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W
hereas di�erent materials respond to stress by hugely 
di�erent amounts, Poisson’s ratio, ν, is contained within 
narrow numerical bounds, embracing the mechanical 

properties of every isotropic material, from the most incompressible 
to the most extendable, from the so�est solid to the strongest liquid. 
Convoluting mechanical response at the atomic level with the inter-
vening linkages to the macroscopic scale, Poisson’s ratio provides a 
universal way to contrast the structural performance of real materi-
als, whether homogeneous or not. Taking this wide perspective, we 
show how Poisson’s ratio1 has provided inspiration for creating new 
solids and liquids, and challenges in understanding existing ones. 
Concentrating on glasses, ceramics, polymers and metals, we review 
the progress made in understanding modern materials and gener-
ating new ones such as those with negative Poisson’s ratios. �e 
in�uence of packing and connectivity is emphasized, together with 
overarching relationships recently discovered between Poisson’s 
ratio and relaxation in supercooled antecedents, and also between 
fracture and elasticity in the solid state. In the 200th year since the 
publication of Poisson’s Traité de Mécanique2 (Box 1), this is a good 
time to take stock of the utility of Poisson’s ratio.

Definition and physical significance
Poisson3 de�ned the ratio ν between transverse strain (et) and 
longitudinal strain (el) in the elastic loading direction as ν = –et/el 
(Box 1). Once it was recognized that elastic moduli are independ-
ent4,5, it could be seen that the two most appropriate for formulat-
ing ν are the isothermal bulk modulus, B = –VdP/dV = 1/κ, where 
κ is the isothermal compressibility, and the shear modulus G = σt/
(2et) (ref. 6), as these are representative of the change in size and 
shape respectively. For isotropic materials, ν must satisfy –1 ≤ ν ≤ ½ 
(Box  2). �is numerical window is illustrated in Fig.  1a where 
ν is plotted as a function of B/G for a host of materials. Starting 
with compact, weakly compressible materials such as liquids and 
rubbers, where stress primarily results in shape change, ν →  ½. 
For most well-known solids such as metals, polymers and ceram-
ics, 0.25  <ν  <  0.35. Glasses and minerals are more compressible, 
and for these ν → 0. For gases, ν = 0, and network structures can 
exhibit ν <  0  (ref. 7). Materials with negative Poisson’s ratio are 
called ‘auxetic’8. Re-entrant foams were the �rst reported9 (Fig. 2a) 
but subsequently it was shown that auxeticity is a common feature 
of a variety of honeycomb structures and networks (Fig.  2b–d), 
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where ν can take both positive and negative values, depending on 
orientation7,9–16, with aggregate values that can be negative. Critical 
�uids are the most highly compressible materials for which ν → –1. 
�e huge diversity of elastic properties of modern and natural mate-
rials can also be viewed in plots of B versus G (ref. 11), as shown 
in Fig. 1b. �is is also helpful in distinguishing ductile from brittle 
behaviour beyond the elastic limit (Fig. 1c). 

Nonlinear regime �e concept of Poisson’s ratio can be extended 
into the nonlinear regime17–19, to describe elastomers such as rubbers 
as well as glass �bres, when subjected to gigapascal tensile stresses. 
Spectacular changes of ν also occur in anisotropic auxetic materi-
als outside the isotropic range of –1 ≤ ν ≤ ½ at small strains. For 
instance, ν was found to decrease from 0 to –14 for an anisotropic 
expanded PTFE in a true strain range of 0.03 (ref. 17). In visco 
elastic media (foodstu�s such as starch and thermoplastics such as 
poly(methyl methacrylate), PMMA), the mechanical response is 
not instantaneous or isochronal (Fig. 2e). Instead –et/el de�nes an 
apparent ν regardless of the constitutive law that de�nes whether 
it is elastic or not. In particular, ν*(f) is a complex function of fre-
quency f or a function ν(t) of time t which can be obtained from 
creep and stress relaxation functions18,19. Volume and shape change 
processes can have di�erent kinetics, and deformation is usually 
the combination of elasticity, delayed elasticity and various inelastic 
processes. Despite these complexities an increase of ν(t) with time 
is o�en reported20, Poisson’s ratio tending to ½ for most polymer 
materials. �is can be viewed as a shi� from elasticity (accompanied 
by volume change) to viscoelastic or even viscoplastic �ow (almost 
volume conservative) as time passes (Fig.  2e). Conversely, ν*(f) 
decreases with increasing frequency because the elastic regime is 
favoured at high rates21.

Physical signi�cance Materials with di�erent Poisson’s ratios 
behave very di�erently mechanically. Properties range from ‘rub-
bery’ to ‘dilatational’, between which are ‘sti� ’ materials like metals 
and minerals, ‘compliant’ materials like polymers and ‘spongy’ mate-
rials like foams. �e physical signi�cance of ν is revealed by vari-
ous interrelations between theoretical elastic properties6. �ese are 
illustrated in the Milton map of bulk isothermal modulus B versus 
shear modulus G (Fig. 1b)11,22. When B/G >> 1 and ν → ½ in Fig. 1b 
(vertical axis), materials are extremely incompressible, like rubber, 
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most liquids and also granular solids. When B/G << 1 and ν → –1 
in Fig.  1b (horizontal axis), materials are extremely compressible, 
examples being re-entrant foams and molecular structures7,11,14,16,23,24. 
Most common materials fall in between these extremes. Materials 
possessing sti� arms or struts in directions normal to the loading 
axis, such as honeycomb structures loaded along the c axis, will 
resist transverse contraction and exhibit ν ≈ 0 as cork does (Fig. 2d) 
or ν < 0 as some zeolites might (Fig. 2b)25. For ceramics, glasses and 
semiconductors, B/G ≈ 5/3 and ν →1/4 (refs 26–29). Likewise, met-
als are sti� 6,30,31, B/G ranging from 1.7 to 5.6 and ν from 0.25 to 0.42 
(ref. 32; Fig. 1c). In sharp contrast, polymers are compliant and yet 
they share similar values: that is, B/G ≈ 8/3 and ν ≈ 0.33 (refs 18–20), 
the di�erence relating to the magnitude of the elastic moduli, 
decades smaller than for inorganic materials (see Fig. 5). 

�rough the elastic moduli, Poisson’s ratio can also be expressed 
in terms of the transverse (shear) and longitudinal (compressive) 
speeds of sound, Vt and Vl respectively6 (Box  2). �ese speeds 
and their ratio are pertinent to seismic waves studied in geophys-
ics26. In condensed matter, where Vt and Vl can be measured by 
Brillouin scattering or shock wave experiments, Poisson’s ratio 
can be followed through abrupt changes in mechanical properties. 
For example, when metals melt, ν increases from ~0.3  to 0.5 

(refs 33–37). During the collapse of microporous crystals, ν rises 
from directionally auxetic values15,25 to isotropic values of 0.2 
typical of many glasses38. With densi�cation Poisson’s ratio for 
glasses continues to rise, for silica increasing from 0.19  to 0.33 

(ref. 39; see Fig. 5d).

Poisson’s ratio and materials
Poisson’s ratio and packing density Poisson’s ratio is intimately 
connected with the way structural elements are packed. For gold 
or platinum-based bulk metallic glasses, for example, which repre-
sent some of the densest metals because of the variety of atom sizes, 
ν → ½. Crystalline metals are less densely packed, typi�ed by hard 
metals like steel for which ν ≈ 1/3. By contrast, the density of cova-
lent solids is less and so is Poisson’s ratio. Finally, auxetic materials 
have dilational re-entrant architecture and ν < 0.

�is correlation between ν and atomic packing density Cg has 
only recently been recognized (Fig. 3) because it is rather di�cult 
to de�ne in complex solids. Concomitant e�ects, like temperature 
and pressure, also sometimes obscure the underlying structural 
e�ect. �e case of pure crystalline substances seems particularly 
complicated. At �rst sight Poisson’s ratio tends to increase with the 
atomic packing density so that νcd < νbcc < νfcc,hcp (where cd, bcc, fcc 

Siméon Denis Poisson (1787–1840) was born in the village of 
Pithiviers (Loiret, France). A brilliant scholar, especially talented 
in mathe matics, he excelled in the entrance exam for the pres-
tigious École Polytechnique in Paris. He then devoted his life to 
the exploration of various �elds of mathematical physics, and to 
solving many problems of great practical importance. Poisson’s 
name survives in Poisson’s integral, Poisson’s distribution in statis-
tics, Poisson’s constant in electricity…and Poisson’s ratio. In 1811 
Poisson published the Traité de Mécanique1,2, pictured here, which 
remains a classical handbook in mechanics. It came in two vol-
umes and can be found in national libraries worldwide as well as 
on the Internet1.

An analysis of the shape and volume changes of a �uid under 
arbitrary loading is introduced in the second volume2. However, 

it was only in 1827 that Poisson3, starting from an explicit 
molecular interaction hypothesis formulated several years earlier 
by the French engineer and physicist Navier, proposed an expres-
sion (see right-hand image) for the change in cross-sectional area 
(δS/S = –β) stemming from the elongation (δL/L = e) of an elastic 
wire and suggested that β = e/2. As β = 2νe, so ν = 1/4. Poisson con-
sidered this result as being in perfect agreement with nature based 
on an experiment conducted on a brass rod (ν ≈ 0.357) by his con-
temporary Cagniard de Latour. But it became clear, �rst through 
Cauchy in his Exercices de Mathématiques4 and later especially a�er 
the experiments performed by Voigt5, that two independent mod-
uli of elasticity are necessary to characterize the elastic behaviour of 
isotropic materials6. Accordingly ν must di�er from one material to 
another, even crystalline materials in the same class.

Box 1 | Historical perspective.
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and hcp stand for cubic-diamond, body-centred cubic, face-centred 
cubic and hexagonal close-packed crystalline structures respec-
tively). Moreover, for a given crystalline structure and valence, ν 
mostly increases with atomic number Z, and indeed the electronic 

band structure and the valence electron density come into play. �is 
is exempli�ed for the case of metals with high electrical conductiv-
ity, such as copper, silver and gold, which also have high Poisson’s 
ratio (Figs 1c and 3).

Box 2 | Poisson’s ratio, Angell plot, non-ergodicity and terahertz vibrations.
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Defining Poisson’s ratio
Poisson’s ratio ν compares the strains in the transverse et and long-
itudinal el directions under uniaxial stress: ν  =  –et/el  =  –(ΔD/D)/
(ΔL/L) (panel a)6. For isotropic materials, ν can be expressed in terms 
of the bulk modulus B and the shear modulus G, which relate to the 
change in size and shape respectively: ν = [3(B/G – 2)]/[6(B/G + 2)] 

(ref. 26). �is de�nes numerical limits for Poisson’s ratio, –1≤ ν  ≤ ½ 
for 0 ≤ B/G < ∞. Poisson’s ratio can also be written in terms of the 
longitudinal and transverse speeds of sound, Vl and Vt, respectively26: 
ν  = [½(Vt/Vl)2 – 1]/[(Vt/Vl)2 – 1]. Alternatively33, ν = [3 – (Vl/VB)2 ]/
[3 + (Vl/VB)2 ] where VB = √(B/ρ), the so-called bulk speed, which is 
directly measured in liquids, where ν = ½ and Vt = 0. For examples and 
demonstrations, see http://silver.neep.wisc.edu/~lakes/Poisson.html.

Melt fragility
Panel b shows an Angell plot, log η versus Tg/T, of glass-forming 
liquids108 where η is the shear viscosity and Tg the glass transition. 
�e glass transition is de�ned by η(Tg) = 1012 Pa for all glass-forming 
liquids. From the Maxwell viscosity relation (η = G∞τ)79 the Angell 
plot can also be expressed as a function of structural relaxation 
time τ: log τ versus Tg/T. Because for many supercooled materials 
the instantaneous shear modulus G∞ lies in the range 10 to 30 GPa, 
the glass transition can also be de�ned by σ(Tg) ≈ 100 s. �e melt 
fragility is de�ned by m = [∂ log η, τ(T)/∂(Tg/T)]T=Tg, which distin-
guishes strong liquids like silica (m ≈ 20) from fragile liquids like 
PMMA (m ≈ 118) at Tg. At the melting temperature Tm, which is 
typically related to the glass transition Tg by Tm/Tg  ≈ 3/2, the vis-
cosities of strong and fragile liquids can di�er by many orders of 
magnitude, directly a�ecting the viscoelastic timescale of melting. 
Examples of m changing from strong to fragile liquids with com-
pression are shown in Fig. 8c and d.

Non-ergodicity in supercooled liquids and glasses
�e non-ergodicity factor f0 versus T/Tg, which is measured 
in Brillouin and inelastic X-ray scattering113, records the 

departure from thermodynamic equilibrium and increases 
from the supercooled liquid to the glass as the temperature falls 
(panel c; CKN is K+Ca2+NO3

–)79. In particular, f0 = (1 – αT/Tg)–1, 
where α is a constant105,106. �e factor f0 is a measure of the magni-
tude of density �uctuations present at a given temperature and to 
a �rst approximation100 f0 ≈ (Vt/Vl)2 = 3G/(4G + 3B). It follows that 
α ∝ B/G, in which case α scales with Poisson’s ratio as both scale 
with m. Figure 7b illustrates empirically m versus α for a variety 
of organic and molecular glass-forming liquids with a wide range 
of fragilities.

Terahertz vibrations and the boson peak
Terahertz vibrations, measured directly by inelastic neutron scatter-
ing, are typi�ed by librational modes that characterize the dynam-
ics of tetrahedral glasses and microporous crystals94, as illustrated 
in panel d. �ese dynamics are embraced by the boson peak79 illus-
trated in Fig. 8a and b. For glasses in general, the intensity of the 
boson peak ABP is governed by the statistical �uctuations in den-
sity, which are related in turn to the elastic moduli101: ABP ∝ G/B. 
Accordingly, from panel a, the size of the Boson peak at a given 
temperature is reciprocally related to Poisson’s ratio and empiri-
cally to the parameter α from panel c, which is inversely related to 
the non-ergodicity factor f0. From Fig. 7a and b, ABP must also be 
inversely related to the melt fragility m, which (from panel b) can 
di�er by orders of magnitude, from the strongest to the most frag-
ile glass-forming liquids. Furthermore, from Fig. 1c and 7c, ABP for 
a glass decreases as the fracture energy increases, distinguishing 
brittle from ductile materials. Glasses obtained from strong liquids 
are the most brittle and have the largest boson peaks. Conversely, 
boson peaks are smallest in glasses quenched from fragile liquids. 
Broadly speaking, terahertz vibrations drive the dynamics of glass 
formation and phase transformations94 (Fig. 5)—including melt-
ing. Figure adapted with permission from: panel b, ref. 107, © 2001 
NPG; panel c, ref. 79, © 2007 Taylor & Francis.
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Considering polycrystalline solids, these are macroscopically 
isotropic and have Poisson’s ratios of νC(0.2) < νSi(0.22) < νGe(0.278) 
for tetravalent elements, and for the hcp polymorphs of 
νZn(0.25)  <  νCd(0.3) or νTi(0.32)  <  νZr(0.36)  <  νHf(0.37), just to 
mention a few. Lead (νPb = 0.44) and thallium (νTl = 0.45) with high 
Z have remarkably high Poisson’s ratios. In the case of crystalline 
structures, the valence electron density plays a key role, and ab-initio 
calculation is becoming an increasingly popular approach follow-
ing the early work of Cohen27. Subsequently, the cases of diamond 
semiconductors (νSi = 0.22 and νGe = 0.28) were reported28, as were 
the fullerites29, molybdenum40 and most recently dental amalgams41. 
�ere are, however, isolated cases where the interpretation is not 
straightforward. Most data are measured under ambient condi-
tions, whereas ν is known to generally increase with temperature 
(see Fig.  4b). High melting points thus favour low Poisson’s ratio 
(everything else remaining unchanged) and vice versa. �is is pos-
sibly why tungsten, being more refractory than molybdenum, has a 
smaller Poisson’s ratio and why beryllium, combining low Z with a 

comparatively high melting point (1,560 K), exhibits a remarkably 
small Poisson’s ratio of 0.032 and is also very brittle.

Paradoxically, complex materials such as polycomponent glasses 
follow simple monotonic trends. In this case the atomic packing 
density Cg is de�ned as the ratio between the minimum theoreti-
cal volume occupied by the ions and the corresponding e�ective 
volume of the glass (Fig.  3). For instance, Cg is about 0.52  for a 
standard window glass and 0.45 for silica glass. An estimation of the 
packing density in metallic glasses can be obtained using the atomic 
radii of the corresponding constituent metals. Poisson’s ratio, which 
covers a wide range for inorganic glasses, increases almost monot-
onically with Cg (Fig.  3). Eventually, within limited compositional 
ranges, linear trends can be observed42. Much earlier, Makishima 
had proposed that ν = ½ − 1/7.2Cg for silicate glasses43 but without 
knowledge of accurate atomic glass network parameters, such as 
interatomic distance and coordination number. 

Nevertheless, a direct comparison of Poisson’s ratio for specimens 
of identical composition and initial structure but submitted 
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to treatments a�ecting the packing density (isostatic pressing, 
agitation, annealing to promote structural relaxation) provides clear 
evidence for a sensitive increase of ν in most cases39,44,45. For exam-
ple, for silica glass this lies between 0.15 and 0.19 under ambient 
conditions. A�er treatments under high pressure (typically above 
10 GPa), ν increases to 0.25 (ref. 46), reaching 0.33 above 30 GPa 
(ref. 39; see Fig.  5d), the e�ect of densi�cation depending on the 
initial ν value47. �e same situation is observed with sand: for loose 
sand ν is typically around 0.2 whereas dense sand reaches 0.45 
and saturated cohesive soils are almost incompressible (ν = 0.5)48. 
�e increase of ν with Cg is observed either along elastic loading 
paths or a�er permanent densi�cation46. A direct manifestation of 
the correlations between ν and Cg (Fig. 3) and densi�cation47 con-
cerns the way matter deforms under high contact pressure, such as 
during indentation or scratch loading46. For low-Cg materials (vit-
reous silica and porous materials), there is su�cient free volume 
for densi�cation to occur so that the stress is accommodated by the 
collapse of matter beneath the contact area. For high-Cg materials 
(precious metals, metallic glasses, clay), deformation is nearly iso-
choric or involves some dilation, and proceeds by localized shear  
(Fig.  6)46,49–51. Deformation during indentation is mainly a pro-
jection of elastic behaviour before reaching the yield point. 

Materials with small Poisson’s ratio are more easily compressed 
than sheared (small B/G), whereas those with high Poisson’s ratio 
resist compression in favour of shear (large B/G)46. �e ability of a 
material to dissipate the elastic loading energy by any permanent 
deformation mechanism ultimately governs its cracking resistance. 
Indeed the brittle–ductile transition in terms of ν is striking—par-
ticularly in metals (Fig. 7c).

Connectivity and temperature High packing density is incompat-
ible with structures that are highly connected; consider the random 
packing of balls (0D) versus rods (1D) or polyhedral frames (2D 
and 3D) in a box. Judging from the correlation with Cg (Fig. 3), ν is 
expected to decrease with increasing connectivity (Fig. 4a), not least 
because sti� arms in cross-linked structures oppose transverse con-
traction upon tensile loading. �e relatively low values of B/G and 
hence ν for diamond, fullerite and hard materials in general (Fig. 3) 
is an indication of the high degree of directional covalent bonding. In 
the case of glasses, the degree of cross-linking of the atomic network 
built on glass-forming elements can be used as a �rst approach, in 
lieu of an accurate description based on the electron band structure.

For glasses with covalently bonded atoms the mean coordina-
tion number <n> is a useful index of the connectivity (Fig. 4a). For 
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locations and the arrows indicate the action underlying the displacive transition. Figure reproduced with permission from: Top panel, ref. 7, © 1992 AAAS; 

bottom panels, ref. 75, © 2008 NAS. d, Cellular structures: honeycomb structure found in cork66 normal to the direction of growth (upper) where ν ≤ 0 and 

parallel to this (middle) where ν > 0. Semi-re-entrant honeycomb structure proposed to model zero Poisson’s ratio materials (lower)67. Figure reproduced 

with permission from: Top panel, ref. 66, © 2005 Maney; bottom panel, ref. 67, © 2010 Wiley. e, Time-dependent Poisson’s ratio for poly(methyl 

methacrylate), PMMA, showing the gradual rise in ν(t) with relaxation under uniaxial shear from the instantaneous elastic value of 0.33 to the viscoelastic 

and eventual incompressible bulk value of 0.5. Figure reproduced with permission from ref. 20, © 1997 Wiley.
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example, for a GexSe1–x (x < 1) glass, <n> = 2(x + 1). Provided <n> is 
less than 2.1, the volume fraction of Ge-containing chains is negligi-
ble so that deformation essentially proceeds through the alignment 
of chains, with elastic properties expected to be dominated by weak 
inter-chain van der Waals forces, analogous to polymeric materials. 
Accordingly shear resistance is small and ν large. As <n> increases, 
covalent bonds come into play and a three-dimensional network 
builds up, leading to a signi�cant decrease in ν. For oxide glasses, 
the number of bridging oxygen atoms, nBO, per glass-forming cation 
(Si, Al, Zr, As, B, P and so on) provides a straightforward estima-
tion of network crosslinking, where BO refers to bridging oxygens. 
For pure oxide glasses such as As2O3, B2O3 and P2O5, nBO = 3 and 
ν ≈ 0.3, whereas for a-SiO2 and a-GeO2, nBO = 4 and ν ≈ 0.2. Nuclear 
magnetic resonance measurements lead mostly to experimen-
tal nBO values that are very close to the theoretical ones. It should 
be emphasized, though, that <n> and nBO are not equivalent. For 
instance, in the case of a-SiO2, <n> = 2.67 whereas nBO = 4. Highly 
crosslinked networks, such as silica glass, lead to small Poisson’s 
ratios (0.19), whereas weakly correlated networks, such as chain-
based chalcogenide glasses or cluster-based metallic glasses, show 
values between 0.3 and 0.4 (Fig. 4a)42. Hence, as already noticed by 
Bridge and Higazy52 in a study limited to some oxide glasses, and 
by Sreeram et al.53 for chalcogenide glasses and later generalized by 
Rouxel42 for a wide range of glasses including covalent and metallic 
ones, ν depends almost linearly on connectivity and increases as the 
dimensionality of the structural units decreases.

Extreme cases are illustrated on the one hand by silicon 
oxycarbide glasses, where the formation of CSi4 tetrahedra based 
on fourfold covalent carbon atoms further enhances the network 
cross-linking over that of a-SiO2, with ν reaching 0.11  for the 
polymer-derived SiO1.6C0.8 composition54. On the other hand, for 
precious-metal-based metallic glasses, which are considered to con-
sist of quasi-equivalent cluster-type units (0D) eventually packed 
with icosahedral-like medium range order55,56, ν approaches 0.4. 
Judging from a Poisson’s ratio of 0.3, the glassy ice network might 
be based on chain-like hydrogen-bonding of water molecules or 
contain cluster-like structural units, for example icosahedral clus-
ters as suggested by Hessinger et al.57. However, di�raction stud-
ies of low-density amorphous (LDA) ice reveal a hydrogen-bonded 
tetrahedral network mainly comprising sixfold rings58, rather like 
water. With the application of pressure, crystalline hexagonal ice 

transforms into high-density amorphous (HDA) ice59. �is di�ers 
from LDA ice by the presence of interstitial molecules58 that inter-
rupt the network topology.

�e material composition, however, is insu�cient to interpret the 
observed correlation between ν and the connectivity. Temperature 
comes into play. �is is because elastic properties are very sensitive 
to temperature and ν is expected to increase in crystalline materi-
als as the melting point (Tm) is approached or in glasses above the 
glass transition temperature (Tg) (Fig. 4b and 5c). A steep increase 
in Poisson’s ratio reveals rapid network depolymerization, as is the 
case for organic chain polymers such as glycerol or polystryrene 
and also for a-B2O3 (ref. 42) which transform into fragile liquids 
(Box 2). In cellular materials, such as open-cell foams, the reduction 
of the volume fraction of solid (φ) weakens the interconnections 
favouring bending with respect to axial deformation, analogous to 
an increase of temperature in dense solids. Indeed the analysis of 
foam structures60 predicts that ν increases as φ decreases. For glasses 
like silicates and aluminosilicates forming strong liquids above Tg 
(Box 2), ν increases far more slowly (Fig. 4b). 

In the face of this complexity, we note that glasses o�er a unique 
opportunity to tune the composition smoothly to change the pack-
ing density and/or the connectivity. One can hence produce glasses 
with Poisson’s ratio à la carte.

Auxetic materials �e theory of elasticity allows values of Poisson’s 
ratio for isotropic solids down to –1 (Fig. 1a). Although for years the 
possibility of negative ν was excluded61, re-entrant foams (Fig. 2a) 
achieved values as negative as –0.8 (refs 9–13). Fabricated under 
pressure, they are isotropic if compression is triaxial or anisotropic 
under extrusion conditions. �ey have been called ‘anti-rubber’ 
because they are opposite in elastic response to rubber (Fig. 1b). �e 
e�ect in foam or honeycomb occurs by the unfolding of re-entrant 
cells as they are stretched (Fig. 2a). By contrast in typical foams, the 
cells are convex so their deformation gives rise to a ‘normal’ positive 
Poisson’s ratio. A coarse cell structure is not required to predict a 
positive or negative Poison’s ratio; classical elastic properties have 
no length scale62. Rigid mechanical models, such as rotating hinged 
squares and triangles, replicate auxetic behaviour and serve as mod-
els for molecular structures and designs (Fig. 2b)7,8,25,63,64,. It is not 
necessary to have empty space in a microstructure to achieve the 
e�ect: hierarchical two-phase laminates with a chevron structure and 

Figure 3 | Poisson’s ratio and atomic packing. Poisson’s ratio ν as a function of the atomic packing density Cg = ρΣifiVi/ΣiMi, where ρ is the specific mass, N is 

Avogadro’s number, rA and rB are the ionic radii, fi is the molar fraction and Mi is the molar mass. For the ith constituent with chemical formula AxBy, Vi = (4/3)

πN(xrA
3 +yrB

3). The distinct symbols show that there are monotonic and nearly linear increases of ν with Cg for each separate chemical system42. Figure 

adapted with permission from ref. 42, © 2007 Wiley.
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multiple length scales can approach the isotropic lower limit ν = –1 
(ref. 11).�ese microstructures are played out in the α-cristobalite 
network (Fig. 2c). Microstructures such as composites with rotating 
discs and units, magnetic �lms, hypothetical granular structures or 
plasmas in neutron stars can also exhibit such e�ects24,64,65. 

Negative Poisson’s ratio can result in enhanced toughness. �e 
mode I (opening) fracture stress of a structure from a pre-exist-
ing �aw is proportional to √[γE/a(1 – ν2)], where γ is the fracture 
surface energy, E is Young’s modulus, and a is the critical �aw 
size. For Poisson’s ratio approaching –1, the material is expected 
to become very tough. Likewise it should resist indentation as 
the contact surface area is proportional to (1  –  ν2)/E. Even if the 

material is compliant, provided ν is close to the thermodynamic 
limit of –1 (Fig. 1b), it will be di�cult to indent. Other anticipated 
enhancements include improved shear sti�ness, self-adaptive vibra-
tional damping and shock absorption, with applications in body 
armour, increased-sensitivity piezoelectric composites, �bre com-
posites with greater pull-out resistance, a natural tendency to form 
dome-shaped surfaces (synclastic curvature), foams with improved 
�lter performance and drug release, more comfortable textiles with 
reduced clothing pressure and so on8,25,64.

Anisotropic behaviour Anisotropic materials, including crystals 
and �brous composites, have directional elastic properties where ν 
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can be negative, leading to unusual or extreme behaviour as well 
as coupling between stretch and shear or bend and twist. Carbon 
nanotube sheets16, for example, exhibit in-plane auxeticity. By con-
trast, cork has an anisotropic cellular structure (Fig. 2d). If tensile 
stress is applied normal to the radial growth, ν  ≤ 0 in the direction 
of growth and ν  > 0 orthogonal to this66. By alternating entrant and 
re-entrant honeycomb layers, Grima et al. have shown how struc-
tures with ν ≈ 0 can be generated in particular directions, leading to 
cylindrical shaped curvatures67.

Directional auxetic properties were originally envisaged by Saint-
Venant68 for anisotropic materials and later by Lempriere69 for com-
posites. In inorganic materials, anisotropic auxetic behaviour was 
suggested for iron pyrites6 with ν = 1/7 in some directions. Arsenic, 
antimony and bismuth70 are highly anisotropic in single-crystal 
form and their calculated Poisson’s ratios are negative in some direc-
tions. In α-cristobalite, Poisson’s ratios range from +0.08  to –0.5, 
depending on direction (Fig. 2c)7,71, with an aggregate expected to 
be negative25. Many cubic metals when stretched in the [110] direc-
tion become auxetic14. Likewise, many zeolites show o�-axis swings 
in ν on rotation15,25. In�uenced by the presence of extra-framework 
water and also templating molecules, recent calculations predict 

oscillations in ν of 0.5 to –0.5 for 45° rotations72. Such anisotropic 
auxetic behaviour might well in�uence adsorption chemistry, if 
crystals are stressed along speci�c directions25,73.

Broadly speaking, extreme Poisson’s ratios in single crystals are 
found to be strongly correlated with elastic anisotropy74. For exam-
ple, in Ag3[Co(CN)6] the metals form an alternate layered structure 
containing auxetic motifs (Fig. 2c) which expands along the c axis 
but contracts in the basal plane under isotropic compression75: that 
is, the compressibility κ has di�erent signs in di�erent crystallo-
graphic directions. �is behaviour is also expected to be associated 
with anisotropic Grüneisen parameters, whereby negative linear 
compressibility in speci�c directions should be accompanied by 
negative thermal expansion, which is also observed76 and is huge 
compared with related compounds like H3[Co(CN)6], ZrW2O8 or 
Cd(CN)2 (ref. 77).

Poisson’s ratio during phase transformations
At di�erent temperatures and pressures, crystalline materials can 
undergo phase transitions78 and, attracting considerable debate, so 
too can glasses and liquids58,79–81. Whenever a phase boundary is 
crossed or criticality is approached, the isothermal compressibility 
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κT rises anomalously. In �uids this derives from the reorganization 
of density �uctuations and in crystals from recon�guration of 
nano domains. Accordingly, B/G →  0 and therefore Poisson’s ratio 
decreases. Figure  5a illustrates this for a volume transition in a 
polymer gel close to a critical point82 and Fig. 5b for the α–β tran-
sition in crystalline quartz83,84. Similar behaviour is reported for 
di�erent gel concentrations85 and for di�erent quartz grain sizes84, 
both of which a�ect the phase transition temperatures. In all cases 
the transitions are of �rst order, and accompanied by a very nar-
row minimum in ν, mirroring the behaviour of the isothermal bulk 
modulus B. �ese substantial negative swings in ν provide a dis-
tinctive universal signature for phase transitions, whatever the type 
of material. In mixed valence transitions in YbInCu4 (ref. 61), the 
cubic crystal structure does not change; but the bulk modulus sof-
tens and Poisson’s ratio drops over a narrow range of temperature 
near 67 K. So�ening of the bulk modulus also occurs for the fer-
roelastic cubic–tetragonal transition in BaTiO3, in the vicinity of the 
Curie point, with an auxetic minimum in ν (ref. 86).

Negative elastic moduli, for which Poisson’s ratio falls outside the 
range –1 to ½, entail instability (Fig. 1b) which in some cases can be 
constrained. For transformations governed by stress-induced di�u-
sion, the compressibility is predicted to diverge87, the bulk modulus 
so�ening to zero corresponding to a substantial lowering of ν. But 
this is a slow process for which the relaxation time increases as the 
critical temperature is approached. For anisotropic single crystals 
such as KH2PO4, the shear elastic tensor element C66 so�ens to zero 
during phase transformation8. So�ening of the shear or the bulk 
modulus of perovskite minerals11 has been reported, and marten-
sitic transformations are also characterized by a change in shear 
elastic moduli associated with changes in crystal structure. Poisson’s 
ratios are typically not reported in such studies; in anisotropic solids 
they depend on multiple tensor elements. For the glass-to-rubber 
transition in polymers the shear modulus may change by more than 
a factor of a thousand, and the bulk modulus by about a factor of 
two18. As illustrated in Fig. 2e, ν is about 0.3 in the glassy regime ris-
ing to nearly 0.5 in the rubbery regime20. Inorganic glasses exhibit 
similar behaviour above the glass transition Tg. �e occurrence of 
�ow indicates that the shear modulus tends to zero and Poisson’s 
ratio to 0.5, as can be clearly seen for fragile melts in Fig. 4b.

Shock-wave melting of metals Despite its importance across the 
physical sciences, melting remains incompletely understood in 
terms of temperature–pressure melting curves and the underlying 
equations of state26. Nevertheless, signi�cant experimental advances 
have been made in high-pressure/high-temperature physics where 
Poisson’s ratio o�ers a unifying approach33–37,83,88. Figure  5c com-
piles data from the shock-wave melting of metals. �e inner and 
outer pressure limits of the Earth’s core surround the melting of 
Fe, underlining the relevance of these experiments for determin-
ing the temperature of the core by parameterizing the equations of 
state36. Melting metals at these extreme temperatures and pressures 
is clearly also relevant in developing new materials capable of with-
standing extreme conditions. 

Shock melting is accompanied by a sharp increase in Poisson’s 
ratio to the liquid value of 0.5, pinpointed by the intersection of the 
shock adiabatic, or Hugoniot, with the melting curve obtained from 
the equations of state 35. Despite the adiabatic nature, most of the 
melting thresholds are initiated by the small dip in ν expected for 
�rst-order transitions. Melting is traditionally understood to occur 
as the average root-mean-square displacement of atoms in the solid 
state approaches ~10% of the average interatomic separation—the 
so-called Lindemann criterion26. More speci�cally, melting coin-
cides with the momentary rise in κ, the onset of intersite di�usion 
and G → 0. All these related components, both before melting and 
on melting, contribute to the striking melting signature in Poisson’s 
ratio (Fig. 5c).

Another interesting observation from Fig.  5c is the same 
crystalline metallic phase generally persisting up to Tm. For molyb-
denum, though, melting is anticipated by an intermediate phase 
transition near 150 GPa. Originally interpreted as a bcc to hcp tran-
sition35, recent X-ray measurements of the melting curve for Mo, 
made in a diamond-anvil cell, suggest that values of Poisson’s ratio 
before Tm, which are unusually high for bcc metals (Fig. 1c), point 
to a new intermediate non-crystalline phase34—perhaps a low-den-
sity polyamorph. Also included in Fig. 5c are the brittle–ductile ν 
thresholds taken from Fig.  7c, Mo for example melting from the 
plastic region, with Fe on the borderline.

Polyamorphic phases in tetrahedral glasses Polyamorphism 
occurs when amorphous phases in the same liquid or super-
cooled state share the same composition, but di�er in density and 
entropy79,89. �e HDA phase generally has higher entropy than 
the LDA phase89, in which case the slope of the phase boundary 
dT/dP = dV/dS < 0. Polyamorphism is not in dispute, but whether 
or not transformations between polyamorphic phases are of �rst 
order is controversial38,58,59,79,80,89,90. In addition to LDA and HDA 
amorphous ice 58,59, polyamorphism has been reported in many tet-
rahedral glasses89. For silica under pressure Si–O polyhedra change 
from tetrahedral coordination eventually to octahedral coordina-
tion91 reminiscent of the high-density SiO2 crystalline phase sti-
shovite. For both HDA ice58 and densi�ed silica39, careful in  situ 
sound velocity experiments reveal major changes in elastic moduli 
at these phase transformations. Values of Poisson’s ratio are shown 
in Fig. 5d for silica39. Starting from low values of ν indicative of an 
LDA phase, densi�cation results in a signi�cant rise in ν as the HDA 
phase is formed, but this is preceded by a downward dip, indica-
tive of a �rst-order transition. Decompression returns a densi�ed 
tetrahedral phase39.

Since these discoveries, a wealth of new densi�ed HDA phases 
obtained from crystalline precursors have been reported79,92. 
Creating LDA phases by this route initially proved more challeng-
ing, as decompression without cavitation is di�cult to achieve in 
condensed matter. An alternative approach has been discovered that 
involves the amorphization of microporous crystalline materials, 
such as zeolites38,93–95, tungstates96 or metal–organic frameworks97. 
Notwithstanding the considerable directional swings exhibited by 
single crystals25,74, Poisson’s ratio for these low-density crystalline 
materials typically averages out around 0.2. Amorphization occurs at 
pressures of a few gigapascals93–96 at ambient temperature and close 
to Tg at ambient pressure93,97. In  situ small-angle X-ray scattering 

Figure 6 | Indentation of glasses: densification or shear flow. The e�ects 

of ν are seen in the stages of deformation under indentation. The surface 

profiles are shown for the indenter at maximum load (solid lines) and after 

unloading (dotted lines). Arrows indicate matter displacement. σ is the mean 

contact pressure. Reproduced with permission from ref. 46, © 2010 AIP. 
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(SAXS)93 and inelastic X-ray scattering experiments38,98 reveal that 
Poisson’s ratio drops considerably during amorphization before the 
�nal HDA glass is formed, by which time ν is close to 0.25, simi-
lar to other aluminosilicate glasses42. �e contrasting morphology, 
between microporous crystals and the HDA glass shown in the side 
panels of Fig. 8a, reveals evidence of �ow at Tg. Interestingly, this is 
an exothermic process93 during which the SAXS intensity ISAXS rises 
and falls by an order of magnitude93. As ISAXS is in turn proportional 
to the isothermal compressibility κT (ref. 79) the ISAXS peak points 
to a substantial minimum in B, and therefore in ν, consistent with 
the �rst-order phase transitions illustrated in Fig.  5a and b. Such 
an order–order displacive transition from a microporous crystal 
has been veri�ed by atomistic simulation during the densi�cation 
of zeolite A99. Atomistic models of the low-entropy LDA or ‘per-
fect glasses’79 formed from other microporous crystalline materials 
have been reported95–97. Poisson’s ratios for these ordered glasses 
are expected to be signi�cantly smaller than their melt-quenched 
HDA counterparts38.

Low-frequency collective modes and the boson peak �e driving 
force for polyamorphic transitions in microporous zeolites seems to 
lie in the strong phonon band found at low frequencies at the start 

of the vibrational density of states (VDOS), preceded by a narrow 
band related to the rotation of connected tetrahedra (Fig.  8a and 
Box 2)94. In glasses this feature in the VDOS is generically referred 
to as the boson peak (because it generally scales with the Bose–
Einstein function), and its origin has been �ercely argued over for 
the past two decades79. During microporous collapse, however, a 
strong correlation exists between the intensity and frequency of ter-
ahertz vibrations and the material density ρ (ref. 94) which can be 
attributed to librationally driven resonances of zeolitic subunits and 
which decrease as the HDA glass is formed (Fig. 8a). �is densi�ca-
tion behaviour of the low-frequency VDOS is re�ected more gen-
erally across the whole of the glassy state79,91,100, the frequency ωBP 
increasing and the size ABP decreasing with increasing ρ. Densi�ed 
silica provides a good example91. Indeed, a universal curve can usu-
ally be obtained by normalizing to ωBP and ABP.

�ere is a lot of experimental evidence that the boson peak in 
the glassy state has transverse character, with a suspicion that its fre-
quency ωBP may be linked to the Io�e–Regel limit, where the mean 
free path of phonons approaches their wavelength and beyond 
which they no longer propagate79,101–103. Strong con�rmation for 
this view has come from the simulations shown in Fig. 8b which 
replicate experimental �ndings. Moreover, ωBP equates with the 
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with modified glasses and metallic glasses added79,102,112, showing an increase in the slope of m versus B/G with atomic packing, the di�erent families 

converging on superstrong melts and perfect glasses. b, Scopigno plot105 of melt fragility m versus α for an extended range of inorganic and organic glass-

formers106, where α = (1 – f0)Tg/T  and f0 is the non-ergodicity factor that measures the departure from thermodynamic equilibrium (Box 2). c, Fracture energy 

log Efracture versus ν for bulk metallic glasses50 showing an abrupt brittle–ductile threshold for ν ≈ 0.31. Thresholds for polycrystalline metals are indicated by 

vertical lines30. d, Fracture toughness log Efracture versus m for bulk metallic glasses, di�erentiating ductile from brittle character, with a sharp threshold close 

to m ≈ 30. Dashed curves in c and d are included to guide the eye. Figure reproduced with permission from: a, ref. 79, © 2007 Taylor & Francis; b, ref. 106, 

© 2010 APS; c, ref. 50, © 2005 Taylor & Francis.
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exciting frequency ωIR
T at the Io�e–Regel limit for transverse waves, 

compared with the exciting frequency for longitudinal waves ωIR
L 

which far exceeds ωBP. In a similar way, ABP scales with the VDOS for 
transverse phonons as the structure is densi�ed. As ABP decreases, 

ν should increase101 with decreasing G (Box  2) and, beyond the 
plastic limit, plastic �ow should occur (Fig.  6). Conversely, if the 
collective dynamics of connected polyhedra are signi�cant, ν will be 
reduced with increased G encouraging embrittlement beyond the 

Figure 8 | Boson peak and melt fragility. a, Reduction in low-frequency collective terahertz band during the collapse of zeolite Y with densification94 (left) 

ending in the formation of a glass. Zeolitic subunits α and β cages and double six-fold rings (D6R) features are retained in the LDA phase, even when 90% 

of the zeolite has amorphized. Reproduced with permission from ref. 94, © 2005 AAAS. Micrographs of zeolite and final glass (right) reveal onset of viscous 

flow as part of the LDL–HDL transition. Reproduced from ref. 93, © 2003 NPG. b, Reduction in the size of the boson peak ABP = D(ω)/ω calculated for a 2D 

glass-forming system under increasing pressure P, where D(ω) is the VDOS for acoustic modes103. c, Temperature dependence of the viscosity η versus Tg/T  

of the HDL and LDL supercooled phases together with the HDA and LDA glasses associated with the collapse of zeolite A. This shows how the increase in 

melt fragility m follows the LDA–HDA increase in densification93. The classical strong liquid SiO2, whose fragility falls between those of the two liquid phases, 

is included for comparison. d, Temperature dependence (Tg/T) of the structural relaxation time τ calculated for the 2D glass in b, showing the increase 

in melt fragility with increasing pressure P (ref. 103). Note that the fragility is given by m = [∂logη(T)/(∂Tg/T)]T=Tg and that η and τ are related by η = G∞τα 

(Box 2). Figure reproduced or adapted from: b,d, ref. 103, © 2008 NPG; c, ref. 93, © 2003 NPG.
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elastic limit31,51. Indeed, Poisson’s ratio provides a sharp criterion 
for di�erentiating brittleness from ductility in crystalline30,31 and 
in amorphous50,51 metals (see Fig.  7c). A more controversial rela-
tionship is between ν and the fragility m of the corresponding 
supercooled liquid100–102,104 (Fig.  7a). Together with the degree of 
non-ergodicity f0 frozen into the glass79,105,106, the melt fragility m is 
measured at the glass transition Tg (Box 2) where the viscous relaxa-
tion time reaches ~100 s and the liquid is considered solid26,79,107–109. 
Its elastic properties, however, clearly di�er from those measured 
under ambient conditions (Fig. 4b). How, then, can the dynamics of 
the liquid state be related to the elastic properties of the solid state? 
Indeed, how do solids melt?

Melt fragility and solid elastic properties
Melt fragility �e hugely di�erent viscous properties of liquids are 
illustrated in the familiar Angell plot of log η versus Tg/T, where η is 
shear viscosity, shown in Box 2 (ref. 108). In particular, liquid fra-
gility is de�ned by the steepness of shear viscosity η as a function 
of reciprocal temperature as Tg is approached79,107–109, di�erentiat-
ing ‘strong’ liquids such as silica from ‘fragile’ liquids like molecu-
lar melts. �e structural relaxation time τ of the liquid is directly 
related to η, so strong melts rheologically approach Tg much more 
gradually than fragile melts (Box 2). �is distinction is even greater 
at the melting temperature Tm where solid and liquid coexist but 
where liquid structural relaxation times can di�er by as much as 106. 
Accordingly solids—crystals or glasses—forming strong liquids melt 
or so�en far more slowly than those forming fragile liquids: that is, 
these transformations are much more viscoelastic (Fig. 2e), as can be 
seen, for example, in ν versus T/Tg  curves (Fig. 4b) by the very di�er-
ent rates at which Poisson’s ratio approaches 0.5 when glasses so�en.

With densi�cation, supercooled liquids become more fragile. 
�e increase in fragility can be seen in Fig. 8c for the LDA–HDA 
transitions underpinning the collapse of a low-density zeolite93; the 
viscosity of the corresponding fragile HDL liquid meets the glass 
transition Tg from above far more steeply than the viscosity of the 
LDA phase from below Tg. Atomistic simulations for a 2D glass-
forming system103 reveal similar behaviour, with m increasing with 
increasing pressure (Fig. 8d). Comparing densi�cation changes in 
m (Fig. 8c and 8d) with the magnitude of the terahertz peak in the 
glassy state (Fig. 8a and 8b), it is clear that these are inversely related. 
Strong liquids form glasses with many more collective modes than 
do fragile liquids. Strong liquids, too, are good glass formers, 
whereas fragile liquids are prone to crystallize. Glass formation and 
crystallization are competitive kinetic processes, with collective 
modes favouring the former.

Poisson’s ratio and non-ergodicity Covering a broad range of 
single-phase glasses, two interesting empirical relationships have 
emerged linking melt fragility with the elastic properties of the 
glass100–102,105,106: m versus B/G and m versus α. �e ratio B/G relates 
directly to Poisson’s ratio ν and α to the non-ergodicity factor f0 
(ref. 79; Box 2), which describes the extent of the departure from 
thermodynamic equilibrium. �e plot of m versus B/G (Fig.  7a) 
reveals how Poisson’s ratio ν increases across many glasses, as 
the melts from which they are quenched increase in fragility m 
(refs 100–102). Although objections to this relationship were 
originally voiced104,110, many of these have been overcome as more 
glasses have been added79,101,102,106,111,112 and the central proposition 
that “the fragility of a liquid (might be) embedded in the proper-
ties of its glass”105 has generally been strengthened. Although it is 
true that the point scatter in the m versus B/G plots is consider-
able, it is also clear that groups of glasses can be di�erentiated79,111, 
forming an approximately radial arrangement from modi�ed oxide 
glasses through single glass formers to the dense metallic glasses. 
�e overall distribution narrows towards the glasses associated with 
the strongest liquids38,79. Although silica is usually considered the 

strongest of these, experiments on zeolite amorphisation reveal that 
for new low-density liquids (LDL) m  ≤  10 (ref. 93; Fig.  8c), with 
the associated LDA glasses being topologically ordered38,79,99. �e 
m versus α  plot105,106 (Fig. 7b) shows that when liquid fragility m 
increases, glasses become more ergodic, with f0 (Box 2) decreasing. 
Speci�cally, f0 equates with the autocorrelation function of the liq-
uid density �uctuations over the longest timescales79,107,109. It is read-
ily obtained from inelastic X-ray scattering experiments at di�erent 
temperatures113, measuring the extent to which density �uctuations 
in the melt are captured in the structure of the glass105,109.

From the empirical relationships m versus B/G and m versus α 
it is clear that ν and α must also be interrelated across families of 
glasses, meaning that the least ergodic glasses (small α) are the most 
distortable (small ν) and vice versa. �is important conclusion can 
be better understood by recognizing that the non-ergodicity of a 
glass is related to the ratio of the sound velocities Vt/Vl (ref. 100), 

which in turn records the density �uctuations in the glass (Box 2). 
�ese ripples in the nanostructure are considered to be related 
in turn to the size of the boson peak ABP (refs 100,101,109). If 
α ∝ B∞/G∞, then glasses with the strongest boson peak should have 
the largest non-ergodicity (f0 at Tg) and therefore the smallest α. As 
α correlates with m (refs 105,106), their associated melt fragilities 
will also be the lowest (Fig. 7b), as will their Poisson’s ratio (Fig. 7a), 
their shear resistance and, beyond the yield point, their tendency 
to crack (Fig. 7c): strong liquids form brittle glasses slowly, fragile 
liquids ductile glasses rapidly. 

�e original relationship105 between m and α has recently been 
systematically developed to account for the presence of secondary 
relaxation processes106. �ese are particularly prevalent in poly-
mers and their associated liquids which are very fragile. Figure 7b 
shows the correlation extending over more than twice the previous 
range105, further strengthening the evidence that the correlation 
between melt fragility and vibrational properties of the correspond-
ing amorphous solid is a universal feature of glass formation.

Brittle–ductile transformation 
Ductility and brittleness relate to the extreme response of materials 
strained outside their elastic limits, so any relationship with ν would 
seem at �rst non-intuitive. However, Poisson’s ratio measures the 
resistance of a material to volume change (B) balanced against the 
resistance to shape change (G). Occurring within the elastic regime, 
any links with properties beyond the yield point must necessarily 
involve the time-dependent processes of densi�cation and/or �ow, 
already discussed for glasses above. Just as viscoelastic behaviour is 
expressed in terms of time-dependent bulk and shear moduli, with 
Poisson’s ratio ν(t) gradually changing between elastic values, we 
might expect the starting value of ν to provide a metric for antici-
pating mechanical changes, not just in glasses but also in crystalline 
materials, resulting in ductility (starting from a high ν) or embrittle-
ment (starting from a low ν). At either extreme the microstructure 
will play a part, whether through cracks, dislocations, shear bands, 
impurities, inclusions or other means114.

Polycrystalline materials Polycrystalline materials, in the ideal-
ized case where there is no preferred orientation, are macroscopi-
cally isotropic. Unlike glasses which are generally homogeneous 
and isotropic but lack atomic long-range order79,107,109, polycrys-
talline materials have unit cell symmetry but atomic periodicity 
is broken internally by dislocations and impurities, and externally 
by grain boundaries30,31. Although there is no simple link between 
interatomic potentials and mechanical toughness in polycrystal-
line materials, Poisson’s ratio ν has proved valuable for many years 
as a criterion for the brittle–ductile transition exhibited by met-
als30,31,32,115, just as it is now helping to distinguish brittle glasses from 
ductile glasses (Fig.  7c) which, from Fig.  7a, are associated with 
strong and fragile melts respectively79,100,101. 
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�e old proposal that grains in polycrystalline materials might 
be cemented together by a thin layer of amorphous material “analo-
gous to the condition of a greatly undercooled liquid”116 has o�en 
been challenged. However, recent atomistic simulations of crys-
talline grains and grain boundaries seem to con�rm the dynamic 
consequences of this idea in many details117. �e strengths of pure 
metals at low temperatures are known to be mainly governed by the 
strengths of grain boundaries30. �ese usually exceed the crystalline 
cleavage strength, which is governed by the dynamics of dislocations 
generated at the crack tip31. �e correlation between m and B/G in 
glasses (Fig.  7a) suggests that the mechanical toughness of metals 
might also be related to the fragility of the undercooled melt from 
which they are cast and from which the grain boundaries seem to 
be quenched. �is would suggest that so� metals like gold, silver or 
copper might be ductile because they originate from melts that are 
fragile. Conversely, hard metals such as tungsten, iridium or chro-
mium might be brittle because, as melts, they are stronger. If this were 
the case then there would be consequences for the density �uctua-
tions frozen into the grain boundaries, which will be weaker for so� 
metals than for brittle metals. By the same token, grain boundaries 
would be more ergodic in so� compared with brittle metals.

Metallic glasses Because direct experimental evidence is lacking, 
linking melt fragility and mechanical toughness for polycrystalline 
metals can only be speculative. In metallic glasses, though—partic-
ularly bulk metallic glasses (BMG) that are cast by slow cooling like 
conventional glasses118—su�cient data on elastic moduli and tough-
ness50 are available, as well as on melt fragility102, to test these ideas 
quantitatively. In the �rst place the threshold between brittleness 
and ductility in metallic glasses is very abrupt (Fig. 7c). From the 
most brittle metallic glasses to the toughest, fracture energies Efracture 
increase by as much as four decades50. �e brittle–ductile threshold 
occurs close to B/G  ≈  2.4 (ν  =  0.32) and is generally higher than 
the thresholds reported for polycrystalline metals30,31 (Fig. 7c). It is 
also more sharply de�ned than for crystalline metals. Plastic �ow 
in metallic glasses occurs very locally in shear bands51,114, compared 
with polycrystalline metals where �ow is dislocation-mediated, and 
delocalized by associated work-hardening30.

Turning now to the BMG melt fragilities, m rises with B/G, but 
not as steeply as for network and molecular liquids and their glasses 
(Fig. 7a). Comparing this with log Efracture versus ν (Fig. 7c) points to 
the cross-correlation between fracture energy and melt fragility, log 
Efracture versus m, plotted in Fig. 7d. �is is very sharp, clearly show-
ing how brittle BMGs (low Efracture, low ν) correlate with strong melts 
(low m) and ductile BMGs (high Efracture, high ν) with fragile melts 
(high m), as we have suggested might be the case for grain bounda-
ries in crystalline metals.

�e elegant work of Jiang and Dai32 (Fig. 1c) explores relations 
between elastic moduli in crystalline and glassy metals in terms of a 
Milton map11. Earlier these authors reported an intrinsic correlation 
between the bulk modulus for a wide range of metallic glasses and 
the fragilities of the liquids from which they are cast102. �e dashed 
lines in Fig. 1c correspond to brittle–ductile Poisson’s ratio thresh-
olds, suggesting a common phenomenology. Recalling that fracture 
energy and melt fragility are correlated (Fig. 7d), its seems likely that 
the ductile and brittle properties of metals, whether they are glasses 
or crystals, are intimately related to the viscous time-dependent 
properties of their supercooled antecedents, either constrained in 
metallic glass shear bands51 or, more speculatively, in polycrystalline 
grain boundaries117.

Future perspectives
Scientists from many di�erent �elds still ignore the variability of 
Poisson’s ratio. In �nite-element simulation for instance, calcula-
tion in the elastic or ductile regimes usually assumes that ν is �xed 
and ~0.3. In physics, ν is o�en assumed to have little e�ect on the 

vibrational density of states, although it shows up explicitly in the 
Debye equation. �erefore, we hope that this Review on Poisson’s ratio 
will encourage researchers and engineers to pay more attention to this 
index, which is directly relevant to modern materials. Auxetic behav-
iour is an obvious example, as is the distinctive signature of Poisson’s 
ratio for phase transitions, including melting. Conversely, the dynam-
ics of the liquid state are contributing to our understanding of the 
elastic properties of the glassy state via Poisson’s ratio and, in turn, 
the distinction between the brittleness and ductility of materials. For 
the future, the numerical metric that Poisson’s ratio provides will be 
advantageous in researching and developing new materials, marrying 
the mechanical response of diverse components, from the nano- to 
the macroscale through variable changes in shape and volume.

Corrected after print 24 October 2011
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