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POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES

MIGUEL DOMÍNGUEZ-VÁZQUEZ AND CLAUDIO GORODSKI

Abstract. We classify irreducible polar foliations of codimension q on quaternionic pro-
jective spaces HPn, for all (n, q) 6= (7, 1). We prove that all irreducible polar foliations of
any codimension (resp. of codimension one) on HPn are homogeneous if and only if n+1
is a prime number (resp. n is even or n = 1). This shows the existence of inhomogeneous
examples of codimension one and higher.

1. Introduction

A singular Riemannian foliation F on a complete Riemannian manifold M is called
a polar foliation if through each point of M passes a complete, isometrically immersed
submanifold, called a section, that intersects all the leaves of F and always orthogonally.
It turns out that sections are totally geodesic. A polar foliation is said to be homogeneous
if it is the family of orbits of an isometric action on M ; in this case, this action is called
a polar action.

Polar foliations on nonnegatively curved space forms have been studied under the name
of isoparametric foliations, which have been almost completely classified after outstanding
work by many mathematicians. We refer to the survey [34] and to the recent papers [8, 26]
for more information. The question that remains open is to decide whether a given codi-
mension one polar foliation on the unit sphere S31 must be either homogeneous or one of
the known inhomogeneous examples (see also [27, 32] for the case of S13, in which there is
some ongoing discussion). These inhomogeneous examples, the so-called FKM-foliations,
were constructed by Ferus, Karcher and Münzner in [16]. We note that the homogeneous
polar foliations are well understood. In particular, by Dadok’s seminal work [11], homoge-
neous polar foliations on spheres are induced by s-representations, that is, by the isotropy
representations of symmetric spaces. Moreover, a deep result by Thorbergsson [33] states
that irreducible polar foliations of codimension at least two on spheres are homogeneous.

The first investigations of not necessarily homogeneous polar foliations on concrete spaces
of nonconstant curvature were developed by Lytchak [25] and the first named author [12].
Lytchak’s paper deals with simply connected symmetric spaces of compact type and rank
higher than one. He proves that polar foliations of codimension at least three on these
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2 M. DOMÍNGUEZ-VÁZQUEZ AND C. GORODSKI

spaces must be hyperpolar (i.e. polar with flat sections) which, combined with a result by
Christ ([9]; see also [19]), implies the homogeneity of all such foliations. Meanwhile, the
second paper [12] deals with polar foliations on a family of rank one symmetric spaces,
namely, on complex projective spaces. The main result is an almost complete classification
of polar foliations on these spaces. Surprisingly enough, from this classification follows the
existence of many inhomogeneous irreducible polar foliations, even in codimension higher
than one, which reveals a sharp contrast with Thorbergsson’s and Lytchak’s results.

In this paper we continue the investigation initiated in [12] of polar foliations on rank
one symmetric spaces of compact type, and we derive an almost complete classification on
quaternionic projective spaces HP n. This classification is complete in the case of irreducible
foliations of codimension higher than one. Here by irreducible we mean that no proper
totally geodesic quaternionic submanifold HP k, k = 0, . . . , n − 1, of HP n is a union of
leaves of the foliation.

Any linear quaternionic structure q on a Euclidean space V = R4n+4 determines a
Hopf fibration πq : S

4n+3 → HP n from the unit sphere S4n+3 of V onto the quaternionic
projective space HP n. We say that q preserves a singular Riemannian foliation F on the
sphere S4n+3 if each leaf of F is foliated by fibers of πq. In such a case there is an induced
singular Riemannian foliation πq(F) on HP n, and indeed all singular Riemannian foliations
of HP n arise in this way. Our classification amounts to listing the polar foliations F on
spheres S4n+3 that are preserved by some quaternionic structure, and then determining
all congruence classes of quaternionic structures preserving F . We denote by NS(F) the
number of congruence classes of polar foliations on HP n that can be obtained as πq(F),
for some polar foliation F on S4n+3 and some quaternionic structure q preserving F . The
explicit description is given in Section 4.

In the case of codimension higher than one, each irreducible polar foliation on a sphere
must be homogeneous and, more specifically, the orbit foliation of the isotropy represen-
tation of an irreducible symmetric space G/K, restricted to the unit sphere of T[K]G/K.
We denote this polar foliation by FG/K . Thus, we have the following result.

Theorem 1.1. For each symmetric space G/K of rank at least two in Table 1, there are,
up to congruence in HP n, exactly NS(FG/K) polar foliations on HP n whose pull-back under
the Hopf map gives a foliation congruent to FG/K .

Conversely, let G be an irreducible polar foliation of codimension greater than one on
HP n. Then G is the projection of FG/K under the Hopf map associated with q, where
G/K is one of the symmetric spaces listed in Table 1 and q is a quaternionic structure on
T[K]G/K preserving FG/K.

Moreover, if G/K is an irreducible quaternionic-Kähler symmetric space, exactly one of
the NS(FG/K) foliations that pull back to a foliation congruent to FG/K is homogeneous.
If G/K is not quaternionic-Kähler, none of the NS(FG/K) foliations is homogeneous.

Investigating codimension one polar foliations on quaternionic projective spaces requires
the determination of the quaternionic structures that preserve FKM-foliations, up to con-
gruence of the projected foliations. In this paper we carry out this job for all FKM-foliations
satisfying m+ ≤ m− (see below for the explanation of this notation). According to the
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G/K NS Condition

SU2p+q/S(U2p ×Uq) 2 q even and q 6= 2p

1 q odd or q = 2p

SO4p+q/SO4p × SOq 2 q ≡ 0 (mod 4) and q 6= 4p

1 q 6≡ 0 (mod4) or q = 4p

Spp+q/Spp × Spq 2 p 6= q

1 p = q

G/K NS

E6/SU6 · SU2 1

E6/Spin10 ·U1 1

E7/Spin12 · Sp1 2

E8/(Spin16/Z2) 1

E8/E7 · SU2 1

F4/Sp3 · SU2 1

G2/SU2 · SU2 1

Table 1.

classification results in spheres, each codimension one polar foliation on S4n+3, n 6= 7, is
either a homogeneous foliation FG/K for some rank 2 symmetric space G/K, or an inhomo-
geneous FKM-foliation satisfying m+ ≤ m−. Thus, our study (summarized in Theorem 1.2
below) yields the classification of codimension one polar foliations on HP n, for all n 6= 7.

In order to understand the condition m+ ≤ m− and Theorem 1.2 below, we need to
introduce some known facts about FKM-foliations; we refer to §4.2 for more details. An
FKM-foliation FP is defined in terms of a symmetric Clifford system (P0, . . . , Pm) on
R2l, but it only depends on the (m + 1)-dimensional vector space of symmetric matrices
P = span{P0, . . . , Pm}. The codimension one leaves of FP have g = 4 distinct principal
curvatures with multiplicities (m+, m−) = (m, l−m−1). The Clifford system (P0, . . . , Pm)
determines a Clifford module on R2l. Let k be the number of its irreducible submodules.
If m ≡ 0 (mod 4), there are exactly two equivalence classes of irreducible Clifford modules;
in this case, let k+ and k− be the number of each one of these two classes appearing in the
decomposition into irreducible submodules.

Theorem 1.2. Let FP be an FKM-foliation on S4n+3 with dimP = m+1 and 2 ≤ m+ ≤
m−. Then, up to congruence in HP n, there are exactly NS(FP) ≥ 1 polar foliations on
HP n that pull back under the Hopf map to a foliation congruent to FP , where:

• NS(FP) = 2 if m ≡ 0 (mod 8) with both k+, k− ≡ 0 (mod 4), or if m ≡ 1, 7 (mod8)
with k ≡ 0 (mod 4), or if m ≡ 2, 6 (mod8) with k even, or if m ≡ 3, 4, 5 (mod8);

• NS(FP) = 1, otherwise.

Conversely, let G be a polar foliation of codimension one on HP n. Then G is the pro-
jection of a polar foliation F on S4n+3 under the Hopf map associated with q, where q is a
quaternionic structure on R4n+4 preserving F , and:

• F = FP is an FKM-foliation satisfying 2 ≤ m+ ≤ m−; or
• F = FG/K for some symmetric space G/K of rank 2 in Table 1; or
• F is an inhomogeneous polar foliation of codimension one on S31 whose hypersur-
faces have g = 4 distinct principal curvatures with multiplicities (7, 8).

Moreover, if F is not homogeneous, then G is not homogeneous either.
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Theorems 1.1 and 1.2, together with the explicit determination (obtained in Section 4)
of the quaternionic structures preserving each polar foliation on a sphere, give the classi-
fication of irreducible polar foliations of codimension q on quaternionic projective spaces
HP n, with the only exception of (n, q) = (7, 1).

Similarly as in the case of complex projective spaces, our classification implies the
existence of many inhomogeneous irreducible polar foliations on quaternionic projective
spaces, even of codimension higher than one. Indeed, we prove some neat characteriza-
tions of those dimensions n for which HP n admits inhomogeneous examples. Intriguingly
enough, these characterizations are completely analogous to the ones obtained in [12] for
the complex case, in spite of the fact that the classification in the present paper is quite
different from that in [12].

Theorem 1.3. Every polar foliation of codimension one on HP n is homogeneous if and
only if n is even or n = 1.

Theorem 1.4. Every irreducible polar foliation on HP n is homogeneous if and only if
n+ 1 is a prime number.

We now give a quick overview of our arguments. First, the possibility of classifying polar
foliations on quaternionic projective spaces arises from the fact that a singular Riemannian
foliation on HP n is polar if and only if its pull-back under the Hopf map is polar in S4n+3.
Thus, the good knowledge we nowadays have of polar foliations in spheres suggests that
it is enough to check if each polar foliation on a sphere S4n+3 can be the pull-back of
a foliation on HP n. However, there can be noncongruent polar foliations on HP n that
pull back to congruent foliations on S4n+3. Equivalently, given a fixed foliation F on
S4n+3 ⊂ R4n+4, there can be different quaternionic structures q on R4n+4 preserving F
such that the projected foliations via the corresponding Hopf maps πq are not congruent
in HP n.

Determining the set S/ ∼ of all quaternionic structures preserving F , up to congruence
of the projected foliations, turns out to be a completely nontrivial job. Our task is then to
develop a method to solve this problem. Given any singular Riemannian foliation F with
closed leaves on S4n+3, let K be the maximal connected subgroup of SO4n+4 that leaves
invariant each leaf of F . We show that quaternionic structures preserving F are induced
by those su2-subalgebras of k containing an element that is a complex structure on R4n+4.
Combining this with the ideas in [12], we have a systematic approach to determine the
moduli space S/ ∼. Then we apply this method to almost all known polar foliations on
spheres, which is enough to obtain the classification stated in Theorems 1.1 and 1.2.

Finally, we determine which projected polar foliations on HP n are homogeneous. At this
point, we revisit Podestà and Thorbergsson’s classification of polar actions on HP n [30] by
making use of our results. The criterion of homogeneity thus obtained as Theorem 6.2 is
fundamental to the proofs of Theorems 1.3 and 1.4.

This paper is organized as follows. In Section 2 we show that, roughly speaking, polar
foliations have a good behaviour with respect to the Hopf map. Section 3 is devoted to the
development of a method to investigate singular Riemannian foliations with closed leaves
on quaternionic projective spaces. We apply this method to polar foliations in Section 4,
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by determining the quaternionic structures that preserve homogeneous polar foliations on
spheres (in §4.1), and FKM-foliations with m+ ≤ m− (in §4.2). Based on this study,
in Section 5 we prove Theorems 1.1 and 1.2. Finally, in Section 6 we investigate the
homogeneity of polar foliations on HP n and prove Theorems 1.3 and 1.4.

The authors would like to thank Marcos Alexandrino, Andreas Kollross, and Alexander
Lytchak for very useful comments.

2. Behaviour with respect to the Hopf map

We briefly recall the construction of quaternionic projective space and its Hopf fibration;
see [4, Chapter 3] for details. In what follows, Lie algebras are denoted by gothic letters,
and the unit sphere of a Euclidean space V is denoted by S(V ).

Let V be the Euclidean space R4n+4. A 3-dimensional subspace q of so(V ) = so4n+4 is
called a (linear) quaternionic structure on V if there are elements J1, J2, J3 ∈ q such that
J2
i = − Id and JiJi+1 = Ji+2 (indices modulo 3), for i = 1, 2, 3. Note that q is then a

Lie subalgebra of so(V ) isomorphic to sp1
∼= su2. We will denote by Q the connected Lie

subgroup of SO(V ) with Lie algebra q. Clearly, Q = {a0 Id+a1J1 + a2J2 + a3J3 : ai ∈
R,

∑3
i=0 a

2
i = 1}.

Any quaternionic structure q on V induces a principal fiber bundle with total space
the unit sphere S(V ) = S4n+3, base space the quaternionic projective space HP n, and
structural group Q ∼= Sp1

∼= SU2. The corresponding fibration π : S(V ) → HP n is called
the Hopf map, and its fibers are the totally geodesic 3-dimensional spheres given by the
orbits of the isometric action of Q on S(V ). The Fubini-Study metric on HP n of constant
quaternionic sectional curvature 4 is the one that makes π into a Riemannian submersion.

The following result is the starting point of our arguments.

Proposition 2.1. Let G be a singular Riemannian foliation on HP n. Then G is a polar
foliation on HP n if and only if its pull-back foliation π−1G is a polar foliation on S(V ). In
this case, any section of G is a totally geodesic RP k in HP n.

Proof. The necessity has been proved in [25, Proposition 9.1]. Let us assume that π−1G is a
polar foliation on S(V ). Any section Σ for π−1G is horizontal. Since the geodesics in Σ are
horizontal, they are mapped to geodesics of HP n, and hence π maps Σ isometrically onto
a section for G. In particular, G is polar. The last assertion follows again from [25]. �

Remark 2.2. It is known that polar and isoparametric foliations constitute the same
subclass of singular Riemannian foliations on spheres, see [2, Theorem 2.7 and Claim 2 on
p. 1173]. Hence, Proposition 2.1 and [22, Theorem 3.4] imply that this also happens for
quaternionic projective spaces. (A similar remark applies to complex projective spaces,
cf. [12, Proposition 2.1].)

Remark 2.3. In [12] it was proved that isoparametric submanifolds have a good behaviour
with respect to the Hopf map S2n+1 → CP n, and that any isoparametric submanifold of
CP n is an open part of a complete leaf of an isoparametric foliation that fills the whole
CP n. Whether this is also true in the quaternionic setting remains an open question.
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According to [22, Theorem 3.4] (and similar calculations as in [12, Proposition 2.1]), the
difficulty consists in showing that sections to an isoparametric submanifold in HP n are
totally real.

3. Quaternionic structures preserving a foliation

In this section we develop a method to study singular Riemannian foliations with closed
leaves on quaternionic projective spaces.

Let V = R4n+4 and let F be a closed foliation on S(V ), that is, a singular Riemannian
foliation on S(V ) such that all its leaves are closed. Let ρ : K → SO(V ) be an effective
representation of a Lie group K such that ρ(K) is the maximal connected subgroup of
SO(V ) leaving each leaf of F invariant. Since F is closed, K is compact.

We say that a quaternionic structure q on V preserves the foliation F if for all p ∈ S(V )
the orbit Q · p is contained in the leaf of F through p. Equivalently, q preserves F if F
is the pull-back of a foliation on HP n under the Hopf map associated with q. Similarly
(cf. [12, §4.1]), a complex structure J on V (i.e. J ∈ so(V ) ∩ SO(V )) preserves F if the
Hopf circle {cos(t)p+ sin(t)Jp : t ∈ R} through any p ∈ S(V ) is contained in the leaf of F
through p.

Proposition 3.1. Let q be a quaternionic structure on V . The following are equivalent:

(a) q preserves F .
(b) There exists a subgroup S of K such that ρ(S) = Q.
(c) There exists a subalgebra s of k such that ρ∗(s) = q.

In this situation, S ∼= SU2 and s ∼= su2.

Proof. If q preserves F , then Q ⊂ ρ(K). By the effectiveness of ρ, there is a subgroup
S of K such that ρ(S) = Q. Thus, (a) implies (b). Since the Lie algebra of Q is q, (b)
implies (c). Finally, assume that s is a subalgebra of k such that ρ∗(s) = q. Let S be the
connected subgroup of K with Lie algebra s. Then, for all p ∈ S(V ) and X ∈ s we have
ρ∗(X)p ∈ TpLp, where Lp is the leaf of F through p. Since Tp(ρ(S) ·p) = {ρ∗(X)p : X ∈ s},
we have that Tp(ρ(S) · p) ⊂ TpLp, for all p ∈ S(V ). Thus, Q · p = ρ(S) · p ⊂ Lp for all
p ∈ S(V ), which means that q preserves F . �

A straightforward but important observation is the following.

Proposition 3.2. If q = ρ∗(s) is a quaternionic structure preserving F , then for each
nonzero X ∈ s there is λ > 0 such that ρ∗(λX) is a complex structure on V preserving F .
In particular, {ρ∗(X) : X ∈ s, ρ∗(X)2 = − Id} is a 2-sphere of complex structures on V
preserving F .

The following characterization of the subspaces of k that induce a quaternionic structure
will be fundamental to our study.

Proposition 3.3. Let s be a subalgebra of k isomorphic to su2. The following conditions
are equivalent:

(a) ρ∗(s) is a quaternionic structure on V .
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(b) ρ∗|s : s → so(V ) is the direct sum of standard (i.e. nontrivial 4-dimensional) real rep-
resentations of su2.

(c) There is an H ∈ s such that ρ∗(H) is a complex structure on V .

Proof. The implication (a)⇒(b) is direct from the definition of quaternionic structure
whereas (a)⇒(c) follows from Proposition 3.2. Let us assume that there is an H ∈ s such
that ρ∗(H) is a complex structure on V ; in particular H is nonzero. Consider RH as a max-
imal Abelian subalgebra of s. If θ : RH → R is defined by θ(aH) = a, for a ∈ R, then (c)
means that ±θ are the only weights of the representation ρ∗|s, and both have the same mul-
tiplicities; henceforth, for the sake of convenience, we adopt the convention that the weights
of representations of compact Lie algebras take real values. By the classification of the or-
thogonal representations of su2, we deduce that ρ∗|s is an orthogonal sum of standard rep-
resentations of su2. This shows that (c) implies (b). Finally, if (b) holds, then ρ∗|s =

⊕

i ρi,
where ρi : s → O(Vi) ∼= O4 is a standard representation of su2 and V =

⊕

i Vi is a direct
sum. Taking {X1, X2, X3} as a basis of s such that {ρ1(X1), ρ1(X2), ρ1(X3)} is a canonical
basis for a quaternionic structure on V1, we also have that {ρi(X1), ρi(X2), ρi(X3)} is a
canonical basis for a quaternionic structure on Vi, for any i = 1, . . . , 1

4
dimV , since for each

i there exists an orthogonal transformation Ai : V1 → Vi such that Aiρ1(X)A−1
i = ρi(X),

for all X ∈ s. Thus, ρ∗(s) = span{
⊕

i ρi(X1),
⊕

i ρi(X2),
⊕

i ρi(X3)} is a quaternionic
structure on V , proving (a). �

Let S be the collection of subalgebras s of k such that ρ∗(s) is a quaternionic structure on
V . Clearly, each element of S is isomorphic to su2 and, by Proposition 3.1, {ρ∗(s) : s ∈ S}
is the set of all quaternionic structures on V that preserve F .

We now analyse the congruence problem, namely, when two quaternionic structures
preserving F give rise to congruent projected foliations. The basic observation is the
following.

Proposition 3.4. Let q1, q2 be quaternionic structures on V , HP n
1 , HP n

2 the corresponding
quaternionic projective spaces, and π1, π2 the associated Hopf maps.

Two foliations G1 ⊂ HP n
1 and G2 ⊂ HP n

2 are congruent if and only if there exists an
orthogonal transformation A ∈ O(V ) satisfying Aq1A

−1 = q2 and mapping leaves of π−1
1 G1

to leaves of π−1
2 G2.

Proof. G1 and G2 are congruent if and only if their pull-backs are congruent in S(V ) by an
element A ∈ O(V ), and A descends to an isometry between HP n

1 and HP n
2 . But the latter

is equivalent to Aq1A
−1 = q2. �

We introduce an equivalence relation ∼ in the set S that parametrizes the quaternionic
structures on V preserving F . Two subalgebras s1, s2 ∈ S are ∼-equivalent if π1(F)
and π2(F) are congruent foliations on the corresponding quaternionic projective spaces;
here πi : S(V ) → HP n

i is the Hopf map associated with the quaternionic structure ρ∗(si),
for i = 1, 2. Thus, the classification (up to congruence in HP n) of all foliations on HP n

that pull back under the Hopf map to a foliation congruent to F is equivalent to the
determination of the moduli space S/ ∼.
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Let Aut(F) be the group of automorphisms of F , that is, the group of all orthogonal
transformations of V that map leaves of F to leaves of F . Then, by Proposition 3.4,
given s1, s2 ∈ S, we have that s1 ∼ s2 if and only if there exists A ∈ Aut(F) such
that Aρ∗(s1)A

−1 = ρ∗(s2). This suggests the introduction, for each A ∈ Aut(F), of an
automorphism ϕA ∈ Aut(k) of the Lie algebra k by means of the relation Aρ∗(X)A−1 =
ρ∗(ϕA(X)) for X ∈ k. Thus, we can consider the group

Aut(k,F) = {ΦA ∈ End(k⊕ V ) : ΦA|k = ϕA, ΦA|V = A, A ∈ Aut(F)}.

Hence, we have

Proposition 3.5. If s ∈ S, then Φ(s) ∈ S for all Φ ∈ Aut(k,F). Moreover, if s1, s2 ∈ S,
then s1 ∼ s2 if and only if there exists Φ ∈ Aut(k,F) such that Φ(s1) = s2.

Next we fix a maximal Abelian subalgebra t of k. Given any set of simple roots for
the pair (k, t), let C̄ be the closed Weyl chamber in t. We consider the sets St = {s ∈
S : s ∩ t 6= 0} and SC̄ = {s ∈ S : s ∩ C̄ 6= 0}. Since ρ(K) ⊂ Aut(F), it follows that
(Ad⊕ρ)(K) = {Φρ(k) : k ∈ K} is a subgroup of Aut(k,F). Then, since for each s ∈ S
there exists k ∈ K such that Ad(k)s ∈ SC̄ ⊂ St, and Ad(k)s ∼ s, we have

Proposition 3.6. S/∼∼= St/∼∼= SC̄/∼.

Similarly as in the definition of S, we consider the set J of elements X ∈ k such
that ρ∗(X) is a complex structure preserving the foliation F . On J we also consider an
equivalence relation ∼: given X1, X2 ∈ J , we say that X1 ∼ X2 if there is Φ ∈ Aut(k,F)
such that Φ(X1) ∈ {±X2}. Both J and this relation ∼ have been studied in [12]. Similarly
as for S, we have that J /∼∼= J ∩ t/∼∼= J ∩ C̄/∼.

Let s ∈ SC̄ . By Proposition 3.2, there is anH ∈ J ∩C̄∩s. If there areH1, H2 ∈ J ∩C̄∩s,
H1 6= H2, then they must be collinear because the rank of s is one. Since both are in J ,
H1 ∈ {±H2}, and thus H1 ∼ H2. This yields a well-defined map SC̄ → J ∩ C̄/∼. This
map descends to a map SC̄/∼→ J ∩ C̄/∼. Indeed, let s1, s2 ∈ SC̄ , Φ(s1) = s2 for some
Φ ∈ Aut(k,F), and Hi ∈ J ∩ C̄ ∩ si, i = 1, 2. Then Φ(H1) ∈ J ∩ s2 and there exists an
element k in the Lie subgroup of K with Lie algebra s2 such that Ad(k)Φ(H1) ∈ J ∩C̄∩s2.
Since H2 and Ad(k)Φ(H1) lie in J ∩ C̄ ∩ s2, we deduce that H2 ∼ Ad(k)Φ(H1), and
thus H1 ∼ H2.

This shows the existence of a naturally defined map ι : SC̄/ ∼→ J ∩ C̄/ ∼, which maps
a class [s] with s ∈ SC̄ to the class ι([s]) = [H ], where H is the unique element in J ∩ C̄ ∩s

up to sign. Moreover:

Proposition 3.7. The map ι : SC̄/∼→ J ∩ C̄/∼ defined above is injective.

Proof. Let s1, s2 ∈ SC̄ such that ι([s1]) = ι([s2]). By conjugating one of s1, s2 by an
element of Aut(k,F) if necessary, we can assume that dim(s1 ∩ s2) ≥ 1 and that there is
a nonzero H ∈ C̄ ∩ s1 ∩ s2. By a result of Dynkin about homomorphisms from su2 to a
compact Lie algebra k (see [35, Theorem 7]), we deduce that there is a k ∈ K such that
Ad(k)s1 = s2. Hence s1 ∼ s2. �
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Remark 3.8. Another related result by Dynkin (see [35, Theorem 8]) guarantees that
the moduli space S/∼ is finite, since the set of K-conjugacy classes of Lie subalgebras of
k isomorphic to su2 is finite. Geometrically, this means that, given a closed foliation F
on S4n+3, there is at most a finite number of noncongruent foliations on HP n that pull
back to a foliation congruent to F under the Hopf map. Although it was not stated in
[12], this result is also true for the complex projective space CP n. Indeed, as shown in
[12, Proposition 4.2], given H ∈ t, ρ∗(H) is a complex structure on V preserving F if and
only if λ(H) ∈ {±1} for every weight λ of the complexified representation ρC∗ : k → u(V C).
Since ρ is effective, the weights of ρC∗ span t∗, and thus the number of H ∈ t satisfying the
condition is finite. The claim follows since any complex structure on V preserving F is
equivalent to one of the form ρ∗(H) for some H ∈ t.

The following result reduces the study of quaternionic structures preserving a decom-
posable foliation to the indecomposable case. Recall that given Euclidean spaces Vi,
i = 1, . . . , r, and a foliation Fi on the unit sphere of Vi for each i, the spherical join
F1 ∗ · · · ∗ Fr can be described as the restriction of the foliation F̂1 × · · · × F̂r to the unit
sphere of

⊕r
i=1 Vi, where F̂i is the foliation on Vi whose leaves are of the form rL, for r ≥ 0

and L ∈ Fi. A foliation F on S(V ) is called indecomposable if it cannot be written as a
spherical join, and it is called decomposable otherwise. Every foliation F can be written
in an essentially unique way as a spherical join F0 ∗ F1 ∗ · · · ∗ Fr, where F0 consists only
of zero-dimensional leaves, and F1, . . . ,Fr are indecomposable without zero-dimensional
leaves, see [17] and [31, Proposition 2.1].

Proposition 3.9. Let F = F0∗F1∗· · ·∗Fr be as above, where each Fi is a closed foliation
on the unit sphere of a Euclidean space Vi. Let K, ρ and S be as above in this section.
Then:

(a) K =
∏r

i=0Ki for certain subgroups Ki of K, where ρ(Ki) is the maximal connected
subgroup of SO(V ) that acts trivially on the orthogonal complement of Vi in V and
preserves each one of the leaves of Fi. In particular, K0 is the trivial group.

(b) Aut(F) is the subgroup of O(V ) generated by
∏r

i=0Aut(Fi) and all permutations on
sets of mutually congruent Fi.

(c) Let Si be the collection of su2-subalgebras si of ki such that ρ∗(si) is a quaternionic
structure on Vi, for i = 1, . . . , r. If s is a subalgebra of k isomorphic to su2, then
s ∈ S if and only if V0 = 0 and si ∈ Si for every i, where si is the image of s under
the projection of k onto ki. It follows that every s ∈ S can be recovered as a diagonal
su2-subalgebra in

⊕r
i=1 si for si ∈ Si.

Proof. Claim (a) is easy, cf. [12, Proposition 4.1(iii)], whereas claim (b) is a consequence

of applying [17, Theorem 1.1] to the space of leaves V/F̂ of the product foliation F̂ =

F̂0 × · · · × F̂r.
Next, note that S 6= ∅ only if V0 = 0. So let s ∼= su2 be a subalgebra of k. Let πi : k → ki be

the projection map, for i = 1, . . . , r. For a fixed i ∈ {1, . . . , r}, take any X ∈ s and v ∈ Vi,
and write X =

∑r
j=1Xj , where Xj = πj(X) ∈ kj. Then ρ∗(πi(X))v = ρ∗(Xi)v = ρ∗(X)v,

where the last equality follows from the fact that ρ(Kj) acts trivially on Vi for every j 6= i.
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In any case πi : s → si is an isomorphism and the representations ρ∗|s : s → so(Vi) and
ρ∗|si : si → so(Vi) are equivalent, for i = 1, . . . , r. The equivalence in claim (c) now follows
from Proposition 3.3 (b).

Finally, note that any two diagonal su2-subalgebras in
⊕r

i=1 si, with si ∈ Si, are ∼-equi-
valent elements of S by virtue of the fact that each si admits only inner automorphisms,
and ρ(Si) ⊂ ρ(Ki) ⊂ Aut(Fi) ⊂ Aut(F). �

Proposition 3.7 suggests a method to determine the moduli space S/∼∼= SC̄/∼ for a
fixed closed foliation F on S(V ) once we know the moduli space J /∼∼= J ∩ C̄/∼. For
each class in J ∩ C̄/∼, take a representative H ∈ J ∩ C̄ and determine if there exists a Lie
subalgebra s of k isomorphic to su2 and containing H . If so, then s ∈ SC̄ by Proposition 3.3,
and any other element in S containing H is ∼-equivalent to s; namely, ι−1[H ] = {[s]}. If
not, then ι−1[H ] = ∅ and then one should move on to a different class in J ∩ C̄/∼. This
way, we determine S/∼ and, equivalently, the possible foliations on HP n that pull back
under the Hopf map to a foliation congruent to F .

In [12], the first author described the set J /∼ for all irreducible polar foliations F on
spheres, except for those inhomogeneous codimension one foliations on S31 whose hyper-
surfaces have 4 principal curvatures with multiplicities (7, 8). Therefore, we can carry out
the approach described above to determine the set S/∼ for all irreducible polar foliations
F on spheres with the exception just mentioned. This is the aim of the next section.

4. Classification of quaternionic structures preserving polar foliations

In this section we obtain a case-by-case classification of the quaternionic structures that
preserve polar foliations on spheres, up to congruence of the projected foliations of the
quaternionic projective space. We will do this for each one of the irreducible homogeneous
polar foliations on spheres in §4.1, and for each FKM-foliation satisfying m+ ≤ m− in §4.2.

First of all, note that most of the objects introduced in Section 3 (such as K, ρ, S
and J ) depend on the fixed foliation F , although this dependence has been deleted from
the notation to simplify the exposition. It is also important to observe that, as explained
in [12, §3.1], if we take (G,K) to be an effective symmetric pair of compact type and
rank higher than one, with K connected, then K turns out to be the maximal connected
subgroup of SO(V ) mapping each leaf of FG/K to itself, where V = T[K]G/K. Thus, the
notation for the isotropy group is coherent with the definition of K in Section 3.

In the sequel we mention some arguments and ideas that will be used throughout our
classification. The first observation is that the existence of a quaternionic structure pre-
serving a foliation implies the existence of a complex structure preserving such foliation,
as stated in Proposition 3.2. In [12] it was shown that the only homogeneous polar foli-
ations FG/K that admit a complex structure preserving it are the ones induced by inner
symmetric spaces G/K, that is, those for which rankG = rankK. Thus, S = ∅ for polar
foliations induced by non-inner symmetric spaces of rank higher than one.

Another restriction is of a dimensional nature: a foliation that admits a quaternionic
structure must live in a sphere of dimension 4n+ 3, for some n ≥ 1; in particular, if it is a
homogeneous foliation FG/K , then dimG/K ≡ 0 (mod 4).
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If G/K is an irreducible Hermitian symmetric space, then the center Z(k) of k is one-
dimensional. According to [12], there is exactly one element H in J ∩ Z(k) up to ∼-
equivalence, where here J parametrizes the complex structures preserving the foliation
FG/K . However, there is no Lie subalgebra of k isomorphic to su2 containing H . Thus,
ι−1[H ] = ∅. On the other hand, if G/K is an irreducible quaternionic-Kähler symmet-
ric space, then k has a distinguished ideal isomorphic to su2 satisfying condition (b) in
Proposition 3.3 (cf. comments before Theorem 6.2); thus, this su2-factor belongs to S.

We also recall from [12] that an element H in a maximal Abelian subalgebra t of k
belongs to J if and only if λ(H) ∈ {±1} for every weight λ of the complexification ρC∗ of
ρ∗. Note that, if ρ∗ is already a complex representation, H ∈ t belongs to J if and only if
λ(H) ∈ {±1} for every weight λ of ρ∗.

Finally, the other fundamental tool we will often use refers to Dynkin’s classification of
conjugacy classes of su2-subalgebras of a compact Lie algebra. In our situation it will be
enough to consider the case of the compact Lie algebra uk. It turns out that, given an
element X in the maximal Abelian subalgebra of diagonal matrices of uk, if X belongs to
a subalgebra of uk isomorphic to su2 then the multiset of elements in the diagonal of X is
invariant under multiplication by −1. This follows from the representation theory of su2.
We refer to [10, Chapter 3] for further information.

In what follows, we will use the following notation. Given a classical Lie algebra h ∈
{sok, uk, spk} of rank r, we will denote by {e1, . . . , er} a canonical basis of the maximal
Abelian subalgebra of h. We can and will assume that the maximal Abelian subalgebra
consists of diagonal matrices for uk and spk, and by 2× 2-block diagonal matrices for sok.
Thus, if h = uk, we take ej , for each j = 1, . . . , r, to be the matrix with all entries equal
to zero with the exception of the entry (j, j) which equals the imaginary unit i; if h = sok,
we take ej to be the matrix with all entries equal to zero with the exception of the entries
(2j, 2j − 1) and (2j − 1, 2j), which are equal to 1 and −1, respectively; and if h = spk,
we view this Lie algebra as a subalgebra of su2k and take ej to be the matrix with all
entries equal to zero except the entries (j, j) and (k + j, k + j), which are equal to i and
−i, respectively. Moreover, we denote the dual basis of {e1, . . . , er} by {θ1, . . . , θr}. If we
have a sum h = h1 ⊕ h2 of two classical algebras, we denote by {e1, . . . , er1, e

′
1, . . . , e

′
r2
} the

corresponding basis of the maximal Abelian subalgebra of h, and by θi, θ
′
j , i = 1, 2, . . . , r1,

j = 1, 2, . . . , r2, the corresponding dual elements.
For each polar foliation F , we will write NS = NS(F) to denote the cardinality of S/∼,

and NJ = NJ (F) for the cardinality of J /∼ whose values were determined in [12].

4.1. Projecting homogeneous polar foliations. In this subsection we determine the
set S/ ∼ for each irreducible homogeneous polar foliation FG/K , where G/K is an irre-
ducible symmetric space of compact type and rank higher than one. As explained above,
we can restrict ourselves to the study of inner symmetric spaces G/K, whose isotropy
representations can be found in [36, Table 8.11.2]. We will run through the cases making
use of the set J /∼ determined in [12, §5.3]. We label each case by Cartan’s notation and
by the corresponding orthogonal symmetric pair (g, k).
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Type A III: (sup+q, s(up ⊕ uq)), p, q ≥ 2.
The isotropy representation is the tensor product Cp⊗C(C

q)∗ of standard representations.
Its weights are θi − θ′j , with 1 ≤ i ≤ p, 1 ≤ j ≤ q. The only elements in J up to
∼-equivalence are:

• − q
p+q

∑p
i=1 ei +

p
p+q

∑q
i=1 e

′
i ∈ Z(k),

• Xp1 =
∑p

i=1 aiei +
p2−p1
p+q

∑q
i=1 e

′
i, where ai = 1 + p2−p1

p+q
for i = 1, . . . , p1, ai =

−1 + p2−p1
p+q

for i = p1 + 1, . . . , p, and p = p1 + p2 with p1 ∈ {1, . . . , [p
2
]},

• Yq1 =
q2−q1
p+q

∑p
i=1 ei+

∑q
i=1 bie

′
i, where bi = 1+ q2−q1

p+q
for i = 1, . . . , q1, bi = −1+ q2−q1

p+q

for i = q1 + 1, . . . , q, and q = q1 + q2 with q1 ∈ {1, . . . , [ q
2
]}.

Moreover, if p = q, then Xp1 ∼ Yp1. The element in the center does not belong to any
subalgebra of k isomorphic to su2. The element Xp1 belongs to a subalgebra of k isomorphic
to su2 if and only if p1 = p2, since it is the only case for which the coefficients of the ei
and e′i are symmetric with respect to zero. Similarly for Yq1. Thus, NS = 2 if p and q
are different even numbers, NS = 1 if p = q is even or if only one of p and q is even, and
NS = 0 if both p and q are odd.

Type B I: (so2p+2q+1, so2p ⊕ so2q+1)), p + q ≥ 3. The isotropy representation is the
tensor product R2p ⊗ R2q+1 of standard representations. We know that NJ = 1. For
dimension reasons, NS = 0 if p is odd. If p = 2p′ is even, then we can embed a subalgebra

s isomorphic to su2 into
⊕p′

i=1 so4 ⊂ so2p ⊂ k in a diagonal way. This subalgebra s contains
the element

∑p
i=1 εiei ∈ J , where εi = (−1)i. Therefore, NS = 1 if p is even, and NS = 0

if p is odd.

Type C I: (spp, up), p ≥ 2.
Since this is a Hermitian symmetric space and NJ = 1, we have that NS = 0.

Type C II: (spp+q, spp ⊕ spq), p, q ≥ 2.
The isotropy representation is the tensor product Hp⊗HHq of standard representations.

Any diagonally embedded sp ∼= sp1 ⊂
⊕p

i=1 sp1 ⊂ spp belongs to S, since it satisfies the
conditions in Proposition 3.3. Similarly, for the other factor spq we obtain an sq ∈ S. If
p 6= q, then there is no automorphism of k = spp ⊕ spq mapping sp to sq. If p 6= q, then
NJ = 2 and so NS = 2. If p = q, we know that NJ = 1, and hence NS = 1.

Type D I: (so2p+2q, so2p ⊕ so2q), p+ q ≥ 4, q ≥ 2.
The isotropy representation is the tensor product R2p⊗R2q of standard representations.

We know that NJ = 2 if p 6= q and NJ = 1 if p = q. The only elements in J up to
∼-equivalence are X =

∑p
i=1 ei and Y =

∑q
i=1 e

′
i, where X ∼ Y if p = q. If X belongs to

a subalgebra s of k isomorphic to su2, then s is contained in the factor so2p to which X
belongs (since [X, s] ⊂ so2p). The inclusion s ⊂ so2p gives rise to a representation of su2
on R2p, with weights ±θ, where θ(X) = 1. Thus, this representation is the direct sum of
standard representations of su2. In particular, p must be even. Analogously, we deduce
that Y belongs to a subalgebra of k isomorphic to su2 if and only if q is even. We conclude
that NS = 2 if p 6= q are even numbers, NS = 1 if p = q is even or if exactly one of p and
q is even, and NS = 0 if p and q are odd.
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Type D III: (so2p, up), p ≥ 4.
The isotropy representation is the alternating square Λ2Cp of the standard representation

of up. Its weights are θi + θj , for 1 ≤ i < j ≤ p. We know that NJ = 2. Indeed, the only
elements in J up to ∼-equivalence are 1

2
(3e1 −

∑p
i=2 ei) and

1
2

∑p
i=1 ei. The first element

cannot belong to any subalgebra s of sup isomorphic to su2, since the coefficients of the
ei are not symmetric with respect to 0. Finally, 1

2

∑p
i=1 ei ∈ Z(k) does not belong to any

subalgebra of k isomorphic to su2. Therefore NS = 0.

Type E II: (e6, su6 ⊕ su2).
The isotropy representation is Λ3C6 ⊗H H. Its weights are θi + θj + θk + θ′l, where

1 ≤ i < j < k ≤ 6, 1 ≤ l ≤ 2. Then, the only elements in J up to ∼-equivalence are
1
3
(5e1 −

∑6
i=2 ei) ∈ su6 and e′1 − e′2 ∈ su2. The second one corresponds to the su2-factor in

k, which therefore belongs to S. The first one, however, cannot belong to any subalgebra
s of su6 isomorphic to su2. Hence, NS = 1.

Type E III: (e6, so10 ⊕ u1).
The isotropy representation is the tensor product C16⊗CC of the half-spin representation

of so10 and the standard representation of u1. This is a Hermitian symmetric space and
NJ = 2. Any canonically immersed subalgebra s ∼= so3 in so10 is in the conditions of
Proposition 3.3, since the restriction ρ∗|s is a direct sum of spin representations of so3.
This s yields the only element in S/∼, so NS = 1.

Type E V: (e7, su8).
The isotropy representation is [Λ4C8]R. Its weights are θi + θj + θk + θl, where 1 ≤ i <

j < k < l ≤ 8. Then, the only element in J up to ∼-equivalence is 1
4
(7e1 −

∑8
i=2 ei). But

this cannot belong to any subalgebra s of k ∼= su8 isomorphic to su2. Hence, NS = 0.

Type E VI: (e7, so12 ⊕ su2).
The isotropy representation is the tensor product H16⊗HH of a half-spin representation

of so12 and the standard representation of su2. We have that NJ = 2. The su2-factor in
k gives one element of S. Any canonically embedded subalgebra s ∼= so3 in so12 is in the
conditions of Proposition 3.3, since the restriction ρ∗|s is a direct sum of spin representations
of so3. Hence such an s ⊂ so12 yields the other element in S/∼. Thus NS = 2.

Type E VII: (e7, e6 ⊕ so2).
Since this is a Hermitian symmetric space and NJ = 1, we have that NS = 0.

Type E VIII: (e8, so16).
The isotropy representation is the half-spin representation R128 of so16. Hence, any

canonically embedded subalgebra s ∼= so3 in so16 is in the conditions of Proposition 3.3.
Since NJ = 1, we deduce that NS = 1.

Type E IX: (e8, e7 ⊕ su2).
This is a quaternionic-Kähler symmetric space, and NJ = 1. Hence S only contains the

su2-factor in k, and thus NS = 1.

Type F I: (f4, sp3 ⊕ su2).
Same as in the previous case. Thus, NS = 1.
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Type G: (g2, su2 ⊕ su2).
Analogous to the previous two cases, NS = 1. Note that the restriction of the isotropy

representation to the distinguished su2-factor is 2C
2, but to the other one is the symmetric

cube Sym3(C2) of the standard representation C2, so we get only one quaternionic structure.

4.2. Projecting FKM-foliations. Next we will determine the set S/ ∼ for each FKM-
foliation FP satisfying m+ ≤ m−. We start by briefly recalling some facts about FKM-
foliations, and refer the reader to [16] or to [12] for details.

A symmetric Clifford system on R2l is an (m+1)-tuple (P0, . . . , Pm) of symmetric matri-
ces of order 2l satisfying the Clifford relations PiPj +PjPi = 2δij Id, for all i, j = 0, . . . , m,
where δij is the Kronecker delta. Each symmetric Clifford system determines an FKM-
foliation FP , which only depends on the (m + 1)-dimensional vector space of symmetric
matrices P = span{P0, . . . , Pm}. The regular leaves of FP are hypersurfaces with g = 4
constant principal curvatures with multiplicities (m+, m−) = (m, l −m− 1). If Cl∗m+1 de-
notes the Clifford algebra of Rm+1 with positive definite quadratic form, it turns out that
there is exactly one equivalence class d of irreducible Cl∗m+1-modules if m 6≡ 0 (mod4), and
two equivalence classes d+, d− if m ≡ 0 (mod 4). Thus, the Clifford system (P0, . . . , Pm)
determines a representation of Cl∗m+1 on R2l which is equivalent to ⊕k

i=1d for some k if

m 6≡ 0 (mod 4), or to (⊕k+
i=1d+)⊕ (⊕k−

i=1d−) for some k+, k− if m ≡ 0 (mod 4). The integer
k and the set {k+, k−} only depend on P.

In [12, §3.2] the automorphism group and the associated representation ρ∗ was calculated
for all FKM-foliations satisfying m+ ≤ m−. We will make use of this description of ρ∗,
which varies depending on m (mod 8). Thus, in order to determine the set S/ ∼ for such
foliations, we will distinguish several cases depending on m (mod 8). The moduli space of
complex structures J /∼ has been determined in [12, §6.1]. We will denote by δ(m) half
of the real dimension of any irreducible representation of the Clifford algebra Cl∗m+1; in
particular, δ(1) = 1, δ(2) = 2 and δ(m) ≡ 0 (mod 4) for any m ≥ 3. Moreover, l = kδ(m)
if m 6≡ 0 (mod 4), and l = (k+ + k−)δ(m) if m ≡ 0 (mod 4). We also let p be such that
m+ 1 = 2p if m+ 1 is even, and m+ 1 = 2p+ 1 if m+ 1 is odd.

Type m ≡ 0 (mod 8).
ρ∗ is the direct sum (R2δ(m)⊗RR

k+)⊕ (R2δ(m) ⊗RR
k−) of the tensor products of the spin

representation of som+1 and the standard representations of sok±. The weights of ρC∗ are
1
2
(±θ1 ± · · · ± θp)± θ′+j , j = 1, . . . , q+, and

1
2
(±θ1 ± · · · ± θp)± θ′−j , j = 1, . . . , q−, where q±

are given by k± = 2q± if k± is even, or by k± = 2q± + 1 if k± is odd, and additionally the
weight 1

2
(±θ1 ± · · · ± θp) if k+ or k− is odd. The only elements in J up to ∼-equivalence

are 2e1 ∈ som+1 and, if both k+ and k− are even, Y =
∑q+

i=1 e
′+
i +

∑q−

i=1 e
′−
i ∈ sok+ ⊕ sok−.

The first element always belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2. If Y
belongs to a subalgebra of sok+ ⊕ sok− isomorphic to su2, this determines a representation
Rk+ ⊕ Rk− of su2 with weights ±θ, where θ(Y ) = 1. Then, such representation is a sum
of standard representations. Since both Rk+ and Rk− are invariant subspaces, we deduce
that k+ and k− are multiples of 4. In this case, the existence of a subalgebra of sok+ ⊕sok−
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isomorphic to su2 and containing Y is clear. In conclusion, NS = 2 if k+, k− ≡ 0 (mod 4),
and NS = 1 if k+ or k− 6≡ 0 (mod4).

Type m ≡ 1, 7 (mod8).
ρ∗ is the tensor product R

2δ(m)⊗RR
k of the spin representation of som+1 and the standard

representation of sok. The weights of ρ
C

∗ are 1
2
(±θ1 ±· · ·± θp)± θ′j , j = 1, . . . , q, where q is

given by k = 2q if k is even, and by k = 2q+ 1 if k is odd, together with 1
2
(±θ1 ± · · · ± θp)

if k is odd. The only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and, if k is
even, Y =

∑q
i=1 e

′
i ∈ sok. The first element belongs to a subalgebra of som+1 isomorphic

to so3 ∼= su2, whenever m > 1. If Y belongs to a subalgebra of sok isomorphic to su2,
this would determine a representation of su2 with weights ±θ, where θ(Y ) = 1, and thus
such representation would be a sum of standard representations. In particular, k would
be multiple of 4. In this case, the existence of a subalgebra of sok isomorphic to su2 and
containing Y is clear. In conclusion, NS = 2 if m > 1 and k ≡ 0 (mod 4), NS = 1 if m > 1
and k 6≡ 0 (mod 4), or if m = 1 and k ≡ 0 (mod 4), and NS = 0 if m = 1 and k 6≡ 0 (mod 4).

Type m ≡ 2, 6 (mod8).
ρ∗ is the tensor product C

δ(m)⊗CC
k of the spin representation of som+1 and the standard

representation of uk. The weights of ρC∗ are 1
2
(±θ1 ± · · · ± θp)± θ′j , j = 1, . . . , k. The only

elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Yr =
∑k

i=1 εie
′
i ∈ uk, where εi = 1

for i = 1, . . . , r, εi = −1 for i = r + 1, . . . , k, and r = 0, . . . ,
[

k
2

]

. The first element always
belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2. Among the vectors Yr ∈ J , the
only one that belongs to a subalgebra of uk isomorphic to su2 is Yk/2 for k even. Therefore,
NS = 2 if k is even, and NS = 1 if k is odd.

Type m ≡ 3, 5 (mod8).
ρ∗ is the tensor product Hδ(m)/2 ⊗H Hk of the spin representation of som+1 and the

standard representation of spk. The weights of ρC∗ are 1
2
(±θ1 ± · · · ± θp)± θ′j , j = 1, . . . , k.

The only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Y =
∑k

i=1 e
′
i ∈ spk. The

first element always belongs to a subalgebra of som+1 isomorphic to so3 ∼= su2, whereas Y
belongs to a diagonally embedded subalgebra sp1 of spk. Therefore, NS = 2.

Type m ≡ 4 (mod 8).
ρ∗ is the direct sum (Hδ(m)/2 ⊗H Hk+)⊕ (Hδ(m)/2 ⊗H Hk−) of the tensor products of the

spin representation of som+1 and the standard representations of spk±. The weights of ρC∗
are 1

2
(±θ1 ± · · · ± θp)± θ′+j , j = 1, . . . , k+, and

1
2
(±θ1 ± · · · ± θp)± θ′−j , j = 1, . . . , k−. The

only elements in J up to ∼-equivalence are 2e1 ∈ som+1 and Y =
∑k+

i=1 e
′+
i +

∑k−
i=1 e

′−
i ∈

spk+ ⊕ spk−. The first element always belongs to a subalgebra of som+1 isomorphic to
so3 ∼= su2, whereas Y belongs to a diagonal subalgebra sp1 of spk+ ⊕ spk−. Hence, NS = 2.

5. Proofs of Theorems 1.1 and 1.2

The study carried out in the previous section allows us to conclude the proofs of Theo-
rems 1.1 and 1.2 stated in the introduction. We start with an easy observation about the
irreducibility of the foliations.
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Remark 5.1. We say that a polar foliation G on HP n is irreducible if there is no proper
totally geodesic quaternionic projective subspace HP k, k ∈ {0, . . . , n−1}, in HP n which is
foliated by leaves of G. It is known that a polar foliation F on a sphere is indecomposable
as a spherical join if and only if it is irreducible, in the sense that there is no proper totally
geodesic subspace foliated by leaves of F . If F = π−1G is the pull-back of a foliation on
HP n, then any proper totally geodesic subspace of S4n+3 foliated by leaves of F must be
foliated as well by the fibers of the Hopf fibration π (cf. Proposition 3.9). Thus, a polar
foliation G on HP n is irreducible if and only if its pull-back π−1G is irreducible in S4n+3.
Moreover, Proposition 3.9 reduces the study of reducible polar foliations on HP n to the
irreducible case.

Proof of Theorem 1.1. The first claim follows from the calculation ofNS carried out in §4.1.
Now let G be an irreducible polar foliation with codimension at least two on HP n. By

Proposition 2.1 and Remark 5.1, the pull-back π−1G of G under any Hopf map π : S4n+3 →
HP n is an irreducible polar foliation of codimension at least two on the sphere S4n+3.
By Thorbergsson’s theorem [33], π−1G is congruent to the orbit foliation FG/K of the
isotropy representation K×T[K]G/K → T[K]G/K of an irreducible symmetric space G/K.
Equivalently, there exists a quaternionic structure q on T[K]G/K preserving FG/K such
that G is congruent to the projection of FG/K by the Hopf map induced by q. By the study
in §4.1 the only symmetric spaces G/K that admit such a quaternionic structure are the
ones in Table 1. This proves the second claim.

Finally, the assertions about the homogeneity of the projected foliations will follow from
Theorem 6.2 in Section 6. �

Proof of Theorem 1.2. The first claim summarizes the study of the quaternionic structures
preserving FKM-foliations with m+ ≤ m− developed in §4.2.

Now let G be a polar foliation of codimension one on HP n. Let F be the pull-back
of G under any Hopf map. By Proposition 2.1, F is a polar foliation of codimension
one on S4n+3. By Münzner’s structure results for codimension one polar foliations on
spheres [28, 29], all regular leaves of F are isoparametric hypersurfaces with the same
number g ∈ {1, 2, 3, 4, 6} of constant principal curvatures, and their multiplicities satisfy
mi = mi+2 (indices modulo g). If g ∈ {1, 2, 3}, the corresponding foliation is homogeneous
according to Cartan’s results [6]. If g = 6, Abresch [1] showed that m1 = m2 ∈ {1, 2}. On
the one hand, Dorfmeister and Neher [13] proved the homogeneity of the foliations with
(g,m1, m2) = (6, 1, 1); on the other hand F cannot satisfy (g,m1, m2) = (6, 2, 2), since
the corresponding foliation would live in the sphere S13, and 13 6≡ 3 (mod 4). Finally, if
F satisfies g = 4, the classification results by Cecil, Chi, Jensen [7], Immervoll [24] and
Chi [8] imply that F is homogeneous or of FKM-type, except maybe if the hypersurfaces
of F satisfy (g,m1, m2) = (4, 7, 8). By Dadok’s work [11], if F is homogeneous, it is of the
type FG/K for some symmetric space G/K of rank 2.

If F is an FKM-foliation with m+ = 1, then it is homogeneous [16, §6.1]. Now, up to
congruence, there are exactly eight FKM-foliations with m+ > m− (see [16, §4.3 and §5.5]
or [12, §3.2]). However, each one of these foliations is either homogeneous or congruent to
another FKM-foliation with m+ ≤ m−, except for two examples with (m+, m−) = (8, 7).
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Altogether, we have that F is homogeneous of the type FG/K , or an FKM-foliation
with 2 ≤ m+ ≤ m− or an inhomogeneous foliation on S31 whose hypersurfaces satisfy
(g,m1, m2) = (4, 7, 8). This implies the second claim in the theorem.

The last assertion of Theorem 1.2 is easy (cf. Section 6). �

6. Inhomogeneous polar foliations

In this section we derive the existence of inhomogeneous polar foliations on quaternionic
projective spaces.

A polar foliation is homogeneous if it is the orbit foliation of a polar action. Podestà
and Thorbergsson [30] classified polar actions on quaternionic projective spaces up to orbit
equivalence. In the first part of this section, we revisit their result in our context.

An elementary observation is that each homogeneous polar foliation on HP n must be the
projection under the Hopf map of a homogeneous polar foliation FG/K on S4n+3. Our first
aim is to determine when the projection to HP n of a homogeneous polar foliation FG/K

on S4n+3 is homogeneous. We start with a basic lemma and use the notation of Section 3.

Lemma 6.1. Let F be a closed foliation on S(V ), s ∈ S and π : S(V ) → HP n the Hopf
map associated with the quaternionic structure ρ∗(s). Let S be the connected subgroup of
K with Lie algebra s and N0

K(S) the identity connected component of the normalizer of S
in K.

Then π(F) is a homogeneous foliation on HP n if and only if the orbit foliation of the
action of ρ(N0

K(S)) on S(V ) coincides with F .

Proof. Each isometry [A] of HP n is induced by an isometry A ∈ O(V ) of S(V ) that maps
orbits of ρ(S) to orbits of ρ(S). Equivalently, such an A satisfies Aρ(S)A−1x = ρ(S)x for
all x ∈ S(V ). This means that the group Aρ(S)A−1 acts with the same orbits as ρ(S).

We claim that ρ(S) is the maximal connected subgroup of SO(V ) acting with the fibers
of π as orbits. Suppose the contrary. Then the larger group would act with nontrivial
principal isotropy group and yield a reduction of the ρ(S)-action (cf. [20, §2.3] or [21, §2.6]),
contradicting [20, Proposition 1.1]. We deduce from the claim that Aρ(S)A−1 = ρ(S), i.e.
A ∈ NO(V )(ρ(S)).

Thus, the maximal connected subgroup of isometries of HP n that leave invariant each
leaf of π(F) is the identity connected component of ρ(K)∩NO(V )(ρ(S)), which is ρ(N0

K(S)).
This implies the lemma. �

It is appropriate to recall here that a Riemannian manifold of dimension 4k is called
quaternionic-Kähler if its holonomy group is a subgroup of Spk · Sp1. A symmetric space
G/K without Euclidean factor is quaternionic-Kähler if and only if it is irreducible and its
isotropy group K contains a normal subgroup isomorphic to SU2 = Sp1 whose isotropy
representation is equivalent to the representation of the normal subgroup Sp1 of Spk ·Sp1

when considered with its standard action on Hk. We refer to the Lie algebra of this normal
subgroup of K as the distinguished su2-factor of k. For more details, see [5, §14.E].

We also recall that when we deal with a homogeneous polar foliation FG/K induced by
an effective symmetric pair (G,K) of compact type, with K connected, we can regard the
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representation ρ as the adjoint representation Ad: K → O(p), and then ρ∗ = ad is the
adjoint representation on the Lie algebra level. Here p is the orthogonal complement of
k in g with respect to the Killing form of g. Thus, g = k ⊕ p is the decomposition into
eigenspaces of the involution induced by the geodesic symmetry of G/K.

We can now provide a different approach to the proof of the classification of homogeneous
polar foliations onHP n due to Podestà and Thorbergsson [30]. Our arguments are based on
the classification of quaternionic structures obtained in §4.1 and on the explicit description
of all connected groups acting polarly on spheres (due to Eschenburg and Heintze [14] for
the irreducible case, and to Bergmann [3] and Fang, Grove and Thorbergsson [15] for the
reducible case).

Theorem 6.2. Let (G,K) be a compact, effective symmetric pair, (G,K) =
∏r

i=1(Gi, Ki)
its decomposition in irreducible factors, and gi = ki⊕pi the decomposition into eigenspaces
of the involution associated to Gi/Ki. Let q = ad(s)|p be a quaternionic structure on
p =

⊕r
i=1 pi that preserves the foliation FG/K , where s ∼= su2 is a subalgebra of k. Then,

the following conditions are equivalent:

(i) The projection of FG/K to the quaternionic projective space HP n determined by q is
a homogeneous foliation.

(ii) All but maybe one of the irreducible factors of G/K have rank one, and the possible
exception Gj/Kj, for some j ∈ {1, . . . , r}, is a quaternionic-Kähler symmetric space
such that the projection of s on kj yields the distinguished su2-factor of kj.

Proof. Note that we can change the symmetric pairs associated to rank one factors to those
of the type (SO4pi+1,SO4pi), where 4pi = dim pi, if necessary. Indeed, the foliation FG/K

remains the same, and s remains in S.
First suppose (ii). Let si be the projection of s on ki, for each i = 1, . . . , r. As a closed

subgroup of a compact Lie group, we have that N0
K(S) = Z0

K(S) · S. It is clear also that
Z0

K(S) =
∏r

i=1 Z
0
Ki
(Si). If i 6= j, then Z0

Ki
(Si) is isomorphic to Sppi. On the other hand,

it is clear that Zkj (sj) = k′j, where Gj/Kj is a quaternionic-Kähler irreducible symmetric

space and kj = k′j ⊕ su2. Hence Z0
Kj
(Sj) = K ′

j. All in all, N0
K(S) = (

∏r
i=1 Z

0
Ki
(Si)) · S ∼=

((
∏

i 6=j Sppi
)×K ′

j) · S. Then, N
0
K(S) acts on S(p) by the adjoint representation with the

same orbits as the adjoint action of K and, thus, Lemma 6.1 guarantees the homogeneity
of the projected foliation.

Now assume (i). By Proposition 3.9, the projection of s onto each ki, i = 1, . . . , r, is
a subalgebra si of ki isomorphic to su2, and qi = ad(si)|pi is a quaternionic structure on
pi preserving FGi/Ki

. Each subalgebra si ⊂ ki determines a Hopf fibration πi : S(pi) →
HP dim pi/4−1. The projection of each irreducible foliation FGi/Ki

, i = 1, . . . , r, via the Hopf
map πi, is homogeneous as follows from the assumption. Then by Lemma 6.1, N0

Ki
(Si) is

a connected subgroup of Ki acting on S(pi) by the adjoint representation with the same
orbits as Ki. By [14], whenever Gi/Ki has rank at least two, any connected subgroup K ′

i

of Ki whose adjoint action has the same orbits as Ki must be the whole Ki, except for a
few possibilities. After excluding cases (i), (iv) with pq odd, and (v) in [14] (because the
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corresponding foliations cannot be preserved by any quaternionic structure according to
our classification in §4.1), we are left with the following possibilities:

• (Gi, Ki) = (SO10,SO2 × SO8), K
′
i = SO2 × Spin7, and Si is, up to conjugation,

a diagonally embedded Sp1 ⊂ SO8 ⊂ Ki. Then N0
Ki
(Si) = SO2 × (Sp2 · Sp1) 6=

SO2 × Spin7.
• (Gi, Ki) = (SO11,SO3 × SO8), K

′
i = SO3 × Spin7, and Si is, up to conjugation,

a diagonally embedded Sp1 ⊂ SO8 ⊂ Ki. Then N0
Ki
(Si) = SO3 × (Sp2 · Sp1) 6=

SO3 × Spin7.
• (Gi, Ki) = (SUp+q,S(Up ×Uq)) with p 6= q, p or q even, K ′

i = SUp × SUq, and Si

is, up to conjugation, a diagonally embedded SU2 ⊂ SUp ⊂ Ki if p = 2p′ is even.
Then N0

Ki
(Si) = S(((Spp′ · Sp1) ∩Up)×Uq) 6= SUp × SUq. Similarly if q is even.

• (Gi, Ki) = (E6,Spin10 ·U1), K
′
i = Spin10, and Si is, up to conjugation, a canon-

ically embedded Spin3 ⊂ Spin10 ⊂ Ki. Then N0
Ki
(Si) = (Spin3 × Spin7) ·U1 6=

Spin10.

Altogether, Lemma 6.1, the result in [14] and the homogeneity assumption imply that
N0

Ki
(Si) = Ki. Hence, if Gi/Ki has rank higher than one, then Si is a normal subgroup of

Ki; since ad(si)|pi is a quaternionic structure on pi, it follows that Gi/Ki is quaternionic-
Kähler.

Now assume that there are at least two irreducible factors of G/K with rank higher than
one; let them be G1/K1 and G2/K2. Decompose Ki as a direct product Si · Li of normal
subgroups, i = 1, 2. The group (L1 × L2) · S acts almost effectively on p1 ⊕ p2. Then,
by [15, Lemma 9.4], its adjoint action on p1 ⊕ p2 is standard, which in this case means
that (L1 × L2) · S has the same orbits as L1 × L2. In particular, the adjoint actions of
Ki and Li on pi are orbit equivalent, for i = 1, 2. Again, by [14], both G1/K1 and G2/K2

cannot have rank higher than one, which contradicts our assumption. Therefore, at most
one irreducible factor Gj/Kj of G/K has rank greater than one. �

We can now analyse the existence of inhomogeneous polar foliations depending on the
dimension of the ambient quaternionic projective space. We start by restricting to the
codimension one case, thus obtaining the characterization stated in Theorem 1.3 in the
introduction. This result turns out to be completely analogous to the one derived in [12,
Theorem 7.4(i)] for codimension one polar foliations on complex projective spaces (cf. [18,
Theorem 1.1]). Although very similar arguments to the ones used in [12] would work here
as well, we prefer to include a different proof based on the classification we obtained above
in this paper.

For the proofs of Theorems 1.3 and 1.4 we will need the explicit values of the rank and
dimension of the different symmetric spaces [23, p. 518].

Proof of Theorem 1.3. We start by proving the necessity. Let n ≥ 3 be odd. Consider the
symmetric space G/K = SUn+3/S(Un+1 ×U2). By our classification in §4.1 and by the
characterization of the homogeneity of projected foliations in Theorem 6.2, we know that
there is an irreducible inhomogeneous polar foliation G on HP n whose pull-back under the
Hopf map is congruent to FG/K . Since rank G/K = 2, the codimension of G in HP n is one.
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Next we show the other implication. First, it is well-known that HP 1 ∼= S4 only admits
homogeneous polar foliations, see [6, 33] or [31]. Then let us assume that n is even and let
G be a codimension one polar foliation on HP n. We will show that G is homogeneous.

By Theorem 1.2, we know that G is the projection via some Hopf map of a homogeneous
foliation FG/K for some rank two symmetric space, or of an inhomogeneous FKM-foliation
FP with m+ ≤ m−, or we are in the open case n = 7. Actually, we cannot be in this last
case, since we are assuming that n is even.

Assume first G is the projection of a foliation FG/K for some rank two symmetric space
such that NS ≥ 1. According to our classification and to the dimensions and ranks of the
symmetric spaces, since dimG/K = 4(n + 1) with n + 1 odd, the only possibilities for
G/K are SUn+3/S(Un+1 × U2) or a reducible symmetric space S4r × S4(n−r+1) for some
r = 1, . . . , n. But since in all these cases we have NS = 1, Theorem 6.2 guarantees that
G = π(FG/K) is homogeneous.

Next assume G is the projection of an inhomogeneous FKM-foliation FP with m+ ≤ m−.
Since we take FP not homogeneous, we can assume that m = m+ ≥ 3 (see [16, §4.4]). It
turns out that, in this case, m+ + m− ≡ 3 (mod 4), as follows from the facts stated at
the beginning of §4.2. However, since the regular leaves of FP are hypersurfaces in S4n+3

with four principal curvatures, two of them with multiplicity m+ and the other two with
multiplicity m−, we must also have 4(n + 1) = 2(m+ + m− + 1) ≡ 0 (mod 8). This is a
contradiction to the assumption that n is even. Hence G cannot be the projection of an
inhomogeneous FKM-foliation. This concludes the proof. �

Finally we prove Theorem 1.4, which provides a characterization of those dimensions n
for which HP n admits some irreducible inhomogeneous polar foliation of some codimension.
Intriguingly, and similarly as for CP n, prime numbers appear again in this characterization.
However, the proof of the analogous result for CP n in [12] does not carry over directly to
the quaternionic setting.

Proof of Theorem 1.4. Suppose n + 1 is not prime. Write n + 1 = pq for integers p,
q ≥ 2. Consider the irreducible symmetric space G/K = Spp+q/Spp × Spq, which is not
quaternionic-Kähler. By §4.1 we know that NS ≥ 1 for this symmetric space. Then, there
is, up to congruence in HP n, at least one polar foliation G on HP n whose pull-back under
the Hopf map is congruent to FG/K . This G is irreducible, and cannot be homogeneous
due to Theorem 6.2.

Now let n + 1 be prime and let G be an irreducible polar foliation on HP n. If G
has codimension one, then we know by Theorem 1.3 that n is odd and n ≥ 3, or G is
homogeneous. The first case is impossible because we are assuming that n + 1 is prime.
Hence, G is homogeneous.

Let us then assume that G has codimension at least two. Since it is irreducible, it
must be obtained by projecting some homogeneous polar foliation FG/K for some ir-
reducible symmetric space G/K such that rank G/K ≥ 3 and NS ≥ 1. Moreover,
dimG/K = 4(n + 1) is four times a prime number. By appealing again to §4.1 and
to the dimensions and ranks of the symmetric spaces, we are left with the following possi-
bilities for G/K: SOn+5/SOn+1×SO4 and F4/Sp3 ·SU2. But these symmetric spaces are
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quaternionic-Kähler and satisfy NS = 1. Hence, by Theorem 6.2, their projections must
be homogeneous. Thus, G is homogeneous. �
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