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Abstract— We consider lossy source compression of a binary
symmetric source with Hamming distortion function. We show
that polar codes combined with a low-complexity successivecan-
cellation encoding algorithm achieve the rate-distortionbound.
The complexity of both the encoding and the decoding algorithm
is O(N log(N)), where N is the blocklength of the code. Our re-
sult mirrors Arıkan’s capacity achieving polar code construction
for channel coding.

I. I NTRODUCTION

Lossy source compression is one of the fundamental prob-
lems of information theory. Consider a binary symmetric
source (BSS)Y . Let d(·, ·) denote the Hamming distortion
function,

d(0, 0) = d(1, 1) = 0, d(0, 1) = 1.

It is well known that, in order to compressY with average
distortionD, the rateR at which we describe the source has
to be at leastR(D) = 1 − h2(D), whereh2(·) is the binary
entropy function [1]. Shannon proved that this rate is sufficient
by using a random coding argument (using non-linear codes).
It was later shown by Goblick that in fact linear codes are
sufficient [2], [3, Section 6.2.3].

Trellis-based quantizers [4] were perhaps the first “practi-
cal” solution to source compression. Their encoding complex-
ity is linear in the blocklength of the code (Viterbi algorithm).
For any rate strictly larger thanR(D) the gap between the
expected distortion and the design distortionD vanishes expo-
nentially in the constraint length. However, the complexity of
the encoding algorithm scales exponentially with the constraint
length.

Given the success of sparse graph codes combined with low-
complexity message-passing algorithms for the channel coding
problem, it is interesting to investigate the performance of such
a combination for lossy source compression.

As a first question, we can ask if the codes themselves are
suitable for the task. In this respect, Matsunaga and Yamamoto
[5] showed that if the degrees of a low-density parity-check
(LDPC) ensemble are chosen as large asΘ(log(N)), where
N is the blocklength, then this ensemble saturates the rate-
distortion bound if optimal encoding is employed. Even more
promising, Martininian and Wainwright [6] proved that prop-
erly chosen MN codes withboundeddegrees are sufficient to
achieve the rate-distortion bound under optimal encoding.

Much less is known about the performance of sparse
graph codes undermessage-passingencoding. In [7] the
authors consider binary erasure quantization, the source-
compression equivalent of the binary erasure channel (BEC)
coding problem. They show that LDPC-based quantizers fail

to achieve the rate-distortion bound if the parity-check density
is o(log(N)). But properly constructed low-density generator-
matrix (LDGM) based quantizers combined with message-
passing encoders are optimal. They exploit the close rela-
tionship between the channel coding problem and the lossy
source compression problem, together with the fact that LDPC
codes achieve the capacity of the BEC under message-passing
decoding, to prove the latter claim.

Regular LDGM codes were considered in [8]. Using non-
rigorous methods from statistical physics it was shown that
these codes approach rate-distortion bound for large degrees.
It was empirically shown that these codes have good per-
formance under a variant of belief propagation algorithm
(reinforced belief propagation). In [9] the authors consider
check-regular LDGM codes and show, using non-rigorous
methods, that these codes approach the rate-distortion bound
for large check degree. Moreover, for any rate strictly larger
than R(D), the gap between the achieved distortion and
D vanishes exponentially in the check degree. They also
observe that belief propagation inspired decimation (BID)
algorithms do not perform well in this context. In [10], survey
propagation inspired decimation (SID) was proposed as an
iterative algorithm for finding the solutions of K-SAT (non-
linear constraints) formulae efficiently. Based on this success,
the authors in [9] replaced the parity-check nodes with non-
linear constraints, and empirically showed that using SID one
can achieve a performance close to the rate-distortion bound.

The construction in [7] suggests that those LDGM codes
whose duals (LDPC) are optimized for the binary symmet-
ric channel (BSC) might be good candidates for the lossy
compression of a BSS using message-passing encoding. In
[11] the authors consider such LDGM codes and empirically
show that by using SID one can approach very close to the
rate-distortion bound. They also mention that even BID works
well but that it is not as good as SID. Recently, in [12] it was
experimentally shown that using BID itis possible to approach
the rate-distortion bound closely. The key to making basic BP
work well in this context is to choose the code properly.

The current state-of-the-art code design is thus based on the
heuristic approach of designing an LDPC code for a suitably
defined channel and then taking its dual LDGM code. Such
an approach does not extend to sources other than the BSS.
In addition to the heuristic argument, the code design relies
on finding capacity achieving codes for channel coding which
itself is an open problem.

We show that polar codes combined with a successive
cancellation (SC) encoder achieve the rate-distortion bound.
This is the first practical coding scheme that provably achieves



the rate-distortion bound. In this paper we concentrate on the
case of a BSS with Hamming distortion. As shown in [13,
Chapter 3] equivalent results can be derived for more general
sources.

II. POLAR CODES

Let W : {0, 1} → Y be a binary-input discrete mem-
oryless channel (B-DMC). LetI(W ) ∈ [0, 1] denote the
mutual information between the input and output ofW with
uniform distribution on the inputs, call it the symmetric
mutual information. Clearly, if the channelW is symmetric,
then I(W ) is the capacity ofW . Also, let Z(W ) ∈ [0, 1]
denote the Bhattacharyya parameter ofW , i.e., Z(W ) =
∑

y∈Y

√

W (y | 0)W (y | 1).
In the following, an upper case letter, sayU , denotes a

random variable andu denotes its realization. LetU j
i denote

the random vector(Ui, . . . , Uj) for i ≤ j and letŪ = UN−1
0 .

For any setF , |F | denotes its cardinality and letUF denote
(Ui1 , . . . , Ui|F |

), where{ik ∈ F : ik ≤ ik+1}. We use the
equivalent notation for their realizations too.

Polar codes, introduced by Arıkan in [14], are the first
practical codes that provably achieve capacity for arbitrary
symmetric B-DMCs with low encoding and decoding com-
plexity. LetG2 = [ 1 0

1 1 ]. The generator matrix of polar codes is
defined through the Kronecker powers ofG2, denoted byG⊗n

2 ,
(where “⊗n” denotes thenth Kronecker power) as follows.

Definition 1 (Polar Code): The polar codeCN (F, uF ), de-
fined for anyF ⊆ {0, . . . , N − 1} and uF ∈ {0, 1}|F |, is a
linear code given by

CN(F, uF ) = {vN−1
0 G⊗n

2 : vF = uF , vF c ∈ {0, 1}|F
c|}.

In other words the codeCN(F, uF ) is constructed by fixing
the indices inF to uF and varying the indices inF c over
all the possible values. Let us refer to the setF as frozen set
and the indices belonging to it asfrozen indices. Arıkan [14]
showed that there exists a choice of(F, uF ) that achieves rates
close toI(W ) using a low-complexity SC decoding algorithm.
The complexity of both the encoding and the SC decoding
algorithm isO(N log(N)).

III. SUCCESSIVECANCELLATION ENCODER

Let Y ∈ Y be a Ber(1
2 ) random variable and let the source

be a sequence of i.i.d. realizations ofY . Let PY denote the
probability distribution ofY , i.e., PY (0) = PY (1) = 1. For
the case of the Hamming distortion function, the test channel
that achieves the rate-distortion tradeoff for design distortion
D is the BSC(D). Let us denote this test channel byW , i.e.,

W (0 | 1) = W (1 | 0) = D,

W (0 | 0) = W (1 | 1) = 1 − D.

Let us use polar codes for the above lossy source coding
problem. In order to construct a suitable polar code we need to
find the appropriate(F, uF ). For that purpose let us consider
the probability distributionPŪ,X̄,Ȳ over the space{0, 1}N ×

{0, 1}N × {0, 1}N defined as

PŪ ,X̄,Ȳ (ū, x̄, ȳ) =
1

2N
︸︷︷︸

PŪ (ū)

1{x̄=ūG
⊗n
2 }

︸ ︷︷ ︸

PX̄ | Ū(x̄ | ū)

N−1∏

i=0

W (yi |xi)

︸ ︷︷ ︸

PȲ | X̄ (ȳ | x̄)

. (1)

SinceG⊗n
2 is an invertible matrix, the uniform distribution of

Ū over {0, 1}N induces a uniform distribution on̄X. Since
W (y |x) = W (y ⊕ 1 |x ⊕ 1) (symmetry), it follows that the
marginal induced by the above distribution over the spaceYN

is also uniform, This is indeed the distribution of the source.
Let ȳ denoteN i.i.d. realizations of the sourceY . Let

Û(ȳ, uF ) denote the result of the following SCencoding
operation using the codeCN (F, uF ). Given ȳ, for eachi in
the range0 till N − 1:

(i) If i ∈ F , then set̂ui = ui.
(ii) If i ∈ F c, then computePUi |U

i−1
0 ,Ȳ (0 | ûi−1

0 , ȳ) and set

ûi =

{

0 w.p. PUi |U
i−1
0 ,Ȳ (0 | ûi−1

0 , ȳ),

1 w.p. PUi |U
i−1
0 ,Ȳ (1 | ûi−1

0 , ȳ).
(2)

We refer to the decision rule (2) asrandomized rounding.
Randomized rounding as a decision rule is not new. In [15]
it was applied in the context of finding solutions of a random
k-SAT problem.

Remark 2:When making the decision on bitUi using
the SC encoder, it is natural to choose that value forUi

which maximizes the posterior (MAP rule). Why do we use
randomized rounding? In simulations, randomized rounding
and the MAP rule perform similarly with a slight performance
edge for the MAP rule. But for the purpose of analysis the
randomized rounding rule is much more convenient. In fact,
it is currently not clear if and how the MAP rule can be
analyzed. Note that all of the existing source coding schemes
use the MAP rule. This is most likely the main obstacle to their
analysis. We believe that by combining randomized rounding
with existing schemes like BID it might be possible to analyze
the performance of LDGM codes for source coding.

The decoding, or the reconstruction operation, is given by
x̄ = ûN−1

0 G⊗n
2 . The decoder has knowledge ofûF (since

ûF = uF ) and hence the encoder needs to convey only the
vector(Û(ȳ, uF ))F c to the decoder. This requires|F c| bits and
hence the rate is|F c|/N . The average distortion incurred by
this scheme is given by1

N
E[d(Ȳ , X̄)], where the expectation

is over the source randomness and the randomness involved
in the randomized rounding at the encoder.

The encoding (decoding) task for source coding is the
same as the decoding (encoding) task for channel coding.
As shown in [14], both operations can be implemented with
O(N log(N)) complexity.

IV. M AIN RESULT

Theorem 3 (Polar Codes Achieve the Rate-Distortion
Bound for the Binary Symmetric Source): Let Y be a BSS
and fix thedesigndistortion D, 0 < D < 1

2 . For any rate
R > 1−h2(D) and any0 < β < 1

2 , there exists a sequence of



polar codes of lengthN with ratesRN < R so that under SC
encoding using randomized rounding they achieve expected
distortionDN satisfying

DN ≤ D + O(2−(Nβ)).

The encoding as well as decoding complexity of these codes
is O(N log(N)).

Let us consider how polar codes perform in practice. Recall
that the lengthN of the code is always a power of2, i.e.,
N = 2n. Let us construct a polar code to achieve a distortion
D. Let W denote the channel BSC(D) and letR = R(D)+ ǫ
for someǫ > 0.

In order to fully specify the code we need to specify the set
F , i.e., the set of frozen components. We proceed as follows.
For any B-DMCW , let W

(i)
N : {0, 1} → YN−1 × {0, 1}i−1

denote the channel law

W
(i)
N (ȳ, ui−1

0 |ui) , PȲ ,U
i−1
0 |Ui

(ȳ, ui−1
0 |ui)

=
1

2N−1

∑

u
N−1
i+1

PȲ | Ū (ȳ | ū).

First we estimate theZ(W
(i)
N )s for all i ∈ {0, . . . , N −1} and

sort the indicesi in decreasing order ofZ(W
(i)
N )s. The setF

consists of the first(1 − R)N indices, i.e., it consists of the
indices corresponding to the(1 − R)N largestZ(W

(i)
N )s.

This is similar to the channel code construction for the
BSC(D) but there is a slight difference. For the case of channel
coding we assign all indicesi so thatZ(W

(i)
N ) is very small,

i.e., so that lets sayZ(W
(i)
N ) < δ, to the setF c. Therefore,

the setF consists of all those indicesi so thatZ(W
(i)
N ) ≥ δ.

For the source compression, on the other hand,F consists of
all those indicesi so thatZ(W

(i)
N ) ≥ 1 − δ, i.e., of all those

indices corresponding tovery large values ofZ(W
(i)
N ).

Putting it differently, in channel coding, the rateR is
chosen to be strictly less than1 − h2(D), whereas in source
compression it is chosen so that it is strictly larger than this
quantity. Figure 1 shows the performance of the SC encoding
algorithm combined with randomized rounding. As asserted
by Theorem 3, the points approach the rate-distortion bound
as the blocklength increases.

In [16] the performance of polar codes for lossy source
compression was already investigated empirically. Note that
the construction used in [16] is different from the current
construction. There is also a slight difference with respect to
the decimation step of the encoding algorithm. In [16] we
use MAP estimates instead of randomized rounding. Despite
all these differences the performance of both schemes is
comparable.

V. THE PROOF

Let CN(F ) denote the polar code ensemble defined as
follows.

Definition 4 (Polar Code Ensemble): The polar code en-
sembleCN (F ), defined for anyF ⊆ {0, . . . , N − 1}, denotes

0.0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

D

R

Fig. 1. The rate-distortion performance for the SC encodingalgorithm with
randomized rounding forn = 9, 11, 13, 15, 17 and 19. As the blocklength
increases the points move closer to the rate-distortion bound.

the ensemble

CN(F ) = {CN(F, uF ), ∀uF ∈ {0, 1}|F |}.
For the proof it is more convenient not to determine the

distortion for a fixed choice ofuF but to compute the average
distortion over all possible codes belonging to the ensemble
CN(F ) (with a uniform distribution over these choices). Let
DN(F, uF ) denote the resulting average distortion for the code
CN(F, uF ) and letDN(F ) denote the average ofDN (F, uF )
over all possible codes in the ensembleCN(F ). We want to
show that there exists a setF of cardinality roughlyNh2(D)
and a vectoruF such thatDN (F, uF ) ≈ D. We accomplish
this by showing that there exists a setF of the required
cardinality such thatDN(F ) ≈ D. This implies that there
exists a choice ofuF for which DN (F, uF ) ≈ D. In fact, it
can be shown [17] that the distortiondoes not dependon the
choice ofuF . A convenient choice is therefore to setuF to
zero.

The encoding function̂U(ȳ, uF ) is random. More precisely,
in step i of the encoding process,i ∈ F c, we fix the value
of Ui proportional to the posterior (randomized rounding)
PUi |U

i−1
0 ,Ȳ (ûi | û

i−1
0 , ȳ). This implies that the probability of

picking a vector̂uN−1
0 given ȳ is equal to

{

0, ûF 6= uF ,
∏

i∈F c PUi |U
i−1
0 ,Ȳ (ûi | û

i−1
0 , ȳ), ûF = uF .

Therefore, the average (over̄y and the randomness of the
encoder) distortionDN(F, uF ) is given by

DN (F, uF ) =
∑

ȳ∈{0,1}N

1

2N

∑

ûF c∈{0,1}|F c|

∏

i∈F c

P (ûi | û
i−1
0 , ȳ)

1

N
d(ȳ, ûN−1

0 G⊗n
2 ), (3)

whereûi = ui for i ∈ F .
The average distortionDN(F ) can then be written as

DN(F ) =
∑

uF ∈{0,1}|F |

1

2|F |
DN (F, uF )



=
∑

uF

1

2|F |

∑

ȳ

1

2N

∑

uF c

∏

i∈F c

P (ui |u
i−1
0 , ȳ)

1

N
d(ȳ, ūG⊗n

2 )

=
∑

ȳ

1

2N

∑

ū

1

2|F |

∏

i∈F c

P (ui |u
i−1
0 , ȳ)

1

N
d(ȳ, ūG⊗n

2 ).

Let QŪ,Ȳ denote the distribution defined byQȲ (ȳ) = 1
2N and

QŪ | Ȳ defined by

Q(ui |u
i−1
0 , ȳ) =

{ 1
2 , if i ∈ F,

PUi |U
i−1
0 ,Ȳ (ui |u

i−1
0 , ȳ), if i ∈ F c.

Then, DN (F ) = 1
N

EQ[d(Ȳ , ŪG⊗n
2 )], where EQ[·] denotes

expectation with respect to the distributionQŪ,Ȳ . Similarly,
let EP [·] denote the expectation with respect to the distribution
PŪ ,Ȳ . Recall thatPȲ (ȳ) = 1

2N and that we can writePŪ | Ȳ

in the form

PŪ | Ȳ (ū | ȳ) =
N−1∏

i=0

PUi |U
i−1
0 ,Ȳ (ui |u

i−1
0 , ȳ).

If we compareQ to P we see that they have the same structure
except for the componentsi ∈ F . Indeed, in the following
lemma we show that the total variation distance betweenQ
and P can be bounded in terms of how much the posteriors
QUi | U

i−1
0 ,Ȳ andPUi |U

i−1
0 ,Ȳ differ for i ∈ F .

Lemma 5 (Bound on the Total Variation Distance): Let
F denote the set of frozen indices and let the probability
distributionsQ andP be as defined above. Then

∑

ū,ȳ

|Q(ū, ȳ) − P (ū, ȳ)|

≤ 2
∑

i∈F

EP

[∣
∣
∣
1

2
− PUi |U

i−1
0 ,Ȳ (0 |U i−1

0 , Ȳ )
∣
∣
∣

]

.

Proof:
∑

ū

|Q(ū | ȳ) − P (ū | ȳ)|

=
∑

ū

∣
∣
∣

N−1∏

i=0

Q(ui |u
i−1
0 , ȳ) −

N−1∏

i=0

P (ui |u
i−1
0 , ȳ)

∣
∣
∣

=
∑

ū

∣
∣
∣

N−1∑

i=0

[(
Q(ui |u

i−1
0 , ȳ) − P (ui |u

i−1
0 , ȳ)

)
·

(i−1∏

j=0

P (uj |u
j−1
0 , ȳ)

)( N−1∏

j=i+1

Q(uj |u
j−1
0 , ȳ)

)]∣
∣
∣.

In the last step we have used the following telescoping
expansion:

AN−1
0 − BN−1

0 =

N−1∑

i=0

(Ai − Bi)A
N−1
i+1 Bi−1

0 ,

whereAj
k denotes here the product

∏j

i=k Ai.
Now note that if i ∈ F c then Q(ui |u

i−1
0 , ȳ) =

P (ui |u
i−1
0 , ȳ), so that these terms vanish. The above sum

therefore reduces to
∑

ū

∣
∣
∣

∑

i∈F

[(
Q(ui |u

i−1
0 , ȳ) − P (ui |u

i−1
0 , ȳ)

)

︸ ︷︷ ︸

≤ | 1
2−P (ui |u

i−1
0 ,ȳ) |

·

(i−1∏

j=0

P (uj |u
j−1
0 , ȳ)

)( N−1∏

j=i+1

Q(uj |u
j−1
0 , ȳ)

)]∣
∣
∣

≤
∑

i∈F

∑

ui
0

∣
∣
∣
1

2
− P (ui |u

i−1
0 , ȳ)

∣
∣
∣

i−1∏

j=0

P (uj |u
j−1
0 , ȳ)

≤ 2
∑

i∈F

EPŪ | Ȳ =ȳ

[∣
∣
∣
1

2
− PUi |U

i−1
0 ,Ȳ (0 |U i−1

0 , ȳ)
∣
∣
∣

]

.

In the last step the summation overui gives rise to the factor2,
whereas the summation overui−1

0 gives rise to the expectation.
Note thatQȲ (ȳ) = PȲ (ȳ) = 1

2N . The claim follows by
taking the expectation over̄Y .

Lemma 6 (Distortion underQ versus Distortion underP ):
Let F be chosen such that fori ∈ F

EP

[∣
∣
∣
1

2
− PUi |U

i−1
0 ,Ȳ (0 |U i−1

0 , Ȳ )
∣
∣
∣

]

≤ δN . (4)

The average distortion is then bounded by

1

N
EQ[d(Ȳ , ŪG⊗n

2 )] ≤
1

N
EP [d(Ȳ , ŪG⊗n

2 )] + |F |2δN .

Proof:

EQ[d(Ȳ , ŪG⊗n
2 )] − EP [d(Ȳ , ŪG⊗n

2 )]

=
∑

ū,ȳ

(

Q(ū, ȳ) − P (ū, ȳ)
)

d(ȳ, ūG⊗n
2 )

≤ N
∑

ū,ȳ

∣
∣
∣Q(ū, ȳ) − P (ū, ȳ)

∣
∣
∣

Lem. 5
≤ 2N

∑

i∈F

EP

[∣
∣
∣
1

2
− PUi |U

i−1
0 ,Ȳ (0 |U i−1

0 , Ȳ )
∣
∣
∣

]

≤ |F |2NδN .

From Lemma 6 we see that the average (overȳ as well as
uF ) distortion is upper bounded by the average distortion with
respect toP plus a term which bounds the “distance” between
Q andP .

Lemma 7 (Distortion underP ):

EP [d(Ȳ , ŪG⊗n
2 )] = ND.

The proof follows from the fact that̄UG⊗n
2 = X̄ andPr(Yi 6=

Xi) = D. The lemma implies that if we use all the variables
{Ui} to represent the source word, i.e.,F is empty, then the
algorithm results in an average distortionD. But the rate of
such a code would be1. Fortunately, the last problem is easily
fixed. If we chooseF to consist of those variables which
are “essentially random,” then there is only a small distortion
penalty (namely,|F |2δN ) to pay with respect to the previous
case. But the rate has been decreased to1 − |F |/N .

Lemma 6 shows that the guiding principle for choosing the
set F is to include the indices with smallδN in (4). In the
following lemma, we find a sufficient condition for an index
to satisfy (4), which is easier to handle.

Lemma 8 (Z(W
(i)
N ) Close to 1 is Good): If Z(W

(i)
N ) ≥

1 − 2δ2
N , then

EP

[∣
∣
∣
1

2
− PUi |U

i−1
0 ,Ȳ (0 |U i−1

0 , Ȳ )
∣
∣
∣

]

≤ δN .



For the proof, please refer to [17]. Intuitively, the above lemma
means that ifZ(W

(i)
N ) is close to1, then given the output

of W
(i)
N , which is (Ȳ , U i−1

0 ), the inputUi is close to being
random, i.e., the posteriors are close to1

2 .
We are now ready to prove Theorem 3. In order to show

that there exists a polar code which achieves the rate-distortion
tradeoff, we show that the size of the setF can be made
arbitrarily close toNh2(D) while keeping the penalty term
|F |2δN arbitrarily small.

Proof of Theorem 3:Let β < 1
2 be a constant and letδN =

1
2N

2−Nβ

. Consider a polar code with frozen setFN ,

FN = {i ∈ {0, . . . , N − 1} : Z(W
(i)
N ) ≥ 1 − 2δ2

N}.

For N sufficiently large there exists aβ′ < 1
2 such that2δ2

N >

2−Nβ′

. By choosingW to be a BSC(D), and using Theorem 9
and equation (7) we get

lim
N=2n,n→∞

|FN |

N
= h2(D). (5)

The above equation implies that for anyǫ > 0 and for N
sufficiently large there exists a setFN such that

|FN |

N
≥ h2(D) − ǫ.

In other words

RN = 1 −
|FN |

N
≤ R(D) + ǫ.

Finally, from Lemma 6 we know that

DN (FN ) ≤ D + 2|FN |δN ≤ D + O(2−(Nβ)) (6)

for any 0 < β < 1
2 .

Recall thatDN (FN ) is the average of the distortion over
all choices ofuFN

. Since the average distortion fulfills (6)
it follows that there must be at least one choice ofuFN

for
which

DN (FN , uFN
) ≤ D + O(2−(Nβ))

for any 0 < β < 1
2 .

As shown in [14], the complexity of both the encoding and
the decoding algorithm isO(N log(N)). �

APPENDIX

For any B-DMC W : {0, 1} → Y, the B-DMCs W [i] :
{0, 1} → Y ×Y × {0, 1}i−1 are defined as follows. LetW [0]

denote the channel law

W [0](y0, y1 |u0) =
1

2

∑

u1

W (y0 |u0 ⊕ u1)W (y1 |u1),

and letW [1] denote the channel law

W [1](y0, y1, u0 |u1) =
1

2
W (y0 |u0 ⊕ u1)W (y1 |u1).

Define a random variableWn through a tree process
{Wn; n ≥ 0} with

W0 = W,

Wn+1 = W [Bn+1]
n ,

where {Bn; n ≥ 1} is a sequence of i.i.d. Ber(1
2 ) random

variables. We augment the above process by the process
{Zn; n ≥ 0} := {Z(Wn); n ≥ 0}. The relevance of this
process is thatWn ∈ {W

(i)
N }N−1

i=0 and moreover the symmetric
distribution of the random variablesBi implies

Pr(Zn ∈ (a, b)) =

˛

˛

˛

˘

i ∈ {0, . . . , N − 1} : Z(W
(i)
N

) ∈ (a, b)
¯

˛

˛

˛

N
.

(7)

As seen in Lemma 8, for lossy source compression, the
important quantity is the rate at which the random variable
Zn approaches1. Using similar techniques as in [18], we can
show the following. For the proof please refer to [17].

Theorem 9 (Rate ofZn Approaching1): Given a B-DMC
W , and anyβ < 1

2 ,

lim
n→∞

Pr(Zn ≥ 1 − 2−2nβ

) = 1 − I(W ).
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