ccitmituc
    FRI|T,'
    100 CCiITINUE
    400 contimlue
C
    STOP
    EilD
```

SUERDUTINE PTFE(MMU, ISEED, JX)

```FOISSDN RANDOM UKRIATE GENERATDR
Gilu : liEFN (XITM .CE. 10)
        ISEED : RANDO:1 ILUIBER SEED
        JK: : RANDCILLY GENERATED OBSERUATION
        ERUCE W. SCHMEIEER AND UORATAS KACHITUICHYANUKUL
        FURDUE UHIIUERSITY, SEPTEMBER 1980.
        REUISED JULY, 1981
        M:ETHOD : ACCEPTANCE-REJECTION UIA FOUR REGION COMPOSITION
        AUKILIARY REOUIRED SUBPROGRAM :
            UNIFCRI1 (0,1) RANDOM NUMBER GENERATOR
        DATA YMU/-1./
        IF(XMU.EO.YMU) CO TO 2
C
C=****SETUP (EXECUTE ONLY WHEN XMU CHANGES)
        YMU=XMU
        M=Y:NU
        FM=M
        PI=INT(2.195%SORT(FM)-2.2)+0.5
        C=.133+8.56/(6.83+YMU)
        XM=14+0.5
        XL=XM-P1
        XR=XM+P1
        AL=(YMU-XL)/YMU
        XLL=AL#(1.+.5%AL)
        AL=(XR-YMU)/XR
        XLR=AL*(1.+.5*AL)
        P2=P1=(1.+C+C)
        P3=P2+(0.109+8.25/(10.86+YMU))/XLL
        P4=P3+C
C
C*****GENERATE UARIATE
    2 U=RANF(ISEED)*P4
        U=RGNF (ISEED)
C
        IF(U.GT.P1) CO TO 3
        IX=XM-P1*U+U
        GO TO 14
C
        PARALLELOGRAM REGION
    3 IF(U.GT.PE) GO TO 4
        X=XL+(U-P1)/C
        U=U=C+1.-ABS(FM-X+0.5)/P1
        IF(U.GT.1.) CO TO 2
        IX=X
        GO TO G
    C
        LEft TAIL
        4 IF(U.GT.P3) CO TO 5
        IX=XL+ALOG(U)/XLL
```

```
:HIU: VEFN (XIVM .CE. 10)
ISEED : RANDCi1 HUilber SEED
J\%: RANDCitily GEIERATED OBSERUATION
ERUCE W. SCHMEIEER AND UORATAS KACHITUICHYANUKUL
REUISED JULY, 1981
GUXILIAP: REOCEP
UNIFCRI \((0,1)\) RANDOM NUMBER GENERATOR
DATA YMU-1./
IF (XMU.EO.YMU) CO TO 2
\(\underset{c}{\text { Cin***SETUP (EXECUTE ONLY LHEN XMU CHANGES) }}\)
YMU=XMU
\(\mathrm{M}=\mathrm{YiNU}\)
FM=M
\(\mathrm{PI}=\mathrm{INT}(2.195 \approx \operatorname{SORT}(\mathrm{FM})-2.2)+0.5\)
C=.133+8.56/(6.83+YMU)
\(X 1=11+0.5\)
\(X R=X M+P 1\) AL \(=(Y M L-X L) / Y M U\)
\(\mathrm{AL}=(X R-Y M U) / X R\)
XLR=AL*(1.+.5*AL)
\(P 3=P 2+(0.109+8.25 /(10.86+Y M U)) / X L L\) P4=P3+C/XLR
C
C
\(2 \mathrm{U}=\) RANF (ISEED)*P4
UERAF(ISEED)
C TRIANCULAR REGION
IF(U.GT.P1) GO TO 3
\(1 \times=X M-P 1 \approx U+U\)
parallelocram recion
3 IF(U.GT.PE) GO TO 4 \(X=X L+(U-P 1) / C\) IF (U.GT.1.) CO TO 2 I \(\mathrm{X}=\mathrm{x}\)
C
C
C LEft TAIL
4 IF(U.GT.P3) 50 TO 5 IX \(=\mathrm{XL}+\mathrm{ALOG}(\mathrm{U}) / \mathrm{XLL}\)
```



```
חாחกாח
    SUBROUTINE KPOISS(A,IR,KPOIS)
    J. H. AHRENS AMD U. DIETER
    COMPUTER GENERATION OF POISSON DEUIATES FROM
    MODIFIED NORMAL DISTRIBUTIONS
    DIMENSION FACT(10),PP(35)
    DATA AA, ARA,AO,A1,A2,A3, A4, A5, A5, A7 /0.,0..-.5,.33333333,
    1 -.2500068,.2000118,-.1661269,.1421878,-.1384794,.125006/
    DATA FACT /1..1.,2.,6..24.,120.,720.,5040.,40320.,362880.
    IF(A.EO.AA) CO TO I
    IF(A.LT.10.0) CO TO 12
    AA=A
    S=SORT (A)
    D=6.0*A*A
    L=INT(A-1.1484)
    1 CALL MORMAL (IR,TT)
    G=A+S*TT
    IF(G.LT.0.0) GO TO 2
    KPOIS=INT(G)
    IF(KPOIS.GE.L) RETURN
    FK=FLOAT(KPOIS)
    AK=A-FK
    U=RANF (IR)
    IF(D*U.GE.AK#AK#AK) RETURN
    2 IF(A.EO.AAA) GO TO }
    AAA=A
    OMECA=.3989423/S
    B1=.4166667E-1/A
    B2=.3"B1.B1
    C3=.1428571*B1*B2
    C2=B2-15.-C3
    C1=B1-6.*B2+45.*C3
    CO=1.-Bi+3.*B2-15.mC3
    C=.1069/A
3 IF(G.LT.0.0) CO TO 5
    KFLAE=0
    CO TO ?
4 IF(FY-U#FY.LE.PYmEXP(PX-FX)) RETURN
5 E=-ALOC(RANF(IR))
    U=RAMF(IR)
    U=U+U-1.0
    T=1.8+SIGM(E,U)
    IF(T.LE.-0.6744) CO TO 5
    KPOIS=INT(A+SNT)
    FK=FLOAT(KPOIS)
    AK=A-FK
    KFLAC=1
    CO TO 7
    G IF(C~ABS(U).GT.PY@EXP(PX+E)-FY#EXP(FX+E)) CO TO 5
    RETURN
} IF(KPOIS.GE.10) CO TO 8
    PX=-A
    PY=A=#KPOIS/FACT(KPOIS+1)
    CO TO 1s
8 DEL=.8333333E-1/FK
    DEL=DEL-4.8*DEL*DEL*DEL
    J=AK/FK
```

```
    IF(ABS(U).LE.0.25) CO TO g
    PX=FK*ALOC(1.0+U)-AK-DEL
    GO TO 10
    9PX=FK=UmU=(C((C((AT*U+A6)*U+A5)=U+A4)*U+A3)=U+AR)=U+A1)mU+AO)-DEL
10 PY=.3989423/SQRT(FK)
11 X=(0.5-AK)/S
    x = X"X
    FX=-0.5#XX
    FY=OMECA # (( C3mXX+C2) mXX+C1) #XX+CO)
    IF(KFLAG) 4,4,6
12 AA=0.0
    IF(A.EQ.AAA) CO TO 13
    AAA=A
    M=MAXO(1, INT(A))
    L=0
    P=EXP(-A)
    0=P
    PO=P
13 U=RANF(IR)
    KPOIS=0
    IF(U.LE.PO) RETURN
    IF(L.EQ.O) GO TO 15
    J=1
    IF(U.GT.0.458) J=MINO(L.M)
    DO 14 KPOIS= J.L
    IF( U.LE.PP(KPOIS)) RETURN
14 CONTINUE
    IF(L.EQ.35) CO TO 13
15 L=L+1
    DO 16 KPOIS=L,35
    P=P*A/FLDAT(KPOIS)
    O=O+P
    PP(KPOIS)=0
    IF(U.LE.O) GO TO 17
16 CONTINUE
    L=35
    GO TO 13
17 L=KPOIS
    RETURN
    END
```

```
    SUBROUTINE IP(SL,ISEED,IX)
```



```
    PARAMETER SL>O. A REJECTION METHOD HITH SQUEEZING IS USED.
    BY LUC DEUROYE, MCGILL UNIUERSITY, CANADA 1980
    RUXILIARY SUBPROGRAMS REQUIRED :
    UNIFORM (0,1) RANDOM NUMBER GENERATOR
    STANDARD NORMAL RANDOM NUMBER GENERATOR
    EXPONENTIAL RANDOM MUMBER GENERATOR
    DATA L/O/,SLM,D,D2,D3,STDEU,PTAIL,PBODY,CON,RL,RI,TWO,EL/12*O./
C
    IF(SL.EQ,SLM)
        CO TO 10
    L=INT(SL)
    RL=FLOAT(L)
    RI=1./RL
    EL=EXP(RL-SL)
    TWO=RL+RL
    D=SORT(RL**OLOC(1.+10.18593*RL))
    D2=D+TWO
    D3=D2/0
    STDEU=SORT (0.5*D2)
    PTAIL=D3*EXP(-(D+1.)/D3)
    CON=0.25/THO
    PBODY=EXP(CON)*5ORT(3.141593*D2)
    SUM=PTAIL+PBODY+1.0
    PBODY=1./SUM
    PTAIL=PBODY+PTAIL/SUM
    SLM=SL
C
    10 IF(L.EQ.O) CO TO 99
    1 A=0.
        IX=0
        U=RANF(0)
        IF(U.LT.PTAIL) CO TO 5O
        CALL NORMAL (ISEED,R)
    X=R"STDEU-0.5
    IF(X.GT.D.OR.X.LT.-RL) CD TO 1
    IF(X.GT.0) GO TO 18
    A=1.0
    x=x-2.
    18 IX=INT(X+1.)
    Y=FLOAT (IX)
    U=ALOC(RANF(ISEED))-0.5*R**2+COM
    19 T=Y(Y+1.)/THO
    IF(U.LT.-T.AND.A.EO.O.) GO TO 100
    OR=T*(-1.+(Y+Y+1.)m0.1666567mRI)
    OA=OR-T**2*0.3333333/(RL+(Y+1.)*A)
    IF(U.LT.OA) GO TO ION
    IF(U.GT.OR) GO TO L
    RM=RI*(1.-2*A)
    K=-IX-1
    IF(IX.GT.0) K=IX
    PD=1.0
```

```
        S=0.
        DO 20 J=1,K
        S=5+RM
    20 PD=PD#(1.+S)
        IF(U.LT.(2*A-1.)*ALOG(PD)) CO TO 100
        CO TO 1
    50 IF(U.LT.PBODY) GO TO 100
    X=D-ALOC(RANF(ISEED))*D3
    IX=INT(X+1.)
    Y=FLOAT(IX)
    U=ALOC(RANF (ISEED))-(X+1.)/D3
    IF(U.GT. Y*(Y+1.)/(THO+Y)) GO TO 1
    CO TO 19
    99 IX=0
    100 I X=IX+L
    PD=RANF (ISEED)
    110 IF(PD.LT.EL) RETURN
    IX=IX+1
    PD=PD*RANF (ISEED)
    CO TO 110
    END
    SUBROUTINE PA(XMU.ISEED,IX)
GENERATE THE POISSON RANDOM UARIATE IX WITH MEAN XMU
    USING ATKINSON'S ALGORITHM (XMU.GE.10)
    APPLIED STATISTICS, 28, 1(1979). 29-39
    ALOG(IX FACTORIAL) UIA STIRLING'S APPROXIMATION
    DATA SAUE/-1./
    IF(XMU.EQ.SAUE) GO TO 100
    SAVE=XMU
    B=1.8137993642/SORT(XMU)
    A=B*XMU
    C=ALOC(0.767-3.36/XMU)-XMU-ALOG(B)
    AM=ALOC (XMU)
    100 U=RANF(ISEED)
    X=(A-ALOG((1.-U)/U))/B
    IF(X.LE.-0.5) GO TO 100
    IX=x+0.5
    U=RANF(ISEED)
    D=1.+EXP(A-B#X)
    IF(A-B*X+ALDG(U)(D*D)).LE.C+IX#AM-XLFAC(IX)) RETURM
    CO TO 100
    END
    FUNCTION XLFAC(I)
חתחחתח
function to eualuate log of the factorial i I GT. 7 USE STERLING'S APPROXIMATION
I .LE. 7 USE TABLE LOOKUP
DIMENSION AL(8)
DATA AL O..0.,0.6931471806, 1.791759469, 3.178053830.
1 4.787491743.6.579251212,8.525161361/
IF(I.GT.7) GO TO 100
XLFAC=AL \((I+1)\)
RETURN
100 XLFAC \(=(\mathrm{I}+0.5)=A L O C(F L O A T(I))-I+0.08333333333333 / I\)
```



```
RETURN
END
```

SUBRDUTINE NORMAL（ISEED，x ）
GENERATION OF ONE NORMAL $(0,1)$ UARIATE USING
the algorithm giuen by kinderman and ramage IN THE JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 12／76

CODED BY PETER BONNER AMD MODIFIED BY BRUCE SCHMEISER MARCH 1977 AND JUNE 1977 RESPECTIUELY

DATA TAIL／2．216035867166471／
UU＝RANF（ISEED）
IF（UU．CE．．884070402298758）CO TO 2
RETURN TRIAMGULAR UARIATE 88 PERCENT OF THE TIME
＝RANF（ISEED）
$X=$ TAIL $(1.131131635444180 * \mathrm{UU}+Y-1.0)$ RETURN
2 IF（UU．LT．．973310954173898）CO TO 4
tail computation
3 U＝RANF（ISEED）
$W=$ RANF（ISEED）
T1＝TAIL TAIL 2.0
T＝T1－ALOG（W）
IF（U＊U＊T．GT．TI）CO TO 3
$X=\operatorname{SORT}(2.0 * T)$
IF（UU．GE．．986655477086949）$x=-X$
RETURN
4 IF（UU．LT．．958720824790463） 1.0 TO 6

5 U＝RANF（ISEED）
H＝RANF（ISEED）
$Z=U-W$
C LET $U=\operatorname{MAX}(U, W)$ AND LET $W=M I N(U, W)$
IF（U．GT．H）GO TD 100
TEMP $=U$
$U=\mathrm{H}$
H＝TEMP
100 T＝TAIL－． 630834801921960 W
IF（U．LE．． 755591531667601 ）GO TO 9
DIFF＝EXP（－T＊T＊．5）／2．50662827463100－．180025191068563＊
－（2．216035867166471－ABS（T））
IF（ABS（Z）$=.034240503750111 . L E . D I F F)$ COTO 9
GO TO 5
6 IF（UU．LT．． 911312780288703 ）GO TO 8
SECOND NEARLY LINEAR DENSITY
7 U＝RANF（ISEED）
H＝RAMF（ISEED）
$\mathrm{Z}=\mathrm{U}-\mathrm{W}$
C LET $U=\operatorname{MAX}(U, W)$ AND LET $W=M I N(U, W)$
IF（U．GT．W）CO TO 101
TEMP $=U$

```
            U=N
            H=TEMP
    101 T=.4797274042224441+1.105473661022070%W
        IF(U.LE..872834976671790) GO TO 9
        DIFF=EXP(-T*T*.5)/2.50662827463100-.180025191068563*
    * (2.216035867166471-ABS(T))
        IF(ABS(Z)*.049264496373128.LE.DIFF) CO TO S
        GO TO ?
C
        | U=RANF (ISEED)
        W=RANF (ISEED)
        Z=U-W
C LET }U=M=MAX(U,W) AND LET H=MIN(U,W
        IF(U.GT.W) GO TO 102
        TEMP=U
        U=H
        H=TEMP
    102T=.479727404222441-.595507138015940%W
        IF(U.LE..805577924423817) CO TO 9
        DIFF=EXP(-T*T#.5)}<2.50662827463100-.180025191068563**
        * (2.216035867166471-ABS(T))
        IF(ABS(Z)*.053377549506886.LE.DIFF) CO TO 9
        GOTO B
    9 }x=
    IF(Z.GE.0.0) }x=-
        RETURN
        END
```

secunity elassification or this page (whon dete Enionod

17. OISTRIBUTION STATEMENT (Of the eoetrect entered in glock 20. if different (ram Report)

TG SUPPLEMENTARY NOTES

19 GEY woRDS fConilnue on raverge ide If necesadry and ldently by bleck numbery
Simulation Process Generation
Monte Carlo Poisson
Sampling

Approximate algorithms have iong been the only available methods for generating Poisson random variates when the mean is large. A new algorithm is developed that is exact, has execution time insensitive to the value of the mean, and is valid whenever the mean is greater than ten. This algorithm is compared to the three other algorithms which have been developed recently for generating, Poisson variates when the mean is large. Criteria used are set-up time, marginal execution time, memory requirements, and lines of code. New simple tight bounds on poisson probabilities contribute to the speed of the algorithm, but are useful in a general context. In addition, Poisson variate generation is surveyed.
 :/v0102-014-601

