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Summary

Poisson’s ratio for isotropic elastic materials is bounded between−1 and 1
2. It is shown that

Poisson’s ratio for anisotropic elastic materials can have an arbitrarily large positive or negative
value under the prerequisite of positive definiteness of strain energy density. The large Poisson’s
ratio for cubic materials is physically realistic because the strains are bounded.

1. Introduction

Poisson’s ratioν(n, m) of an elastic solid for any two specified orthogonal unit vectorsn andm
is the ratio of the lateral contraction in the directionm to the axial extension in the direction
n due to a uniaxial tension of the material along the directionn. It is well known that for an
isotropic elastic material Poisson’s ratio does not depend on the choice ofn andm, and is bounded
between−1 and 1

2 for the material to be stable. In contrast, Poisson’s ratio for an anisotropic
elastic material depends on the choice ofn andm. There have been considerable fundamental and
practical interests in exploring the admissible range of Poisson’s ratio that the material response
along a certain crystallographic plane can actually attain.

Poisson’s ratio for a cubic material was studied by Turley and Sines (1) who presented formula
for computing Poisson’s ratio for any givenn andm. They did not give the extrema of Poisson’s
ratio. Using the results of (1) Baughmanet al. (2) gave the extrema of Poisson’s ratio in (2,
equations (1) and (2)) forn at [110] and m at [11̄0] and [001], respectively. From the two
equations they obtained numerically that Poisson’s ratio is bounded between(−1, 0) and (0, 2),
respectively. Recently, Baughman (3) stated that ‘Although Poisson’s ratio for cubic phases must be
between−1 and+2, there is no theoretical limitation on this ratio for materials with less internal
symmetry’. He has been interested mainly in materials with negative Poisson’s ratio, calledauxetic
materials, that have some practical applications (see also Lakes (4)). Hayes and Shuvalov (5)
established extreme values of Poisson’s ratio for cubic materials with elastic constants satisfying
certain inequalities. The original formulation in (5) has a flaw in that it does not depend on whether
2(s11 − s12) − s44 is positive or negative. The correct statement is the following (Hayes and
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74 T. C. T. TING AND T. CHEN

Shuvalov, private communication). Whenn is at [001] andm at [110], ν(n, m) = −s12/s11 so
that the value ofν(n, m) lies between(−1, 1

2). For crystals with less internal symmetry, Poisson’s
ratio for transversely isotropic (hexagonal) material was investigated by Li (6) but no extrema were
presented. Using an example, Boulanger and Hayes (7) appear to be the first to show that Poisson’s
ratio for an orthotropic material can have no bounds. A complete characterization of the admissible
sets of Poisson’s ratios for orthotropic materials and materials with less internal symmetry was
presented by Zheng and Chen (8). They showed that points within a three-dimensional closed body
can represent the normalized Poisson’s ratios, and the body cannot be bounded after transformation
back to the physical space.

In this paper we will show that Poisson’s ratio for any anisotropic elastic material can have no
bounds. It is known that there are eight elastic symmetries (9 to 12). They are triclinic, monoclinic,
orthotropic (rhombic), trigonal, tetragonal, transversely isotropic (hexagonal), cubic and isotropic.
As it turns out, it is easiest to prove that Poisson’s ratio can have no bounds for triclinic, monoclinic
and orthotropic materials. This is presented in section 2. The trigonal, tetragonal and hexagonal
materials are discussed in section 3. The cubic material is the hardest one to prove, and is discussed
in section 4. It is shown in the Appendix that the large Poisson’s ratio for cubic materials is due
to the vanishing of the uniaxial strain in the directionn while the strain in the lateral direction
m is bounded. Thus the large Poisson’s ratio is physically admissible within the linear theory of
elasticity.

2. Triclinic, monoclinic and orthotropic materials

In a fixed rectangular coordinate systemxi (i = 1, 2, 3), the stress–strain relation can be written as

εi j = Si jktσkt , Si jkt = S jikt = Skti j = Si j tk, (2.1)

whereεi j andσi j are the strain and stress andSi jkt is the elastic compliance. TheSi jkt is positive
definite and possesses the full symmetry shown in (2.1)2. The third equality in (2.1)2 is redundant
because the first two imply the third (13, p. 32). When the material is subject to a simple tension in
thex1-direction,σi j vanish exceptσ11 so that

ε11 = S1111σ11, ε22 = S2211σ11 = S1122σ11. (2.2)

Poisson’s ratioν12, which is the ratio of the contraction in thex2-direction to the extension in the
x1-direction, is

ν12 = −ε22/ε11 = −S1122/S1111 = −s12/s11, (2.3)

wheresαβ is the contracted notation ofSi jkt (see, for example, (14,15)).
Written as a 6× 6 matrix, sαβ is symmetric. It must be positive definite for the strain energy

density to be positive. This means that�k > 0 (k = 1, 2, . . . , 6), where�k is the determinant
of the k × k leading principal submatrix ofsαβ (16, 17). For triclinic, monoclinic and orthotropic
materials, it suffices to consider the 2× 2 leading principal submatrix ofsαβ , which is positive
definite if

�1 = s11 > 0, �2 =
∣∣∣∣
s11 s12
s12 s22

∣∣∣∣ = s11s22 − s2
12 > 0. (2.4)
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POISSON’ S RATIO FOR ANISOTROPIC ELASTIC MATERIALS CAN HAVE NO BOUNDS 75

Instead ofs22, s12 we may prescribe�2 > 0, ν12 and let

s22 = ν2
12s11 + �2/s11, s12 = −ν12s11, s11 > 0. (2.5)

Equation (2.5) satisfies (2.4) for any choice ofν12. Thus Poisson’s ratioν12 can have an arbitrarily
large positive (or negative) value. This conclusion is independent of the prescription of the rest of
sαβ because they can be prescribed arbitrarily. When the off-diagonal elements ofsαβ are prescribed,
one can always find the diagonal elementss33, s44, s55 ands66, in that order, such that�i > 0 for
i = 3, 4, 5, 6 (18). Thus Poisson’s ratio for triclinic, monoclinic and orthotropic materials can have
no bounds. This provides an alternative proof to the one given by Boulanger and Hayes (7) for
orthotropic materials.

3. Trigonal, tetragonal and hexagonal materials

The 6× 6 matrix sαβ for trigonal, tetragonal and hexagonal materials has the expression (see, for
example, (13, sections 2.6 and 2.7)),

sαβ =




s11 s12 s12 0 0 0
s22 s23 0 s25 0

s22 0 −s25 0
s44 0 2s25

s55 0
s55




, (3.1)

where

s44 = 2(s22 − s23) (3.2)

for trigonal materials,

s25 = 0 (3.3)

for tetragonal materials, and both (3.2) and (3.3) hold for hexagonal materials. Only the upper
triangle of the matrix is shown in (3.1) becausesαβ is symmetric. Equations (2.4) and (2.5) remain
valid here. However, not all of the rest of the elastic compliancesαβ can be prescribed arbitrarily
for trigonal, tetragonal and hexagonal materials so that it is not clear if the 6× 6 matrix sαβ can be
made positive definite. If it can, then Poisson’s ratio for trigonal, tetragonal and hexagonal materials
can have no bounds.

The determinants�1, �2 of the first two leading principal submatrices ofsαβ in (3.1) are given
in (2.4) while the rest can be shown to be

�3 = (s22 − s23)K > 0, (3.4)

�4 = s44�3 > 0, (3.5)

�5 = s44(s55�3 − 2s2
25K ) > 0, (3.6)

�6 = (s55�3 − 2s2
25K )(s44s55 − 4s2

25) > 0, (3.7)

where

K = 2�2 − s11(s22 − s23). (3.8)
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76 T. C. T. TING AND T. CHEN

The inequality (3.4) is satisfied by

s22 − s23 > 0, K > 0, (3.9)

which provide the restriction ons23 in the range

s22 − 2(�2/s11) < s23 < s22. (3.10)

The conditions (3.5) to (3.7) are satisfied if we choose

s44 > 0, s55�3 > 2s2
25K , s44s55 > 4s2

25. (3.11)

For trigonal materials for which (3.2) holds, (3.11)1 is automatically satisfied in view of (3.9)1. As
to tetragonal materials for which (3.3) holds, (3.11)2,3 are satisfied bys55 > 0. The same is true for
hexagonal materials.

Thus the 6× 6 matrix sαβ can be made positive definite, which proves that Poisson’s ratio for
trigonal, tetragonal and hexagonal materials can have no bounds.

4. Cubic materials

The 6× 6 matrix sαβ for cubic materials has the expression

sαβ =




s11 s12 s12 0 0 0
s11 s12 0 0 0

s11 0 0 0
s44 0 0

s44 0
s44




. (4.1)

The conditions for the strain energy density to be positive definite are

s11 > 0,

∣∣∣∣
s11 s12
s12 s11

∣∣∣∣ > 0,

∣∣∣∣∣∣
s11 s12 s12
s12 s11 s12
s12 s12 s11

∣∣∣∣∣∣
> 0, s44 > 0. (4.2)

The first two inequalities can be replaced by

s11 + s12 > 0, s11 − s12 > 0, (4.3)

because they satisfy (4.2)2 while the addition of the two inequalities recovers (4.2)1. The third
inequality of (4.2) is

(s11 − s12)
2(s11 + 2s12) > 0 (4.4)

or, in view of (4.3)2,

s11 + 2s12 > 0. (4.5)

Since

s11 + s12 = 1
3(s11 − s12) + 2

3(s11 + 2s12), (4.6)
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POISSON’ S RATIO FOR ANISOTROPIC ELASTIC MATERIALS CAN HAVE NO BOUNDS 77

(4.3)2 and (4.5) imply (4.3)1. Thus all we need are (4.3)2, (4.5) and (4.2)4. They can be written in a
concise form as

−1
2s11 < s12 < s11, s44 > 0. (4.7)

Let n, m, t be mutually orthogonal unit vectors and letx ′
i (i = 1, 2, 3) be a new coordinate system

in which thex ′
1-, x ′

2-, x ′
3-axes are along the vectorsn, m, t, respectively. The elastic compliance

S′
1111 andS′

1122 referred to thex ′
i coordinate system are (19)

S′
1111 = ni n j nknt Si jkt = s11 − 2(s11 − s12 − 1

2s44)(n
2
1n2

2 + n2
2n2

3 + n2
3n2

1),

S′
1122 = ni n j mkmt Si jkt = s12 + (s11 − s12 − 1

2s44)(n
2
1m2

1 + n2
2m2

2 + n2
3m2

3).
(4.8)

Poisson ratioν(n, m) is

ν(n, m) = − S′
1122

S′
1111

= − s12 + (s11 − s12 − 1
2s44)(n2

1m2
1 + n2

2m2
2 + n2

3m2
3)

s11 − 2(s11 − s12 − 1
2s44)(n2

1n2
2 + n2

2n2
3 + n2

3n2
1)

. (4.9)

Consider the case

n2
1 = n2

2 = 1
3 − β, n2

3 = 1
3 + 2β,

m2
1 = m2

2 = 1
2, m2

3 = 0,
(4.10)

where−1
6 � β � 1

3. We show in the Appendix how we discover then in (4.10) and show that the
n in (4.10) is the only one that can provide an unboundedν(n, m). The signs ofni , mi (i = 1, 2)

have to be chosen such thatn1m1 + n2m2 = 0. We then have

n2
1n2

2 + n2
2n2

3 + n2
3n2

1 = 1
3 − 3β2, n2

1m2
1 + n2

2m2
2 + n2

3m2
3 = 1

3 − β, (4.11)

and (4.9) becomes

ν(n, m) = − s12 + (s11 − s12 − 1
2s44)(

1
3 − β)

s11 − 2(s11 − s12 − 1
2s44)(

1
3 − 3β2)

. (4.12)

When the elastic constants are prescribed, the locations of the extrema ofν(n, m) in (4.12) are at

β = 2η − s44 ± √
D

3 (3s11 − η − s44)
, (4.13)

where

η = s11 + 2s12, D = 3 [s11(η + s44) + η(η − 2s44)]. (4.14)

Substitution of (4.13) back into (4.12) yields the surprisingly simple expression

ν(n, m) = 3s11 − η − s44

4(2η − s44 ± √
D)

= 1

12β
. (4.15)
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78 T. C. T. TING AND T. CHEN

The second equality follows from (4.13). Theβ computed from (4.13) is very small if, and only if,
η ands44 are very small becauseη ands44 are both positive. Hence, let

η = s11 + 2s12 = δ(cosψ)2s11, s44 = δ(sinψ)2s11, s11 > 0, (4.16)

where 0< ψ < π/2 andδ > 0 is arbitrarily small. Equation (4.16) satisfies (4.7). Equation (4.13)
has the expression

β = δ(3cos2 ψ − 1) ± √
d

3 (3 − δ)
, (4.17)

where

d = 3δ[1 + δ cos2 ψ(1 − 3sin2 ψ)]. (4.18)

Whenδ is very small,

β ∼= ±√
3δ/9, (4.19)

and (4.15) gives

ν(n, m) ∼= ±3/(4
√

3δ). (4.20)

Hence Poisson’s ratio for cubic materials can have no bounds.
As an illustration, lets12 = −0·4999s11 and s44 = 0·0002s11. Equation (4.13) givesβ =

0·00387 and−0·00383 and, from (4.15)1,2, ν(n, m) = 21·52 and−21·77, respectively. If we let
s12 = (−0·5 + 10−8)s11 ands44 = 2 × 10−8s11, we haveν(n, m) ∼= ±2165 atβ ∼= ±0·0000385.

It is interesting to note that, in the limitβ → 0, n2
1 = n2

2 = n2
3 = 1

3 by (4.10) and (4.12) is
replaced by

ν(n, m) = − s11 + 2s12 − 1
2s44

s11 + 2s12 + s44
. (4.21)

Whens44 is very small (or very large), we obtainν(n, m) = −1 (or 1
2). Thus whileν(n, m) is

unbounded whenβ is very small, it is bounded atβ = 0. The functionν(n, m) is not a continuous
function ofδ andβ at δ = β = 0.

It is also interesting to see what happens to Poisson’s ratioν(n, t) in the other lateral direction
whenν(n, m) is unbounded. The unit vectort is mutually orthogonal ton andm. With the vectors
n andm given in (4.10), the components of the vectort are

t2
1 = t2

2 = 1
6 + β, t2

3 = 2
3 − 2β. (4.22)

We then have

n2
1t2

1 + n2
2t2

2 + n2
3t2

3 = 1
3 + β − 6β2, (4.23)

and

ν(n, t) = − s12 + (s11 − s12 − 1
2s44)(

1
3 + β − 6β2)

s11 − 2(s11 − s12 − 1
2s44)(

1
3 − 3β2)

. (4.24)
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POISSON’ S RATIO FOR ANISOTROPIC ELASTIC MATERIALS CAN HAVE NO BOUNDS 79

If we ignore 6β2 in the numerator because it is smaller thanβ, (4.24) is identical to (4.12) whenβ
is replaced by−β. Hence (4.15) withβ replaced by−β applies here, that is,

ν(n, t) ∼= − 1

12β
. (4.25)

It has the opposite sign with theν(n, m) given in (4.15). Hence, when Poisson’s ratio has an
arbitrarily large positive value in the lateral directionm, it has an arbitrarily large negative value in
the other lateral directiont, and vice versa. Thevolume change δV is

δV = ε′
11 + ε′

22 + ε′
33 = [1 − ν(n, m) − ν(n, t)]ε′

11. (4.26)

Substitution of (4.12) and (4.24) into the above and use of the relationε′
11 = S′

1111σ
′
11 yields

δV = (s11 + 2s12)σ
′
11 = δ(cos2 ψ)s11σ

′
11

∼= 0, (4.27)

becauseδ is arbitrarily small. Thus there is practically no volume change even though Poisson’s
ratio has an arbitrarily large positive number in one lateral direction and has an arbitrarily large
negative number in the other lateral direction. We show in the Appendix that the large Poisson’s
ratio in this case does not involve a large strain in the lateral directionm. The large Poisson’s ratio
is due to the vanishing of uniaxial strain in the directionn.

5. Concluding remarks

We have shown that Poisson’s ratioν(n, m) for anisotropic elastic materials can have no bounds.
With the exception of cubic materials, we proved it by examples in which there is no need to consider
a general direction for the vectorsn andm. For cubic materials it is necessary to consider general
n, m other than the crystallographic axes. The specification ofn andm requires three parameters
such as the Euler’s angles employed in (1,6). To find the locations of the extrema ofν(n, m) we can
take the derivatives ofν(n, m) with respect to the three parameters and set the results to zero. Since
m depends on one parameter oncen is given, it is simpler if we fix the vectorn and ask whatm
gives extrema for the givenn. This would involve taking derivative with only one parameter. This is
presented in the Appendix. One can then show that equations (1) and (2) presented by Baughmanet
al. in (2) are extrema forn at [110] andm at [11̄0] and[001], respectively. They are reproduced in
(A4) and (A5) in terms of the elastic compliancesαβ . Poisson’s ratios obtained from (A4) and (A5)
have the bounds−1 < ν(n, m) < 1 and−1 < ν(n, m) < 2, respectively. These are the ‘local’
extrema, namely they are extrema in the vicinity of then, m selected. In fact (2, equations (1) and
(2)) are but only two of many local extrema for cubic materials. The ‘global’ extrema cannot be
obtained by exhaustive search of all local extrema becauseν(n, m) can be unbounded as shown in
section 4. The investigation of the local extrema in the Appendix leads us to the discovery of then
given in (4.10). We also show in Appendix A that then in (4.10) is the only one that can provide an
unboundedν(n, m) for cubic materials. Moreover, the large Poisson’s ratio is due to the vanishing
of the uniaxial strain in the directionn, not due to the large strain in the lateral directionm.
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APPENDIX
The local extrema of ν(n, m) for cubic materials

It is too complicated to find the locations of the extrema ofν(n, m) for cubic materials for all possible choices
of the vectorsn andm. Instead, we ask whatm gives the extrema ofν(n, m) when the vectorn is given.

Whenn is given, let

m = cosθ√
1 − n2

3




n2
−n1

0


 + sinθ√

1 − n2
3




−n1n3
−n2n3
1 − n2

3


, n2

3 �= 1, (A1)

whereθ is arbitrary. Inserting (A1) into (4.9) and setting the derivative ofν(n, m) with θ to zero gives

tan 2θ = n1n2n3(n2
2 − n2

1)/[n2
1n2

2(1 + n2
3) − n2

3(1 − n2
3)2]. (A2)

If θ is a solution of (A2), so isθ + π/2. Thus, for eachn, there are twom that provide the extrema.
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POISSON’ S RATIO FOR ANISOTROPIC ELASTIC MATERIALS CAN HAVE NO BOUNDS 81

There are several specialn andθ that satisfy (A2). The following cases are of particular interest: (i)n3 = 0
andθ = 0, (ii) n3 = 0 andθ = π/2, (iii) n1 = n2 andθ = 0.

For case (i), letn = (cosψ, sinψ, 0). Then, by (A1),m = (sinψ, − cosψ, 0) and

ν(n, m) = − s12 + 1
2(s11 − s12 − 1

2s44) sin2 2ψ

s11 − 1
2(s11 − s12 − 1

2s44) sin2 2ψ
. (A3)

It can be shown that the extrema ofν(n, m) occur atψ = ±kπ/4 (k = 0, 1, 2 . . . ). For ψ = ±π/4, (A3)
reduces to

ν(n, m) = −2(s11 + s12) + s44

2(s11 + s12) + s44
. (A4)

This is equivalent to (2, equation (1)), which gives−1 < ν(n, m) < 1.
For case (ii), (A1) givesm = (0, 0, 1). Again, letn = (cosψ, sinψ, 0) so that

ν(n, m) = −s12

s11 − 1
2(s11 − s12 − 1

2s44) sin2 2ψ
. (A5)

The extrema ofν(n, m) occur atψ = ±kπ/4 (k = 0, 1, 2 . . . ). Forψ = ±π/4 we have

ν(n, m) = −4s12

2(s11 + s12) + s44
. (A6)

This is equivalent to (2, equation (2)), which gives−1 < ν(n, m) < 2.
For case (iii),n = (n1, n1, n3) andm = (1/

√
2, −1/

√
2, 0) so that

ν(n, m) = − s12 + (s11 − s12 − 1
2s44)n

2
1

s11 − 2(s11 − s12 − 1
2s44)n

2
1(2 − 3n2

1)
. (A7)

By letting s12 ∼= −s11/2 ands44 ∼= 0 (A7) simplifies to

ν(n, m) ∼= 1

2(1 − 3n2
1)

= 1

3n2
3 − 1

, (A8)

which is very large forn2
1, n2

3 near the value of13. This leads to then, m given in (4.10).
The discovery of (A8) is not unexpected. A necessary condition forν(n, m) in (4.9) to be very large is

that either its numeratorS′
1122 is very large or its denominatorS′

1111 is very small. It is shown in (5) that the

maximum of(n2
1m2

1+n2
2m2

2+n2
3m2

3) is 1
2 attained forn, m at [110], [11̄0], and its minimun is zero attained for

n, m at [110], [001]. Hence the maximum ofS′
1122 in (4.8) is attained forn, m at [110], [11̄0] or [110], [001].

But these two possibilities are Case (i) and Case (ii) discussed above. They do not give a very largeν(n, m).
SinceS′

1122in (4.8) is symmetric withn andm, the maximum ofS′
1122is also attained forn, m at [11̄0], [110]

or [001], [110]. They do not give a very largeν(n, m). The S′
1111 in (4.8) is 1/E(n) whereE(n) is Young’s

modulus in the directionn. It is shown in (5) that the extrema of 1/E(n) ares11 and(s11 + 2s12 + s44)/3
for n at [100] andn2

1 = n2
2 = n2

3 = 1/3, respectively. The former does not provide a very largeν(n, m). As

to the latter,(s11 + 2s12 + s44)/3 atn2
1 = n2

2 = n2
3 = 1/3 can be very small if, and only if,s11 + 2s12 and

s44 are both very small becauses11 + 2s12 ands44 are both positive. This confirms the derivation of (A8) and
motivates the assumption (4.10) and (4.16). Thusn2

1, n2
2, n2

3 near1
3 is the onlyn that can provide a very large

ν(n, m) for cubic materials.
Poisson’s ratioν(n, m) is −ε(m)/ε(n) whereε(n) and ε(m) are, respectively, the uniaxial strain in the

directionn and the lateral strain in the directionm. A very largeν(n, m) does not necessarily mean that the
lateral strain is very large, which would be physically unrealistic for linear theory of elasticity. The lateral strain

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/58/1/73/1875746 by U

.S. D
epartm

ent of Justice user on 16 August 2022



82 T. C. T. TING AND T. CHEN

is S′
1122 in (4.8), which is bounded, multiplied by the uniaxial stressσ ′

11. Hence it is bounded. The uniaxial
strain is 1/E(n) multiplied byσ ′

11. As pointed out in the previous paragraph, 1/E(n) is vanishingly small so
that the uniaxial strain is vanishingly small. Thus the large Poisson’s ratio for cubic materials presented here is
physically realistic.

As to Poisson’s ratio for anisotropic elastic materials other than cubic materials discussed in sections 2
and 3, the largeν(n, m) is caused by a large lateral strain. However, then in sections 2 and 3 is along a
crystallographic axis of the material. If we allown to be arbitrary, it is possible to find ann along which
1/E(n) is vanishingly small so that the uniaxial strain is vanishingly small while the lateral strain is bounded.
We believe that such ann exists because it exists for the cubic material, which is a special case of other
anisotropic elastic materials. One could perturb a cubic material to other anisotropic elastic materials by
introducing small parameters to find ann for which 1/E(n) is vanishingly small.
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