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It is shown that the Poisson structure of dynamical systems with three degrees 
of freedom can be defined in terms of an integrable one-form in three dimensions. 
Advantage is taken of this fact and the theory of foliations is used in discussing 
the geometrical structure underlying complete and partial integrability. Tech- 
niques for finding Poisson structures are presented and applied to various exam- 
ples such as the Halphen system which has been studied as the two-monopole 
problem by Atiyah and Hitchin. It is shown that the Halphen system can be 
formulated in terms of a flat SL(2,R)-valued connection and belongs to a non- 
trivial Godbillon-Vey class. On the other hand, for the Euler top and a special 
case of three-species Lotka-Volterra equations which are contained in the Hal- 
phen system as limiting cases, this structure degenerates into the form of globally 
integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian 
case is a linear and the SL(2,R) structure is a quadratic unfolding of an inte- 
grable one-form in 3 + 1 dimensions. It is shown that the existence of a vector 
field compatible with the flow is a powerful tool in the investigation of Poisson 
structure and some new techniques for incorporating arbitrary constants into the 
Poisson one-form are presented herein. This leads to some extensions, analogous 
to q extensions, of Poisson structure. The Kermack-McKendrick model and 
some of its generalizations describing the spread of epidemics, as well as the 
integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell- 
Bloch systems admit globally integrable bi-Hamiltonian structure. 

1. WHY THREE DIMENSIONS? 

A surprisingly large number of well-known dynamical systems with three degrees of free- 
dom in physics and biology admit a bi-Hamiltonian structure. Quite apart from the fact that 
the mathematical structure of such familiar systems is of interest in itself, there is an important 
reason for studying the Poisson structure of three-dimensional systems as a contribution to the 
general theory of integrable systems. Namely, the first nontrivial case where Poisson structure 
does not imply symplectic structure appears when the dimension of phase space is three. 
Fortunately, however, it is precisely for the case of three dimensions that we shall find it 
possible to reformulate Poisson structure in terms of Frobenius’s theory of integrable one- 
forms. It is worthwhile to expand on this. 

The geometrical framework for the discussion of integrable dynamical systems through 
their Poisson structure utilizes the space of multivectors @ Ak Y& with the graded algebra 
given by the Schouten bracket. The Schouten bracket of a p vector and a q vector is a 
(p+q- 1) vector. Thus the operation defined by the Schouten bracket with respect to a given 
bivector, such as the Poisson bivector 0 of Eq. (3)) sets up a complex 

[O, ]:A~3-.L--rA(p+1)Y-“%4 , (1) 
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5692 H. Giimral and Y. Nutku: Poisson structure 

which is called the Lichnerowicz complex.’ This complex is exact, that is 

[@,L@, II=0 

provided that 0 is a Poisson bivector satisfying the Jacobi identities (5). However, the exact- 
ness of the Lichnerowicz complex requires that 0 must be of maximal rank. This can never be 
the case for dynamical systems where the number of degrees of freedom is odd. 

For dynamical systems with three degrees of freedom we have the simplest case where the 
Lichnerowicz complex is not exact due to this type of degeneracy. However, for three dimen- 
sions we are fortunate in that we can give an alternative characterization of the matrix of 
Hamiltonian structure functions in terms of an integrable one-form which will be called the 
Poisson one-form. Hence we shall be able to study Poisson structures of three-dimensional 
dynamical systems by converting the problem from its natural setting in terms of the Lichner- 
owicz complex into a more familiar problem in the de Rham complex. 

The introduction of the Poisson one-form is advantageous because the Jacobi identity can 
thereby be recognized as the Frobenius criterion for its integrability. This result is true only in 
the case of three dimensions. For three-dimensional dynamical systems we have therefore a 
correspondence between Poisson structure and locally integrable one-forms which define a 
foliation of codimension 1. The geometrical object underlying the study of the phase space of 
three-dimensional dynamical systems are these foliations. We shall show that the theory of 
unfolding of these foliations provides a unified framework for understanding the geometrical 
structure of phase space. Due to this correspondence we shall obtain various properties of 
integrable dynamical systems, some of which are well-known, as obstructions to global and/or 
local integrability in terms of the de Rham cohomology classes. 

II. INTRODUCTION 

Perhaps the earliest and certainly the best known example of the Poisson structure of 
dynamical systems with three degrees of freedom can be found in Nambu’s discussion’ of the 
triaxial top. The theory of noncanonical Hamiltonian formalism provides the general frame- 
work for these discussions. For the theory of Poisson structure and related topics we refer to 
Abraham and Marsden, Libermann and Marie,” Kosmann-Schwarzbach,5 Olver6 and the 
references therein. 

In Refs. 7 and 8 we had presented the bi-Hamiltonian structure of a restricted class of 
three-species Lotka-Volterra equations’ and the Kermack-McKendrick model” governing the 
spread of epidemics. These are three-dimensional dynamical systems. From the point of view 
of Hamiltonian structure the most fundamental property of dynamical systems with three 
degrees of freedom is the conformal invariance of the Jacobi identities. 

We shall formulate the Poisson structure of dynamical systems with three degrees of 
freedom using differential forms and present a number of techniques for finding the Poisson 
one-forms for a given three-dimensional dynamical system which are based on conformal 
invariance. One of the consequences of this approach is the appearance of arbitrary constants 
in Poisson structure which is familiar from q extension. We shall explicitly show the corre- 
spondence between compatible vector fields and bi-Hamiltonian structure for some special 
cases which lends further support to a conjecture by Grammaticos et aL9 The use of such 
techniques will enable us to exhibit the bi-Hamiltonian structure of Maxwell-Bloch, ‘t May and 
Leonard,12 the Lorenz13 model in the limits of zero and very large Reynolds numbers, the 
Halphen system14 which is the same as the two-monopole system,i’ and various generalizations 
of the Kermack-McKendrick model for epidemicsI We shall also complete a partial list of 
compatible Lie-Poisson structures that was given by Blaszak and Wojciechowski.” 
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Ill. POISSON STRUCTURE 

The basic object of Hamiltonian systems is the Poisson bracket. It enables us to define 
Poisson structure. For finite-dimensional dynamical systems symplectic structure can only be 
defined on even-dimensional manifolds, whereas no such restrictions are required for Poisson 
structure. Indeed, in even dimensions Poisson and symplectic structures are just duals of each 
other and they appear together in the study of Hamiltonian structures of infinite-dimensional 
systems. We have referred to Refs. 3-6 for the general theory of dynamical systems admitting 
Poisson structure. Here we shall only give the necessary definitions in order to proceed. 

A Poisson structure is defined by specifying the bivector 

1 
O=? J”(x) $2, 

with J’i= --$’ and the pairing of 0 with the differentials of functions F,G gives the Poisson 
bracket 

dFAdG(O) ={I;,@, (4) 

where A stands for the exterior product and d is the exterior derivative. The vanishing of the 
trivector Schouten bracket 

[O,O] = Jm[iJjkl,m $ -$ $0, (5) 

where partial derivatives are denoted by a comma and square brackets around indices indicate 
complete antisymmetrization, is equivalent to the satisfaction of the Jacobi identities by the 
Poisson bracket. As it is evident from its definition, Poisson structure satisfies the Lie algebra 
axioms of skew symmetry and Jacobi identity. To our knowledge this correspondence has only 
been clarified for the linear case which gives rise to Lie-Poisson structure. We shall find that 
this classification must be extended to include affine Lie algebras and their nonlinear general- 
izations because Poisson bracket structures appropriate to physically interesting three- 
component dynamical systems are already much more complicated than three-dimensional 
Lie-Poisson structures. In particular, we shall find examples of homogeneous quadratic Pois- 
son bracket algebras of Skylanin” as well as their natural generalizations. In spite of the fact 
that the class of linear Poisson structures is the same as the class of Lie algebras, it is not known 
which nonlinear Poisson structures can be transformed into a linear one. The techniques which 
we shall work with will again lead us to the conclusion that the characterization of such 
systems must involve the invariants of the phase space under the flow of the dynamical system. 

IV. DYNAMICAL SYSTEMS 

We shall consider a three-dimensional manifold ./ and suppose that there exists a vector 
field X on & which gives the flow for a dynamical system with three degrees of freedom. In 
terms of local coordinates 

a a a 
x=x&+Y-&+zz, 

which is assumed to be differentiable. We shall be interested in the paths x:R++M for which 
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5694 H. GOmral and Y. Nutku: Poisson structure 

and the tangent vector coincides with the given vector field X. These trajectories will be given 
by x=(x(t),y(t),z(t)) in the local coordinate system. We shall suppose that the dynamical 
system under consideration admits conserved quantities which satisfy 

X(H) =o, (8) 

where H is the Hamiltonian function. Since we shall be dealing with integrable systems, this 
equation can be solved by the method of characteristics and the general solution for H will be 
an arbitrary function of two functionally independent solutions of the Pfaff system 

dx dy dz 
-=-=- 
x Y Z’ 

(9) 

which is going to admit an integrating factor M. We shall assume that there exists two 
functionally independent solutions of Eqs. (9) which will be referred to as fundamental con- 
served quantities and denoted by H, , Hz. The integrating factor M is also called the multiplier 
of the system and it has the geometrical meaning of an invariant density for the space on which 
the flow X is defined. This will become evident in the discussion of Liouville’s theorem, cf. Eq. 
(30) below. The invariant volume element will therefore be defined as 

*l=f gijkdXiAdX'AdXk 

=MdxAdyAdz, 

where 8P,k is the completely skew Levi-Civita tensor density with 

(10) 

It will be convenient to also introduce the numerical permutation symbol Eijk where Eijk' (l/ 
M) 8ijk and Sk=M%‘:‘jk. 

Given a dynamical system, the principal problem in determining its Poisson structure 
consists of finding the appropriate matrix of structure functions Jik. But in three dimensions it 
is more convenient to deal with the one-form 

J=O-I dx AdyAdz, (11) 

which will be called the Poisson one-form. The symbol _1 denotes contraction. In terms of 
components the Poisson bivector (3) and the Poisson one-form ( 11) are related by 

J'LE'ikJ,* (12) 

The equations of motion of dynamical systems that admit Hamiltonian structure are express- 
ible in the form 

X-l dxAdyAdz=JAdH. (13) 

There are various restrictions on dynamical systems with three degrees of freedom which 
admit Hamiltonian structure that can ultimately be traced back to dimensional reasons. First 
of all, the structure matrix Jik cannot be inverted because we are dealing with an odd- 
dimensional system. Furthermore, we find that 

J(X) =0 (14) 
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and of course Eq. (8) follow as identities. On the other hand in three dimensions simplifica- 
tions occur because the Jacobi identities reduce to a single equation which is given by the 
three-form 

JAdJ=O (15) 

and J satisfying this condition is defined to be a Poisson one-form. The equivalence of Eqs. ( 15) 
and (5) follows from the properties of the permutation symbol in three dimensions 

Jm[‘Jikl,m~EijkJmiJjk,,= EijflhE’jklJdl,, = t?““Jdl,, 9 (16) 

which makes it manifest that the coefficient of the volume three-form in Eq. ( 15) is just the 
triple scalar product [J,V,Jl of vector analysis. It is obvious that the expression ( 15) for the 
Jacobi identity is invariant under the multiplication of J by an arbitrary conformal factor. That 
is, if J is a Poisson one-form and f(x’) is an arbitrary differentiable function of its arguments, 
then 

JAdJ- f2JAdJ, (17) 

that is, the product f (xi) J is also a Poisson one-form. Hence for dynamical systems with three 
degrees of freedom the Jacobi identities are invariant under arbitrary conformal transforma- 
tions of the Poisson one-form. The conformal invariance of the Jacobi identities leads to the 
possibility of including arbitrary constants in Poisson one-forms for three-dimensional Hamil- 
tonian systems. We shall present a method for the construction of Poisson one-forms which 
depends on an arbitrary function of the fundamental conserved quantities in Sec. IX. 

A dynamical system admits bi-Hamiltonian structure if there exist two linearly indepen- 
dent Poisson one-forms satisfying the Lenard recursion relation” 

J, AdH,=J2 AdH,. (18) 

A detailed examination of the properties of a Poisson one-form J will be given in Sec. V, 
however now it will be useful to point out some of its general features which have a bearing on 
bi-Hamiltonian structure. From the definition of conserved quantities (8) and the identity ( 14) 
for three-dimensional systems, we have 

X-l dHi=O j JicCdHi (19) 

and for globally integrable bi-Hamiltonian structure, cf. Sec. V A, the factor of proportionality 
is the same. As a result, we find that 

J1 AdH,=O, J2 AdH2=0 (20) 

so that the Hamiltonians H, and H, act as the Casimirs of J1 and J2, respectively. 
Two Poisson one-forms are said to be compatible if their linear combination is also a 

Poisson one-form. The conformal factor was left arbitrary as far as the Jacobi identities are 
concerned, but it plays an important role in compatibility. Namely, for a differentiable function 
g, the combination J1+gJ2 of two linearly independent Poisson one-forms will satisfy the 
Jacobi identities provided 

J1AJ2Adg=(J1AdJ2+J2AdJl)g, (21) 

which results in a considerable relaxation of the criterion for compatibility. In fact, given two 
linearly independent Poisson one-forms, Eq. (2 1) which is a linear first order partial differen- 
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5696 H. GOmral and Y. Nutku: Poisson structure 

tial equation always admits a solution for g so that locally we can always end up with a 
compatible pair of Poisson one-forms. This will play an important role in the classification of 
compatible Lie-Poisson structures in Sec. VIII. 

V. THE THEOREM OF FROBENIUS 

Equation ( 15) for the Jacobi identities is the necessary condition for the Pfaff system J=O 
to be integrable in the sense of Frobenius. Thus an alternative definition of the integrability of 
the Poisson one-form comes from the theorem of Frobenius. This asserts the existence of some 
one-form a such that 

dJ=a AJ. (22) 

It is evident that Eq. (22) implies the Jacobi identity ( 15)) but the one-form a is, in general, 
not well-defined even locally. The Jacobi identity ( 15) is independent of the choice of a. These 
two versions of local integrability are equivalent for a nonsingular one-form J. We can however, 
distinguish two distinct types of bi-Hamiltonian structure depending on whether or not a is 
exact : . 

(i) An integrable bi-Hamiltonian structure results when a is exact which implies 

and the characteristic property of such systems is the existence of a globally defined volume 
element where the volume density acts as the integrating factor for the Pfaff system (9). This 
requires the vanishing of the first cohomology class of a in R’ (&). The subcase 

a=0 (24) 

corresponds to Nambu mechanics. 
(ii) For da # 0 the existence of bi-Hamiltonian structure enables us to define an SL( 23) - 

valued connection one-form with vanishing curvature. 
Both of these cases can be realized as the first and second order integrability conditions of 

an integrable one-form in four dimensions which will be discussed in Sec. VI on the unfolding 
of a foliation.20 They have also been considered as transverse structures on manifolds.21 

We shall now discuss the mathematical structure that results for each one of these two 
cases in some detail. Most of this discussion will use results from the theory of foliations.22 This 
is the principal advantage that we derive from the recognition that the Jacobi identities reduce 
to the definition of an integrable one-form. We note that in three dimensions a system of first 
order ordinary differential equations defines a foliation of dimension 1, or alternatively of 
codimension 2. Solution curves of the equations of motion are the leaves of this foliation. A 
foliation of codimension 1, which is defined by an integrable one-form, is foliation by hyper- 
surfaces which are two-dimensional in three-space. So each Poisson one-form of a dynamical 
system defines a foliation of codimension 1, the leaves of which are the level surfaces defined by 
the constant values of the associated conserved quantity. For bi-Hamiltonian dynamical sys- 
tems we have two conserved quantities which form the level surfaces of two codimension 1 
foliations associated with each Poisson one-form. The dynamical vector field is the tangent 
vector to the curve defined by the intersection of these two families of level surfaces. 
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A. Completely integrable bi-Hamiltonian structure 

We shall first consider a foliation of codimension 1 defined by one Poisson one-form J 
which satisfies the Jacobi identities ( 15) and suppose that the one-form a is exact. Then the 
Frobenius theorem asserts the existence of two zero-forms, or scalars which we shall call l/M 
and H for consistency with our earlier definitions, such that23 

(25) 

where H is a conserved quantity and M is the integrating factor of the Pfaff system (9). In this 
case we may relate a to the invariant density for the dynamical system through 

a=-dlnM (26) 

by invoking the Poincart lemma. Then Eq. (23) holds and the criterion for the existence of a 
globally defined volume element is satisfied. This requires the vanishing of the first cohomology 
class of a in &“‘(A). Thus [a] =0 is the necessary condition for the global validity of local 
results. In this case the correspondence between Poisson one-forms and conserved quantities is 
direct. Furthermore, given two linearly independent conserved quantities H,, H,, the Poisson 
one-forms both satisfy 

dJi=a AJi, i= 1,2, (27) 

which is evident from Eq. (25). 
When a dynamical system with three degrees of freedom is completely integrable; that is, 

it has two functionally independent integrals of motion and the integrating factor of the Pfaff 
system (9) gives the volume density, its equations of motion can be written in the form 

X _1 *l =dH, AdH,, (28) 

which is manifestly bi-Hamiltonian with Ji, i= 1,2 given by Eq. (25). The interpretation of M 
as an invariant density follows immediately from Eq. (28), because the density two-form 

n=x_l *l (29) 

is closed 

da=0 (30) 

and this is the statement of Liouville’s theorem. If the flow is such that M is constant, then 
from Eq. (26) a vanishes and we have the case of Nambu mechanics. For the generalization 
of the Nambu bracket to the form of Eq. (28) also see Razavy and Kennedy.24 We note that 
once the invariant density is known, a transformation of the dynamical variables25 can be found 
to cast the system into the form of Nambu mechanics. This equivalence holds only locally 
because the Jacobian of the transformation which will be given by M in the original dynamical 
variables will in general contain singularities, cf. Sec. XVI. 

Finally, we shall conclude with the following observations for completely integrable bi- 
Hamiltonian systems: 

If J,, a= 1,2 are linearly independent Poisson one-forms, then J1 and g(x)J, will be 
compatible Poisson one-forms for g satisfying Eq. (2 1) . We had remarked that Eq. (2 1) admits 
a solution for g and therefore IocaZiy any two Poisson one-forms can always be transformed into 
a compatible pair. For systems satisfying Eq. (23) this statement is valid globally as well. 

J. Math. Phys., Vol. 34, No. 12, December 1993 

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



5698 H. GOmral and Y. Nutku: Poisson structure 

Given two compatible Poisson one-forms J,, a = 1,2, the combination J1 +F( H, ,H,) J2 is 
a Poisson one-form. The validity of this statement follows from Eqs. (21) and (25). This 
observation is useful for the purpose of incorporating arbitrary constants into the definition of 
a Poisson bracket. 

B. SL(P,R)-valued flat connection 

The full geometrical picture underlying the subject of integrable three-dimensional dynam- 
ical systems emerges only in the case 

da#O, (31) 

which we shall now consider. Following Tondeur22 we shall show that three-dimensional 
dynamical systems that admit a Poisson one-form subject to this condition are characterized by 
an SL ( 2,R )-valued connection one-form with vanishing curvature. 

We have remarked that the Frobenius criterion (22) for the integrability of the Poisson 
one-form J depends on the one-form a which is not well-defined even locally. However, the 
Godbillon-Vey three-form 

yGv=a Ada, (32) 

whose cohomology class is independent of the choice of a, is an invariant of the foliation.26 In 
the following we shall require da # 0 and there will be no restrictions on yov . 

We start by supposing that a dynamical system admits a Poisson one-form J, which 
satisfies the Jacobi identity 

J1 AdJ,=O (33) 

and rewrite Eq. (22) in the form 

dJ1=2aAJ1, (34) 

where we have introduced an irrelevant factor of 2 for ease of identifying the SL( 2,R) structure 
constants in Eqs. (34), (36), and (37) below. The integrability conditions of Eq. (34) are 
obtained by applying the operator d result in 

da AJt=O (35) 

and since we are assuming that Eq. (3 1) holds, this can only be satisfied if there exists a 
one-form J2 which is independent from J1, such that 

da=J1 AJ2. (36) 

Now applying the operator d to Eq. (36) we find that there is a new integrability condition 

dJ2= -2a AJ2 (37) 

and from Eq. (37) it follows that 

J2 AdJ,=O, (38) 

i.e., J2 is also a Poisson one-form. The system is now closed because the integrability condition 
of Eq. (37) is identically satisfied by virtue of Eq. (36). 

Equations (34)) (36), and (37) are readily recognized as the Maurer-Cartan equations for 
SL( 2,R). Hence the matrix of one-forms 
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r= (39) 

can be recognized as an SL( 2,R)-valued connection with vanishing curvature 

dl-+l?Al?=O. (40) 

For this class of dynamical systems the Godbillon-Vey class is necessarily nontrivial, as 
y=a A J, A J2 # 0. In three dimensions there is also the Chem-Simons three-form 

ya=d tr{r Adr} (41) 

that we can construct out of the connection. For compatible Poisson one-forms Jl,J2, the 
Chem-Simons three-form ya is the same as the Godbillon-Vey three-form yov . But the local 
result (2 1) for compatibility cannot be extended to hold globally for dynamical systems subject 
to Eq. (3 1). The Godbillon-Vey class is therefore not the same as the Chem-Simons class for 
the connection one-form I’. Finally we note that when Eq. (31) holds, the Godbillon-Vey 
three-form yov can be assigned the role of the volume element, but unlike the case of com- 
pletely integrable bi-Hamiltonian systems where a is closed, the volume density factor does not 
play the role of the integrating factor for the Pfaff system (9). 

We shall conclude with a remark on the completely integrable bi-Hamiltonian case of Sec. 
V A. Here we may regard the two independent Poisson one-forms as basis one-forms and 
a = -d In M as a connection. We see from the structural equations that integrability is related 
to the unitary symmetry on each of the level surfaces defined by conserved quantities. Con- 
formal factors change the connection by an exact one-form so that the unitary symmetry and 
hence integrability is preserved. In this interpretation complete integrability requires the ex- 
actness of the connection one-form which is the condition for global existence of an invariant 
volume three-form with density M, that is a multiplier. 

VI. UNFOLDINGS OF FOLIATIONS 

The criterion as to whether or not a is closed is a crucial one in the determination of the 
type of Poisson structure that results for a given integrable dynamical system. It distinguishes 
between a globally integrable bi-Hamiltonian structure and a flat SL( 2,R)-valued connection. 
We shall now give an argument which will show how these two structures depend on da by 
considering an integrable one-form p on T* (M x R), the restriction of which to J? results in 
a given Poisson one-form 0. For an integrable dynamical system the structure on 4 is deter- 
mined from the requirement of the integrability of B in different powers of the parameter that 
runs on R. Thus a characterization and unification of local and global structures on 4 is best 
understood by including one more dimension. This one-form B on T* (& X R ) is called the 
unfolding of the given integrable one-form p and consequently of the foliation, and can be 
regarded as a one-parameter deformation of the initial foliation. Compatibility can be inter- 
preted as the integrable deformation of one Poisson structure onto the other. 

The concept of unfolding has its origin in the works of Thorn and Mather concerning the 
stability of mappings (see Ref. 27 and the references therein). For the theory of foliations this 
idea was developed by Suwa2’ and the results of the present section are built on his work. We 
have pointed out the correspondence between conserved quantities and Poisson one-forms for 
globally integrable bi-Hamiltonian structure. From the work of Suwa2’ it is evident that a 
similar correspondence holds in unfolding theory. Thus we define the one-parameter unfolding 
a of a one-form p defining a foliation by 

D=P+v+f dT+@(?), (42) 
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which will be required to satisfy the Jacobi identity 

pAdfi=O 

and reduce to the one-form p when restricted to A. In Eq. (42) y is a one-form and f is a 
function on A. We shall consider a first order unfolding of fi by ignoring terms of order higher 
than one in r. 

Requiring the coefficients of all the powers of r to vanish in the integrability condition of 

B we obtain 

/3 AdP=O, y Ady=O, 

(43) 

dfI=f (ysdf 1 AD, dy=;df A?‘, 

where the first three equations consist of the Jacobi identity and the compatibility condition for 
fi and y. These are satisfied by virtue of the last two equations in Eqs. (43). The second 
equation in the last line above implies that we can integrate y with the integrating factor f - ’ 

y=f dK (44) 

then by a redefinition of p 

fi=eMKfl, (45) 

which leaves the integrability and compatibility conditions invariant, we obtain 

(46) 

so that both b and y have the same integrating factor. We can solve b as 

ji=f dfi, (47) 

where K and fi correspond to two independent conserved quantities and l/f is the multiplier. 
This is the integrable bi-Hamiltonian case. The definition of multiplier is not unique since we 
can take various compatible combinations of fundamental Poisson one-forms to write the 
system in bi-Hamiltonian form. The redefinition of B above serves to illustrate this ambiguity. 
In particular, f =constant corresponds to Nambu mechanics. 

We shall now show that the SL(2,R) structure on phase space .A arises from the inte- 
grability conditions to all orders of the second order unfolding of an integrable form fi. The 
one-forms turn out to be the ones involving SL (2,R) Maurer-Cartan equations, two of which 
are integrable. The two functions, which come out as Wilson lines serve to define nonlocal 
conservation laws and the compatibility factor for them. The integrability condition of 

P=B+ST+ yg+ (g+ fT)dT (48) 

to all orders in 7, dT,..., result in the following set of equations: 

P Ad/?=O, y Ady=O, 
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gdfl+flA(S+dg)=O, f dy+yAdf=O, 

5701 

(49) 

PAdS+SAd@=O, yAdG+SAdy=O; 

SAd&+PAdy+yAdfl=O, 

f dp+gdS+SAdg+PA(2y+df >=O, (50) 

gdy+f dS+SAy+SAdf+yAdg=O. 

The Jacobi identities for p and y in the first line of Eqs. (49) are the integrability conditions 
of the second line. Furthermore one can immediately see that y and fl are related to J, and J2 
of the SL( 2,R) structure and the first equation in Eqs. (50) indicates a nonzero Godbillon-Vey 
class. The solution of the above system in terms of J1,J2,a is 

y=-2J,, p=J2, S=2ag-dg, (51) 

where 

f = .$?Pe2sa, g= .$Pe-2ra (52) 

are path ordered integrals of a nonexact one-form a. Such gauge-invariant but path-dependent 
factors were first introduced by Mandelstam.28 When a is closed the integral is path indepen- 

dent and Eqs. (52) can be regarded as a transformation to pure gauge 

a =g-’ dg, (53) 

which is precisely the case of globally integrable bi-Hamiltonian structure. In the present 
context they arise as nonintegrable integrating factors since gJ, and fJ2 are closed. Through 
the use of Stokes’s theorem these equations imply the existence of nonlocal conserved quanti- 
ties. We note that the factor 2 in y is more than a conformal factor for J1. It is the solution 
of compatibility equation (21) for J, and J2 to be a compatible pair. 

Vii. COMPATIBLE VECTOR FIELDS 

We have seen that the existence of Hamiltonian structure for a three-dimensional dynam- 
ical system enables us to associate a family of hypersurfaces which are the integral surfaces of 
each Poisson one-form. The tangent space of each family is two dimensional and is spanned by 
two vector fields one of which is the flow itself. The condition for the other vector field to lie 
on the tangent space is given by the Lie bracket 

[X,Y] =aX+bY (54) 

for two arbitrary functions a and b. The vector field Y satisfying this condition will be called 
a compatible vector field17 for the given flow X. 

In the dual view, a foliation of codimension 1 can be defined by the field of all tangent 
planes including X and Y, and Eq. (54) is just the vector field version of the Frobenius 
integrability theorem where we introduced a in Eq. (22). The appearance of a and b above is 
similar to that of a in Eq. (22) and just as the Jacobi identity ( 15) for the Poisson one-form 
does not involve a there is a criterion for the dual version 

det( [X,Y],X,Y) =0, (55) 
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where the unknown functions a and b do not appear. The conformal invariance of the Jacobi 
identity has the geometric interpretation that conformally equivalent Poisson one-forms have, 
or are annihilated by, the same field of tangent planes. 

In principle it is possible to connect these two locally equivalent definitions of codimension 
1 foliations as follows. For vector fields satisfying 

J(X) =0, J(Y) =0 (56) 

the condition 

J( PLYI 1 =O (57) 

is equivalent to the local integrability conditions for the one-form J. Then vector field Y is 
compatible with the vector field X for a given dynamical system. Under these circumstances the 
one-form J given by 

J=XAY-ldxAdyAdz (58) 

is integrable.29 Assuming that X is completely integrable we can use the results of Sec. V A. 
Then there exists functions p and 3? such that 

J=; d3?-, 

which is the form given in Eq. (25). From Eqs. (56) we find that X is a conserved quantity 
for both X and Y simultaneously. If there is another conserved quantity 9, independent of X, 
so that the flow defined by X can be written in bi-Hamiltonian form 

XldxAdyAdz=JAdL! (60) 

we may contract with Y and using Eqs. (56), (58) arrive at an equation for 3 

Y(Y)=-1, (61) 

which means that -Y is a vector normal to the level surfaces defined by 2 =const. Since 9 
is a Hamiltonian function it satisfies the conservation equation 

X(Y)=0 (62) 

and therefore it is possible to exhibit the bi-Hamiltonian structure of a three-dimensional 
dynamical system admitting a compatible vector field by the above construction. The existence 
of such a structure depends on the existence of solutions of a certain set of linear differential 
equations which is guaranteed, at least locally, by the Cauchy-Kovalevsky theorem. This is the 
gist of the argument used by Grammaticos et ~1.~ to calculate conserved quantities for some 
Lotka-Volterra systems which admit a linear vector field compatible with the flow. They have 
only considered the equations for X and concluded with a conjecture that three-dimensional 
dynamical systems admitting a linear, or affine compatible vector field do not exhibit chaotic 
behavior. Their list of conserved quantities can be completed through the solution of Eqs. (6 1) 
and (62). These equations may further be extended to include explicit time dependence as we 
shall show in Sec. XIV for the Lorenz system. 
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Viii. LIE-POISSON STRUCTURES 

As a first example we shall consider linear Poisson structures for three-dimensional Lie 
algebras. The Lie-Poisson structure on the dual of the algebra, which can be identified as the 
space of dynamical variables xi, is given by the structure matrix 

JikECikmXm, (63) 

where cikm are the structure constants. 
It turns out that the structure matrices given by Eq. (63), for nine three-dimensional Lie 

algebras each of which has one Casimir, is conformally equivalent to one whose Poisson 
one-form is the exterior derivative of Casimir functions 

dC,=&Ja, a= l,..., 9, (64) 

where the conformal factor fi may be function of x. Thus, according to the result of Sec. IV we 
can form compatible pairs of Poisson structures from any two of the nine three-dimensional Lie 
algebras. Blaszak and Wojciechowski have presented a list of compatible three-dimensional 
Lie-Poisson structures but because they have not recognized the conformal invariance of 
Jacobi identities they presented an incomplete picture of compatibility, cf. Table I in Ref. 17. 
We shall now give a complete list of the Poisson structures associated with three-dimensional 
Lie algebras and their nontrivial bi-Hamiltonian flows. First we have the following Poisson 
one-forms obtained from the commutation relations3’ 

J1 =x dx, 

J2= (x+y)dx-x dy, 

J3=y dx-x dy, 

J4=y dx+x dy, 

Js=uydx-xdy, O< Ial <l, (65) 

J6=x dx+y dy, 

J7= (x+uy)dx+ (y-ax)dy, a>O, 

J8=z dx+2y dy+x dz, 

J9=x dx+y dy+z dz, 

with subscripts on J labeling the algebra in the classification of given reference. We find the 
following cases 

fJ2 =i e-Y/X, n3=x-2, 

(66) 
1 

G=xl+a 9 
x+iy ia 

n7= - 
( 1 x-iy ’ 

where the conformal factor is different from a constant. That is, they constitute the integrating 
factors for the one-forms in Eq. (65) and the resulting integral surfaces are the constant values 
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of the Casimirs. Nontrivial basic (i.e., with multiplier unity) bi-Hamiltonian flows occur for 

the pairs (2,8), (2,9), (3,8), (3,9), (4,8), (4,9), (5,8), (5,9), (6,8), (7,8), (7,9), and (8,9) 
and explicitly they are given by 

i= -2, j= -x2-xy, i=2y(x+y) +xz, (231, 

i= -xz, j= -z(x+y), i=x2+y(x+y), (2,9), 

it= -2, j= -xy, i=23+xz, (3,8), 

i=---xz, g= -yz, id+J, (3,9), 

i= -x2, 3=XY, i=xz-23, (4,8), 

i=-xz, j=yz, i=xQJ, (4,9), 

(67) 
i= -x2, j= -uxy, i=2u~+xz, (5,8), 

;i-= --xz, j= --ayz, i=ay2+x2, (5,9), 

i=xy, it= -x2, i=y(2x-z), (6,8), 

zi=xy--x2, 3= -x(x+ay), i=2y(x+ay) +zh--Y), (7,8), 

i=z(y-ax), j= -z(x+uy), i=a(x2+yz), (7,9), 

i=2yz-xy, j=x2-2, i=yz-?xy, (8,9). 

Since these equations have M= 1, we conclude that they are Nambu mechanics representatives 
of a large class of bi-Hamiltonian dynamical systems which are directly related to three- 
dimensional Lie algebras. The best known example of a Euler top associated with SO( 3) can 
be recognized as the last equation in the list above, in the variables x-z,x+z,y for some 
particular constant values of the principal moment of the inertia tensor. 

IX. DEFORMATIONS OF POISSON STRUCTURE 

Given a Lie algebra it is a straightforward matter to construct the corresponding Poisson 
bracket as we have done above. But the real interest lies in the inverse problem, where we start 
with a given dynamical system. We are asked to construct appropriate Poisson brackets and 
identify the underlying Lie algebra. It turns out that the Lie-Poisson structure is not suffi- 
ciently rich to describe the Hamiltonian structure of physically interesting three-dimensional 
dynamical systems. It is necessary to add central charges, and quadratic and cubic terms so 
that Eq. (63) is modified according to 

Jik = ciklmn &“x” + cikmn x”‘x” + cikm xm + cik, (68) 

where all the constants c are skew symmetric in the upper indices i,k, and symmetric in the 
lower ones. cik are components of a two-cocycle which enables us to incorporate central 
charges, cikmn are coefficients of Sklyanin algebras’* which are yet to be classified, and similarly 
ciklmn are coefficients of cubic Poisson bracket algebras. We shall illustrate the need for includ- 
ing such terms in Eq. (68) by turning to examples. The Hamiltonian structure of physically 
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interesting dynamical systems leads to the necessity of considering such terms. We shall also 
point out the difficulties in identifying the true degree of nonlinearity which is a consequence 
of our closing remarks in Sec. V A. 

In the determination of the Hamiltonian structure of a given flow (7) the principal prob- 
lem lies in the construction of Poisson one-form J satisfying the Jacobi identities. For three- 
dimensional systems this task is simplified by the invariance of the Jacobi identities ( 15) under 
conformal transformations of the Poisson one-form. In particular, when conserved quantities 
are known the problem reduces to the determination of the integrating factor M. As a by- 
product of this method we shall find that new arbitrary constants can be introduced into the 
Poisson one-form. This method can be used in q extension. Hojman’s3t extension for the Euler 
top is a particular example. 

We shall again make use of the conformal invariance of Eqs. ( 15). Namely, the Jacobi 
identities result in manageable equations for conformally invariant combinations of the coef- 
ficients of the Poisson one-form. In particular, if we consider the ratios of the components of 
J such as 

u=;=$=J(;) /J(g) (69) 

the Jacobi identity 
nonlinear equation 

( 15), through the use of the identity ( 14), results in a decoupled but 

(70) 

where the differential operator on the left hand side is the same operator that appeared in the 
definition of conserved quantities. Similar equations are obtained for the ratios of other com- 
ponents of J. The characteristics of any one of these equations are given by the solutions of the 
Pfaff system (9) and the solution of Eq. (70) will therefore involve arbitrary functions of the 
fundamental conserved quantities of the dynamical system (7). Because of the identity ( 14) 
the solution of Eq. (70) contains sufficient information for constructing the Poisson one-form 
completely. The solution is simply given by 

J,= H I,$ [uZdx+Zdy-(uX+Y)dz]. 
x Y 

When the equations of motion are expressed in Hamiltonian form with J,, any conserved 
quantity of the system, which will be a function of the fundamental conserved quantities, can 
be used as a Hamiltonian function since J, itself has a conformal factor involving Hamiltonian 
function H. As an example, we shall consider the motion of the Euler top and exhibit the 
modification of the well-known SO( 3) Lie-Poisson structure functions. 

X. EULER TOP REVISITED 

The Euler equations governing the motion of a triaxial top are given by the vector field 

a a a 
x=aYz&+Pxzay+.yxY z, (72) 

where a, p, y are constants related to the principal moments of inertia according to 
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12-13 Is-11 I, -I2 
a=-, 

1213 
8= 1,13 , Y= 

1112 
(73) 

so that atfi+~=O. The Hamiltonians are usually taken as 

x2 v” 3 
HE=K+U~~U,' 

(74) 
H~=i(x~+y+z% 

which consists of the energy and the square of angular momentum, respectively. Alternatively, 
we could have used 

H,=&x2-$2, X2=&+, ,=$-&x2 

subject to 

H~+H~+Hs=O (76) 

and the multiplier of the system is M = a&. If we take H, and H2 as the independent conserved 
quantities, the Poisson one-forms are given by 

J~=y(aydy--Pxdx), 

(77) 
J2=a(yy dy-flz dz) 

and the usual Poisson structure on the Lie algebra of SO( 3) is given by the linear combination 

J so(3) = -$-$= (x dx+y dy+z dz) 

for which the Hamiltonian function is the kinetic energy HE given above. A solution of the 
equation for the Jacobi identity, analogous to Eq. (70), but for the ratio 

w=J@ /J(g) 

can be obtained by the separation of variables 

X w=a - &HI-.ll*2 
Z , 

(79) 

(80) 

where a, g, n are arbitrary constants. The resulting Poisson one-form can be written in a 
symmetrical way 

J,= -xz(axHp~H1-zHg~H2)-’ a elHIJ1 +i eqH2J2 
Y 

which reduces to the standard result32 in the limit g-0, 77 40. 
Among the various combinations of the fundamental Poisson one-forms J, and J2 which 

can be combined to yield a Poisson one-form w for Eqs. (72), there is one which deserves 
special consideration. This is homogeneous of third degree 
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J3= (ry2-@)x dx+ (az+x2)y dy+ (flx2-a~)zdz 

(82) 
= 2&HZx dx + 2a yHQ dy + 2PaHlz dz, 

which can be obtained from Eq. (78) by a resealing of the dynamical variables. The foliation 
defined by Eq. (82) is generated by two compatible homogeneous vector fields.29 One of them 
is the dynamical vector field and the other one is the generator of dilations which is compatible 
with it. The Poisson one-form in Eq. (82) is obtained by contracting the volume three-form 
with these two compatible’ vector fields. Here we have an example where an apparently cubic 
structure (68) is in fact Lie-Poisson up to a scaling by the constants of motion. 

Xl. LOTKA-VOLTERRA EQUATIONS 

The general three-species predator-prey system of Lotka and Volterra which is given by 
the vector field 

a a 
X=x(cy+z+;l) ~+Y(x+uz+p) -+dbx+y+v) p 

ay (83) 

was studied by Grammaticos et ~1.~ for the purpose of identifying its completely integrable 
cases. They have pointed out that subject to the conditions 

abc= - 1, v=,ub-ilab (84) 

and 

a=b=c=l, ;l=pu=y=o (85) 

Eqs. (83) admit two functionally independent conserved quantities. We have presented the 
bi-Hamiltonian structure of the first case in Ref. 7. The conserved Hamiltonians and the 
multiplier are given by 

H,=ablnx-blny+lnz, 

H2=ubx+y-uz+v In y-p lnz, (86) 

M=(cxyz)-’ 

and the Poisson one-forms are 

JI = - yz dx - bcxz dy + cxy dz, 

(87) 
Jz=xyz(dx-c dy+uc dz) -cvxzdy+cpxy dz. 

The first Poisson one-form above is an example of Sklyanin’s quadratic algebras whereas the 
second is a mixture of cubic and quadratic algebras. This case includes the integrable Lotka- 
Volterra equations first discussed by Fadeev and Takhtajan33 who also presented its first 
Hamiltonian structure. The Fadeev and Takhtajan system 

~n=X”(Xn+l-X”-‘), (88) 

which we shall close mod 3 

Xn+3,X” (89) 
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can be obtained by the further specialization 

a=b=c= -1, /2=pFL=v=0 (90) 

of Eqs. (84). Fadeev and Takhtajan’s Hamiltonian structure for Eqs. (88) and (89) is up to 
a conformal factor the same as that given by J1 in Eqs. (87). The bi-Hamiltonian structure of 
Fqs. (88) has been obtained by Damianou.34 

The specialization of Eq. (83) according to Eqs. (85) results in 

X=x(y+z) i+y(z+x) $+z(x+y) g (91) 

and presents us with a new problem which is of further interest as a limiting case of the 
Halphen system which we shall discuss in Sec. XII. The bi-Hamiltonian structure of this 
system is given by the Poisson one-forms 

J1=(xyz)“2 -;dx+; dy) + (y-x)dz], 

J2= (xYz)“~ (z--Y)dx+x(y+z) )I , 

where the fundamental conserved quantities are 

(92) 

(93) 

and the integrating factor is M=xyz/2. 
The flow (9 1) is compatible with dilation and hence admits an example of a cubic homo- 

geneous Poisson bracket algebra 

J=yz(y-z)dx+xz(z-x)dy+xy(x-y)dz, (94) 

which can also be obtained from a combination of fundamental Poisson one-forms. The cor- 
responding Hamiltonian function is 

H=ln( [G (x-y)‘]D[a (y-z)2]1wal, (95) 

where a is an arbitrary constant. 

XII. THE HALPHEN SYSTEM 

Perhaps the most interesting dynamical system from both the physical and mathematical 
points of view is the Halphen system where the flow is given by the vector field 

a a 
x= (yz-xy-xz) &' (xz-xy-yz) -+ (xy-xz-yz) g , 

ay 

which has recently been studied extensively as the two-monopole system.” The earliest dis- 
cussion of Eq. (96) is evidently due to Halphen14 in 188 1 where he considered the differential 
equations 
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d(x+y) &y+z) d(x+z) 
-=xy, 

dt 
-=yz, dt=xz, 

dt (97) 

which are equivalent to those obtained from the vector field (96) with t+ -t/2. The form in 
which the Halphen system appears in Atiyah and Hitchin” is 

2 da 
a ;i;=a2- (b-c>2, 

2 db 
; Z=b2- (c-a)2, 

2 dc 
; Z=c2- (a-b)2 (98) 

and it is readily verified that the transformation 

x=bc, y=uc, z=ab (99) 

maps Rqs. (96) into the form of Eqs. (98). The solution of Eqs. (96) gives all the SO( 3)- ’ 
invariant antiself-dual Einstein metrics. These equations of motion are derived from the metric 
of relative monopole space, i.e., the space of motion of two monopoles with respect to their 
center of mass, which is a four-dimensional irreducible hyperklhler Riemannian manifold.15 
Another system connected with the Halphen equations are Nahm’s equations for SU, which 
are formulated in terms of matrix valued functions Ti, i= 1,2,3 

R 
f one real variable s satisfying 

d 
z Ti+ EijkTjTk=O, 

which consist of a direct generalization of Euler’s equations for the top and contain Haiphen’s 
equations as we11.35 

Our interest in Eqs. (96) will be in the framework of their Hamiltonian structure. To this 
end it will be useful to note that the flow corresponding to Eq. (96) consists of a linear 
superposition of the flows for the Euler equations (72) with unphysical moments of inertia 
a=P= y= 1 and the second integrable case of the Lotka-Volterra equations (91). We have 
found that both of these cases admit integrable bi-Hamiltonian structure. However, we shall 
find that the structure of phase space for the Halphen system is quite different while some of 
the techniques we have used in the Euler and Lotka-Volterra systems are still applicable. 

If we are to regard the Halphen system as integrable, the first question that naturally arises 
is the existence of conserved quantities for the flow (96). These conserved quantities have not 
appeared in the literature for over a century even though a great deal of work has been done 
in related areas. For example, the invariance of Eqs. (97) under the transformations ( 105) 
below, which is due to Halphen himself, does not lead to the construction of conserved 
quantities via Noether’s theorem. Similarly, in the most recent work on this subject Chakra- 
varty, Ablowitz, and Clarkson have shown that one-dimensional reductions of self-dual 
Yang-Mills equations result in classical systems and they have obtained Euler’s equations, 
Nahm’s equations, Kovalevskaya top, and Halphen’s equations by allowing the Yang-Mills 
potentials to take values in some particular Lie algebras. However, contrary to the situation in 
the other examples that these authors have presented, the reduction of the self-dual Yang-Mills 
equations to the Halphen system is not suitable for the application of the trace formula to 
obtain the conserved quantities. The discussion of the Hamiltonian structure of the Halphen 
system will show that it is not a completely integrable system globally. The failure to find these 
conserved quantities must be understood in this context. 

We have remarked that the flow (96) consists of a linear superposition of the flows for the 
Euler and Lotka-Volterra systems which admit the dilation 

a a a 
Y=xz+y -&+zz (101) 
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as a compatible vector field.36 Since the vector field X in Eq. (96) describing the flow for the 
Halphen system is also homogeneous, it will be compatible with dilation as well. Then, apply- 
ing the procedure of Sec. VII for the construction of the integrable one-form J that defines the 
foliation generated by X and Y, we obtain the Poisson one-form 

J= [x&z? +yz(z-y) ldx+ [y+x2) +xz(x-z)]dy+ [z(x2--y? +xy(y-x)]dz, 
(102) 

which satisfies the Jacobi identity ( 15). Just as the flow for the Halphen system consists of a 
linear superposition of the flows for the Euler and Lotka-Volterra equations, the Poisson 
one-form ( 102) is a linear combination of the cubic Poisson one-forms (82), (94) of these same 
systems. However, unlike the earlier cases, the integrable one-form ( 102) does not admit an 
integrating factor. 

So far in the discussion of the Hamiltonian structure of the Halphen system, we have relied 
on its Euler and Lotka-Volterra limits and used the fact that the flow for these systems is 
homogeneous of degree 2 and hence admits the Poisson one-form ( 102). However, unlike the 
earlier cases, the one-form a that is obtained from Eq. (22) is not closed and we do not have 
globally integrable bi-Hamiltonian structure for the Halphen system. From the discussion of 
Sec. V we may anticipate that the Halphen system is characterized by an SL(2,R)-valued flat 
connection. The realization of such a structure rests on the crucial observation that the flow X 
in Eq. (96), the dilation ( 101 ), and the boost 

I a a a Z=--+--f- 
ax ay az (103) 

satisfy the SL( 2,R) algebra 

VW1 =y, 

[Z,Y] =2z, (104) 

[X,Y] = -2x, 

where Y has weight 0, while the weights of X,Z are plus and minus 1, respectively. Interestingly 
enough, this information is implicit in the discussion of Halphent4 on the transformations 

at+P 
t’ ‘yt+6 ’ 

yt+s (yt+S12 i 
xii-+2y--- 

US-yp+ as-yp x’ 
(105) 

which leave Eqs. (97) invariant. These transformations constitute a three-parameter group 
generated by 

a 
v1=,t, 

V2=2 
i 

r&-~Xi&i 9 

i 1 

a 
V3=-?Ft+ c (-1+2tx’) $, 

i 

(106) 
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which have the curious property that even though these vector fields are the generators of the 
symmetries of Eq. (96), they do not yield conservation laws. Here we may note in parenthesis 
that this situation could improve if the unsolved multiplier problem for integration were to be 
resolved. 

The vector fields vt , v2, v3 generate the action of SL( 2,R) on four variables. They can be 
regarded as the prolongation of the action of SL( 2,R) on & X R. The autonomous vector fields 
X, Y, and Z satisfy the same algebra and do not depend explicitly on t. The generators of 
Halphen’s transformations, in their characteristic form (see Ref. 6), are related to these vectors 
as follows: 

v*Q= -x, v2pY+2tX, v3Q= -Z+tY+?X (107) 

and this is the form of the action of SL(2,R) on phase space that we shall use to obtain the 
invariant density ( 111) below. We shall extend the first one of these vector fields as 

vlQ-*at-vlQ (108) 

and note that (time-dependent) conserved quantities for the Halphen system vanish under the 
action of Eq. ( 108). It can be verified that all three of the vector fields ( 107) commute with Eq. 
( 108) and hence constitute symmetries. This observation enables us to construct a multiplier 
for the extended Halphen field by25 

(109) 

which reduces to the triple scalar product 

M- ’ = [ X,Y,z] (110) 

and evaluating it for the Halphen system we find 

M-1=2(x-y)(y-z)(z-x), (111) 

which can be interpreted as the invariant density. Hence the volume three-form appropriate to 
the Halphen system is given by 

dxAdyAdz 

*l=2(x-y) (y-z) (z-x) (112) 

and this multiplier is the same as the one that enters into the definition of the invariant volume 
element. 

From duality we can construct the basis one-forms J,, a, and J2 according to 

J,JX=l, J,AY=O, J,JZ=O, 

cYJX=O, uAY=l, a-IZ=O, (113) 

J,AX=O, J,AY=O, J,JZ=l. 

The one-forms J1, u, and J2 will satisfy the Maurer-Cartan equations (34)-(37) by virtue of 
Eqs. (104). Using only the duality relations (113), from Eqs. (96), (lOl), and (103) we find 
the following expressions for the basis one-forms: 

J,=M[ (y-z)dx+ (z-x)dy+ t-x--YMl, 
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a=M[ (y-z)x dx+ (z-x)y dy+ (x-y)z dz], (114) 

J,=M[ (y-z) (yz-xy-xz)dx+ (z-x) (xz-xy-yz)dy+ (x-y) (xy-xz-yz)dz], 

where Jz is identical to the earlier result for J in Eq. ( 102) up to the conformal factor M which 
plays no role in the Jacobi identity. 

The one-forms J1, a, and J2 play the role of connection as we had discussed in Sec. V A. 
The connection one-form J? that is obtained from Eqs. ( 114) according to Eq. (39) has zero 
curvature. 

We have found that the boost (103), dilation (lOl), and the Halphen vector field (96) 
form a hierarchy. However, in three dimensions there is no recursion operator derivable from 
bi-Hamiltonian structure so that this interpretation cannot hold in the usual sense. Further- 
more, the bi-Hamiltonian structure that gives rise to the SL(2,R)-valued flat connection in 
Eqs. ( 114) must be regarded as that belonging to Y. That is, on .k the flow of Y admits 
bi-Hamiltonian structure 

Y-I *l=da=JzAJ1 (115) 

since J1 and J2 are Poisson one-forms and Liouville’s theorem follows from Eq. (34). Another 
expression of the fact that globally we do not have complete integrability for this bi- 
Hamiltonian structure is the fact that J1 and Jz can be made compatible at the price of 
nonlocality. For compatibility the function g in Fq. (2 1) must be chosen as 

g=9 exp(4Slm a), (116) 

where 9 again denotes path ordering, which is therefore nonlocal. 

XIII. CIRCLE MAPS 

Some of the interesting features of the SL(2,R) structure of the Halphen system can be 
illustrated by and contrasted with the system of circle maps. For this purpose we shall consider 
a dynamical system defined by the vector field 

which consists of a direct product of decoupled Riccati systems. This can be recognized as a 
tri-Hamiltonian system where two of its Hamiltonian structures are those appropriate to a 
globally bi-Hamiltonian system, i.e., a Liouville-integrable system, whereas the third one is 
realized in terms of the SL(2,R) structure. The latter property follows from the readily veri- 
fiable fact that dilation ( 101) and translation ( 103) vector fields are compatible with Eq. ( 117) 
and together they satisfy the SL(2,R) structure in Eqs. ( 104). This is the relationship of the 
dynamical system ( 117) to circle maps. 

First of all we note that Eqs. (117) admit 

HI+;, Hz”-;, (118) 

with the volume element given by 

(119) 
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so that we have the Poisson one-forms 

J1=2(x2 dy-3 dx), J,=x’(? dz-2 dy), (120) 

which cast the system into the form of a globally integrable bi-Hamiltonian structure. 
On the other hand the triplet of vector fields ( 117), ( 101 ), and ( 103), or the system of 

circle maps proper, admits SL(2,R) structure. The construction of the relevant Poisson one- 
form is exactly the same as that for the Halphen system and yields 

J3= 
yz(z-y)dx+xz(x-z)dy+xy(y-x)dz 

(X-Y) (Y--Z> (z-x) 
, (121) 

which is obtained by contracting the volume form of the SL( 2,R) structure with the flow. This 
volume three-form is obtained from Eq. ( 110) 

1 
Ml= 

2(x--Y) (Y-Z> (z-x) 
(122) 

and therefore it is precisely the same as the one for the Halphen system. J3 is dual to the 
translation vector and we have 

--X _1 *1=2aAJ3=dJ3, (123) 

where 

a= (+&dx+ @-x’)dy+ (x2-y2)dz 

2(x-y) (y-z) (z-x) 
, (124) 

which is a local Poisson structure with Poisson one-form J3. However, a is not integrable 
because it is not closed and gives rise to a nonzero Godbillon-Vey invariant. To complete the 
SL(2,R) structure we have 

J 
4 
= (z--Y)dx+ (x--z)dy+ (y-xM. 

(X-Y) (Y-Z) (z-x> 
(125) 

and it can be verified that Eqs. (121), (124), and (125) satisfy the SL(2,R) Maurer-Cartan 
equations (34), (36), and (37). 

The nonvanishing Godbillon-Vey three-form is an obstruction to the local existence of the 
conserved quantity for the latter Poisson structure. On the other hand, the Poisson one-form J3 
is not only locally integrable, but also expressible globally in terms of the conserved densities 
of the Liouville integrable structure. The ratio of invariant densities associated with the two 
structures is expressible as a function of the fundamental conserved quantities which is the 
statement of Jacobi’s last multiplier theorem. 

The dynamical system ( 117) is a most interesting example of three-dimensional Poisson 
structures in that it admits both a globally integrable bi-Hamiltonian structure as well as an 
SL(2,R) structure. The inversion 

(126) 

results in 

x-+-z, Y-+--Y, z-+-x, (127) 
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5714 H. GLimral and Y. Nutku: Poisson structure 

which preserves the algebra. Hence the dynamical system defined by the vector field Z will 
exhibit a similar structure. 

Our purpose in discussing the system of circle maps was to illustrate some of the interesting 
geometrical properties of the Halphen system in a simple example. It is worth noting that there 
exists also a rather formidable example, namely, the Darboux system given by the vector field 

X=ymg+P~+xmg, ay 
where m is a constant, which shares these properties as well. 

XIV. LORENZ MODEL 

The Lorenz modelI is given by the vector field 

X=o(y-x) ;+ (px-xz-y) a+ (-j?z+xy) p, aY 

(128) 

where u and p are the Prandtl and Rayleigh numbers, respectively, and p is the aspect ratio. 
It exhibits chaotic behavior for most values of these parameters, however, we shall show that 
in two limiting cases the Lorenz model reduces to the same dynamical system which admits 
bi-Hamiltonian structure. These limits are most conveniently characterized by the Rayleigh 
number p, namely, p =0 and p + CO. 

More precisely, we shall first consider the case 

p=Q Cl=?, ’ p=1, (130) 

which, as Segur3’ has shown, admits 

3+2” 
H= (x2-z)Z 

as a conserved quantity. This case has 

a a a 
Y=xa,+2yay+2z-& 

as a compatible vector field. From Eq. (58) the resulting one-form 

J= -2(3+22)x dx+ (x2-z)y dy+ (x’z+y?dz 

is precisely of the form of Eq. (25) with 

2 

lv= (x2--2)3 

(131) 

(132) 

(133) 

(134) 

and H is given by Eq. ( 131). Equations (61), (62) can be solved for the other conserved 
quantity, only if we consider them with explicit time dependence. The result is a conserved 
quantity with a linear time dependence, which when exponentiated, is equal to H, below. In 
order to exhibit the bi-Hamiltonian structure of Eqs. ( 129) subject to the conditions ( 130)) we 
need two time-independent constants of motion. But extensive searches384 have failed to yield 
such a conserved quantity. The clue to the bi-Hamiltonian structure of Eqs. ( 129) and ( 130) 
lies in the fact that this system admits two time-dependent conserved quantities 
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H,=e’(x’-z), H2=e2’(y2+$) (135) 

and the time-independent expression ( 131) results from the elimination of t from Eqs. ( 135). 
In order to be able use Eqs. ( 135) in the discussion of Hamiltonian structure, we need to find 
a transformation of the dynamical variables and time so that in terms of the new variables they 
are independent of the new time parameter. This transformation is given by 

x=$ru, y+v, z=pw, t=-log(rV4) (136) 

and the equations of motion corresponding to the vector field ( 129) subject to Eq. ( 130) take 
the form 

1 u’ =zv, v’= -uw, wt=uv, (137) 

with the prime denoting differentiation with respect to r. The new conserved quantities 

H,=w-yU2, H2=v2+w2 (138) 

are indeed time-independent conserved quantities. 
Using Eqs. ( 138) we can write Eqs. ( 137) in bi-Hamiltonian form with the Poisson 

one-forms 

J1=f( -2u du+dw), 

J2= -;(u dv+w dw), 
(139) 

which are compatible. From the expression for J, we can read off 

23 Cl = -4, p=f, (140) 

which, apart from those related by symmetry, are the only nonzero elements. Hence the 
underlying algebra determined by the first structure matrix of the Lorenz model subject to 
conditions (130) is 

[u,v] =a, [u,w] =o, [u,w] = -fu (141) 

and it can be identified with the central extention of the nilpotent algebra of Weyl group A, by 
a resealing of the generators 

(142) 

for which the central charge is - l/2. 
The Hamiltonian structure of this integrable case in the Lorenz model had been considered 

earlier by Sen and Tabor. But because of their use of symplectic two-forms, rather than the 
bivector 0, Sen and Tabor were only able to present partial results restricted to subspaces 
where either H, or Hz were constant. In contrast, our approach yields the complete Hamil- 
tonian structure directly without any restrictions. 

The second completely integrable case of the Lorenz system is known as the conservative 
limit.38*41 This is obtained through the scaling of Eqs. ( 129) according to 

1 1 1 
t+et, x-p, y--&Y, z-gz, (143) 

with a=-“‘. In the limit e--+0 the equations of motion for Eq. ( 129) reduce to 
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i=y, g= -xz+x, i=xy, (144) 

which is known to admit two time-independent conserved quantities. However, this case is 
actually identical to the previous one as the transformation 

u=x, u=2y, w=2(z- 1) (145) 

carries Eqs. ( 137) into Eqs. ( 144). 
Finally, we shall present the solution of Eq. (70) for the Lorenz model which enables us 

to include arbitrary constants into the Poisson one-forms. We find that 

Ju=--2uv(vH,,-qH,)-‘(J2+xJ1), 

where x=x(H,,H,) is an arbitrary function of its arguments. 

(146) 

The Lorenz system is well-known to be a chaotic system, in fact it is generally considered 
to be the prototype of dynamical systems exhibiting chaotic behavior. In two extreme cases it 
reduces to a completely integrable system. We have shown that these two cases are the same 
and given its bi-Hamiltonian structure which enables us to recognize it as a Nambu system.’ 
Systematic searches have been conducted39’m to find other values of the parameters p, o, and 
/3 for which the Lorenz model admits a pair of conserved quantities and no other cases have 
been found. Based upon these results we can conclude that so far the only cases where the 
Lorenz model can be shown to admit bi-Hamiltonian structure are the two discussed above. 

XV. MAY-LEONARD EQUATIONS 

The May-Leonard system” which has its origin in biology is given by the vector field 

X= Ix-x(x+ay+Pz) 1 g+ b-v(Dx+~+~) I $+ [z-z(ax+L%+z) I $, (147) 

which is similar to the Lotka-Volterra equations. Strelcyn and Wojchiecowski36 have discussed 
the conserved quantities associated with this system. They have concluded that for a=p 

dY--xl 
H,=- 

--e-Y) 
(and the cyclic) 

are conserved. But it is readily verified that 

dH, AdH2=0 

so that they are functionally dependent and cannot be used to exhibit the possible bi- 
Hamiltonian structure of Eqs. ( 147). 

The May-Leonard equations present a problem similar to the situation for the Lorenz 
model at a zero Reynolds number. Namely, two functionally independent conserved quantities 
exist only if we consider the explicitly time-dependent case. The equations of motion ( 147) 
must then be transformed so that in terms of the new dynamical variables the conserved 
quantities contain no explicit dependence on time. For a =fl# 1 this transformation is given by 

f *a* cyclic (148) 

and Eqs. ( 147) are thereby brought into the form 
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du 
-=v w 
dr 

-cl -a, 
(149) 

where r=e’ is the new independent variable. The conserved quantities of this system can easily 
be found as 

f++L&o’ , H2=&-a-w1--a, 

which give the time-dependent integrals in the original variables 

(150) 

l/(Za+l) 
&=e[(l--a)/(2a+1)]t 

(Y-X), 

Xa l/(Za+l) 
H2=,[(‘-d42~+1)]r 

Y 
n+y+ (Z-Y). 

(151) 

In the new variables the May-Leonard system is bi-Hamiltonian with 

and the corresponding 
multiplier ( 1 -a)‘. 

J,=-(l-a)-‘(u-“du+v-adv), 

J2=-(1-a)-1(v-“dv+w-adw) 
(152) 

Hamiltonian functions are given by Hz and H,, respectively, with the 

XVI. MAXWELL-BLOCH EQUATIONS 

A classical model for laser systems consists of the Maxwell-Bloch system. For periodic 
boundary conditions this model is given by the vector field” 

x= (--kE+gp) &+ ( -?‘L P+gEA) &- [y,, (A-A.,) -4gPE] &, (153) 

where E and P are the envelopes of electric and polarization fields, and A is the population 
inversion field. We shall now show that for 

2k=yL =yII , At,=0 (154) 

this system can be written as a bi-Hamiltonian system. In this case using the transformation 

x,e(k/g)tEl/g, y=g(k/g)tpl/g, z=etAl/2k, q-c -k e--kt (155) 

the Maxwell-Blotch equations assume the form 

x’=xl--gyg, y’,xgy’--g~k, zt= -$-syz-, 
(156) 

which is suitable for the discussion of its Hamiltonian structure, The conserved quantities of 

this system are 

HI =x4g+x2g2k-$k, H2=x2g+-pk, (157) 
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which correspond to the following time-dependent conserved quantities in the original vari- 
ables 

HI= (@+E2A-p)e4k’, Hz= (E2+iA)t?k’. 

The Poisson one-forms are given by 

(158) 

J,= -2; (gx2g-1(2x2g+~k)dx-&y2g-- dy+kx282k-1 dz), 

(159) 

J2=& (2gx2g-’ dx+tik-’ dz), 

where 

&f&?gk~-l~-‘~k-l (160) 

is the multiplier for the system. 
We note that the apparent similarity of the integrable cases of the Maxwell-Bloch and 

Lorenz equations suggests that there may be a transformation of the variables which will carry 
one onto the other. Indeed, the bi-Hamiltonian case of Maxwell-Bloch equations are trans- 
formed into the first integrable case of the Lorenz model by 

,=&ix, P=,$y, A=-2$z, tMB=& (161) 

Moreover, the transformation 

1 
u=xB, u=Yg, w=-2k, 

g 
(162) 

whose Jacobian determinant is the multiplier M, sends Eq. ( 156) into a divergence-free form. 
The resulting equation is identical with the first bi-Hamiltonian case of the Lorenz model, cf. 
Eq. (137). 

XVII. SYSTEMS WITH TWO ENERGY LEVELS 

In connection with the level crossing problem in atomic physics, the dynamical system 

(163) 

has been studied as a model describing the change in the energy levels of an atom with only two 
levels as a function of the eigenvalue. We refer to Refs. 42 and 43 for an explanation of the 
symbols. For Bqs. ( 163) there exists two independent conserved quantities 

H1=p2+4V2, H,=EV, 

which gives the bi-Hamiltonian structure 

(164) 

J1= -f (p dp+WdV), 
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1 
J2=G (VdE+EdV), (165) 

with the multiplier M=2E. This structure can be extended as Eq. (70) now admits the 
solution 

and the corresponding Poisson one-form is 

where x is an arbitrary function of the conserved Hamiltonians. 

XVIII. A LIMIT CYCLE SYSTEM 

The commuting vector fields 

x=[-Y--z+w(1-x2--y2-2)] ~+[x+pY(l-x2-J-l)+v(y-z)] -g 

+ [x+pz( 1 -x2-9-z”) -dY--dl g 

and 

a a a 
y= -(viz) =&+x avfz 

( 1 

were considered by Steeb and Euler4’ as a limit cycle system. For v=O 

AT= 
yz+(l/2)x2 

(Y-d2 

(167) 

(168) 

(169) 

(170) 

is a conserved quantity for both of these vector fields. The observation that the Poisson 
one-form (58) and d3T differ by a conformal factor, determines the multiplier for this system 

M=; (1 --x2-yL2) -'(y-z) -3 (171) 

and the second conserved quantity for the flow of X follows from the solution of Eqs. (6 1 ), (62) 

(172) 

which involves an arbitrary function x of the first conserved quantity. 
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XIX. INTEGRABLE MODELS FOR EPIDEMICS 

Recently we presented’ the bi-Hamiltonian structure of the SIR model of Kermack and 
McKendrick” governing the spread of epidemics for a closed population. The Kermack- 
McKendrick vector field is given by 

x=-rSI~+(rSI-UI) $+u& (173) 

where S stands for the number of susceptibles, I for those infected, and R denotes the removals. 
The constants u,r determine the infection and removal rates of infectives, respectively. The 
equations of motion that result from Eq. (173) admit two conserved quantities 

H, =S+I+R, (174) 

H,=R+;logS (175) 

and the integrating factor of the Pfaff system is 

M=(rSI)-‘, (176) 

which provides all the information we need for immediately constructing the Poisson one- 
forms. From Eq. (25 ) we find 

J,=rSI(dS+dI+dR), 

J2= -I(adS+rSdR), 
(177) 

which should be compared to the matrices of Hamiltonian structure functions given in Ref. 8. 
In the discussion of the spread of epidemics in a closed population, where it will be 

understood that H1 is constant, we may dispense with R and use only the first two of Eqs. 
( 173) which is a self-consistent system on its own. In this case the evolution of R can even- 
tually be obtained from those of S and I using Eq. ( 174). We shall now consider the restriction 
of the Kermack-McKendrick system to the surfaces of constant total population and show that 
on these surfaces it admits a symplectic structure. 

On the surface of constant total population the Kermack-McKendrick system is given by 
the vector field 

ii= -rSI-&+ (&I--d) $, 

where the quantity 

H=Hl-Hz=S+Z-F In S 

is conserved. This system admits symplectic structure 

%h=dH, 

with Eq. ( 179) as the Hamiltonian function and 

(178) 

(179) 

(180) 
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(181) 

the symplectic two-form. 
In the Kermack-McKendrick model it is assumed that the average number of contacts 

sufficient to transmit infection per infective in unit time is a constant A. The constant r 
determining the infection rate is related to A by r=A/H1 which contains the removals. Another 
model, still for a closed population, so that H1 is again constant, uses nonconstant r assuming 
that the removals have no effect on the infection rate.16 This model for epidemics is given by 
the vector field 

A 
x=- +a+ - 

as s+z sr-aI ( 1 
$faI& 

and it admits 

Hs=iln(S+I)-:lnS (183) 

as a second conserved quantity. For this system the multiplier and J, differ only by a constant 
from those of the Kermack-McKendrick model. The second Poisson one-form for Eqs. ( 182) 
is given by 

I 

Jz=s+z 
- ([ (A-a>S-uI]dS+AIdI}. (184) 

A more general model which depends on an a priori unspecified function C(S+I) satis- 
fying the conditions 

c(s+I) > 0, @s-I) 24 f c~y<o 
has also been discussed.‘6 The resulting model for a fatal disease in a closed population consists 
of the following equations: 

g= -C(S+I) 
s+z sz, 

. C(S+I) 
I= s+I SI-al, (186) 

k=aI 

and contains as special cases all those discussed previously. Once again H, is conserved and the 
multiplier is the inverse of SI. There is a second conserved quantity 

Hz= D(S+I) -u In S (187) 

involving a function D(x) which is obtained by carrying out the quadrature 

D(x) = 
x C(d) 

s 
-dx’ 

x’ 
(188) 
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and the Poisson one-form resulting from Hz is 

J2= & {[(C(S+z) -a)S-ar]dS+C(S+I)Sd~}, (189) 

which is compatible with J1. 
The basic structure of the Kermack-McKendrick equations governing the spread of epi- 

demics allows considerable freedom for incorporating new effects without changing the under- 
lying bi-Hamiltonian structure. 

We note that if we restrict these models to the surfaces of constant total population, then 
they will admit symplectic structure. Interestingly enough, the symplectic two-form of w 
remains the same as in Eq. ( 181) even for the most general model above which contains the 
arbitrary function C(S+I). The Hamiltonian function is of course changed into the appro- 
priate conserved quantity as in Eq. (187). 

XX. CONCLUSION 

Dynamical systems with three degrees of freedom which admit bi-Hamiltonian structure 
are of two types: 

( 1) Either they are expressible in the form of Eq. (28) and the solution of the Pfaff system 
(9) yields H,, Hz, and M which contain all the information required for constructing the 
Poisson one-forms J, and J,. In this case the equations of motion can be cast into the form 

XJ*1=dH,AdH2 

and we have complete integrability. Nambu mechanics is a special case of this type of structure. 
(2) Or they admit a flat SL(2,R)-valued connection one-form I where we have only local 

integrability. 
In the integrable bi-Hamiltonian case the solution curve in phase space can be character- 

ized by the intersection of two-dimensional level surfaces defined by the conserved quantities. 
For the SL(2,R) structure one cannot raise the foliations defined by J, and J2 to a total 
foliation of A. The obstruction to this is the nontriviality of the Godbillon-Vey class. 

These structures result from the first and second order unfolding of an integrable one-form 
in 3+ 1 dimensions. In this framework compatibility has the interpretation of an integrable 
deformation. 

We have presented the explicit forms of Poisson structure that are obtained for various 
well-known dynamical systems in physics and biology that provide examples of both of these 
types. The resulting structures consist of nonlinear extensions of Lie algebras. The techniques 
we have presented for constructing the Poisson structure appropriate to a dynamical system 
allows for the possibility of incorporating arbitrary constants both in the Poisson one-forms, or 
the Hamiltonian structure matrices as well as the Hamiltonian functions. This enables one to 
investigate the deformations or 4 extensions of Poisson structure. 
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