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Abstract—We consider lossy source compression of a binary to achieve the rate-distortion bound if the parity-chechsity
symmetric source with Hamming distortion function. We show g o(log(N)). But properly constructed low-density generator-
that polar codes combined with a low-complexity successivean- matrix (LDGM) based quantizers combined with message-

cellation encoding algorithm achieve the rate-distortionbound. - d timal. Th loit th | |
The complexity of both the encoding and the decoding algoritm passing encoders are optimal. ey exploit the close rela-

is O(IN log(N)), where N is the blocklength of the code. Our re- tionship between the channel coding problem and the lossy
sult mirrors Arikan’s capacity achieving polar code construction ~ source compression problem, together with the fact that€ DP

for channel coding. codes achieve the capacity of the BEC under message-passing
decoding, to prove the latter claim.
Regular LDGM codes were considered in [8]. Using non-
Lossy source compression is one of the fundamental prqRyorous methods from statistical physics it was shown that
lems of information theory. Consider a binary symmetrihese codes approach rate-distortion bound for large degre
source (BSS)Y. Let d(,-) denote the Hamming distortiont was empirically shown that these codes have good per-
function, formance under a variant of belief propagation algorithm
_ _ _ (reinforced belief propagation). In [9] the authors coesid
4(0,0) =d(1,1) = 0,40, 1) = 1. check-regular LDGM codes and show, using non-rigorous
It is well known that, in order to compress with average methods, that these codes approach the rate-distortiomdoou
distortion D, the rateR at which we describe the source hasor large check degree. Moreover, for any rate strictly darg
to be at leastR(D) = 1 — hao(D), wherehy(-) is the binary than R(D), the gap between the achieved distortion and
entropy function [1]. Shannon proved that this rate is sigffit D vanishes exponentially in the check degree. They also
by using a random coding argument (using non-linear codespserve that belief propagation inspired decimation (BID)
It was later shown by Goblick that in fact linear codes aralgorithms do not perform well in this context. In [10], sayw
sufficient [2], [3, Section 6.2.3]. propagation inspired decimation (SID) was proposed as an
Trellis-based quantizers [4] were perhaps the first “praciterative algorithm for finding the solutions of K-SAT (non-
cal” solution to source compression. Their encoding complelinear constraints) formulae efficiently. Based on thiscass,
ity is linear in the blocklength of the code (Viterbi algdmin). the authors in [9] replaced the parity-check nodes with non-
For any rate strictly larger tha®(D) the gap between the linear constraints, and empirically showed that using Stie o
expected distortion and the design distortidrvanishes expo- can achieve a performance close to the rate-distortiondhoun
nentially in the constraint length. However, the complexit The construction in [7] suggests that those LDGM codes
the encoding algorithm scales exponentially with the aaist whose duals (LDPC) are optimized for the binary symmet-
length. ric channel (BSC) might be good candidates for the lossy
Given the success of sparse graph codes combined with lm@mpression of a BSS using message-passing encoding. In
complexity message-passing algorithms for the channéhgod[11] the authors consider such LDGM codes and empirically
problem, it is interesting to investigate the performanfceueh show that by using SID one can approach very close to the
a combination for lossy source compression. rate-distortion bound. They also mention that even BID sork
As a first question, we can ask if the codes themselves avell but that it is not as good as SID. Recently, in [12] it was
suitable for the task. In this respect, Matsunaga and Yartmmexperimentally shown that using BIDi# possible to approach
[5] showed that if the degrees of a low-density parity-chedke rate-distortion bound closely. The key to making basc B
(LDPC) ensemble are chosen as largecdtog(N)), where work well in this context is to choose the code properly.
N is the blocklength, then this ensemble saturates the rateThe current state-of-the-art code design is thus basedeon th
distortion bound if optimal encoding is employed. Even moreeuristic approach of designing an LDPC code for a suitably
promising, Martininian and Wainwright [6] proved that propdefined channel and then taking its dual LDGM code. Such
erly chosen MN codes withoundeddegrees are sufficient toan approach does not extend to sources other than the BSS.
achieve the rate-distortion bound under optimal encoding. In addition to the heuristic argument, the code design selie
Much less is known about the performance of sparem finding capacity achieving codes for channel coding which
graph codes undemessage-passingncoding. In [7] the itself is an open problem.
authors consider binary erasure quantization, the sourceWe show that polar codes combined with a successive
compression equivalent of the binary erasure channel (BE€ncellation (SC) encoder achieve the rate-distortionndou
coding problem. They show that LDPC-based quantizers fdihis is the first practical coding scheme that provably acse

I. INTRODUCTION



the rate-distortion bound. In this paper we concentratehen t{0,1}" x {0,1}* defined as
case of a BSS with Hamming distortion. As shown in [13, No1
hapter 3] equivalent results can be derived for more génera S 1
c Poxy(@8,9) = 55 Laoacem I wwle). @
sources. N Lo
Py(a) Pxio@|w PR
Il. POLAR CODES v ix @)

Let W : {0,1} — Y be a binary-input discrete mem_§inceG§®" is an invertible matrix, the uniform distribution of

oryless channel (B-DMC). Lef (W) e [0,1] denote the U over {0,1}"V induces a uniform distrib.ution oX. Since
mutual information between the input and outputifwith V(v |2) = W(y © 1|z & 1) (symmetry), it follows that the
uniform distribution on the inputs, call it the symmetrid"@rginal induced by the above distribution over the spate
mutual information. Clearly, if the chann& is symmetric, is also_unlform, Thl_s_ is mdegd t_he distribution of the s@urc
then I(W) is the capacity ofiV. Also, let Z(W) € [0,1] . L_et y denote N i.i.d. realizations of thg sourc&’. L_et
denote the Bhattacharyya parameter 6% i.e., z(W) — U(¥,ur) denote the result of the following S@ncoding
Zyej/ Wy [0)W(y|1). operation using the codey (F,ur). Given g, for eachi in
In the following, an upper case letter, s&f, denotes a the range0 till N —1:
random variable and denotes its realization. Ldf; denote (i) If i e F, then seti; = u,.
the random vectofU;, ..., U;) for i < j and lets = g ~1. (i) If i € F'°, then compute?;
For any setF’, |F'| denotes its cardinality and léfr denote {

vt y(0] a5 ", y) and set
O

Uiy, Ui ), where{iy, € F : i < ig41}. We use the -

ir U =
equivalent notation for their realizations too. ' Lwp. Py U(;ﬂfly(l lag Y

Po!ar codes, introduced by Ar|!<an n [14].’ are the _f'rS\;\/e refer to the decision rule (2) asndomized rounding
pracUcaI_codes that provably achleye capacity fof artWaRandomized rounding as a decision rule is not new. In [15]
sym_metnc B-DMCs with low encoding a_nd decoding COMi was applied in the context of finding solutions of a random
plexity. LetG> = [1 9]. The generator matrix of polar codes iS._gAT problem
defined through the Kronecker powers®f, denoted by5", .
(where ‘“©"” denotes then'” Kronecker power) as follows.

Definition 1 (Polar Code)The polar code& y (F, ur), de-
fined for anyF C {0,...,N — 1} andur € {0,1}/7], is a
linear code given by

Remark 2:When making the decision on bi/; using
the SC encoder, it is natural to choose that value Gor
which maximizes the posterior (MAP rule). Why do we use
randomized rounding? In simulations, randomized rounding
and the MAP rule perform similarly with a slight performance

o N—=1~@n ... Fe edge for the MAP rule. But for the purpose of analysis the
Cn(Fyup) = {vy ' G3" : vp = ur,vpe € {0,1J171). randomized rounding rule is much more convenient. In fact,
it is currently not clear if and how the MAP rule can be
analyzed. Note that all of the existing source coding sclseme
use the MAP rule. This is most likely the main obstacle torthei
analysis. We believe that by combining randomized rounding
with existing schemes like BID it might be possible to analyz
r%Be performance of LDGM codes for source coding.

The decoding, or the reconstruction operation, is given by
T = 4)'GY™. The decoder has knowledge af- (since
ur = upr) and hence the encoder needs to convey only the
vector(U (7, ur)) - to the decoder. This requirés®| bits and

LetY € Y be a Bef3) random variable and let the sourcéhence the rate i§F°|/N. The average distortion incurred by
be a sequence of i.i.d. realizations Bf Let Py denote the this scheme is given by E[d(Y, X)], where the expectation
probability distribution ofY’, i.e., Py (0) = Py (1) = 1. For is over the source randomness and the randomness involved
the case of the Hamming distortion function, the test chinrie the randomized rounding at the encoder.
that achieves the rate-distortion tradeoff for designadiin The encoding (decoding) task for source coding is the
D is the BSQD). Let us denote this test channel By, i.e., same as the decoding (encoding) task for channel coding.

As shown in [14], both operations can be implemented with
(110)=D, O(N log(N)) complexity.

In other words the codey (F,ur) is constructed by fixing
the indices inF' to up and varying the indices irf'¢ over
all the possible values. Let us refer to the seasfrozen set
and the indices belonging to it &®zen indicesArikan [14]
showed that there exists a choice(ét u ) that achieves rates
close toI (W) using a low-complexity SC decoding algorithm
The complexity of both the encoding and the SC decodi
algorithm isO(N log(N)).

IIl. SUCCESSIVECANCELLATION ENCODER

IV. MAIN RESULT

Let us use polar codes for the above lossy source codingrheorem 3 (Polar Codes Achieve the Rate-Distortion
problem. In order to construct a suitable polar code we needBound for the Binary Symmetric Sourcéet Y be a BSS
find the appropriaté 7, u). For that purpose let us consideiand fix thedesigndistortion D, 0 < D < % For any rate
the probability distributionP; 5 y over the spacg0,1}" x R > 1—hy(D) and any0 < § < 1, there exists a sequence of



polar codes of lengttv with ratesRy < R so that under SC
e_ncod!ng using randomized rounding they achieve expected ) 4
distortion D satisfying
Dy < D+0(2" ). 0.3

The encoding as well as decoding complexity of these codes 0.2
is O(N log(N)).

Let us consider how polar codes perform in practice. Recall 0.1
that the lengthV of the code is always a power @f i.e.,
N = 2™, Let us construct a polar code to achieve a distortion
D. Let W denote the channel B§D) and letR = R(D) +e¢
for somee > 0. Fig. 1. The rate-distortion performance for the SC encodilggprithm with

In order to fully specify the code we need to specify the sggndomized rounding fon. = 9,11,13,15,17 and 19. As the blocklength
F. ie.. the set of frozen components. We proceed as follov\i;écreases the points move closer to the rate-distortiomdou
For any B-DMCW, let W : {0,1} — Y¥~1 x {0,1}*
denote the channel law

0.0 0.2 0.4 0.6 0.8 R

the ensemble

W (G, i) 2 Py iy (5, u b | ug
N B Jus) = Py g o, (0 g ) Cx(F) = {Cn(F,ur), Yup € {0,1}171}.
1 E : Py (5| w) For the proof it is more convenient not to determine the
N1 voWylu): N : :
WN1 distortion for a fixed choice of.» but to compute the average
i+1

distortion over all possible codes belonging to the ensembl

First we estimate thé(WJ(vi))s foralli € {0,...,N—1}and Cn(F) (with a uniform distribution over these choices). Let

sort the indices in decreasing order @(W]%))S_ The setF’ Dy (F,ur) denote the resulting average distortion for the code

consists of the firs{l — R)N indices, i.e., it consists of the Cn(F,up) and letDy(F) denote the average @y (F, ur)

indices corresponding to the — R)N IargestZ(WJ(\,i))s. over all possible codes in the ensemBle(F). We want to

This is similar to the channel code construction for th%hOW that there exists a stof cardinality rOUQthNhQ(D.)
BSC(D) but there is a slight difference. For the case of chann?%rl.]d a vectony such thatDy (F,up) ~ D. We accomplish

. . NS )y - is by showing that there exists a skt of the required
FOdmg we assign all md;%ezsso thatZ(Wy’) is very small cardinality such thatDx(F) ~ D. This implies that there
i.e., so that lets say/(W,’) < ¢, to the setF°. Therefore,

) exists a choice ofir for which Dy (F,ur) = D. In fact, it
the setF” consists of all those indicessso thatZ(W') > 4. can be shown [17] that the distortiatoes not dependn the
For the source compression, on the other handonsists of choice ofuz. A convenient choice is therefore to set to
all those indices so thatZ(WJ(\})) >1-9, ie., of all those zero.

indices corresponding teery large values on(va”). The encoding functiol (7, ur) is random. More precisely,

Putting it differently, in channel coding, the rat8 is in stepi of the encoding process,c F¢, we fix the value
chosen to be strictly less than— ho(D), whereas in source of U; proportional to the posterior (randomized rounding)
compression it is chosen so that it is strictly larger thas thPU”US-,]y(ﬁi |a4",9). This implies that the probability of
quantity. Figure 1 shows the performance of the SC encodipgking a vectora) ! given is equal to
algorithm combined with randomized rounding. As asserted
by Theorem 3, the points approach the rate-distortion bound {0, Up # up,
as the blocklength increases. _ i1 o (G |05 ), G = up.

In [16] the performance of polar codes for lossy source Hiere PU”U” I’Y(Ulmo ), G =ur
compression was already investigated empirically. Notd thTherefore, the average (over and the randomness of the
the construction used in [16] is different from the currergncoder) distortioD y (F, ur) is given by
construction. There is also a slight difference with respec 1
the decimation step of the encoding algorithm. In [16] we Dy (Fup) = Y = .

. . K . K N
use MAP estimates instead of randomized rounding. Despite ge{0,1}N 2 apeef0,1}17l
all these differences the performance of both schemes is i b v en
comparable. 11 P lag W)@ a 6", ()
ic€Fe

V. THE PROOF wheret; = u; for i € F.

Let Cy(F) denote the polar code ensemble defined asThe average distortio® y(F') can then be written as
follows. 1

Definition 4 (Polar Code EnsembleYhe polar code en- Dy(F) = Z WDN(F’ up)
sembleCy (F), defined for anyF' C {0,..., N — 1}, denotes wupe{0,1}I7]



upc i€k

= Z Q\Fl Z ON > T Pluifug "_) d(y, uG3™") (ﬁ P(uy |U%717§)) ( Nl:f Q(u, |U6717§))”
=0

= j=i+1
- Z P |uh ’) a(y, uG3™). il
N Z \F| H i Y ) 1 i1 - i1

2N £l 2 <Y Y5 - Pty )| T] Pl w ™ 9)
Let Qy y denote the distribution defined Ifyy () = 5% and e g , 7=
Qo )y defined by <23 En, v, || P g w0108

i1 T if i eF, Eer
Qui |ug ~,y) = Py i olui |ui ™t g), ifie Fe In the last step the summation omrglves rise to the factdz,

L o on whereas the summation ovej ' glves rise to the expectation.

Then, Dy (F) = {Eq[a(Y,UG3™)], whereEq[-] denotes  Note thatQy (§) = Py (y) = 5x. The claim follows by
expectation with respect to the distributi@)y; y. Similarly, taking the expectation over. ™

let Ep[-] denote the expectatlon with respect to the distribution _emma 6 (Distortion undef) versus Distortion undeP):
Py v Recall thatPy () = 5 and that we can writé’; |y Let F be chosen such that fore F

in the form 1 S
Ep U5 - PUi|U317Y(O|U51,Y)H <on. (4
PU|Y H U1‘U’L 1{,U1|UZ 1,@)

If we compared to P we seg that they have .the same strpcture iEQ [A(Y,TGE™) < iEP [A(Y, TGE™)] + |F|20x.
except for the componentse F. Indeed, in the following N
lemma we show that the total variation distance betw@en o o
and P can be bounded in terms of how much the posteriors Eq[d(Y, UG@")] - EP[ (Y, UGS™)]
Q i1y and Py, i1 ¢ differ fori € F. — —A®n
ULé%maYS (Boun Uon Xche Total Variation Distancé)et B Z( y))d(y’UGQ )
F denote the set of frozen indices and let the probability

The average distortion is then bounded by

Proof:

distributions@ and P be as defined above. Then < NZ ‘Q(ﬁ, y) - P(Th@)‘
@,y
Z|Q(ﬂ’7g) —P(ﬁ,g” Lem. 5
m < 2NY Ep U— I Y)”
i€F
<2> Ep U Py, i1 7 (01 Ug™! Y)” < |F|2Néy.
icF
Proof: : u
Z Q| g) — P(a|g)] From Lemma 6 we see that the average (qvais well as
y 4 up) distortion is upper bounded by the average distortion with

respect toP plus a term which bounds the “distance” between

N-1 N—-1

= wi|ub g — P(u; |ub 1, g ’ Q and P.

zu:‘ .11 Qluifuo™, ) E) (wi o 9) Lemma 7 (Distortion undep):

i o Ep[d(Y,UGS™)] =ND.

= Z‘ Z [(Q(“i lug ", 9) = Plui [ug ", 9)) - The proof follows from the fact thdf G5 = X andPr(Y; #

B ) =0 X;) = D. The lemma implies that if we use all the variables

p 1 {U;} to represent the source word, i.&,is empty, then the
(H Puj g9 )( H Q(u; |u0 ’y))” algorithm results in an average distortiédh But the rate of

=t such a code would be Fortunately, the last problem is easily

In the last step we have used the following telescopifged. If we chooseF to consist of those variables which

expansion: are “essentially random,” then there is only a small digbort
N-1 penalty (namely|F|25x) to pay with respect to the previous
AP =BT =) (A - B)ANT' BT, case. But the rate has been decreasetltgF|/N.

Lemma 6 shows that the guiding principle for choosing the
WhereAJ denotes here the produ}f[] set I is to include the indices with smafly in (4). In the
Now note that if i € F°¢ then Q(u lui=tg) = following lemma, we find a sufficient condition for an index

P(u; | ui~t, ), so that these terms vanish. The above suffi Satsty (4). Wh'((:f; is easier to handle. @
therefore reduces to Lemma 8 £(W)’) Close tol is Good) If Z(Wy’) >

1— 262, th
53[0 s 9) = Pl 5. - e

1 i—1 v
u  iEF <|1-P(u \uéfl,gjﬂ Ep |:‘§ — PUI'|U87],Y(O|U0 ,Y)’:| <N

Il
o

i




For the proof, please refer to [17]. Intuitively, the abosmima Wit = W[B"+1]

means that ifZ(W ](\;)) is close tol, then given the output 1o e {Bn:n > 1} is a sequence of iid. Be) random

of Wy, which is (Y, Ui "), the inputU; is close to being variables. We : ‘augment the above process by the process

random, i.e., the posterlors are closejto {Znin > 0} == {Z(W,,); n > 0}. The relevance of this
We are now ready to prove Theorem 3. In order to shoprocess is tha,, € {W ! and moreover the symmetric

that there exists a polar code which achieves the ratertigsio distribution of the random vanablegl implies

tradeoff, we show that the size of the sBtcan be made ’{Z e {o,. 1) Z(W}\,)) c (a,b)}‘

arbitrarily close toNhy(D) while keeping the penalty term Pr(Z, € (a,b))

|F'|26 arbitrarily small. N
Proof of Theorem 3Let 3 < 3 L be a constant and léty =

2 N" Consider a polar code with frozen sEf;,

)

As seen in Lemma 8, for lossy source compression, the
important quantity is the rate at which the random variable
Z,, approaches. Using similar techniques as in [18], we can

show the following. For the proof please refer to [17].
Theorem 9 (Rate of,, Approachingl): Given a B-DMC

Fy={ic{0,....N—1}: Z2(W{) >1-26%}.

For N sufficiently large there exists@ < = such thatdz, >

9N . By choosinglV to be a BSCD), and using Theorem 9 w,

and equation (7) we get
Fxn
lim u

N=2" n—oo N - hQ(D)

®)

The above equation implies that for amy> 0 and for N
sufficiently large there exists a sély such that

|En|

(1]
(2]

3]

> ha(D) —e. [4]

In other words
[5]

Ry =1-

Fxl
— < R(D)+

(6]
Finally, from Lemma 6 we know that

Dn(Fy) < D+2|Fyly <D+02" YD) (6) m

for any 0 < 8 < 3.

Recall thatDy (F) is the average of the distortion over (8]
all choices ofur, . Since the average distortion fulfills (6) [9]
it follows that there must be at least one choiceugf, for

which (10]

Dn(Fn,ury) < D+ 0(2_(Nﬁ)) [11]

for any 0 < 8 < 3.
As shown in [14], the complexity of both the encoding and

the decoding algorithm i®(N log(N)). m !
APPENDIX
For any B-DMCW : {0,1} — Y, the B-DMCs Wl : [13]

{0,1} = Y x ¥ x {0,1}*~! are defined as follows. L&t/ (%]

[14]
denote the channel Iaw

[15]

W (yo, y1 | uo) = ZW Yo |uo @ ur)W(y1 [ua),

and letw !l denote the channel law 18]
1
W (yo, y1, uo | ur) = §W(y0 | uo @ ur)W(y1 [u1).
17
Define a random variabléV,, o]
{Whp;n > 0} with

through a tree process
(18]

Wo =W,

and anygs < 2,
lim Pr(Z, >1-2"2")=1-1(W).

n—oo
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