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Poissonian Potential Measures for Lévy Risk Models

David Landriault∗ Bin Li† Jeff T.Y. Wong‡ Di Xu§

June 5, 2018

Abstract

This paper studies the potential (or resolvent) measures of spectrally negative Lévy pro-
cesses killed on exiting (bounded or unbounded) intervals, when the underlying process is
observed at the arrival epochs of an independent Poisson process. Explicit representations of
these so-called Poissonian potential measures are established in terms of newly defined Pois-
sonian scale functions. Moreover, Poissonian exit measures are explicitly solved by finding a
direct relation with Poissonian potential measures. Our results generalize Albrecher et al. [4] in
which Poissonian exit identities are solved. As an application of Poissonian potential measures,
we extend the Gerber-Shiu analysis in Baurdoux et al. [7] to a (more general) Parisian risk
model subject to Poissonian observations.

Keywords: Poissonian observations; Potential measures; Exit measures; Spectrally negative
Lévy process; Parisian ruin problems

1 Introduction

In actuarial mathematics, the risk analysis of spectrally negative Lévy processes (SNLPs) has

greatly benefited from the rich literature on fluctuation theory of Lévy processes. For instance,

the analysis of exotic exit problems for SNLPs (which, among others, include the generalization

of the classical time of ruin to more exotic ruin times) has been facilitated by the comprehensive

body of literature on fluctuation identities of SNLPs. The Parisian ruin models of Dassios and

Wu [13], Czarna and Palmowski [11], Loeffen et al. [23], Landriault et al. [20], Wong and Cheung

[27], Baurdoux et al. [7], and Lkabous et al. [21], where the insurer is granted a grace period

whenever the surplus is observed to be negative, are notable contributions on this exotic exit

problem topic. We recall that Parisian ruin is deemed to occur at the end of the grace period if

the surplus process fails to recover to level zero within the grace period. Interested readers are

referred to Li et al. [25] for a more complete literature review on this research topic. Another

class of risk processes which has drawn considerable interest in recent years is the drawdown risk

models of, e.g., Zhang et al. [29], Landriault et al. [16][17][18], and Avram et al. [6], which use

the drop of the insurance surplus from its maximum as a downside risk metric. In comparison to

the traditional assessment of an insurer’s solvency risk through a fixed level of capital adequacy,
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drawdown has the advantage of following more closely the dynamic growth of insurance surplus

over time and hence, has the ability to provide timely warning to insurers on solvency matters.

Applications of drawdown models in financial engineering can also be found in Zhang [28].

This paper considers another exotic risk model, namely the so-called Poissonian observation

model, in which the underlying surplus process of an insurer is monitored discretely at the arrival

epochs of an independent Poisson process. In insurance mathematics, the Poissonian observation

model was first proposed by Albrecher et al. [1][2], and later generalized by e.g., Albrecher and

Ivanovs [3] and Albrecher and Lautscham [5] to more general observation schemes (with surplus-

dependent observation rates). Among its possible applications, the Poissonian observation scheme

may be used to model the monitoring frequency by an exogenous regulatory authority of an

insurer’s surplus. The study of Poissonian observation models has been shown to be of interest

on its own mathematical merits, and furthermore has helped to establish connections with other

existing ruin-related problems in insurance mathematics (most notably, Parisian ruin problems

with exponential clocks, see, e.g., Landriault [20]). In this regard, it should be mentioned that,

for SNLPs with paths of unbounded variation, Parisian ruin and occupation time problems have

typically relied on a spatial approximation technique to overcome difficulties arising from the

standard renewal arguments (e.g., Loeffen et al. [23] and Landriault et al. [19]). In Li et al.

[25], an alternative approach utilizing the Poissonian observation technique, henceforth referred

as the temporal approximation approach, is proposed to study some Parisian ruin problems. The

temporal approximation approach is shown to be well-suited to the analysis of these Parisian ruin

problems, offering the added benefit of a unified treatment of SNLPs with bounded or unbounded

variation paths. Note that Poissonian observation schemes have also been applied in queueing

contexts (see, e.g., Bekker et al. [8] for more details).

In light of the aforementioned interest in Poissonian observation models, Albrecher et al. [4]

established a complete set of exit probabilities for SNLPs. In this paper, we extend Albrecher

et al. [4] by solving for the potential measures of SNLPs under Poissonian observations which

we shall refer as Poissonian potential measures in what follows. Potential measures are known

to play a fundamental role in the exit problems of SNLPs under the continuous-time observation

scheme; see, for instance, Eq. (3.25) below, Pistorius [26], and Biffis and Kyprianou [9]. This

will also be true in the Poissonian observation scheme framework. More precisely, simple relations

between Poissonian exit measures and Poissonian potential measures will be given in Corollary

3.1. Another important contribution of this paper is the introduction of a new class of Poissonian

scale functions which will allow to state the Poissonian potential and exit measures in the same

form as their analogues in the continuous-time observation scheme framework. Finally, it is worth

noting that the observation time process can be generalized from Poisson to a renewal process for

which the inter-observation times are assumed to be Erlang distributed or more generally have a

rational Laplace transform (see, e.g., Albrecher et al.[1] and [2], and Zhang [30]). Since the proofs

and results are considerably more complex in this context, we prefer to cover only the Poissonian

observation process here.

The rest of the paper is organized as follows: in Section 2, we review some preliminary results
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on SNLPs. Section 3 contains our main results on Poissonian potential and exit measures. In

Section 4, an application of the Poissonian potential measures is considered in a Parisian risk

model under Poissonian observations. An explicit expression for a Gerber-Shiu type density at the

Parisian ruin time is derived, generalizing its continuously-observed analogue in Baurdoux et al.

[7]. All technical proofs are postponed to the Appendix.

2 Preliminaries on spectrally negative Lévy processes

In this section, we introduce some preliminary results on SNLPs including scale functions, exit

identities, and potential measures. Interested readers are referred to Kyprianou [15] and Kuznetsov

et al. [14] for more details. Throughout the paper, let X = {Xt}t≥0 be a SNLP defined on a filtered

probability space
(

Ω,F ,F = {Ft}t≥0 ,P
)

satisfying the usual conditions of completeness and right

continuity. We also adopt the convention that Px and Ex are, respectively, the law and expectation

when X0 = x ∈ R (with P = P0 and E = E0 for brevity).

The SNLP X can be fully characterized via its Laplace exponent ψ : [0,∞)→ R defined as

ψ(s) = logE[esX1 ], s ≥ 0,

with

ψ(s) = µs+
1

2
σ2s2 +

∫

(−∞,0)

(
esy − 1− sy1{y>−1}

)
Π (dy) .

To avoid triviality, we assume |X| is not a subordinator, i.e., almost surely non-decreasing sample

paths. For any given q ≥ 0, we write

ψq(s) = ψ(s)− q. (2.1)

It is known that ψ is strictly convex with ψ(0) = 0 and ψ(∞) = ∞. Furthermore, we denote the

largest solution of the equation ψq(s) = 0 by Φq.

2.1 Scale functions

Scale functions are known to play a fundamental role in the fluctuation theory of SNLPs. For any

q ≥ 0, the q-scale function W (q) : R → [0,∞) is continuous and (positively) supported on [0,∞)

(i.e., W (q)(x) = 0 for all x < 0), and constructed via its Laplace transform
∫ ∞

0
e−syW (q)(y)dy =

1

ψq(s)
, s > Φq. (2.2)

The second q-scale function is defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy, x ∈ R,

while the following generalized form is of particular interest in exit identities pertaining to X,

namely, for θ ≥ 0,

Z(q) (x, θ) = eθx
(

1− ψq (θ)

∫ x

0
e−θyW (q) (y) dy

)
, x ∈ R. (2.3)
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It is immediate that Z(q)(x, 0) = Z(q)(x) and Z(q) (x, θ) = eθx for x ≤ 0. Also for θ > Φq, we can

rewrite Z(q) (x, θ) as

Z(q) (x, θ) = ψq (θ)

∫ ∞

0
e−θyW (q) (x+ y) dy, x ≥ 0. (2.4)

Moreover, for s, θ > Φq, the Laplace transform of Z(q)(x, θ) is given by

∫ ∞

0
e−sxZ(q) (x, θ) dx =

{
ψ(s)−ψ(θ)
ψq(s)(s−θ) , θ 6= s,
ψ′(θ)
ψq(θ)

, θ = s,
(2.5)

where ψ′(θ) is the derivative of ψ(θ).

Amongst the myriad of results on scale functions, we recall the following two identities from

Loeffen et al. [24] which will be heavily relied upon in the later analysis. For any p, q, x ≥ 0 and

p 6= q, we have ∫ x

0
W (p) (x− y)W (q) (y) dy =

W (p) (x)−W (q) (x)

p− q , (2.6)

and ∫ x

0
W (p) (x− y)Z(q) (y, θ) dy =

Z(p) (x, θ)− Z(q) (x, θ)

p− q . (2.7)

2.2 Exit identities and potential measures

For any x ∈ R, let

τ+(−)
x = inf {t ≥ 0 : Xt > (<)x} ,

where we adopt the convention that inf ∅ = ∞. The two-sided exit identities (2.8) and (2.9) are

well known; see, e.g., Theorem 8.1 of Kyprianou [15] and Albrecher et al. [4].

Loeffen

Lemma 2.1 For q ≥ 0 and x ∈ [0, a],

Ex
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

=
W (q) (x)

W (q) (a)
, (2.8)

and

Ex
[
e
−qτ−0 +θX

τ−0 1{τ−0 <τ+
a }
]

= Z(q) (x, θ)− W (q) (x)

W (q) (a)
Z(q) (a, θ) . (2.9)

In particular, we also recall the following one-sided exit identities:

E
[
e−qτ

+
a 1{τ+

a <∞}
]

= e−Φqa, a > 0, (2.10)

and

Ex
[
e
−qτ−0 +θX

τ−0 1{τ−0 <∞}
]

= Z(q)(x, θ)− ψq(θ)

θ − Φq
W (q)(x), x ≥ 0. (2.11)

A comparison of (2.8) with (2.10), and (2.9) with (2.11) leads to the following limiting results

related to scale functions:

lim
a→∞

W (q) (a+ x)

W (q) (a)
= eΦqx, x ∈ R, (2.12)
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and

lim
a→∞

Z(q) (a, θ)

W (q) (a)
=

ψq (θ)

θ − Φq
. (2.13)

Next we recall some results on potential measures for the SNLP X which are defined as follows:

∫ ∞

0
e−qtPx (Xt ∈ dy) dt = θ(q) (y − x) dy, x, y ∈ R, (2.14)

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ+

0

)
dt = r

(q)
+ (x, y) dy, x, y ≤ 0, (2.15)

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ−0

)
dt = r

(q)
− (x, y) dy, x, y ≥ 0, (2.16)

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ−0 ∧ τ+

a

)
dt = u(q) (x, y; a) dy, x, y ∈ [0, a] . (2.17)

A thorough derivation and discussion can be found in Chapter 8.4 of Kyprianou [15].

Lemma 2.2 For q ≥ 0 and a > 0, the q-potential densities θ(q), r
(q)
+ , r

(q)
− and u(q) are given by

θ(q) (y) = Φ′qe
−Φqy −W (q) (−y) , y ∈ R, (2.18)

r
(q)
+ (x, y) = eΦqxW (q) (−y)−W (q) (x− y) , x, y ≤ 0, (2.19)

r
(q)
− (x, y) = e−ΦqyW (q) (x)−W (q) (x− y) , x, y ≥ 0, (2.20)

u(q) (x, y; a) =
W (q) (a− y)

W (q) (a)
W (q) (x)−W (q) (x− y) , x, y ∈ [0, a] , (2.21)

where we denote Φ′q as the derivative of Φq with respect to q, which is known to satisfy Φ′q =

1/ψ′(Φq).

3 Main Results

This section culminates with our main results on Poissonian potential measures in Theorem 3.1.

Subsequently, thanks to a simple relation between potential measures and exit measures under

the Poissonian observation scheme, explicit formulas for (one-sided and two-sided) Poissonian exit

measures will be given in Corollary 3.1.

Under the Poissonian observation scheme, let {Tn}n∈N, an increasing sequence of F-stopping

times, be the observation times which correspond to the arrival times of an independent Poisson

process with intensity rate λ > 0. We note that the first observation occurs at time T1 (and

not at time 0). Heuristically, when λ → ∞, the Poissonian observation scheme reduces to the

classical continuous observation scheme. The convergence of Poissonian potential measures to the

“classical” potential measures will be shown in Proposition 3.1.

For any given level x ∈ R, we define the Poissonian exit times by

T+(−),λ
x = inf {Ti : XTi > (<) x} .
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In Albrecher et al. [4], the Laplace transform of Poissonian exit times and their corresponding

overshoots/undershoots for SNLPs were studied. Their results are expressed in terms of the “clas-

sical” scale functions introduced in Section 2.1. To better formulate the results under Poissonian

observations, we define the following Poissonian scale functions: for q ≥ 0 and λ > 0,

W (q,λ)(x) = (Φq+λ − Φq)

∫ ∞

0
e−Φq+λyW (q)(x+ y)dy, x ∈ R, (3.1)

and

Z(q,λ)(x) = 1 + q
Φq+λ

Φq+λ − Φq

λ

q + λ

∫ x

0
W (q,λ)(y)dy, x ∈ R. (3.2)

Using (2.4), we can also rewrite W (q,λ) as

W (q,λ)(x) =
Φq+λ − Φq

λ
Z(q)(x,Φq+λ), x ∈ R. (3.3)

By applying the initial value theorem on (3.1), it is easily seen that the Poissonian scale functions

converge to the classical scale functions as λ→∞, that is,

lim
λ→∞

W (q,λ)(x) = W (q)(x) and lim
λ→∞

Z(q,λ)(x) = Z(q)(x). (3.4)

Note that, for the latter limit in (3.4), we can apply the dominated convergence theorem as, for

fixed x ∈ R, and λ large enough, we have

Φq+λ

Φq+λ − Φq

λ

q + λ
W (q,λ)(y) ≤ 2W (q,λ)(y) ≤ 2W (q,λ)(x) ≤ 2W (q)(x) + 1, for any y ∈ [0, x].

In the following lemma, we make use of the Poissonian scale functions W (q,λ) and Z(q,λ) to

re-state two Poissonian exit results in Albrecher et al. [4] in a form which is consistent with their

continuously-observed analogues (2.8) and (2.9), respectively.

Lemma 3.1 For q ≥ 0, and x ∈ [0, a],

Ex
[
e−qτ

+
a 1{τ+

a <T
−,λ
0 }

]
=
W (q,λ) (x)

W (q,λ)(a)
, (3.5)

and

Ex
[
e−qT

−,λ
0 1{T−,λ0 <τ+

a }

]
= Z(q,λ)(x)− W (q,λ)(x)

W (q,λ)(a)
Z(q,λ)(a). (3.6)

Remark 3.1 Given their importance in Albrecher et al. [4] and the subsequent analysis, we limit

the review of Albrecher et al. [4] to the exit results (3.5) and (3.6). We note that (3.5) was first

proved by Albrecher and Ivanovs [3]. For both Eqs. (3.5) and (3.6), a spatial approximation argu-

ment is used to handle SNLPs with unbounded variation paths. Alternatively, simple conditioning

arguments (coupled with the potential measure results in Lemma 2.2) can be called upon to derive

these results in a more direct manner. As an illustrative example, we consider P
(
τ+
a < T−,λ0

)
.

The other cases can be similarly handled.

6



By conditioning on the first observation time T1 (which has the same distribution as an inde-

pendent exponential random variable eλ with mean 1/λ) and then using (2.15), we have

P
(
τ+
a < T−,λ0

)
= P

(
τ+
a < eλ

)
+

∫ a

0
P
(
Xeλ ∈ dy, eλ < τ+

a

)
Py
(
τ+
a < T−,λ0

)

= P
(
τ+
a < eλ

)
+

∫ a

0
λr

(λ)
+ (−a, y − a)Py

(
τ+
a < T−,λ0

)
dy. (3.7)

For x ∈ [0, a], by conditioning on τ−0 and using (2.10), one finds that

Px
(
τ+
a < T−,λ0

)
= Px

(
τ+
a < τ−0

)
+

∫ 0

−∞
Px
(
Xτ−0

∈ dy, τ−0 < τ+
a

)
Py
(
τ+

0 < eλ
)
P
(
τ+
a < T−,λ0

)

= Px
(
τ+
a < τ−0

)
+ Ex

[
e

ΦλXτ−0 1{τ−0 <τ+
a }
]
P
(
τ+
a < T−,λ0

)
. (3.8)

Substituting (3.8) into (3.7) yields the desired renewal equation for P
(
τ+
a < T−,λ0

)
.

We now define the following set of Poissonian q-potential measures: for q ≥ 0 and a > 0,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T+,λ

0 ∧ τ+
a

)
dt = r

(q,λ)
+ (x, y; a) dy, x, y ≤ a,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0 ∧ τ−−a

)
dt = r

(q,λ)
− (x, y;−a) dy, x, y ≥ −a,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T+,λ

0

)
dt = r

(q,λ)
+ (x, y) dy, x, y ∈ R,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0

)
dt = r

(q,λ)
− (x, y) dy, x, y ∈ R,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0 ∧ τ+

a

)
dt = u

(q,λ)
d:c (x, y; a) dy, x, y ≤ a,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ−0 ∧ T+,λ

a

)
dt = u

(q,λ)
c:d (x, y; a) dy, x ∈ [0, a], y ≥ 0,

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0 ∧ T+,λ

a

)
dt = u

(q,λ)
d:d (x, y; a) dy, x ∈ [0, a], y ∈ R.

Among all of these Poissonian potential measures, r
(q,λ)
− (x, y;−a) and r

(q,λ)
+ (x, y; a) are the two

cornerstone quantities as the derivation of explicit expressions for all the other potential mea-

sures heavily relies on them. The Poissonian potential densities r
(q,λ)
+ , r

(q,λ)
− , and the triplet

(u
(q,λ)
d:c , u

(q,λ)
c:d , u

(q,λ)
d:d ) are the Poissonian analogues to the classical potential densities r

(q)
+ , r

(q)
− and

u(q), respectively. Note that the subscripts c and d are used to characterize the type of exit whether

it is under continuous-time or discrete-time (Poissonian) observations, respectively.

Theorem 3.1 summarizes our main results on Poissonian potential measures for SNLPs. The

proof of Theorem 3.1 is postponed to the Appendix. For q ≥ 0, λ > 0 and x, y ∈ R, we define an

auxiliary function

A(q,λ) (x, y) = W (q) (x+ y) + λ

∫ y

0
W (q) (x+ y − z)W (q+λ) (z) dz, (3.9)
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which can also be rewritten as

A(q,λ) (x, y) = W (q+λ) (x+ y)− λ
∫ x

0
W (q) (z)W (q+λ) (x+ y − z) dz, (3.10)

with the help of (2.6). Note that A(q,λ) (x, y) is actually the same as g(q, λ, x, y) defined in Baurdoux

et al. [7], and as W(q,λ)
x (x + y) defined in Loeffen et al. [24]. Moreover, it is seen from (3.9) and

(3.10) that

A(q,λ)(x, y) = W (q)(x+ y), y ≤ 0, (3.11)

and

A(q,λ)(x, y) = W (q+λ)(x+ y), x ≤ 0. (3.12)

Theorem 3.1 For q ≥ 0 and a > 0, the Poissonian q-potential densities are given by

r
(q,λ)
+ (x, y; a) =

A(q,λ) (−y, a)

Z(q+λ) (a,Φq)
Z(q+λ) (x,Φq)−A(q,λ) (−y, x) , x, y ≤ a, (3.13)

r
(q,λ)
− (x, y;−a) =

A(q,λ) (x, a)

Z(q+λ) (a,Φq)
Z(q+λ) (−y,Φq)−A(q,λ) (x,−y) , x, y ≥ −a, (3.14)

r
(q,λ)
+ (x, y) = W (q,λ) (−y)Z(q+λ) (x,Φq)−A(q,λ) (−y, x) , x, y ∈ R, (3.15)

r
(q,λ)
− (x, y) = W (q,λ) (x)Z(q+λ) (−y,Φq)−A(q,λ) (x,−y) , x, y ∈ R, (3.16)

u
(q,λ)
d:c (x, y; a) =

A(q,λ) (a,−y)

W (q,λ) (a)
W (q,λ) (x)−A(q,λ) (x,−y) , x, y ≤ a, (3.17)

u
(q,λ)
c:d (x, y; a) =

W (q,λ) (a− y)

W (q,λ) (a)
W (q) (x)−W (q) (x− y) , x ∈ [0, a] , y ≥ 0, (3.18)

u
(q,λ)
d:d (x, y; a) =

∫∞
a e−Φq+λzA(q,λ) (z,−y) dz∫∞
a e−Φq+λzW (q,λ) (z) dz

W (q,λ) (x)−A(q,λ) (x,−y) , x ∈ [0, a] , y ∈ R.

(3.19)

In fact, Eqs. (3.18) and (3.19) also hold for the case x < 0, and the proof in Appendix will

concurrently handle these cases. More generally, one may further consider all these Poissonian

potential measures for a general x ∈ R. However, the corresponding expressions will become much

more complicated and hence, we chose to limit the presentation to what is displayed in Theorem

3.1.

The following corollary confirms the convergence of Poissonian potential measures to the clas-

sical potential measures when the observation intensity rate λ goes to infinity. The proof is also

postponed to the Appendix.
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Proposition 3.1 For q ≥ 0 and a > 0, we have

lim
λ→∞

r
(q,λ)
+ (x, y) = r

(q)
+ (x, y) , for x, y ≤ 0, (3.20)

lim
λ→∞

r
(q,λ)
− (x, y) = r

(q)
− (x, y) , for x, y ≥ 0, (3.21)

lim
λ→∞

u
(q,λ)
d:c (x, y; a) = u(q) (x, y; a) , for x, y ∈ [0, a] , (3.22)

lim
λ→∞

u
(q,λ)
c:d (x, y; a) = u(q) (x, y; a) , for x, y ∈ [0, a] , (3.23)

lim
λ→∞

u
(q,λ)
d:d (x, y; a) = u(q) (x, y; a) , for x, y ∈ [0, a] . (3.24)

For the rest of this section, we consider Poissonian exit measures, and simultaneously revisit

some of the exit results given in Albrecher et al. [4]. First, we recall that under the continuous-time

observation scheme, exit measures of SNLPs can be expressed as integrals of the Lévy measure

and potential measures. For instance, for x ≥ 0 and y ≤ 0,

Ex
[
e−qτ

−
0 1{τ−0 <∞,Xτ−0

∈dy}

]
=

∫ ∞

0
e−qtPx

(
t < τ−0 , Xt ∈ dz

)
Π(z − dy), (3.25)

where Π is the Lévy measure of X on [0,∞). Interested readers are referred to Pistorius [26]

or Chapter 8.4 of Kyprianou [15] for a detailed discussion, and Loeffen [22] for a general payoff

function of the overshoot Xτ−0
.

Under the Poissonian observation scheme, the potential and exit measure relationship is even

simpler. Again, we use the downward exiting as example. Since the probability that an observation

is made within the infinitesimal time period (t, t + dt) is λdt and by the independence of the

observation process and X, the law of T−,λ0 (which is an observation time) is

Px
(
T−,λ0 ∈ dt

)
= λPx

(
T−,λ0 > t

)
dt.

More generally, for any x ≥ 0 and y ≤ 0, a similar reasoning yields

Ex

[
e−qT

−,λ
0 1{T−,λ0 <∞,X

T
−,λ
0

∈dy}

]
=

∫ ∞

0
e−qtPx

(
T−,λ0 ∈ dt,Xt ∈ dy

)

= λ

∫ ∞

0
e−qtPx

(
T−,λ0 > t,Xt ∈ dy

)
dt

= λr
(q,λ)
− (x, y).

Such duality further stresses the importance of Poissonian potential measures. By the same argu-

ment, we immediately have the following corollary on Poissonian exit measures.
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Corollary 3.1 For q ≥ 0 and a > 0,

Ex

[
e−qT

+,λ
0 1{X

T
+,λ
0

∈dy,T+,λ
0 <τ+

a }

]
= λr

(q,λ)
+ (x, y; a) dy, x ≤ a, y ∈ [0, a],

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ−−a}

]
= λr

(q,λ)
− (x, y;−a) dy, x ≥ −a, y ∈ [−a, 0],

Ex

[
e−qT

+,λ
0 1{X

T
+,λ
0

∈dy,T+,λ
0 <∞}

]
= λr

(q,λ)
+ (x, y) dy, x ≤ 0, y ≥ 0,

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <∞}

]
= λr

(q,λ)
− (x, y) dy, x ≥ 0, y ≤ 0, (3.26)

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ+
a }

]
= λu

(q,λ)
d:c (x, y; a) dy, x ∈ [0, a], y ≤ 0, (3.27)

Ex
[
e−qT

+,λ
a 1{X

T
+,λ
a
∈dy,T+,λ

a <τ−0 }

]
= λu

(q,λ)
c:d (x, y; a) dy, x ∈ [0, a], y ≥ a,

Ex
[
e−qT

+,λ
a 1{X

T
+,λ
a
∈dy,T+,λ

a <T−,λ0 }

]
= λu

(q,λ)
d:d (x, y; a) dy, x ∈ [0, a], y ≥ a,

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <T+,λ
a }

]
= λu

(q,λ)
d:d (x, y; a) dy, x ∈ [0, a], y ≤ 0. (3.28)

Corollary 3.1 generalizes Theorems 3.1 and 3.2 of Albrecher et al. [4] in which the joint Laplace

transforms of the Poissonian exit times and the overshoots/undershoots are given.

To conclude this section, we provide another Poissonian exit measure, namely Eq. (3.29).

Notice that the Poissonian exit measures (3.26), (3.27) and (3.29) are actually identical to Eqs.

(1.12), (1.11), and (1.8), respectively, in Baurdoux et al. [7]. This is not surprising as the Parisian

ruin time τq in Baurdoux et al. [7] is well known to have the same distribution as T−,q0 (defined in

our paper). However, we point out that Baurdoux et al. [7] also relies on the spatial approximation

argument to deal with the case of unbounded variation paths, while the present derivation relies

more closely on the strength of the Poisson discretization technique to derive these results.

Corollary 3.2 For q ≥ 0, a, b > 0, x ∈ [−a, b] and y ∈ [−a, 0], we have

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ−−a∧τ+
b }

]
= λ

(
A(q,λ) (x, a)

A(q,λ) (b, a)
A(q,λ) (b,−y)−A(q,λ) (x,−y)

)
dy. (3.29)

The complete proof of the above corollary is again postponed to the Appendix for which the

key step consists in proving that the following interesting identity holds:

Ex
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=
A(q,λ) (x, a)

A(q,λ) (b, a)
, x ∈ [−a, b].

4 Application: Parisian ruin with Poissonian observations

As an application of the Poissonian potential measures, we consider a generalization of the Parisian

risk model in which the underlying SNLP X is subject to a Poissonian observation scheme with
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intensity rate λ > 0. Our objective is to derive a Gerber-Shiu type density at the Poissonian

Parisian ruin time which will generalize its continuously-observed analogue in Baurdoux et al. [7].

Under a Poissonian observation scheme, an excursion of X below level 0 starts whenever the

SNLP X is observed below level 0 and ends whenever the SNLP X is subsequently observed above

level 0. Recall {Tn}n∈N is the sequence of observation times which are the arrival epochs of an

independent Poisson process with rate λ > 0. For n ∈ N, we denote ξn the starting time of the

n-th excursion below level 0, i.e.,

ξ1 = inf {Ti : XTi < 0}
ξn = inf

{
Ti : XTi < 0, XTi−1 ≥ 0 and Ti > ξn−1

}
, for n ≥ 2.

Let ϑ be the Markov shift operator acting as Xt ◦ ϑs = Xt+s for s, t ≥ 0. The ending time of n-th

excursion below level 0 is then given by T+,λ
0 ◦ϑξn . The excursion is deemed to have caused ruin if

the length of the excursion exceeds an independent excursion-specific exponential time with mean

1/q. Thus, the Parisian ruin time under the Poissonian observation is defined as

T λ,q = inf
{
ξn + e(n)

q : T+,λ
0 ◦ ϑξn − ξn > e(n)

q

}
,

where e
(n)
q is an independent exponential clock with mean 1/q for the n-th excursion below level

0, and each ξn + e
(n)
q is an F-stopping time.

Our objective is to derive an explicit expression for the following Gerber-Shiu type density at

the Parisian time:

Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]
, x ∈ [−a, b] , y ∈ R. (4.1)

For ease of notation, we define two auxiliary functions, for x ∈ [−a, b] and y ∈ R,

H
(s,q,λ)
a,b (x, y) =

∫ a

0
υ(s,λ)(x,−w; b)A(s+q,λ) (a− w, y − a) dw, (4.2)

and

Z
(s,q,λ)
a,b (x) =

∫ a

0
υ(s,λ)(x,−w; b)W (s+q,λ) (a− w) dw, (4.3)

where

υ(s,λ)(x,w; b) =

{
δx(w), x ∈ [−a, 0),

λu
(s,λ)
d:d (x,w; b), x ∈ [0, b],

and δx(·) is the Dirac delta function centered at x.

The proof of the following theorem is postponed to the Appendix.

Theorem 4.1 For x ∈ [−a, b] and y ∈ R, the Gerber-Shiu density (4.1) satisfies

1

qdy
Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=
θ(s+q+λ)(y) +A(s+q)(a,−a− y)− λ

∫ b
−a θ

(s+q+λ)(z)H
(s,q,λ)
a,b (z,−y)dz

W (s+q,λ)(a)− λ
∫ b
−a θ

(s+q+λ)(z)Z
(s,q,λ)
a,b (z)dz

Z
(s,q,λ)
a,b (x)−H(s,q,λ)

a,b (x,−y).
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On a side note, one expects the Gerber-Shiu density in Theorem 4.1 to reduce to the Gerber-

Shiu density in Theorem 1.2 of Baurdoux et al. [7] (or equivalently Eq. 3.29) when the observation

intensity rate λ goes to ∞. This result can be proven (see Appendix) when the SNLP X has

bounded variation paths, namely for x ∈ [−a, b] and y ∈ [−a, 0],

lim
λ→∞

1

qdy
Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=
A(s,q)(x, a)

A(s,q)(b, a)
A(s,q)(b,−y)−A(s,q)(x,−y). (4.4)

Unfortunately, there are non-trivial difficulties that arise in the case when X has unbounded

variation paths which are related to the evaluation of the integrals
∫ b
−a θ

(s+q+λ)(z)H
(s,q,λ)
a,b (z,−y)dz

and
∫ b
−a θ

(s+q+λ)(z)Z
(s,q,λ)
a,b (z)dz (unless a =∞). To complete this step, a non-trivial study of the

two functions H
(s,q,λ)
a,b (x, y) and Z

(s,q,λ)
a,b (x) is necessary, as task which is left for future work.

We complement the above analysis with a numerical study of the Parisian ruin with Poissonian

observations. More specifically, we consider the impact of the Poisson observation rate λ on some

ruin-related quantities. Consider the classical compound Poisson model {Xt}t≥0 with

Xt = x+ ct−
Nt∑
i=1
Yi, t ≥ 0,

where c > 0, {Yi}i∈N is an iid sequence of exponential rv’s with mean 1/α, and {Nt}t≥0 is a Poisson

process with rate η > 0. Under this model, it is well known that

ψ(s) = cs− η +
ηα

s+ α
, s ≥ 0,

and

W (q)(x) =
eΦqx

ψ′ (eΦqx)
+

e−ζqx

ψ′
(
e−ζqx

) , x ≥ 0,

where the constants Φq and −ζq (with −ζq < Φq) are roots to the equation ψ (s) = q, namely

Φq =
1

2c

[√
(cα− q − η)2 + 4cqα− (cα− q − η)

]
,

ζq =
1

2c

[√
(cα− q − η)2 + 4cqα+ (cα− q − η)

]
.

For the subsequent numerical example, we choose the distributional parameters to be α = 1

and η = 5. Also, the Parisian ruin clock is assumed to make observations at rate q = 3. We focus

on the computation of the Gerber-Shiu density (4.1) with s = 0, x = 1, a = 9 and b = 2. In Figure

1, we plot the density of the deficit at ruin (i.e. XTλ,q) for y ∈ (−9, 2) with different values of

the observation rate λ. The cases λ = 4, 8, 20, 40 are plotted using Theorem 4.1 whereas the case

λ =∞ is plotted using Eq. 4.4 for y ≤ 0 and it remains at 0 for y > 0. It can be seen that as the

observation rate λ increases, the Gerber-Shiu densities with Poissonian observations converge to

that under a continuous observation scheme.
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Figure 1: Density of XTλ,q with different observation rates

5 Appendix

5.1 Proof of Theorem 3.1

In the rest of the paper, we denote eq and e′λ as two exponential random variables with mean 1/q

and 1/λ, respectively. We assume eq, e
′
λ, and the underlying process X are mutually independent.

5.1.1 Proof of Eq. (3.13)

For x, y ≤ a, let

R
(q,λ)
+ (x,dy; a) =

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T+,λ

0 ∧ τ+
a

)
dt =

1

q
Px
(
Xeq ∈ dy, eq < T+,λ

0 ∧ τ+
a

)
.

We consider separately the cases where x < 0 and x ∈ [0, a].

For x < 0, conditioning on whether eq or τ+
0 happens first, one deduces that

R
(q,λ)
+ (x, dy; a) =

1

q
Px
(
Xeq ∈ dy, eq < τ+

0

)
+ Px

(
τ+

0 < eq
)
R

(q,λ)
+ (0,dy; a)

= r
(q)
+ (x, y) dy + eΦqxR

(q,λ)
+ (0,dy; a) , (5.1)

where the last line holds due to (2.15) and (2.10).

For x ∈ [0, a], comparing eq, τ
+
a , and the first Poissonian observation time e′λ, it follows that

R
(q,λ)
+ (x, dy; a) =

1

q
Px
(
Xeq ∈ dy, eq < e′λ ∧ τ+

a

)
+

∫ 0

−∞
Px
(
Xe′λ
∈ dz, e′λ < eq ∧ τ+

a

)
R

(q,λ)
+ (z,dy; a)

= r
(q+λ)
+ (x− a, y − a)dy +

∫ 0

−∞
λr

(q+λ)
+ (x− a, z − a)dzR

(q,λ)
+ (z, dy; a). (5.2)
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Substituting (5.1) with x = z into (5.2) and using (2.19) yield

R
(q,λ)
+ (x, dy; a)

= r
(q+λ)
+ (x− a, y − a) dy + λ

∫ 0

−∞
r

(q+λ)
+ (x− a, z − a) r

(q)
+ (z, y) dzdy

+ λ

∫ 0

−∞
r

(q+λ)
+ (x− a, z − a) eΦqzdzR

(q,λ)
+ (0, dy; a)

= r
(q+λ)
+ (x− a, y − a) dy + λ

∫ 0

−∞
r

(q+λ)
+ (x− a, z − a)

(
eΦqzW (q) (−y)−W (q) (z − y)

)
dzdy

+ λ

∫ 0

−∞
r

(q+λ)
+ (x− a, z − a) eΦqzdzR

(q,λ)
+ (0, dy; a) . (5.3)

Letting x = 0 in (5.3), we solve for R
(q,λ)
+ (0,dy; a) and obtain

R
(q,λ)
+ (0, dy; a) /dy

=
r

(q+λ)
+ (−a, y − a) +W (q)(−y)− λ

∫ 0
−∞ r

(q+λ)
+ (−a, z − a)W (q)(z − y)dz

1− λ
∫ 0
−∞ e

Φqzr
(q+λ)
+ (−a, z − a)dz

−W (q)(−y). (5.4)

In what follows, we focus on specifying the two types of integrals in (5.3) and (5.4). On one

hand, for x ≤ a,

λ

∫ 0

−∞
eΦqzr

(q+λ)
+ (x− a, z − a) dz

=

∫ a

−∞
eΦqzPx

(
Xe′λ
∈ dz, e′λ < eq ∧ τ+

a

)
dz − λ

∫ a

0
eΦqzr

(q+λ)
+ (x− a, z − a) dz

=

∫ 0

−∞
eΦq(z+a)Px−a

(
Xe′λ
∈ dz, e′λ < eq ∧ τ+

0

)
dz − λ

∫ a

0
eΦqzr

(q+λ)
+ (x− a, z − a) dz

= eΦqaEx−a
[
e
−qe′λ+ΦqXe′

λ1{e′λ<τ+
0 }
]
− λ

∫ a

0
eΦqzr

(q+λ)
+ (x− a, z − a) dz.

Furthermore, using Eq. (30) of Albrecher et al. [4], (2.19) and (2.3), one finds that

λ

∫ 0

−∞
eΦqzr

(q+λ)
+ (x− a, z − a)dz

= eΦqa
(
eΦq(x−a) − eΦq+λ(x−a)

)
− eΦq+λ(x−a)λ

∫ a

0
eΦq(a−z)W (q+λ) (z) dz + λ

∫ x

0
eΦq(x−z)W (q+λ) (z) dz

= Z(q+λ) (x,Φq)− eΦq+λ(x−a)Z(q+λ) (a,Φq) . (5.5)
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On the other hand, for x ≤ a and y < 0,

λ

∫ 0

−∞
r

(q+λ)
+ (x− a, z − a)W (q)(z − y)dz

= λ

∫ 0

−∞

[
eΦq+λ(x−a)W (q+λ)(a− z)−W (q+λ)(x− z)

]
W (q)(z − y)dz

= eΦq+λ(x−a)λ

∫ ∞

0
W (q+λ)(a+ z)W (q)(−y − z)dz − λ

∫ ∞

0
W (q+λ)(x+ z)W (q)(−y − z)dz

= eΦq+λ(x−a)λ

∫ a−y

a
W (q+λ)(z)W (q)(a− y − z)dz − λ

∫ x−y

x
W (q+λ)(z)W (q)(x− y − z)dz

= eΦq+λ(x−a)λ

[∫ a−y

0
W (q)(a− y − z)W (q+λ)(z)dz −

∫ a

0
W (q) (a− y − z)W (q+λ) (z) dz

]

− λ
[∫ x−y

0
W (q)(x− y − z)W (q+λ)(z)dz −

∫ x

0
W (q)(x− y − z)W (q+λ)(z)dz

]

= eΦq+λ(x−a)
[
W (q+λ)(a− y)−A(q,λ)(−y, a)

]
−
[
W (q+λ)(x− y)−A(q,λ)(−y, x)

]
, (5.6)

where the last step is due to (2.6) and (3.9). Note that it is easily seen from (3.12) that the equality

(5.6) also holds for y ≥ 0.

Substituting (5.5) and (5.6) with x = 0 into (5.4), and using (3.11), it is relatively easy to show

that

R
(q,λ)
+ (0,dy; a) /dy =

A(q,λ) (−y, a)

Z(q+λ) (a,Φq)
−W (q) (−y) . (5.7)

Lastly, substituting (2.19) and (5.7) into (5.1) yields, for x < 0,

R
(q,λ)
+ (x, dy; a) /dy =

A(q,λ) (−y, a)

Z(q+λ) (a,Φq)
eΦqx −W (q) (x− y) .

Also, substituting (2.19), (5.5), (5.6), and (5.7) into (5.3) yields, for x ∈ [0, a],

R
(q,λ)
+ (x, dy; a) /dy =

A(q,λ) (−y, a)

Z(q+λ) (a,Φq)
Z(q+λ) (x,Φq)−A(q,λ) (−y, x) .

We complete the proof by unifying the above two expressions for x ≤ a.

5.1.2 Proof of Eq. (3.14)

For x, y ≥ −a, let

R
(q,λ)
− (x,dy;−a) =

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0 ∧ τ−−a

)
dt =

1

q
Px
(
Xeq ∈ dy, eq < T−,λ0 ∧ τ−−a

)
.

We consider separately the cases where y ∈ [−a, 0) and y ≥ 0.

For y ∈ [−a, 0), we shall have that τ−0 < eq∧T−,λ0 almost surely. Subsequently, at level Xτ−0
, we
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know that the random time τ+
0 ∧ eq should occur prior to the next observation time e′λ. Therefore,

R
(q,λ)
− (x, dy;−a) =

1

q

∫

[−a,0]
Px
(
Xτ−0

∈ dz, τ−0 < eq

)
Pz
(
Xeq ∈ dy, eq < T−,λ0 ∧ τ−−a

)

=

∫

[−a,0]
Px
(
Xτ−0

∈ dz, τ−0 < eq

)
Pz
(
τ+

0 < eq ∧ e′λ ∧ τ−−a
)
R

(q,λ)
− (0,dy;−a)

+
1

q

∫

[−a,0]
Px
(
Xτ−0

∈ dz, τ−0 < eq

)
Pz
(
Xeq ∈ dy, eq < τ+

0 ∧ e′λ ∧ τ−−a
)
.

Subsequently, using (2.8) and (2.17) leads to

R
(q,λ)
− (x,dy;−a)

=

∫

[−a,0]
Px
(
Xτ−0

∈ dz, τ−0 < eq

)[W (q+λ) (z + a)

W (q+λ) (a)
R

(q,λ)
− (0, dy;−a) + u(q+λ) (z + a, y + a; a) dy

]

= Ex


e−qτ−0

W (q+λ)
(
Xτ−0

+ a
)

W (q+λ) (a)
1{τ−0 <∞}


R(q,λ)

− (0, dy;−a)

+ Ex
[
e−qτ

−
0 u(q+λ)

(
Xτ−0

+ a, y + a; a
)

1{τ−0 <∞}

]
dy, (5.8)

where the last line holds due to the fact that W (q+λ) (x) = 0 for any x < 0.

For y ≥ 0, conditioning on whether τ−0 occurs before eq (or not) leads to

R
(q,λ)
− (x,dy;−a) =

1

q

∫

[−a,0]
Px
(
Xτ−0

∈ dz, τ−0 < eq

)
Pz
(
Xeq ∈ dy, eq < T−,λ0 ∧ τ−−a

)

+
1

q
Px
(
Xeq ∈ dy, eq < τ−0

)
. (5.9)

Since z ≤ 0 and y ≥ 0, by (2.8), we have

1

q
Pz
(
Xeq ∈ dy, eq < T−,λ0 ∧ τ−−a

)
= Pz

(
τ+

0 < eq ∧ e′λ ∧ τ−−a
)
R

(q,λ)
− (0,dy;−a)

=
W (q+λ)(z + a)

W (q+λ)(a)
R

(q,λ)
− (0,dy;−a). (5.10)

Substituting (5.10) into (5.9) and using (2.16) give

R
(q,λ)
− (x,dy;−a) = Ex


e−qτ−0

W (q+λ)
(
Xτ−0

+ a
)

W (q+λ) (a)
1{τ−0 <∞}


R(q,λ)

− (0,dy;−a)+r
(q)
− (x, y)dy. (5.11)

We further note that (5.8) and (5.11) can be expressed in a unified manner as follows: for

x, y ≥ −a,

R
(q,λ)
− (x, dy;−a) /dy

= Ex


e−qτ−0

W (q+λ)
(
Xτ−0

+ a
)

W (q+λ) (a)
1{τ−0 <∞}


R(q,λ)

− (0,dy;−a) /dy

+ Ex
[
e−qτ

−
0 u(q+λ)

(
Xτ−0

+ a, y + a; a
)

1{τ−0 <∞}

]
1{−a≤y<0} + r

(q)
− (x, y) 1{y≥0}. (5.12)
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To solve for R
(q,λ)
− (0,dy;−a), we condition on whether eq arrives prior to the next observation

time e′λ. Using (2.14), we have

R
(q,λ)
− (0, dy;−a) =

1

q
P
(
Xeq ∈ dy, eq < e′λ ∧ τ−−a

)
+

∫ ∞

0
P
(
Xe′λ
∈ dz, e′λ < eq ∧ τ−−a

)
R

(q,λ)
− (z, dy;−a)

= r
(q+λ)
− (a, y + a) dy + λ

∫ ∞

0
r

(q+λ)
− (a, z + a)R

(q,λ)
− (z, dy;−a) dz. (5.13)

Substituting (5.12) with x = z into (5.13), we then solve for R
(q,λ)
− (0,dy;−a) and obtain

R
(q,λ)
− (0, dy;−a)/dy

=





r
(q+λ)
− (a,y+a)+λ

∫∞
0 r

(q+λ)
− (a,z+a)Ez

[
e−qτ

−
0 u(q+λ)(X

τ−0
+a,y+a;a)1{τ−0 <∞}

]
dz

1−λ
∫∞
0 r

(q+λ)
− (a,z+a)Ez


e−qτ

−
0

W (q+λ)(X
τ−0

+a)

W (q+λ)(a)
1{τ−0 <∞}


dz

, −a ≤ y < 0,

r
(q+λ)
− (a,y+a)+λ

∫∞
0 r

(q+λ)
− (a,z+a)r

(q)
− (z,y)dz

1−λ
∫∞
0 r

(q+λ)
− (a,z+a)Ez


e−qτ

−
0

W (q+λ)(X
τ−0

+a)

W (q+λ)(a)
1{τ−0 <∞}


dz

, y ≥ 0.

(5.14)

With the help of (2.20) and (2.21), (5.14) can further simplified to

1

dy
R

(q,λ)
− (0, dy;−a) +W (q+λ)(−y)

=





e
−Φq+λyW (q+λ)(a)−λW (q+λ)(a)

∫∞
0 e

−Φq+λzEz
[
e−qτ

−
0 W (q+λ)(X

τ−0
−y)1{τ−0 <∞}

]
dz

e
Φq+λa−λ

∫∞
0 e

−Φq+λzEz
[
e−qτ

−
0 W (q+λ)

(
X
τ−0

+a

)
1{τ−0 <∞}

]
dz

, −a ≤ y < 0,

e
−Φq+λyW (q+λ)(a)+λW (q+λ)(a)

∫∞
0 e

−Φq+λzr
(q)
− (z,y)dz

e
Φq+λa−λ

∫∞
0 e

−Φq+λzEz
[
e−qτ

−
0 W (q+λ)(X

τ−0
+a)1{τ−0 <∞}

]
dz
, y ≥ 0.

(5.15)

Next, we focus on simplifying (5.15). By the spatial homogeneity of X and the dominated

convergence theorem, for any z > 0 and y < 0,

Ez
[
e−qτ

−
0 W (q+λ)

(
Xτ−0

− y
)

1{τ−0 <∞}

]
= Ez−y

[
e−qτ

−
−yW (q+λ)

(
Xτ−−y

)
1{τ−−y<∞}

]

= lim
b→∞

Ez−y
[
e−qτ

−
−yW (q+λ)

(
Xτ−−y

)
1{τ−−y<τ+

b }
]
. (5.16)
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Thanks to Lemma 2.2 of Loeffen et al. [24] or Theorem 2 of Loeffen [22], we deduce that

Ez−y
[
e−qτ

−
−yW (q+λ)

(
Xτ−−y

)
1{τ−−y<τ+

b }
]

= W (q+λ)(z − y)− λ
∫ z−y

−y
W (q)(z − y − x)W (q+λ)(x)dx

− W (q)(z)

W (q)(b+ y)

(
W (q+λ)(b)− λ

∫ b

−y
W (q)(b− x)W (q+λ)(x)dx

)

= W (q+λ)(z − y)− λ
∫ z−y

0
W (q)(z − y − x)W (q+λ)(x)dx+ λ

∫ −y

0
W (q)(z − y − x)W (q+λ)(x)dx

− W (q)(z)

W (q)(b+ y)

(
W (q+λ)(b)− λ

∫ b

0
W (q)(b− x)W (q+λ)(x)dx+ λ

∫ −y

0
W (q)(b− x)W (q+λ)(x)dx

)

= W (q)(z − y) + λ

∫ −y

0
W (q)(z − y − x)W (q+λ)(x)dx

− W (q)(z)

W (q)(b+ y)

(
W (q)(b) + λ

∫ −y

0
W (q)(b− x)W (q+λ)(x)dx

)
, (5.17)

where the last step is due to (2.6). We know from (2.12) that, for fixed y < 0 and all b large

enough,
W (q)(b− x)

W (q)(b+ y)
≤ W (q)(b)

W (q)(b+ y)
≤ e−Φqy + 1, for any x ∈ [0− y].

Taking the limit b→∞ in (5.17) and using (2.12), (2.3) and the dominated convergence theorem,

Eq. (5.16) becomes

Ez
[
e−qτ

−
0 W (q+λ)

(
Xτ−0

− y
)

1{τ−0 <∞}

]
= A(q,λ) (z,−y)−W (q) (z)Z(q+λ) (−y,Φq) , (5.18)

for any z > 0 and y < 0. Substituting (5.18) into (5.15) yields

1

dy
R

(q,λ)
− (0, dy;−a) +W (q+λ)(−y)

=





e
−Φq+λyW (q+λ)(a)−λW (q+λ)(a)

∫∞
0 e

−Φq+λz[A(q,λ)(z,−y)−W (q)(z)Z(q+λ)(−y,Φq)]dz
e
Φq+λa−λ

∫∞
0 e

−Φq+λz[A(q,λ)(z,a)−W (q)(z)Z(q+λ)(a,Φq)]
, −a ≤ y < 0,

e
−Φq+λyW (q+λ)(a)+λW (q+λ)(a)

∫∞
0 e

−Φq+λzr
(q)
− (z,y)dz

e
Φq+λa−λ

∫∞
0 e

−Φq+λz[A(q,λ)(z,a)−W (q)(z)Z(q+λ)(a,Φq)]
, y ≥ 0.

(5.19)

Note that by (3.9), (2.2), (2.4) and (2.20), we have

∫ ∞

0
e−Φq+λzA(q,λ) (z,−y) dz =

e−Φq+λy

λ
, y < 0,

and ∫ ∞

0
e−Φq+λzr

(q)
− (z, y) dz =

e−Φqy − e−Φq+λy

λ
, y ≥ 0.

Thus, (5.19) is further reduced to

R
(q,λ)
− (0,dy;−a) /dy =

W (q+λ) (a)

Z(q+λ) (a,Φq)
Z(q+λ) (−y,Φq)−W (q+λ) (−y) . (5.20)

Finally, substituting (5.20) into (5.12) and using (2.20), (2.21) and (5.18) yields (3.14).
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5.1.3 Proof of Eqs. (3.15) and (3.16)

By (2.3) and (3.10), we have

A(q,λ) (x, a)

Z(q+λ) (a,Φq)
=
W (q+λ) (x+ a)− λ

∫ x
0 W

(q) (z)W (q+λ) (x+ a− z) dz

Z(q+λ) (a,Φq)

=

W (q+λ)(x+a)

W (q+λ)(a)
− λ

∫ x
0 W

(q) (z) W
(q+λ)(x+a−z)
W (q+λ)(a)

dz

Z(q+λ)(a,Φq)

W (q+λ)(a)

.

We know from (2.12) that, for fixed x ∈ R and all a large enough,

W (q+λ) (x+ a− z)
W (q+λ) (a)

≤ W (q+λ) (x+ a)

W (q+λ) (a)
≤ eΦq+λx + 1, for any z ∈ [0, x].

By (2.12), (2.13), (3.3), and the dominated convergence theorem, it follows that

lim
a→∞

A(q,λ) (x, a)

Z(q+λ) (a,Φq)
=
eΦq+λx − λ

∫ x
0 W

(q) (z) eΦq+λ(x−z)dz
λ

Φq+λ−Φq

= W (q,λ) (x) .

Therefore, it is straightforward to see from (3.13) and (3.14), that

r
(q,λ)
+ (x, y) = lim

a→∞
r

(q,λ)
+ (x, y; a)

= lim
a→∞

A(q,λ) (−y, a)

Z(q+λ) (a,Φq)
Z(q+λ) (x,Φq)−A(q,λ) (−y, x)

= W (q,λ) (−y)Z(q+λ) (x,Φq)−A(q,λ) (−y, x) ,

and

r
(q,λ)
− (x, y) = lim

a→∞
r

(q,λ)
− (x, y;−a)

= lim
a→∞

A(q,λ) (x, a)

Z(q+λ) (a,Φq)
Z(q+λ) (−y,Φq)−A(q,λ) (x,−y)

= W (q,λ) (x)Z(q+λ) (−y,Φq)−A(q,λ) (x,−y) .

5.1.4 Proof of Eq. (3.17)

For x, y ≤ a, due to the fact that {t < τ+
a ∧ T−,λ0 } = {t < T−,λ0 }\{τ+

a ≤ t < T−,λ0 }, it is immediate

from (3.5) that

u
(q,λ)
d:c (x, y; a) = r

(q,λ)
− (x, y)− W (q,λ) (x)

W (q,λ) (a)
r

(q,λ)
− (a, y) . (5.21)

Substituting (3.16) into (5.21) yields (3.17).

5.1.5 Proof of Eq. (3.18)

For x ∈ [0, a] and y ≥ 0, let

U
(q,λ)
c:d (x,dy; a) =

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < τ−0 ∧ T+,λ

a

)
dt =

1

q
Px
(
Xeq ∈ dy, eq < τ−0 ∧ T+,λ

a

)
.
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Conditioning on whether or not τ+
a occurs prior to eq and using (2.8) lead to

U
(q,λ)
c:d (x,dy; a)

=
1

q

{
Px
(
Xeq ∈ dy, eq < τ−0 ∧ τ+

a

)
+ Px

(
τ+
a < eq ∧ τ−0

)
Pa
(
Xeq ∈ dy, eq < τ−0 ∧ T+,λ

a

)}

= u(q) (x, y; a) dy +
W (q) (x)

W (q) (a)
U

(q,λ)
c:d (a,dy; a) , (5.22)

where we have extended the definition of u(q) to u(q) (x, y; a) = 0 for x ∈ [0, a] and y > a.

To solve for U
(q,λ)
c:d (a,dy; a), we condition on whether eq occurs prior to the next observation

time e′λ and arrive at

U
(q,λ)
c:d (a,dy; a) =

1

q
Pa
(
Xeq ∈ dy, eq < τ−0 ∧ e′λ

)
+

∫ a

0
Pa
(
Xe′λ
∈ dx, e′λ < τ−0 ∧ eq

)
U

(q,λ)
c:d (x,dy; a)

= r
(q+λ)
− (a, y) dy + λ

∫ a

0
r

(q+λ)
− (a, x)U

(q,λ)
c:d (x,dy; a) dx. (5.23)

Substituting (5.22) into (5.23) gives

U
(q,λ)
c:d (a,dy; a) =

λ
∫ a

0 r
(q+λ)
− (a, x)u(q) (x, y; a) dx+ r

(q+λ)
− (a, y)

1− λ
W (q)(a)

∫ a
0 r

(q+λ)
− (a, x)W (q) (x) dx

dy. (5.24)

Next we simplify (5.24) by evaluating the two integral terms therein. By using (2.20), (2.3)

and (2.6), we have
∫ a

0
r

(q+λ)
− (a, x)W (q) (x− y) dx

= W (q+λ) (a)

∫ a

0
e−Φq+λxW (q) (x− y) dx−

∫ a

0
W (q+λ) (a− x)W (q) (x− y) dx

= W (q+λ) (a)

∫ a−y

0
e−Φq+λ(z+y)W (q) (z) dz −

∫ a−y

0
W (q+λ) (a− y − z)W (q) (z) dx

=
1

λ
W (q+λ) (a) e−Φq+λy

[
1− e−Φq+λ(a−y)Z(q) (a− y,Φq+λ)

]

− 1

λ

[
W (q+λ) (a− y)−W (q) (a− y)

]
. (5.25)

As for the other integral, using (2.21), (5.25) and (2.20) followed by simple algebraic manipulations,

one finds that

λ

∫ a

0
r

(q+λ)
− (a, x)u(q) (x, y; a) dx

= λ

∫ a

0
r

(q+λ)
− (a, x)

[
W (q) (x)W (q) (a− y)

W (q) (a)
−W (q) (x− y)

]
dx

=
W (q) (a− y)

W (q) (a)

{
W (q+λ)(a)

(
1− e−Φq+λaZ(q)(a,Φq+λ)

)
−
(
W (q+λ) (a)−W (q)(a)

)}

−
{
W (q+λ) (a) e−Φq+λy

[
1− e−Φq+λ(a−y)Z(q) (a− y,Φq+λ)

]
−
[
W (q+λ) (a− y)−W (q) (a− y)

]}

= e−Φq+λaW (q+λ) (a)

[
Z(q) (a− y,Φq+λ)− Z(q) (a,Φq+λ)

W (q) (a)
W (q) (a− y)

]
− r(q+λ)
− (a, y) . (5.26)
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With the aid of (3.3), substituting (5.25) with y = 0 and (5.26) into (5.24) yields

U
(q,λ)
c:d (a,dy; a) =

{
W (q,λ) (a− y)

W (q,λ) (a)
W (q) (a)−W (q) (a− y)

}
dy. (5.27)

Finally, with the help of (2.21), (3.18) follows by substituting (5.27) into (5.22).

5.1.6 Proof of Eq. (3.19)

For x ≤ a and y ∈ R, let

U
(q,λ)
d:d (x, dy; a) =

∫ ∞

0
e−qtPx

(
Xt ∈ dy, t < T−,λ0 ∧ T+,λ

a

)
=

1

q
Px
(
Xeq ∈ dy, eq < T−,λ0 ∧ T+,λ

a

)
.

Conditioning on whether τ+
a occurs before eq leads to

U
(q,λ)
d:d (x,dy; a) =

1

q
Px
(
Xeq ∈ dy, eq < T−,λ0 ∧ τ+

a

)

+
1

q
Px
(
τ+
a < eq ∧ T−,λ0

)
Pa
(
Xeq ∈ dy, eq < T−,λ0 ∧ T+,λ

a

)

= u
(q,λ)
d:c (x, y; a) dy +

W (q,λ) (x)

W (q,λ) (a)
U

(q,λ)
d:d (a,dy; a) , (5.28)

where the last step is due to (3.5) and the definition of u
(q,λ)
d:c was extended to u

(q,λ)
d:c (x, y; a) = 0

for y > a and x ≤ a.

To solve for U
(q,λ)
d:d (a,dy; a), we consider whether eq occurs before the next observation time e′λ

and obtain

U
(q,λ)
d:d (a,dy; a) =

1

q
Pa
(
Xeq ∈ dy, eq < e′λ

)
+

1

q

∫ a

0
Pa
(
Xe′λ
∈ dx, e′λ < eq

)
qU

(q,λ)
d:d (x,dy; a)

= θ(q+λ) (y − a) dy + λ

∫ a

0
θ(q+λ) (x− a)U

(q,λ)
d:d (x, dy; a) dx. (5.29)

Substituting (5.28) into (5.29) and using (3.17) give

U
(q,λ)
d:d (a,dy; a)

=
θ(q+λ) (y − a) + λ

∫ a
0 θ

(q+λ) (x− a)u
(q,λ)
d:c (x, y; a) dx

1− λ
W (q,λ)(a)

∫ a
0 θ

(q+λ) (x− a)W (q,λ) (x) dx
dy

=
θ(q+λ) (y − a) +A(q,λ) (a,−y)− λ

∫ a
0 θ

(q+λ) (x− a)A(q,λ) (x,−y) dx

1− λ
W (q,λ)(a)

∫ a
0 θ

(q+λ) (x− a)W (q,λ) (x) dx
−A(q,λ) (a,−y) . (5.30)

Next, we simplify the expression of U
(q,λ)
d:d (a,dy; a) in (5.30). Using (3.9), one obtains

∫ a

0
W (q+λ) (a− x)W (q) (x− y) dx =

∫ a

0
W (q) (−y + a− x)W (q+λ) (x) dx

=
A(q,λ) (−y, a)−W (q) (a− y)

λ
,
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which implies that

λ

∫ a

0
W (q+λ) (a− x)A(q,λ) (x,−y) dx

= A(q,λ) (−y, a)−W (q) (a− y) + λ2

∫ a

0

∫ −y

0
W (q) (x− y − z)W (q+λ) (z)W (q+λ) (a− x) dzdx

= λ

∫ −y

0
W (q+λ) (−y − z)A(q,λ) (z, a) dz +A(q,λ) (−y, a)−A(q,λ) (a,−y) . (5.31)

By (2.7), it can be seen that

∫ a

0
W (q+λ) (a− x)W (q,λ) (x) dx =

Φq+λ − Φq

λ2
eΦq+λa − W (q,λ) (a)

λ
. (5.32)

Invoking (2.18), (5.31), (5.32) and also (3.10) for the term A(q,λ) (−y, a), one can rewrite (5.30) as

u
(q,λ)
d:d (a, y; a)

=
Φ
′
q+λ

[
e−Φq+λy − λ

∫ a
0 e
−Φq+λxA(q,λ) (x,−y) dx

]

Φq+λ−Φq
λ − λΦ

′
q+λ

∫ a
0 e
−Φq+λxW (q,λ) (x) dx

W (q,λ) (a)−A(q,λ) (a,−y)

+
λe−Φq+λa

∫ −y
0

[
W (q+λ) (−y − z)A(q,λ) (z, a)−W (q+λ) (a− y − z)W (q) (z)

]
dz

Φq+λ−Φq
λ − λΦ

′
q+λ

∫ a
0 e
−Φq+λxW (q,λ) (x) dx

W (q,λ) (a) .

(5.33)

Furthermore, by (3.9), (2.4), (2.7), (3.3) and (2.5), it can be shown that

∫ ∞

0
e−Φq+λxA(q,λ) (x,−y) dx =

e−Φq+λy

λ
,

and ∫ ∞

0
e−Φq+λxW (q,λ) (x) dx =

Φq+λ − Φq

λ2Φ′q+λ
.

Using the above two relations, (5.33) can be rewritten as

u
(q,λ)
d:d (a, y; a) =

∫∞
a e−Φq+λxA(q,λ) (x,−y) dx∫∞
a e−Φq+λxW (q,λ) (x) dx

W (q,λ) (a)−A(q,λ) (a,−y)

+

∫ −y
0

[
W (q+λ) (−y − z)A(q,λ) (z, a)−W (q+λ) (a− y − z)W (q) (z)

]
dz

Φ
′
q+λ

∫∞
a eΦq+λ(a−x)W (q,λ) (x) dx

W (q,λ) (a) .

(5.34)

Substituting (5.34) into (5.28) leads to

u
(q,λ)
d:d (x, y; a) =

∫∞
a e−Φq+λzA(q,λ) (z,−y) dz∫∞
a e−Φq+λzW (q,λ) (z) dz

W (q,λ) (x)−A(q,λ) (x,−y)

+

∫ −y
0

[
W (q+λ) (−y − z)A(q,λ) (z, a)−W (q+λ) (a− y − z)W (q) (z)

]
dz

Φ
′
q+λ

∫∞
a eΦq+λ(a−z)W (q,λ) (z) dz

W (q,λ) (x) .
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In light of (3.19), it remains to show that, for any y ∈ R and a > 0,

∫ −y

0
W (q+λ) (−y − z)A(q,λ) (z, a) dz =

∫ −y

0
W (q+λ) (a− y − z)W (q) (z) dz. (5.35)

It suffices to prove (5.35) for the case when y < 0 because (5.35) clearly holds for y ≥ 0. For large

enough s > 0, it follows that from (3.9), (2.2) and (2.4) that

∫ ∞

0
e−sx

∫ x

0
W (q+λ) (x− z)A(q,λ) (z, a) dzdx

=

∫ ∞

0
e−sxW (q+λ) (x) dx

∫ ∞

0
e−szA(q,λ) (z, a) dz

=
Z(q+λ) (a, s)

ψq+λ (s)

1

ψq (s)

=

∫ ∞

0
e−sxW (q+λ) (a+ x) dx ·

∫ ∞

0
e−szW (q)(z)dz

=

∫ ∞

0
e−sx

∫ x

0
W (q+λ) (a+ x− z)W (q) (z) dzdx. (5.36)

Taking Laplace inversion to (5.36) yields, for x ≥ 0,

∫ x

0
W (q+λ) (x− z)A(q,λ) (z, a) dz =

∫ x

0
W (q+λ) (a+ x− z)W (q) (z) dz. (5.37)

This completes the proof of (5.35) by letting x = −y > 0 in (5.37).

5.2 Proof of Proposition 3.1

Relations (3.20) and (3.23) are immediate from (3.4). In addition, relations (3.21) and (3.22) are

direct consequences of (3.11), (3.4), and the fact that Z(q)(x, θ) = eθx for x ≤ 0. We are only left

to prove (3.24).

For x, y ∈ [0, a], by (3.19) and (3.9),

u
(q,λ)
d:d (x, y; a) =

∫∞
a e−Φq+λzW (q) (z − y) dz∫∞
a e−Φq+λzW (q,λ) (z) dz

W (q,λ) (x)−W (q) (x− y) .

Note that by (3.1), it follows that

∫∞
a e−Φq+λzW (q) (z − y) dz∫∞
a e−Φq+λzW (q,λ) (z) dz

=
W (q,λ) (a− y)

(Φq+λ − Φq)
∫∞

0 e−Φq+λzW (q,λ) (z + a) dz
. (5.38)

From (3.4) and (5.38), it remains to show that

lim
λ→∞

(Φq+λ − Φq)

∫ ∞

0
e−Φq+λzW (q,λ) (z + a) dz = W (q)(a). (5.39)
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For any fixed ε > 0, by (3.1), we have

(Φq+λ − Φq)

∫ ∞

ε
e−Φq+λzW (q,λ) (z + a) dz

= (Φq+λ − Φq)
2
∫ ∞

ε

∫ ∞

0
e−Φq+λ(z+y)W (q) (z + y + a) dydz

= (Φq+λ − Φq)
2
∫ ∞

ε

∫ ∞

z
e−Φq+λxW (q) (x+ a) dxdz

= (Φq+λ − Φq)
2
∫ ∞

ε
(x− ε)e−Φq+λxW (q)(x+ a)dx. (5.40)

Observe that for any fixed x ≥ ε, the function β 7→ β2e−βx is monotone decreasing in β for any

β ≥ 2
ε . By (2.1), we deduce that for any x ≥ ε, the function λ 7→ Φ2

q+λe
−Φq+λx is monotone

decreasing in λ for any λ ≥ ψ(2
ε ) − q. By (5.40) and the monotone convergence theorem, we

deduce that

0 ≤ lim sup
λ→∞

(Φq+λ − Φq)

∫ ∞

ε
e−Φq+λzW (q,λ) (z + a) dz

= lim sup
λ→∞

(Φq+λ − Φq)
2
∫ ∞

ε
(x− ε)e−Φq+λxW (q)(x+ a)dx

≤ lim
λ→∞

Φ2
q+λ

∫ ∞

ε
(x− ε)e−Φq+λxW (q)(x+ a)dx

=

∫ ∞

ε
(x− ε)W (q)(x+ a) lim

λ→∞
Φ2
q+λe

−Φq+λxdx

= 0. (5.41)

On the other hand, thanks to the monotonicity of W (q,λ), we have

(Φq+λ − Φq)

∫ ε

0
e−Φq+λzW (q,λ)(z + a)dz ≥ (Φq+λ − Φq)(1− e−Φq+λε)

Φq+λ
W (q,λ) (a) ,

(Φq+λ − Φq)

∫ ε

0
e−Φq+λzW (q,λ)(z + a)dz ≤ (Φq+λ − Φq)(1− e−Φq+λε)

Φq+λ
W (q,λ) (a+ ε) .

It follows that

lim inf
λ→∞

(Φq+λ − Φq)

∫ ε

0
e−Φq+λzW (q,λ)(z + a)dz ≥W (q) (a) , (5.42)

lim sup
λ→∞

(Φq+λ − Φq)

∫ ε

0
e−Φq+λzW (q,λ)(z + a)dz ≤W (q) (a+ ε) . (5.43)

From the arbitrariness of ε, we conclude from (5.41)–(5.43) that (5.39) holds.
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5.3 Proof of Corollary 3.2

For x ∈ [−a, b] and y ∈ [−a, 0], we have

Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ−−a∧τ+
b }

]

= Ex

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ−−a}

]
− Ex

[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]
Eb

[
e−qT

−,λ
0 1{X

T
−,λ
0

∈dy,T−,λ0 <τ−−a}

]

= λr
(q,λ)
− (x, y;−a) dy − Ex

[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]
λr

(q,λ)
− (b, y;−a) dy. (5.44)

In what follows, we focus on characterizing Ex
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]
.

Conditioning on whether τ+
b or τ−0 occurs first, by (2.8) and (5.17), it follows that

Ex
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=

∫ 0

−a
Ex

[
e−qτ

−
0 1{

X
τ−0
∈dz,τ−0 <τ

+
b

}
]
Ez
[
e−qτ

+
0 1{τ+

0 <e
′
λ∧τ

−
−a}
]
E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

+ Ex
[
e−qτ

+
b 1{τ+

b <τ
−
0 }
]

=
W (q) (x)

W (q) (b)
+

1

W (q+λ) (a)
Ex
[
e−qτ

−
0 W (q+λ)

(
a+Xτ−0

)
1{τ−0 <τ+

b }
]
E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=
W (q) (x)

W (q) (b)
+

(
A(q,λ) (x, a)

W (q+λ) (a)
− W (q) (x)A(q,λ) (b, a)

W (q) (b)W (q+λ) (a)

)
E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]
. (5.45)

Note that (5.45) holds for x ∈ [−a, b]. To evaluate E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]
, we condition on

whether e′λ or τ+
b occurs first and obtain

E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

= E
[
e−qτ

+
b 1{τ+

b <e
′
λ∧τ

−
−a}
]

+

∫ b

0
E
[
e−qe

′
λ1{

Xe′
λ
∈dz,e′λ<τ

−
−a∧τ+

b

}
]
Ez
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=
W (q+λ) (a)

W (q+λ) (a+ b)
+ λ

∫ b

0
u(q+λ) (a, z + a; b+ a)Ez

[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

dz. (5.46)

Substituting (5.45) with x = z into (5.46) and using (2.21), we have

E
[
e−qτ

+
b 1{τ+

b <T
−,λ
0 ∧τ−−a}

]

=

W (q+λ)(a)

W (q+λ)(a+b)
+ λ

∫ b
0 u

(q+λ)(a, z + a; a+ b)W
(q)(z)

W (q)(b)
dz

1− λ
∫ b

0 u
(q+λ)(a, z + a; a+ b)

[
A(q,λ)(z,a)

W (q+λ)(a)
− W (q)(z)A(q,λ)(b,a)

W (q)(b)W (q+λ)(a)

]
dz

=

W (q+λ)(a)

W (q+λ)(a+b)
+ λW (q+λ)(a)

W (q+λ)(a+b)W (q)(b)

∫ b
0 W

(q+λ) (b− z)W (q)(z)dz

1− λ
W (q+λ)(a+b)

∫ b
0 W

(q+λ) (b− z)
(
A(q,λ)(z, a)− W (q)(z)A(q,λ)(b,a)

W (q)(b)

)
dz
. (5.47)
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From (5.37) and (2.6), one easily finds that
∫ b

0
W (q+λ) (b− z)A(q,λ) (z, a) dz =

∫ b

0
W (q+λ) (a+ b− z)W (q) (z) dz,

and ∫ b

0
W (q+λ) (b− z)W (q) (z) dz =

W (q+λ) (b)−W (q) (b)

λ
.

Further substituting the above two equalities into (5.47), and using (3.10) lead to

E
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=
W (q+λ) (a)

A(q,λ) (b, a)
.

Hence, (5.45) reduces to

Ex
[
e−qτ

+
b 1{

τ+
b <T

−,λ
0 ∧τ−−a

}
]

=
A(q,λ) (x, a)

A(q,λ) (b, a)
. (5.48)

Lastly, by substituting (5.48) into (5.44) and using (3.14), the proof is complete.

5.4 Proof of Theorem 4.1

For x ∈ [−a, 0) and y ∈ R, we separately consider the contributions to (4.1) by the following two

possible events:
{
eq < T−,λ−a ∧ τ+

0

}
and

{
τ+

0 < T−,λ−a ∧ eq
}

. It follows that

Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= Ex
[
e−seq1{Xeq∈dy,eq<T

−,λ
−a ∧τ+

0 }

]
+ Ex

[
e−sτ

+
0 1{τ+

0 <eq∧T
−,λ
−a }

]
E0−

[
e−sT

λ,q
1{X

Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b }

]

= qu
(s+q,λ)
d:c (x+ a, y + a; a) dy1{y<0} +

W (s+q,λ) (x+ a)

W (s+q,λ) (a)
E0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

,

(5.49)

where 0− means the surplus is at level 0 and the Parisian clock is on. For x ∈ [0, b] and y ∈ R, we

shall have T−,λ0 ≤ T λ,q almost surely. Hence, by conditioning on T−,λ0 , one finds that

Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=

∫ 0

−a
Ex

[
e−sT

−,λ
0 1{

X
T
−,λ
0

∈dw,T−,λ0 <T+,λ
b

}
]
Ew
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= λ

∫ 0

−a
u

(s,λ)
d:d (x,w; b)Ew

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

dw. (5.50)

Substituting (5.49) into (5.50) leads to

Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= qλ

∫ 0

−a
u

(s,λ)
d:d (x,w; b)u

(s+q,λ)
d:c (w + a, y + a; a) dwdy1{y<0}

+ λ

∫ 0

−a
u

(s,λ)
d:d (x,w; b)

W (s+q,λ) (w + a)

W (s+q,λ) (a)
dwE0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

. (5.51)
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Let

υ(s,λ)(x,w; b) =

{
δx (w) , x ∈ [−a, 0),

λu
(s,λ)
d:d (x,w; b) , x ∈ [0, b].

We note that (5.49) and (5.51) can be expressed in a unified way as follows: for any x ∈ [−a, b]
and y ∈ R,

Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= q

∫ 0

−a
υ(s,λ)(x,w; b)u

(s+q,λ)
d:c (w + a, y + a; a) dwdy1{y<0}

+

∫ 0

−a
υ(s,λ)(x,w; b)

W (s+q,λ) (w + a)

W (s+q,λ) (a)
dwE0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]
. (5.52)

Next, we focus on characterizing E0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]
. Conditioning on

whether e′λ or eq occurs first and using (5.52), one obtains

E0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= E0−

[
e−seq1{Xeq∈dy,eq<e′λ}

]
+

∫ b

−a
E0−

[
e−se

′
λ1{

Xe′
λ
∈dz,e′λ<eq

}
]
Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

= qθ(s+q+λ)(y)dy + λqdy

∫ b

−a

∫ 0

−a
θ(s+q+λ)(x)υ(s,λ)(x,w; b)u

(s+q,λ)
d:c (w + a, y + a; a)dwdz

+ λ

∫ b

−a

∫ 0

−a
θ(s+q+λ)(z)υ(s,λ)(z, w; b)

W (s+q,λ)(w + a)

W (s+q,λ)(a)
dwdzE0−

[
e−sT

λ,q
1{X

Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b }

]
.

(5.53)

Thus, it is direct from (5.53) that

1

qdy
E0−

[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=
θ(s+q+λ) (y) + λ

∫ b
−a
∫ 0
−a θ

(s+q+λ) (z) υ(s,λ)(z, w; b)u
(s+q,λ)
d:c (w + a, y + a; a) dwdz

1− λ
∫ b
−a
∫ 0
−a θ

(s+q+λ) (z) υ(s,λ)(z, w; b)W
(s+q,λ)(w+a)

W (s+q,λ)(a)
dwdz

=
θ(s+q+λ)(y) +A(s+q,λ)(a,−a− y)− λ

∫ b
−a θ

(s+q+λ)(z)H
(s,q,λ)
a,b (z,−y)dz

1− λ
∫ b
−a θ

(s+q+λ)(z)
Z

(s,q,λ)
a,b (z)

W (q+s,λ)(a)
dz

−A(s+q,λ)(a,−a− y),

(5.54)

where the last step is due to the definitions of ud:c, H
(s,q,λ)
a,b , and Z

(s,q,λ)
a,b , in (3.17), (4.2), and (4.3),

respectively. Finally, the substitution of (5.54) into (5.51) completes the proof.
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5.5 Proof of Equation (4.4)

By (3.11), we have

1

qdy
Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=
θ(s+q+λ)(y) +W (s+q)(−y)− λ

∫ b
−a θ

(s+q+λ)(z)H
(s,q,λ)
a,b (z,−y)dz

W (s+q,λ)(a)− λ
∫ b
−a θ

(s+q+λ)(z)Z
(s,q,λ)
a,b (z)dz

Z
(s,q,λ)
a,b (x)−H(s,q,λ)

a,b (x,−y),

(5.55)

whereH
(s,q,λ)
a,b (x,−y) =

∫ a
0 υ

(s,λ)(x,−w; b)W (s+q)(−y−w)dw. By (3.28), we know that υ(s,λ)(x,−w; b)dw

converges (weakly) to Ex

[
e−qτ

−
0 1{

−X
τ−0
∈dw,τ−0 <τ

+
b

}
]

as λ → ∞. By the boundedness and conti-

nuity of W (s+q)(−y − w) for w ∈ [0, a], it follows that

lim
λ→∞

H
(s,q,λ)
a,b (x,−y) =

∫ a

0
Ex

[
e−qτ

−
0 1{

−X
τ−0
∈dw,τ−0 <τ

+
b

}
]
W (s+q)(−y − w)dw

= Ex
[
e−qτ

−
0 W (s+q)(−y +Xτ−0

)1{τ−0 <τ+
b }

]

= A(s,q)(x,−y)− W (s) (x)

W (s)(b)
A(s,q)(b,−y), (5.56)

where the last line is due to Lemma 2.2 of Loeffen et al. [24]. By the same argument, we have

lim
λ→∞

Z
(s,q,λ)
a,b (x) = lim

λ→∞
H

(s,q,λ)
a,b (x, a) = A(s,q)(x, a)− W (s) (x)

W (s)(b)
A(s,q)(b, a). (5.57)

From (2.14), we deduce that λθ(λ)(z) converges (weakly) to δ0(z) when λ→∞. By the bounded-

ness and continuity of H
(s,q,λ)
a,b (z,−y) and Z

(s,q,λ)
a,b (z) for z ∈ [−a, b], with the application of (5.56),

(5.57) and (3.12), the limit of (5.55) is given by

lim
λ→∞

1

qdy
Ex
[
e−sT

λ,q
1{

X
Tλ,q
∈dy,Tλ,q<T−,λ−a ∧T

+,λ
b

}
]

=
W (s+q)(−y)−A(s,q)(0,−y) + W (s)(0+)

W (s)(b)
A(s,q)(b,−y)

W (s+q)(a)−A(s,q)(0, a) + W (s)(0+)

W (s)(b)
A(s,q)(b, a)

(
A(s,q)(x, a)− W (s) (x)

W (s)(b)
A(s,q)(b, a)

)

−A(s,q)(x,−y) +
W (s) (x)

W (s)(b)
A(s,q)(b,−y)

=
A(s,q)(b,−y)

A(s,q)(b, a)

(
A(s,q)(x, a)− W (s) (x)

W (s)(b)
A(s,q)(b, a)

)
−A(s,q)(x,−y) +

W (s) (x)

W (s)(b)
A(s,q)(b,−y)

=
A(s,q)(b,−y)

A(s,q)(b, a)
A(s,q)(x, a)−A(s,q)(x,−y),

where we have used the fact that W (s) (0+) 6= 0 when X has bounded variation paths (e.g., Lemma

3.1 of Kuznetsov et al. [14]). This completes the proof.
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